1
|
Hale M, Takehara KK, Thouvenel CD, Moustafa DA, Repele A, Fontana MF, Netland J, McNamara S, Gibson RL, Goldberg JB, Rawlings DJ, Pepper M. Monoclonal antibodies derived from B cells in subjects with cystic fibrosis reduce Pseudomonas aeruginosa burden in mice. eLife 2025; 13:RP98851. [PMID: 40272253 PMCID: PMC12021410 DOI: 10.7554/elife.98851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025] Open
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.
Collapse
Affiliation(s)
- Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Kennidy K Takehara
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| | - Christopher D Thouvenel
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Dina A Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of MedicineAtlantaUnited States
| | - Andrea Repele
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
| | - Mary F Fontana
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| | - Jason Netland
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| | - Sharon McNamara
- Cystic Fibrosis Center, University of Washington/Seattle Children’s HospitalSeattleUnited States
| | - Ronald L Gibson
- Cystic Fibrosis Center, University of Washington/Seattle Children’s HospitalSeattleUnited States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WASeattleUnited States
| | - Joanna B Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of MedicineAtlantaUnited States
| | - David J Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research InstituteSeattleUnited States
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WASeattleUnited States
| | - Marion Pepper
- Department of Immunology, University of Washington School of MedicineSeattleUnited States
| |
Collapse
|
2
|
Borisova D, Strateva T, Dimov SG, Atanassova B, Paunova-Krasteva T, Topouzova-Hristova T, Danova ST, Tropcheva R, Stoitsova S. Diversification of Pseudomonas aeruginosa After Inhaled Tobramycin Therapy of Cystic Fibrosis Patients: Genotypic and Phenotypic Characteristics of Paired Pre- and Post-Treatment Isolates. Microorganisms 2025; 13:730. [PMID: 40284567 PMCID: PMC12029236 DOI: 10.3390/microorganisms13040730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
This study examines the impact of inhaled tobramycin therapy on the within-host changes in P. aeruginosa strains isolated from Bulgarian patients with CF prior to and post treatment. Genotypic comparison by RAPD-PCR indicated that most of the pre-treatment isolates had a high similarity and were genetically comparatively close to strains from other countries with known increased morbidity or treatment requirements. Most of the post-treatment isolates were, however, genetically distant from their pre-treatment counterparts, showing genotypic diversification after the treatment. Phenotypic comparisons showed a lower ODmax reached during groswth and an increased lag-time in the post-treatment isolates. All strains were capable of invasion and intracellular reproduction within A549 cultured cells. The addition of sub-inhibitory amounts (1/4 or 1/2 MIC) of tobramycin during growth showed the higher relative fitness (as a percentage of the untreated control) of the post-treatment strains. The effects of sub-MICs on biofilm growth did not show such a pronounced trend. However, when a resazurin-based viability test was applied, the advantage of the post-treatment strains was confirmed for both broth and biofilm cultures. In spite of that, according to the determined MIC values, all isolates were tobramycin-sensitive, and the data from this study imply the development of tolerance to the antibiotic in the strains that survived the treatment.
Collapse
Affiliation(s)
- Dayana Borisova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria; (D.B.); (T.P.-K.); (S.T.D.)
| | - Tanya Strateva
- Department of Medical Microbiology “Corr. Mem. Prof. Ivan Mitov, MD, DMSc”, Faculty of Medicine, Medical University of Sofia, 2 Zdrave Str., 1431 Sofia, Bulgaria;
| | - Svetoslav G. Dimov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (S.G.D.); (B.A.); (T.T.-H.)
| | - Borjana Atanassova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (S.G.D.); (B.A.); (T.T.-H.)
| | - Tsvetelina Paunova-Krasteva
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria; (D.B.); (T.P.-K.); (S.T.D.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria; (S.G.D.); (B.A.); (T.T.-H.)
| | - Svetla T. Danova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria; (D.B.); (T.P.-K.); (S.T.D.)
| | - Rositsa Tropcheva
- Center of Applied Studies and Innovation, 8, Dragan Tsankov Blvd., 1164 Sofia, Bulgaria;
| | - Stoyanka Stoitsova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria; (D.B.); (T.P.-K.); (S.T.D.)
| |
Collapse
|
3
|
Badis A, Heleili N, Merradi M, Ayachi A, Martino PA, Meroni G, Soggiu A. Outbreak of Carbapenem-Resistant High-Risk Clone ST244 of Pseudomonas aeruginosa in Dogs and Cats in Algeria. Antibiotics (Basel) 2025; 14:230. [PMID: 40149042 PMCID: PMC11939618 DOI: 10.3390/antibiotics14030230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Pseudomonas aeruginosa causes chronic infections in humans and animals, especially cats and dogs. This bacterium's ability to adapt and acquire antibiotic resistance traits may complicate and exacerbate antibacterial therapy. This study aimed to evaluate the antibiotic resistance patterns, virulence factors and ability to form biofilms of P. aeruginosa strains isolated from Algerian dogs and cats. Methods: Nineteen samples were collected from healthy and diseased dogs and cats. Isolates were studied for their antibiotic-resistance patterns (disc diffusion method) and biofilm formation (Microtiter assay) and were whole-genome sequenced (MinION). Results: Nineteen P. aeruginosa strains (15 from dogs and 4 from cats) were isolated. Antibiotic-resistance phenotypes were observed against amoxicillin-clavulanic acid (100%); meanwhile, resistance towards ticarcillin was 40% (dogs) and 25% (cats), ticarcillin-clavulanic acid was 13.33% and 25% for dogs and cats, respectively, and imipenem was 75% (cats) and 20% (dogs). Moreover, 95% of strains were biofilm-producers. Different antimicrobial resistance genes (ARGs) were found: beta-lactamase genes, mainly PAO, OXA-494, OXA-50 and OXA-396 and an aminoglycoside gene (aph(3')-IIb). The main high-risk sequence types (STs) were ST244, 2788, 388 and 1247. A large panel of virulence genes was detected: exoS, exoT, exoY, lasA, toxA, prpL, algD, rhIA and others. Conclusions: The genetic variety in antibiotic-resistance genes of resistant and virulent P. aeruginosa strains in dogs makes public health protection difficult. Continuous monitoring and research in compliance with the One Health policy are needed to solve this problem.
Collapse
Affiliation(s)
- Amina Badis
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna 05000, Algeria; (N.H.); (M.M.)
| | - Nouzha Heleili
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna 05000, Algeria; (N.H.); (M.M.)
- Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna 05000, Algeria;
| | - Manel Merradi
- ESPA Laboratory, Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna 05000, Algeria; (N.H.); (M.M.)
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences, University of Batna 2, Batna 05078, Algeria
| | - Ammar Ayachi
- Department of Veterinary Sciences, Institute of Veterinary Sciences and Agronomic Sciences, University of Batna 1, Batna 05000, Algeria;
| | - Piera Anna Martino
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (P.A.M.); (A.S.)
| | - Gabriele Meroni
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (P.A.M.); (A.S.)
| | - Alessio Soggiu
- One Health Unit, Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (P.A.M.); (A.S.)
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
4
|
Flores-Vega VR, Partida-Sanchez S, Ares MA, Ortiz-Navarrete V, Rosales-Reyes R. High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update. Heliyon 2025; 11:e41540. [PMID: 39850428 PMCID: PMC11754179 DOI: 10.1016/j.heliyon.2024.e41540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is defined by the World Health Organization as a "high priority" in developing new antimicrobials. Indeed, the emergence and spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria increase the morbidity and mortality risk of infected patients. Genomic variants of P. aeruginosa that display phenotypes of MDR/XDR have been defined as high-risk global clones. In this mini-review, we describe some international high-risk clones that carry β-lactamase genes that can produce chronic colonization and increase infected patients' morbidity and mortality rates.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
5
|
Guliy OI, Evstigneeva SS. Bacterial Communities and Their Role in Bacterial Infections. Front Biosci (Elite Ed) 2024; 16:36. [PMID: 39736004 DOI: 10.31083/j.fbe1604036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 12/31/2024]
Abstract
Since infections associated with microbial communities threaten human health, research is increasingly focusing on the development of biofilms and strategies to combat them. Bacterial communities may include bacteria of one or several species. Therefore, examining all the microbes and identifying individual community bacteria responsible for the infectious process is important. Rapid and accurate detection of bacterial pathogens is paramount in healthcare, food safety, and environmental monitoring. Here, we analyze biofilm composition and describe the main groups of pathogens whose presence in a microbial community leads to infection (Staphylococcus aureus, Enterococcus spp., Cutibacterium spp., bacteria of the HACEK, etc.). Particular attention is paid to bacterial communities that can lead to the development of device-associated infections, damage, and disruption of the normal functioning of medical devices, such as cardiovascular implants, biliary stents, neurological, orthopedic, urological and penile implants, etc. Special consideration is given to tissue-located bacterial biofilms in the oral cavity, lungs and lower respiratory tract, upper respiratory tract, middle ear, cardiovascular system, skeletal system, wound surface, and urogenital system. We also describe methods used to analyze the bacterial composition in biofilms, such as microbiologically testing, staining, microcolony formation, cellular and extracellular biofilm components, and other methods. Finally, we present ways to reduce the incidence of biofilm-caused infections.
Collapse
Affiliation(s)
- Olga I Guliy
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| | - Stella S Evstigneeva
- Institute of Biochemistry and Physiology of Plants and Microorganisms - Subdivision of the Federal State Budgetary Research Institution Saratov Federal Scientific Centre of the Russian Academy of Sciences (IBPPM RAS), 410049 Saratov, Russia
| |
Collapse
|
6
|
Yu S, Pan J, Xu M, Chen Y, Li P, Hu H. Antibacterial activity and mechanism of colistin-loaded polymeric nanoparticles for combating multidrug-resistant Pseudomonas aeruginosa biofilms: A synergistic approach. Int J Biol Macromol 2024; 282:136757. [PMID: 39437944 DOI: 10.1016/j.ijbiomac.2024.136757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/25/2024]
Abstract
Multidrug-resistant P. aeruginosa (MDR-P. aeruginosa), associated with elevated morbidity, mortality, and readmission rates, presents a formidable challenge to eradication due to its robust resistance to antimicrobial agents and biofilm formation. Herein, self-assembling nanoparticles (NO-PE/PLL NPs) comprised of NO donor-conjugated γ-polyglutamic acid (GSNO-PGA), epsilon-poly-l-lysine (PLL) and colistin were fabricated. The negatively charged NO-PE/PLL NPs exhibited effective penetration through airway mucus, reaching the infection site where GSNO-PGA released NO in response to glutathione within biofilm. PLL worked synergistically with colistin (fractional inhibitory concentration index: 0.281), reducing the minimum inhibitory concentration (MIC) of colistin from 2 to 0.5 μg/mL. Benefiting from this synergistic antibacterial action and NO-mediated biofilm disruption, NO-PE/PLL NPs achieved a 99.99 % eradication rate against MDR-P. aeruginosa biofilms. Additionally, NO-PE/PLL NPs efficiently inhibited endotoxins-stimulated inflammation response. In a chronic pulmonary infection model, NO-PE/PLL NPs displayed the highest eradication efficiency (99.78 %) to infected mice, while having no adverse effects on their major organs or pulmonary functions. These results highlight NO-PE/PLL NPs as a promising therapeutic strategy for treating recalcitrant infections caused by MDR-P. aeruginosa biofilms.
Collapse
Affiliation(s)
- Shihui Yu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jieyi Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Mao Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yujun Chen
- The First Affiliated Hospital of Guangxi Medical University, Guangxi 530000, China
| | - Pengyu Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Department of Pharmacy, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha 410004, China.
| | - Haiyan Hu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
7
|
Hale M, Takehara KK, Thouvenel CD, Moustafa DA, Repele A, Fontana MF, Netland J, McNamara S, Gibson RL, Goldberg JB, Rawlings DJ, Pepper M. Monoclonal antibodies derived from B cells in subjects with cystic fibrosis reduce Pseudomonas aeruginosa burden in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.08.588618. [PMID: 38645147 PMCID: PMC11030358 DOI: 10.1101/2024.04.08.588618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across 3 donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.
Collapse
Affiliation(s)
- Malika Hale
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Kennidy K. Takehara
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | | | - Dina A. Moustafa
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - Andrea Repele
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
| | - Mary F. Fontana
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Jason Netland
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| | - Sharon McNamara
- Cystic Fibrosis Center, University of Washington/Seattle Children’s Hospital, Seattle, WA
| | - Ronald L. Gibson
- Cystic Fibrosis Center, University of Washington/Seattle Children’s Hospital, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Joanna B. Goldberg
- Division of Pulmonary, Asthma, Cystic Fibrosis, and Sleep, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
| | - David J. Rawlings
- Center for Immunity and Immunotherapies, Seattle Children’s Research Institute, Seattle, WA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA
| | - Marion Pepper
- Department of Immunology, University of Washington School of Medicine, Seattle, WA
| |
Collapse
|
8
|
Herrmann C, Lingner M, Herrmann S, Brockhausen I, Tümmler B. Mucin adhesion of serial cystic fibrosis airways Pseudomonas aeruginosa isolates. Front Cell Infect Microbiol 2024; 14:1448104. [PMID: 39239637 PMCID: PMC11374773 DOI: 10.3389/fcimb.2024.1448104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024] Open
Abstract
The chronic airway infections with Pseudomonas aeruginosa are the major co-morbidity in people with cystic fibrosis (CF). Within CF lungs, P. aeruginosa persists in the conducting airways together with human mucins as the most abundant structural component of its microenvironment. We investigated the adhesion of 41 serial CF airway P. aeruginosa isolates to airway mucin preparations from CF sputa. Mucins and bacteria were retrieved from five modulator-naïve patients with advanced CF lung disease. The P. aeruginosa isolates from CF airways and non-CF reference strains showed a strain-specific signature in their adhesion to ovine, porcine and bovine submaxillary mucins and CF airway mucins ranging from no or low to moderate and strong binding. Serial CF clonal isolates and colony morphotypes from the same sputum sample were as heterogeneous in their affinity to mucin as representatives of other clones thus making 'mucin binding' one of the most variable intraclonal phenotypic traits of P. aeruginosa known to date. Most P. aeruginosa CF airway isolates did not adhere more strongly to CF airway mucins than to plastic surfaces. The strong binders, however, exhibited a strain-specific affinity gradient to O-glycans, CF airway and mammalian submaxillary mucins.
Collapse
Affiliation(s)
- Christian Herrmann
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Meike Lingner
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Susanne Herrmann
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Inka Brockhausen
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| | - Burkhard Tümmler
- Institut für Biophysikalische Chemie, Medizinische Hochschule Hannover, Hannover, Germany
- Klinik für Pädiatrische Pneumologie, Allergologie und Neonatologie, Medizinische Hochschule Hannover, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany
| |
Collapse
|
9
|
Pedersen BH, Simões FB, Pogrebnyakov I, Welch M, Johansen HK, Molin S, La Rosa R. Metabolic specialization drives reduced pathogenicity in Pseudomonas aeruginosa isolates from cystic fibrosis patients. PLoS Biol 2024; 22:e3002781. [PMID: 39178315 PMCID: PMC11376529 DOI: 10.1371/journal.pbio.3002781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 09/05/2024] [Accepted: 08/01/2024] [Indexed: 08/25/2024] Open
Abstract
Metabolism provides the foundation for all cellular functions. During persistent infections, in adapted pathogenic bacteria metabolism functions radically differently compared with more naïve strains. Whether this is simply a necessary accommodation to the persistence phenotype or if metabolism plays a direct role in achieving persistence in the host is still unclear. Here, we characterize a convergent shift in metabolic function(s) linked with the persistence phenotype during Pseudomonas aeruginosa colonization in the airways of people with cystic fibrosis. We show that clinically relevant mutations in the key metabolic enzyme, pyruvate dehydrogenase, lead to a host-specialized metabolism together with a lower virulence and immune response recruitment. These changes in infection phenotype are mediated by impaired type III secretion system activity and by secretion of the antioxidant metabolite, pyruvate, respectively. Our results show how metabolic adaptations directly impinge on persistence and pathogenicity in this organism.
Collapse
Affiliation(s)
- Bjarke Haldrup Pedersen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Filipa Bica Simões
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| | - Ivan Pogrebnyakov
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Martin Welch
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helle Krogh Johansen
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren Molin
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ruggero La Rosa
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
- Department of Clinical Microbiology 9301, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
10
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
11
|
Mould DL, Finger CE, Conaway A, Botelho N, Stuut SE, Hogan DA. Citrate cross-feeding by Pseudomonas aeruginosa supports lasR mutant fitness. mBio 2024; 15:e0127823. [PMID: 38259061 PMCID: PMC10865840 DOI: 10.1128/mbio.01278-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Cross-feeding of metabolites between subpopulations can affect cell phenotypes and population-level behaviors. In chronic Pseudomonas aeruginosa lung infections, subpopulations with loss-of-function (LOF) mutations in the lasR gene are common. LasR, a transcription factor often described for its role in virulence factor expression, also impacts metabolism, which, in turn, affects interactions between LasR+ and LasR- genotypes. Prior transcriptomic analyses suggested that citrate, a metabolite secreted by many cell types, induces virulence factor production when both genotypes are together. An unbiased analysis of the intracellular metabolome revealed broad differences including higher levels of citrate in lasR LOF mutants. Citrate consumption by LasR- strains required the CbrAB two-component system, which relieves carbon catabolite repression and is elevated in lasR LOF mutants. Within mixed communities, the citrate-responsive two-component system TctED and its gene targets OpdH (porin) and TctABC (citrate transporter) that are predicted to be under catabolite repression control were induced and required for enhanced RhlR/I-dependent signaling, pyocyanin production, and fitness of LasR- strains. Citrate uptake by LasR- strains markedly increased pyocyanin production in co-culture with Staphylococcus aureus, which also secretes citrate and frequently co-infects with P. aeruginosa. This citrate-induced restoration of virulence factor production by LasR- strains in communities with diverse species or genotypes may offer an explanation for the contrast observed between the markedly deficient virulence factor production of LasR- strains in monocultures and their association with the most severe forms of cystic fibrosis lung infections. These studies highlight the impact of secreted metabolites in mixed microbial communities.IMPORTANCECross-feeding of metabolites can change community composition, structure, and function. Here, we unravel a cross-feeding mechanism between frequently co-observed isolate genotypes in chronic Pseudomonas aeruginosa lung infections. We illustrate an example of how clonally derived diversity in a microbial communication system enables intra- and inter-species cross-feeding. Citrate, a metabolite released by many cells including P. aeruginosa and Staphylococcus aureus, was differentially consumed between genotypes. Since these two pathogens frequently co-occur in the most severe cystic fibrosis lung infections, the cross-feeding-induced virulence factor expression and fitness described here between diverse genotypes exemplify how co-occurrence can facilitate the development of worse disease outcomes.
Collapse
Affiliation(s)
- Dallas L. Mould
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Carson E. Finger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Amy Conaway
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Nico Botelho
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Stacie E. Stuut
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A. Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
12
|
Damyanova T, Dimitrova PD, Borisova D, Topouzova-Hristova T, Haladjova E, Paunova-Krasteva T. An Overview of Biofilm-Associated Infections and the Role of Phytochemicals and Nanomaterials in Their Control and Prevention. Pharmaceutics 2024; 16:162. [PMID: 38399223 PMCID: PMC10892570 DOI: 10.3390/pharmaceutics16020162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/04/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Biofilm formation is considered one of the primary virulence mechanisms in Gram-positive and Gram-negative pathogenic species, particularly those responsible for chronic infections and promoting bacterial survival within the host. In recent years, there has been a growing interest in discovering new compounds capable of inhibiting biofilm formation. This is considered a promising antivirulence strategy that could potentially overcome antibiotic resistance issues. Effective antibiofilm agents should possess distinctive properties. They should be structurally unique, enable easy entry into cells, influence quorum sensing signaling, and synergize with other antibacterial agents. Many of these properties are found in both natural systems that are isolated from plants and in synthetic systems like nanoparticles and nanocomposites. In this review, we discuss the clinical nature of biofilm-associated infections and some of the mechanisms associated with their antibiotic tolerance. We focus on the advantages and efficacy of various natural and synthetic compounds as a new therapeutic approach to control bacterial biofilms and address multidrug resistance in bacteria.
Collapse
Affiliation(s)
- Tsvetozara Damyanova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Petya D. Dimitrova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Dayana Borisova
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| | - Tanya Topouzova-Hristova
- Faculty of Biology, Sofia University “St. K. Ohridski”, 8 D. Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Emi Haladjova
- Institute of Polymers, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 103-A, 1113 Sofia, Bulgaria;
| | - Tsvetelina Paunova-Krasteva
- Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, Akad. G. Bonchev St. bl. 26, 1113 Sofia, Bulgaria; (T.D.); (P.D.D.); (D.B.)
| |
Collapse
|
13
|
Lee JH, Kim NH, Jang KM, Jin H, Shin K, Jeong BC, Kim DW, Lee SH. Prioritization of Critical Factors for Surveillance of the Dissemination of Antibiotic Resistance in Pseudomonas aeruginosa: A Systematic Review. Int J Mol Sci 2023; 24:15209. [PMID: 37894890 PMCID: PMC10607276 DOI: 10.3390/ijms242015209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Pseudomonas aeruginosa is the primary opportunistic human pathogen responsible for a range of acute and chronic infections; it poses a significant threat to immunocompromised patients and is the leading cause of morbidity and mortality for nosocomial infections. Its high resistance to a diverse array of antimicrobial agents presents an urgent health concern. Among the mechanisms contributing to resistance in P. aeruginosa, the horizontal acquisition of antibiotic resistance genes (ARGs) via mobile genetic elements (MGEs) has gained recognition as a substantial concern in clinical settings, thus indicating that a comprehensive understanding of ARG dissemination within the species is strongly required for surveillance. Here, two approaches, including a systematic literature analysis and a genome database survey, were employed to gain insights into ARG dissemination. The genome database enabled scrutinizing of all the available sequence information and various attributes of P. aeruginosa isolates, thus providing an extensive understanding of ARG dissemination within the species. By integrating both approaches, with a primary focus on the genome database survey, mobile ARGs that were linked or correlated with MGEs, important sequence types (STs) carrying diverse ARGs, and MGEs responsible for ARG dissemination were identified as critical factors requiring strict surveillance. Although human isolates play a primary role in dissemination, the importance of animal and environmental isolates has also been suggested. In this study, 25 critical mobile ARGs, 45 critical STs, and associated MGEs involved in ARG dissemination within the species, are suggested as critical factors. Surveillance and management of these prioritized factors across the One Health sectors are essential to mitigate the emergence of multidrug-resistant (MDR) and extensively resistant (XDR) P. aeruginosa in clinical settings.
Collapse
Affiliation(s)
- Jung Hun Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Nam-Hoon Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Kyung-Min Jang
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Hyeonku Jin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Kyoungmin Shin
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Byeong Chul Jeong
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| | - Dae-Wi Kim
- Division of Life Sciences, Jeonbuk National University, Jeonju 54896, Republic of Korea;
| | - Sang Hee Lee
- National Leading Research Laboratory of Drug Resistance Proteomics, Department of Biological Sciences, Myongji University, Yongin 17058, Republic of Korea; (J.H.L.); (K.-M.J.); (H.J.); (K.S.); (B.C.J.)
| |
Collapse
|