1
|
Abrokwah LA, Torkpo SK, Pereira GDS, Oppong A, Eleblu J, Pita J, Offei SK. Rice Yellow Mottle Virus (RYMV): A Review. Viruses 2024; 16:1707. [PMID: 39599824 PMCID: PMC11598978 DOI: 10.3390/v16111707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 11/29/2024] Open
Abstract
Rice (Oryza spp.) is mostly grown directly from seed and sown on wet or dry seed beds or usually used as transplants on nursery beds. Among all the economically important viral diseases in the world, rice yellow mottle virus (RYMV) is only prevalent in rice-growing countries in Africa. RYMV has become the main rice production constraint in Africa over the last 20-25 years, causing yield losses of 10 to 100% depending on the age of the plant at the time of infection, degree of varietal susceptibility and the existing climatic conditions. Good agricultural practices and biotechnological tools in the development of improved resistant cultivars have been extensively utilized in controlling the disease. This review focuses on RYMV, its epidemiology, serological and molecular typing, disease management and the way forward for sustainable rice production.
Collapse
Affiliation(s)
- Linda Appianimaa Abrokwah
- Department of Crop Science, School of Agriculture, University of Ghana, Legon P.O. Box LG 68, Ghana; (L.A.A.); (S.K.O.)
- CSIR-Crops Research Institute, Kumasi-Ghana P.O. Box 3785, Ghana;
| | - Stephen Kwame Torkpo
- Department of Crop Science, School of Agriculture, University of Ghana, Legon P.O. Box LG 68, Ghana; (L.A.A.); (S.K.O.)
- Forest and Horticultural Crops Research Centre-Kade, School of Agriculture, College of Basic and Applied Sciences, University of Ghana, Legon P.O. Box LG 25, Ghana
| | | | - Allen Oppong
- CSIR-Crops Research Institute, Kumasi-Ghana P.O. Box 3785, Ghana;
| | - John Eleblu
- West Africa Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon P.O. Box LG 25, Ghana;
| | - Justin Pita
- Universite Felix Houphouet Boigny, Abidjan 00225, Côte d’Ivoire;
| | - Samuel Kwame Offei
- Department of Crop Science, School of Agriculture, University of Ghana, Legon P.O. Box LG 68, Ghana; (L.A.A.); (S.K.O.)
- West Africa Centre for Crop Improvement, College of Basic and Applied Sciences, University of Ghana, Legon P.O. Box LG 25, Ghana;
| |
Collapse
|
2
|
Yu JB, Lv X, Liu Q, Tu JY, Yu XP, Xu YP. Death-Associated Protein-1 Plays a Role in the Reproductive Development of Nilaparvata lugens and the Transovarial Transmission of Its Yeast-Like Symbiont. INSECTS 2024; 15:425. [PMID: 38921140 PMCID: PMC11204009 DOI: 10.3390/insects15060425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/25/2024] [Accepted: 06/03/2024] [Indexed: 06/27/2024]
Abstract
Death-associated protein-1 (DAP-1) plays a crucial role in cell growth, migration, autophagy, and apoptosis in mammals. However, its function in insects remains unclear. In the present study, we cloned and identified Nilaparvata lugens DAP-1 (NlDAP-1). NlDAP-1 was expressed during all developmental stages and in all tissues of N. lugens, being particularly higher in the ovaries of female adults. RNAi with double-stranded NlDAP-1 RNA significantly inhibited the expression of NlDAP-1, leading to premature death (dying seven days earlier), delayed ovarian development, and fewer offspring (76.7% reduction in eggs with 77.4% reduction in egg hatching rate). Additionally, an immunofluorescence experiment showed that NlDAP-1 was highly expressed when yeast-like symbionts (YLSs) entered N. lugens oocytes, and inhibiting the expression of NlDAP-1 disturbed the process; the RNAi of NlDAP-1 caused a 34.9% reduction in the YLSs that entered oocytes. These results indicate that NlDAP-1 plays a crucial role in the reproductive development of N. lugens and the transovarial transmission of its YLSs.
Collapse
Affiliation(s)
| | | | | | | | | | - Yi-Peng Xu
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, China Jiliang University, Hangzhou 310018, China; (J.-B.Y.); (X.L.); (Q.L.); (J.-Y.T.); (X.-P.Y.)
| |
Collapse
|
3
|
Zheng X, Wan Y, Tao M, Yuan J, Zhang K, Wang J, Zhang Y, Liang P, Wu Q. Obstructor, a Frankliniella occidentalis protein, promotes transmission of tomato spotted wilt orthotospovirus. INSECT SCIENCE 2023; 30:741-757. [PMID: 36342042 DOI: 10.1111/1744-7917.13138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 06/15/2023]
Abstract
Tomato spotted wilt orthotospovirus (TSWV) causes substantial economic losses to vegetables and other crops. TSWV is mainly transmitted by thrips in a persistent and proliferative manner, and its most efficient vector is the western flower thrips, Frankliniella occidentalis (Pergande). In moving from the thrips midgut to the salivary glands in preparation for transmission, the virions must overcome multiple barriers. Although several proteins that interact with TSWV in thrips have been characterized, we hypothesized that additional thrips proteins interact with TSWV and facilitate its transmission. In the current study, 67 F. occidentalis proteins that interact with GN (a structural glycoprotein) were identified using a split-ubiquitin membrane-based yeast 2-hybrid (MbY2H) system. Three proteins, apolipoprotein-D (ApoD), orai-2-like (Orai), and obstructor-E-like isoform X2 (Obst), were selected for further study based on their high abundance and interaction strength; their interactions with GN were confirmed by MbY2H, yeast β-galactosidase and luciferase complementation assays. The relative expressions of ApoD and Orai were significantly down-regulated but that of Obst was significantly up-regulated in viruliferous thrips. When interfering with Obst in larval stage, the TSWV acquisition rate in 3 independent experiments was significantly decreased by 26%, 40%, and 35%, respectively. In addition, when Obst was silenced in adults, the virus titer was significantly decreased, and the TSWV transmission rate decreased from 66.7% to 31.9% using the leaf disk method and from 86.67% to 43.33% using the living plant method. However, the TSWV acquisition and transmission rates were not affected by interference with the ApoD or Orai gene. The results indicate that Obst may play an important role in TSWV acquisition and transmission in Frankliniella occidentalis.
Collapse
Affiliation(s)
- Xiaobin Zheng
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Yanran Wan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Min Tao
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiangjiang Yuan
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Kun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Jing Wang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Department of Entomology, China Agricultural University, Beijing, China
| | - Youjun Zhang
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing, China
| | - Qingjun Wu
- Department of Plant Protection, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Whitfield AE, Rotenberg D. Pests and resistance: The biology and control of supervectors and superpests. CURRENT OPINION IN INSECT SCIENCE 2023:101060. [PMID: 37225087 DOI: 10.1016/j.cois.2023.101060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
5
|
Discovery of novel whitefly vector proteins that interact with a virus capsid component mediating virion retention and transmission. Int J Biol Macromol 2023; 226:1154-1165. [PMID: 36427615 DOI: 10.1016/j.ijbiomac.2022.11.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Specificity and efficiency of plant virus transmission depend largely on protein-protein interactions of vectors and viruses. Cucurbit chlorotic yellows virus (CCYV), transmitted specifically by tobacco whitefly, Bemisia tabaci, in a semi-persistent manner, has caused serious damage on cucurbit and vegetable crops around the world. However, the molecular mechanism of interaction during CCYV retention and transmission are still lacking. CCYV was proven to bind particularly to the whitefly foregut, and here, we confirmed that the minor coat protein (CPm) of CCYV is participated in the interaction with the vector. In order to identify proteins of B. tabaci that interact directly with CPm of CCYV, the immunoprecipitation (IP) assay and DUALmembrane cDNA library screening technology were applied. The cytochrome c oxidase subunit 5A (COX), tubulin beta chain (TUB) and keratin, type I cytoskeletal 9-like (KRT) of B. tabaci shown strong interactions with CPm and are closely associated with the retention within the vector and transmission of CCYV. These findings on whitefly protein-CCYV CPm interactions are crucial for a much better understanding the mechanism of semi-persistent plant virus transmission by insect vectors, as well as for implement new strategies for effective management of plant viruses and their vector insects.
Collapse
|
6
|
Zhang R, Ji J, Li Y, Yu J, Yu X, Xu Y. Molecular Characterization and RNA Interference Analysis of SLC26A10 From Nilaparvata lugens (Stål). Front Physiol 2022; 13:853956. [PMID: 35370768 PMCID: PMC8969416 DOI: 10.3389/fphys.2022.853956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
SLC26A10 is a member of the SLC26 gene family, but its role in insects is still unclear. We cloned the SLC26A10 gene of Nilaparvata lugens (NlSLC26A10) and found NlSLC26A10 contained 11 transmembrane regions and a STAS domain. Expression pattern analysis showed NlSLC26A10 expression was more upregulated in adults than in nymphs, highest in the ovary. After injection of double-stranded RNA (dsRNA) of NlSLC26A10, the mRNA level of NlSLC26A10 significantly decreased and, consequently, the ovarian development of adult females was hindered; the amount and the hatchability of eggs and yeast-like symbionts in mature oocytes decreased. Further study showed that NlSLC26A10 might result in decreased juvenile hormone level and vitellogenin expression. These results indicate that NlSLC26A10 plays an essential role in the reproduction of N. lugens.
Collapse
|
7
|
Cross Talk between Viruses and Insect Cells Cytoskeleton. Viruses 2021; 13:v13081658. [PMID: 34452522 PMCID: PMC8402729 DOI: 10.3390/v13081658] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/18/2022] Open
Abstract
Viruses are excellent manipulators of host cellular machinery, behavior, and life cycle, with the host cell cytoskeleton being a primordial viral target. Viruses infecting insects generally enter host cells through clathrin-mediated endocytosis or membrane fusion mechanisms followed by transport of the viral particles to the corresponding replication sites. After viral replication, the viral progeny egresses toward adjacent cells and reaches the different target tissues. Throughout all these steps, actin and tubulin re-arrangements are driven by viruses. The mechanisms used by viruses to manipulate the insect host cytoskeleton are well documented in the case of alphabaculoviruses infecting Lepidoptera hosts and plant viruses infecting Hemiptera vectors, but they are not well studied in case of other insect-virus systems such as arboviruses-mosquito vectors. Here, we summarize the available knowledge on how viruses manipulate the insect host cell cytoskeleton, and we emphasize the primordial role of cytoskeleton components in insect virus motility and the need to expand the study of this interaction.
Collapse
|
8
|
Huang HJ, Yan XT, Wang X, Qi YH, Lu G, Chen JP, Zhang CX, Li JM. Proteomic analysis of Laodelphax striatellus in response to Rice stripe virus infection reveal a potential role of ZFP36L1 in restriction of viral proliferation. J Proteomics 2021; 239:104184. [PMID: 33711487 DOI: 10.1016/j.jprot.2021.104184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/18/2021] [Accepted: 03/01/2021] [Indexed: 10/21/2022]
Abstract
Persistent plant viruses multiply and circulate inside insect vectors following the route of midgut-hemolymph-salivary gland. Currently, how viruses interact with insect vectors after they are released into hemolymph is not entirely clear. In this study, we found that the hemolymph and fat body (HF) contained the highest Rice stripe virus (RSV) levels. Proteomic analysis on RSV-free and RSV-infected HF identified 156 differentially expressed proteins (DEPs), with the majority of them participating in metabolism, transportation, and detoxification. The RNA binding protein esf2 was the most downregulated protein. Knocking down the expression of esf2 did not influence the RSV burden, but caused the lethal effect to L. striatellus. In contrast, the mRNA decay protein ZFP36L1 was 69% more abundant upon RSV infection, and suppression of ZFP36L1 significantly increased the RSV burden. Our results reveal the potential role of ZFP36L1 in restricting the viral proliferation, and provide valuable clues for unravelling the interaction between RSV and L. striatellus in HF. SIGNIFICANCE: More than 76% of plant viruses are transmitted by insect vectors. For persistent propagative transmission, plant viruses multiply and circulate inside insects following the route of midgut-hemolymph-salivary gland. However, how viruses interact with vector insects after they are released into hemolymph is not entirely clear. Our study investigated the influence of rice stripe virus (RSV) on insect hemolymph and fat body by iTRAQ labeling method. Among the 156 differentially expressed proteins (DEPs) identified, two proteins associated with mRNA metabolism were selected for function analysis. We found that the mRNA decay activator protein ZFP36L1 influenced the RSV proliferation, and RNA binding protein esf2 caused the lethal effect to L. striatellus. Our results provide valuable clues for unveiling the interaction between RSV and L. striatellus, and might be useful in pest management.
Collapse
Affiliation(s)
- Hai-Jian Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xiao-Tian Yan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Yu-Hua Qi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jian-Ping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Chuan-Xi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Jun-Min Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
9
|
Cooper AMW, Song H, Shi X, Yu Z, Lorenzen M, Silver K, Zhang J, Zhu KY. Characterization, expression patterns, and transcriptional responses of three core RNA interference pathway genes from Ostrinia nubilalis. JOURNAL OF INSECT PHYSIOLOGY 2021; 129:104181. [PMID: 33359365 DOI: 10.1016/j.jinsphys.2020.104181] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/17/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
RNA interference (RNAi) is commonly used in the laboratory to analyze gene function, and RNAi-based pest management strategies are now being employed. Unfortunately, RNAi is hindered by inefficient and highly-variable results when different insects are targeted, especially lepidopterans, such as the European corn borer (ECB), Ostrinia nubilalis (Lepidoptera: Crambidae). Previous efforts to achieve RNAi-mediated gene suppression in ECB revealed low RNAi efficiency with both double-stranded RNA (dsRNA) injection and ingestion. One mechanism that can affect RNAi efficiency in insects is the expression and function of core RNAi pathway genes, such as those encoding Argonaut 2 (Ago2), Dicer 2 (Dcr2), and a dsRNA binding protein (R2D2). To determine if deficiencies in these core RNAi pathway genes contribute to low RNAi efficiency in ECB, full-length complementary DNAs encoding OnAgo2, OnDcr2, and OnR2D2 were cloned, sequenced, and characterized. A comparison of domain architecture suggested that all three predicted proteins contained the necessary domains to function. However, a comparison of evolutionary distances revealed potentially important variations in the first RNase III domain of OnDcr2, the double-stranded RNA binding domains of OnR2D2, and both the PAZ and PIWI domains of OnAgo2, which may indicate functional differences in enzymatic activity between species. Expression analysis indicated that transcripts for all three genes were expressed in all developmental stages and tissues investigated. Interestingly, the introduction of non-target dsRNA into ECB second-instar larvae via microinjection did not affect OnAgo2, OnDcr2, or OnR2D2 expression. In contrast, ingestion of the same dsRNAs resulted in upregulation of OnDcr2 but downregulation of OnR2D2. The unexpected transcriptional responses of the core machinery and the divergence in amino-acid sequence between specific domains in each core RNAi protein may possibly contribute to low RNAi efficiency in ECB. Understanding the contributions of different RNAi pathway components is critical to adapting this technology for use in controlling lepidopteran pests that exhibit low RNAi efficiency.
Collapse
Affiliation(s)
- Anastasia M W Cooper
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| | - Huifang Song
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xuekai Shi
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhitao Yu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, Campus Box 7613, North Carolina State University, Raleigh, NC 27695, USA
| | - Kristopher Silver
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA
| | - Jianzhen Zhang
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA; Institute of Applied Biology, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Kun Yan Zhu
- Department of Entomology, 123 Waters Hall, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
10
|
Tabein S, Jansen M, Noris E, Vaira AM, Marian D, Behjatnia SAA, Accotto GP, Miozzi L. The Induction of an Effective dsRNA-Mediated Resistance Against Tomato Spotted Wilt Virus by Exogenous Application of Double-Stranded RNA Largely Depends on the Selection of the Viral RNA Target Region. FRONTIERS IN PLANT SCIENCE 2020; 11:533338. [PMID: 33329620 PMCID: PMC7732615 DOI: 10.3389/fpls.2020.533338] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/09/2020] [Indexed: 06/02/2023]
Abstract
Tomato spotted wilt virus (TSWV) is a devastating plant pathogen, causing huge crop losses worldwide. Unfortunately, due to its wide host range and emergence of resistance breaking strains, its management is challenging. Up to now, resistance to TSWV infection based on RNA interference (RNAi) has been achieved only in transgenic plants expressing parts of the viral genome or artificial microRNAs targeting it. Exogenous application of double-stranded RNAs (dsRNAs) for inducing virus resistance in plants, namely RNAi-based vaccination, represents an attractive and promising alternative, already shown to be effective against different positive-sense RNA viruses and viroids. In the present study, the protection efficacy of exogenous application of dsRNAs targeting the nucleocapsid (N) or the movement protein (NSm) coding genes of the negative-sense RNA virus TSWV was evaluated in Nicotiana benthamiana as model plant and in tomato as economically important crop. Most of the plants treated with N-targeting dsRNAs, but not with NSm-targeting dsRNAs, remained asymptomatic until 40 (N. benthamiana) and 63 (tomato) dpi, while the remaining ones showed a significant delay in systemic symptoms appearance. The different efficacy of N- and NSm-targeting dsRNAs in protecting plants is discussed in the light of their processing, mobility and biological role. These results indicate that the RNAi-based vaccination is effective also against negative-sense RNA viruses but emphasize that the choice of the target viral sequence in designing RNAi-based vaccines is crucial for its success.
Collapse
Affiliation(s)
- Saeid Tabein
- Department of Plant Protection, Faculty of Agriculture, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Marco Jansen
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
- Laboratory of Virology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Emanuela Noris
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Anna Maria Vaira
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Daniele Marian
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | | | - Gian Paolo Accotto
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| | - Laura Miozzi
- Institute for Sustainable Plant Protection, National Research Council of Italy, Turin, Italy
| |
Collapse
|
11
|
Mubarik MS, Khan SH, Ahmad A, Raza A, Khan Z, Sajjad M, Sammour RHA, Mustafa AEZM, Al-Ghamdi AA, Alajmi AH, Alshamasi FKI, Elshikh MS. Controlling Geminiviruses before Transmission: Prospects. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1556. [PMID: 33198339 PMCID: PMC7697176 DOI: 10.3390/plants9111556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/04/2022]
Abstract
Whitefly (Bemisia tabaci)-transmitted Geminiviruses cause serious diseases of crop plants in tropical and sub-tropical regions. Plants, animals, and their microbial symbionts have evolved complex ways to interact with each other that impact their life cycles. Blocking virus transmission by altering the biology of vector species, such as the whitefly, can be a potential approach to manage these devastating diseases. Virus transmission by insect vectors to plant hosts often involves bacterial endosymbionts. Molecular chaperonins of bacterial endosymbionts bind with virus particles and have a key role in the transmission of Geminiviruses. Hence, devising new approaches to obstruct virus transmission by manipulating bacterial endosymbionts before infection opens new avenues for viral disease control. The exploitation of bacterial endosymbiont within the insect vector would disrupt interactions among viruses, insects, and their bacterial endosymbionts. The study of this cooperating web could potentially decrease virus transmission and possibly represent an effective solution to control viral diseases in crop plants.
Collapse
Affiliation(s)
- Muhammad Salman Mubarik
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Sultan Habibullah Khan
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan;
- Center of Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
| | - Aftab Ahmad
- Center of Advanced Studies in Agriculture and Food Security (CAS-AFS), University of Agriculture, Faisalabad 38040, Pakistan;
- Department of Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan
| | - Ali Raza
- Key Lab of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Wuhan 430062, China;
| | - Zulqurnain Khan
- Institute of Plant Breeding and Biotechnology (IPBB), MNS University of Agriculture, Multan 66000, Pakistan;
| | - Muhammad Sajjad
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad 45550, Pakistan;
| | - Reda Helmy Ahmed Sammour
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| | - Abd El-Zaher M.A. Mustafa
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
- Botany Department, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | - Abdullah Ahmed Al-Ghamdi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| | - Amal H. Alajmi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| | - Fatin K. I. Alshamasi
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Sciences, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia; (R.H.A.S.); (A.A.A.-G.); (A.H.A.); (F.K.I.A.); (M.S.E.)
| |
Collapse
|
12
|
Islam W, Noman A, Naveed H, Huang Z, Chen HYH. Role of environmental factors in shaping the soil microbiome. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:41225-41247. [PMID: 32829437 DOI: 10.1007/s11356-020-10471-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/10/2020] [Indexed: 05/09/2023]
Abstract
The soil microbiome comprises one of the most important and complex components of all terrestrial ecosystems as it harbors millions of microbes including bacteria, fungi, archaea, viruses, and protozoa. Together, these microbes and environmental factors contribute to shaping the soil microbiome, both spatially and temporally. Recent advances in genomic and metagenomic analyses have enabled a more comprehensive elucidation of the soil microbiome. However, most studies have described major modulators such as fungi and bacteria while overlooking other soil microbes. This review encompasses all known microbes that may exist in a particular soil microbiome by describing their occurrence, abundance, diversity, distribution, communication, and functions. Finally, we examined the role of several abiotic factors involved in the shaping of the soil microbiome.
Collapse
Affiliation(s)
- Waqar Islam
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China
- Institute of Geography, Fujian Normal University, Fuzhou, 350007, China
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Hassan Naveed
- College of Life Science, Leshan Normal University, Leshan, 614004, Sichuan, China
| | - Zhiqun Huang
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
- Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
| | - Han Y H Chen
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, 350007, China.
- Institute of Geography, Fujian Normal University, Fuzhou, 350007, China.
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Rd, Thunder Bay, ON, P7B 5E1, Canada.
| |
Collapse
|
13
|
Abstract
Of the approximately 1,100 known plant viruses, about one-third are DNA viruses that are vectored by insects. Plant virus infections often induce cellular and molecular responses in their insect vectors, which can, in many cases, affect the spread of viruses. However, the mechanisms underlying vector responses that affect virus accumulation and transmission are poorly understood. Here, we examined the role of virus-induced apoptosis in the transmission of begomoviruses, a group of single-stranded plant DNA viruses that are transmitted by whiteflies and cause extensive damage to many crops worldwide. We demonstrated that virus infection can induce apoptosis in the insect vector conferring protection to the virions from degradation, leading to enhanced viral accumulation and transmission to host plants. Our findings provide valuable clues for designing new strategies to block the transmission of insect-vectored plant viruses, particularly plant DNA viruses. Apoptosis is generally considered the first line of defense against viral infection. However, the role of apoptosis in the interactions between plant viruses and their insect vectors has rarely been investigated. By studying plant DNA viruses of the genus Begomovirus within the family Geminiviridae, which are transmitted by whiteflies of the Bemisia tabaci species complex in a persistent manner, we revealed that virus-induced apoptosis in insect vectors can facilitate viral accumulation and transmission. We found that infection with tomato yellow leaf curl virus activated the apoptosis pathway in B. tabaci. Suppressing apoptosis by inhibitors or silencing caspase-3 significantly reduced viral accumulation, while the activation of apoptosis increased viral accumulation in vivo. Moreover, the positive effect of whitefly apoptosis on virus accumulation and transmission was not due to its cross talk with the autophagy pathway that suppresses begomovirus infection in whiteflies. We further showed that viral replication, rather than the viral coat protein, is likely the critical factor in the activation of apoptosis by the virus. These novel findings indicate that similarly to many animal and a few plant RNA viruses, plant DNA viruses may activate apoptosis in their insect vectors leading to enhanced viral accumulation and transmission. IMPORTANCE Of the approximately 1,100 known plant viruses, about one-third are DNA viruses that are vectored by insects. Plant virus infections often induce cellular and molecular responses in their insect vectors, which can, in many cases, affect the spread of viruses. However, the mechanisms underlying vector responses that affect virus accumulation and transmission are poorly understood. Here, we examined the role of virus-induced apoptosis in the transmission of begomoviruses, a group of single-stranded plant DNA viruses that are transmitted by whiteflies and cause extensive damage to many crops worldwide. We demonstrated that virus infection can induce apoptosis in the insect vector conferring protection to the virions from degradation, leading to enhanced viral accumulation and transmission to host plants. Our findings provide valuable clues for designing new strategies to block the transmission of insect-vectored plant viruses, particularly plant DNA viruses.
Collapse
|
14
|
Li Y, Chen D, Hu J, Zhang K, Kang L, Chen Y, Huang L, Zhang L, Xiang Y, Song Q, Liu F. The α-tubulin of Laodelphax striatellus mediates the passage of rice stripe virus (RSV) and enhances horizontal transmission. PLoS Pathog 2020; 16:e1008710. [PMID: 32817722 PMCID: PMC7446811 DOI: 10.1371/journal.ppat.1008710] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023] Open
Abstract
Rice stripe virus (RSV, genus Tenuivirus, family Phenuiviridae) is the causal agent of rice stripe disease transmitted by the small brown planthopper (SBPH, Laodelphax striatellus) in a persistent propagative manner. The midgut and salivary glands of SBPH are the first and last barriers to the viral circulation and transmission processes, respectively; however, the precise mechanisms used by RSV to cross these organs and transmit to rice plants have not been fully elucidated. We obtained the full-length cDNA sequence of L. striatellus α-tubulin 2 (LsTUB) and found that RSV infection increased the level of LsTUB in vivo. Furthermore, LsTUB was shown to co-localize with RSV nonstructural protein 3 (NS3) in vivo and bound NS3 at positions 74-76 and 80-82 in vitro. Transient gene silencing of LsTUB expression caused a significant reduction in detectable RSV loads and viral NS3 expression levels, but had no effect on NS3 silencing suppressor activity and viral replication in insect cells. However, suppression of LsTUB attenuated viral spread in the bodies of SBPHs and decreased RSV transmission rates to rice plants. Electrical penetration graphs (EPG) showed that LsTUB knockdown by RNAi did not impact SBPH feeding; therefore, the reduction in RSV transmission rates was likely caused by a decrease in viral loads inside the planthopper. These findings suggest that LsTUB mediates the passage of RSV through midgut and salivary glands and leads to successful horizontal transmission.
Collapse
Affiliation(s)
- Yao Li
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Danyu Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jia Hu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Kun Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lin Kang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yan Chen
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lijun Huang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Lu Zhang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Yin Xiang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, United States of America
| | - Fang Liu
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
A Lectin Disrupts Vector Transmission of a Grapevine Ampelovirus. Viruses 2020; 12:v12080843. [PMID: 32752299 PMCID: PMC7472352 DOI: 10.3390/v12080843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
Grapevine leafroll disease is one of the most important virus diseases of grapevines and occurs in every major grape-growing region of the world. The vector-transmission mechanisms of the causative agent, Grapevine leafroll-associated virus 3 (GLRaV-3), remain poorly understood. We show that the vine mealybug, Planococcus ficus, feeds through a membrane feeding system on GLRaV-3 viral purifications from both V. vinifera and N. benthamiana and transmits the virus to test plants from plants from both species. Building on this strategy, we used an immunofluorescence approach to localize virions to two retention sites in P. ficus mouthparts. Assays testing molecules capable of blocking virus transmission demonstrated that GLRaV-3-transmission by P. ficus could be disrupted. Our results indicate that our membrane feeding system and transmission-blocking assays are a valid approach and can be used to screen other candidate blocking molecules.
Collapse
|
16
|
Abstract
The pathological importance of mixed viral infections in plants might be underestimated except for a few well-characterized synergistic combinations in certain crops. Considering that the host ranges of many viruses often overlap and that most plant species can be infected by several unrelated viruses, it is not surprising to find more than one virus simultaneously in the same plant. Furthermore, dispersal of the majority of plant viruses relies on efficient transmission mechanisms mediated by vector organisms, mainly but not exclusively insects, which can contribute to the occurrence of multiple infections in the same plant. Recent work using different experimental approaches has shown that mixed viral infections can be remarkably frequent, up to the point that they could be considered the rule more than the exception. The purpose of this review is to describe the impact of multiple infections not only on the participating viruses themselves but also on their vectors and on the common host. From this standpoint, mixed infections arise as complex events that involve several cross-interacting players, and they consequently require a more general perspective than the analysis of single-virus/single-host approaches for a full understanding of their relevance.
Collapse
Affiliation(s)
- Ana Beatriz Moreno
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
| | - Juan José López-Moya
- Centre for Research in Agricultural Genomics, Consejo Superior de Investigaciones Científicas IRTA-UAB-UB, Cerdanyola del Vallès, Barcelona, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
17
|
Chen Y, Dessau M, Rotenberg D, Rasmussen DA, Whitfield AE. Entry of bunyaviruses into plants and vectors. Adv Virus Res 2019; 104:65-96. [PMID: 31439153 DOI: 10.1016/bs.aivir.2019.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The majority of plant-infecting viruses are transmitted by arthropod vectors that deliver them directly into a living plant cell. There are diverse mechanisms of transmission ranging from direct binding to the insect stylet (non-persistent transmission) to persistent-propagative transmission in which the virus replicates in the insect vector. Despite this diversity in interactions, most arthropods that serve as efficient vectors have feeding strategies that enable them to deliver the virus into the plant cell without extensive damage to the plant and thus effectively inoculate the plant. As such, the primary virus entry mechanism for plant viruses is mediated by the biological vector. Remarkably, viruses that are transmitted in a propagative manner (bunyaviruses, rhabdoviruses, and reoviruses) have developed an ability to replicate in hosts from two kingdoms. Viruses in the order Bunyavirales are of emerging importance and with the advent of new sequencing technologies, we are getting unprecedented glimpses into the diversity of these viruses. Plant-infecting bunyaviruses are transmitted in a persistent, propagative manner must enter two unique types of host cells, plant and insect. In the insect phase of the virus life cycle, the propagative viruses likely use typical cellular entry strategies to traverse cell membranes. In this review, we highlight the transmission and entry strategies of three genera of plant-infecting bunyaviruses: orthotospoviruses, tenuiviruses, and emaraviruses.
Collapse
Affiliation(s)
- Yuting Chen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Moshe Dessau
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Dorith Rotenberg
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - David A Rasmussen
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
18
|
Carr JP, Murphy AM, Tungadi T, Yoon JY. Plant defense signals: Players and pawns in plant-virus-vector interactions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 279:87-95. [PMID: 30709497 DOI: 10.1016/j.plantsci.2018.04.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 04/07/2018] [Accepted: 04/13/2018] [Indexed: 06/09/2023]
Abstract
Plant viruses face an array of host defenses. Well-studied responses that protect against viruses include effector-triggered immunity, induced resistance (such as systemic acquired resistance mediated by salicylic acid), and RNA silencing. Recent work shows that viruses are also affected by non-host resistance mechanisms; previously thought to affect only bacteria, oomycetes and fungi. However, an enduring puzzle is how viruses are inhibited by several inducible host resistance mechanisms. Many viruses have been shown to encode factors that inhibit antiviral silencing. A number of these, including the cucumoviral 2b protein, the poytviral P1/HC-Pro and, respectively, geminivirus or satellite DNA-encoded proteins such as the C2 or βC1, also inhibit defensive signaling mediated by salicylic acid and jasmonic acid. This helps to explain how viruses can, in some cases, overcome host resistance. Additionally, interference with defensive signaling provides a means for viruses to manipulate plant-insect interactions. This is important because insects, particularly aphids and whiteflies, transmit many viruses. Indeed, there is now substantial evidence that viruses can enhance their own transmission through their effects on hosts. Even more surprisingly, it appears that viruses may be able to manipulate plant interactions with beneficial insects by, for example, 'paying back' their hosts by attracting pollinators.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom.
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, 55365, Republic of Korea
| |
Collapse
|
19
|
Cooper AM, Silver K, Zhang J, Park Y, Zhu KY. Molecular mechanisms influencing efficiency of RNA interference in insects. PEST MANAGEMENT SCIENCE 2019; 75:18-28. [PMID: 29931761 DOI: 10.1002/ps.5126] [Citation(s) in RCA: 202] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/13/2018] [Accepted: 06/15/2018] [Indexed: 05/21/2023]
Abstract
RNA interference (RNAi) is an endogenous, sequence-specific gene-silencing mechanism elicited by small RNA molecules. RNAi is a powerful reverse genetic tool, and is currently being utilized for managing insects and viruses. Widespread implementation of RNAi-based pest management strategies is currently hindered by inefficient and highly variable results when different insect species, strains, developmental stages, tissues, and genes are targeted. Mechanistic studies have shown that double-stranded ribonucleases (dsRNases), endosomal entrapment, deficient function of the core machinery, and inadequate immune stimulation contribute to limited RNAi efficiency. However, a comprehensive understanding of the molecular mechanisms limiting RNAi efficiency remains elusive. Recent advances in dsRNA stability in physiological tissues, dsRNA internalization into cells, the composition and function of the core RNAi machinery, as well as small-interfering RNA/double-stranded RNA amplification and spreading mechanisms are reviewed to establish a global understanding of the obstacles impeding wider understanding of RNAi mechanisms in insects. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Kristopher Silver
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Jianzhen Zhang
- Department of Entomology, Kansas State University, Manhattan, KS, USA
- Institute of Applied Biology, Shanxi University, Taiyuan, China
| | - Yoonseong Park
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| | - Kun Yan Zhu
- Department of Entomology, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
20
|
Targeted disruption of aphid transmission: a vision for the management of crop diseases caused by Luteoviridae members. Curr Opin Virol 2018; 33:24-32. [DOI: 10.1016/j.coviro.2018.07.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/05/2018] [Indexed: 12/18/2022]
|
21
|
Martin KM, Whitfield AE. Cellular localization and interactions of nucleorhabdovirus proteins are conserved between insect and plant cells. Virology 2018; 523:6-14. [PMID: 30056212 DOI: 10.1016/j.virol.2018.06.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 06/29/2018] [Accepted: 06/30/2018] [Indexed: 10/28/2022]
Abstract
Maize mosaic virus (MMV), similar to other nucleorhabdoviruses, replicates in divergent hosts: plants and insects. To compare MMV protein localization and interactions, we visualized autofluorescent protein fusions in both cell types. Nucleoprotein (N) and glycoprotein (G) localized to the nucleus and cytoplasm, phosphoprotein (P) was only found in the nucleus, and 3 (movement) and matrix (M) were present in the cytoplasm. This localization pattern is consistent with the model of nucleorhabdoviral replication of N, P, L and viral RNA forming a complex in the nucleus and the subvirion associating with M and then G during budding into perinuclear space. The comparable localization patterns in both organisms indicates a similar replication cycle. Changes in localization when proteins were co-expressed suggested viral proteins interact thus altering organelle targeting. We documented a limited number of direct protein interactions indicating host factors play a role in the virus protein interactions during the infection cycle.
Collapse
Affiliation(s)
- Kathleen M Martin
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA.
| | - Anna E Whitfield
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
22
|
Carr JP, Donnelly R, Tungadi T, Murphy AM, Jiang S, Bravo-Cazar A, Yoon JY, Cunniffe NJ, Glover BJ, Gilligan CA. Viral Manipulation of Plant Stress Responses and Host Interactions With Insects. Adv Virus Res 2018; 102:177-197. [PMID: 30266173 DOI: 10.1016/bs.aivir.2018.06.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Do the alterations in plant defensive signaling and metabolism that occur in susceptible hosts following virus infection serve any purpose beyond directly aiding viruses to replicate and spread? Or indeed, are these modifications to host phenotype purely incidental consequences of virus infection? A growing body of data, in particular from studies of viruses vectored by whiteflies and aphids, indicates that viruses influence the efficiency of their own transmission by insect vectors and facilitate mutualistic relationships between viruses and their insect vectors. Furthermore, it appears that viruses may be able to increase the opportunity for transmission in the long term by providing reward to the host plants that they infect. This may be conditional, for example, by aiding host survival under conditions of drought or cold or, more surprisingly, by helping plants attract beneficial insects such as pollinators. In this chapter, we cover three main areas. First, we describe the molecular-level interactions governing viral manipulation of host plant biology. Second, we review evidence that virus-induced changes in plant phenotype enhance virus transmission. Finally, we discuss how direct and indirect manipulation of insects and plants might impact on the evolution of viruses and their hosts.
Collapse
Affiliation(s)
- John P Carr
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom.
| | - Ruairí Donnelly
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Trisna Tungadi
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Alex M Murphy
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Sanjie Jiang
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ana Bravo-Cazar
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Ju-Yeon Yoon
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom; Virology Unit, Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science, Rural Development Agency, Wanju, Republic of Korea
| | - Nik J Cunniffe
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Beverley J Glover
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | |
Collapse
|
23
|
Insect-specific viruses: from discovery to potential translational applications. Curr Opin Virol 2018; 33:33-41. [PMID: 30048906 DOI: 10.1016/j.coviro.2018.07.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 06/29/2018] [Accepted: 07/04/2018] [Indexed: 12/17/2022]
Abstract
Over the past decade the scientific community has experienced a new age of virus discovery in arthropods in general, and in insects in particular. Next generation sequencing and advanced bioinformatics tools have provided new insights about insect viromes and viral evolution. In this review, we discuss some high-throughput sequencing technologies used to discover viruses in insects and the challenges raised in data interpretations. Additionally, the discovery of these novel viruses that are considered as insect-specific viruses (ISVs) has gained increasing attention in their potential use as biological agents. As example, we show how the ISV Nhumirim virus was used to reduce West Nile virus transmission when co-infecting the mosquito vector. We also discuss new translational opportunities of using ISVs to limit insect vector competence by using them to interfere with pathogen acquisition, to directly target the insect vector or to confer pathogen resistance by the insect vector.
Collapse
|
24
|
Eigenbrode SD, Bosque-Pérez NA, Davis TS. Insect-Borne Plant Pathogens and Their Vectors: Ecology, Evolution, and Complex Interactions. ANNUAL REVIEW OF ENTOMOLOGY 2018; 63:169-191. [PMID: 28968147 DOI: 10.1146/annurev-ento-020117-043119] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The transmission of insect-borne plant pathogens, including viruses, bacteria, phytoplasmas, and fungi depends upon the abundance and behavior of their vectors. These pathogens should therefore be selected to influence their vectors to enhance their transmission, either indirectly, through the infected host plant, or directly, after acquisition of the pathogen by the vector. Accumulating evidence provides partial support for the occurrence of vector manipulation by plant pathogens, especially for plant viruses, for which a theoretical framework can explain patterns in the specific effects on vector behavior and performance depending on their modes of transmission. The variability in effects of pathogens on their vectors, however, suggests inconsistency in the occurrence of vector manipulation but also may reflect incomplete information about these systems. For example, manipulation can occur through combinations of specific effects, including direct and indirect effects on performance and behavior, and dynamics in those effects with disease progression or pathogen acquisition that together constitute syndromes that promote pathogen spread. Deciphering the prevalence and forms of vector manipulation by plant pathogens remains a compelling field of inquiry, but gaps and opportunities to advance it remain. A proposed research agenda includes examining vector manipulation syndromes comprehensively within pathosystems, expanding the taxonomic and genetic breadth of the systems studied, evaluating dynamic effects that occur during disease progression, incorporating the influence of biotic and abiotic environmental factors, evaluating the effectiveness of putative manipulation syndromes under field conditions, deciphering chemical and molecular mechanisms whereby pathogens can influence vectors, expanding the use of evolutionary and epidemiological models, and seeking opportunities to exploit these effects to improve management of insect-borne, economically important plant pathogens. We expect this field to remain vibrant and productive in its own right and as part of a wider inquiry concerning host and vector manipulation by plant and animal pathogens and parasites.
Collapse
Affiliation(s)
- Sanford D Eigenbrode
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho 83844-2329; ,
| | - Nilsa A Bosque-Pérez
- Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, Idaho 83844-2329; ,
| | - Thomas S Davis
- Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523-1472;
| |
Collapse
|
25
|
Tang X, Shi X, Zhang D, Li F, Yan F, Zhang Y, Liu Y, Zhou X. Detection and epidemic dynamic of ToCV and CCYV with Bemisia tabaci and weed in Hainan of China. Virol J 2017; 14:169. [PMID: 28870255 PMCID: PMC5584531 DOI: 10.1186/s12985-017-0833-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 08/21/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND In recent years, two of the crinivirus, Tomato chlorosis virus (ToCV) and Cucurbit chlorotic yellows virus (CCYV) have gained increasing attention due to their rapid spread and devastating impacts on vegetable production worldwide. Both of these viruses are transmitted by the sweet potato whitefly, Bemisia tabaci (Gennadius), in a semi-persistent manner. Up to now, there is still lack of report in Hainan, the south of China. METHODS We used observational and experimental methods to explore the prevalence and incidence dynamic of CCYV and ToCV transmitted by whiteflies in Hainan of China. RESULTS In 2016, the chlorosis symptom was observed in the tomato and cucumber plants with a large number of B. tabaci on the infected leaves in Hainan, China, with the incidence rate of 69.8% and 62.6% on tomato and cucumber, respectively. Based on molecular identification, Q biotype was determined with a viruliferous rate of 65.0% and 55.0% on the tomato and cucumber plants, respectively. The weed, Alternanthera philoxeroides near the tomato and cucumber was co-infected by the two viruses. Furthermore, incidence dynamic of ToCV and CCYV showed a close relationship with the weed, Alternanthera philoxeroides, which is widely distributed in Hainan. CONCLUSION Our results firstly reveal that the weed, A. philoxeroides is infected by both ToCV and CCYV. Besides, whiteflies showed a high viruliferous rate of ToCV and CCYV. Hainan is an extremely important vegetable production and seed breeding center in China. If the whitefly can carry these two viruses concurrently, co-infection in their mutual host plants can lead to devastating losses in the near future.
Collapse
Affiliation(s)
- Xin Tang
- College of Plant Protection, Hunan Agricultural University, Changsha, 410125 China
- Hunan Academy of Agricultural Science, Hunan Plant Protection Institute, Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, No. 726, Yuanda Road, Furong District, Hunan province, Changsha, 410125 China
| | - Xiaobin Shi
- Hunan Academy of Agricultural Science, Hunan Plant Protection Institute, Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, No. 726, Yuanda Road, Furong District, Hunan province, Changsha, 410125 China
| | - Deyong Zhang
- Hunan Academy of Agricultural Science, Hunan Plant Protection Institute, Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, No. 726, Yuanda Road, Furong District, Hunan province, Changsha, 410125 China
| | - Fan Li
- College of Plant Protection, Yunnan Agricultural University, Yunnan, 650201 China
| | - Fei Yan
- Institute of virus and biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021 China
| | - Youjun Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yong Liu
- Hunan Academy of Agricultural Science, Hunan Plant Protection Institute, Key Laboratory of Pest Management of Horticultural Crop of Hunan Province, No. 726, Yuanda Road, Furong District, Hunan province, Changsha, 410125 China
| | - Xuguo Zhou
- College of Plant Protection, Hunan Agricultural University, Changsha, 410125 China
- Department of Entomology, University of Kentucky, S-225 Agricultural Science Center North Lexington, Lexington, KY 40546-0091 USA
| |
Collapse
|
26
|
Engineering resistance to virus transmission. Curr Opin Virol 2017; 26:20-27. [PMID: 28750351 DOI: 10.1016/j.coviro.2017.07.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 11/22/2022]
Abstract
Engineering plants for resistance to virus transmission by invertebrate vectors has lagged behind other forms of plant protection. Vectors typically transmit more than one virus. Thus, vector resistance could provide a wider range of protection than defenses directed solely against one virus or virus group. We discuss current knowledge of vector-host-virus interactions, the roles of viral gene products in host and vector manipulation, and the effects of semiochemicals on host-vector interactions, and how this knowledge could be employed to disrupt transmission dynamics. We also discuss how resistance to vectors could be generated through genetic engineering or gene editing or indirectly through use of biocontrol using plant-resident viruses that infect vectors.
Collapse
|
27
|
Dietzgen RG, Mann KS, Johnson KN. Plant Virus-Insect Vector Interactions: Current and Potential Future Research Directions. Viruses 2016; 8:E303. [PMID: 27834855 PMCID: PMC5127017 DOI: 10.3390/v8110303] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/31/2016] [Accepted: 10/31/2016] [Indexed: 12/13/2022] Open
Abstract
Acquisition and transmission by an insect vector is central to the infection cycle of the majority of plant pathogenic viruses. Plant viruses can interact with their insect host in a variety of ways including both non-persistent and circulative transmission; in some cases, the latter involves virus replication in cells of the insect host. Replicating viruses can also elicit both innate and specific defense responses in the insect host. A consistent feature is that the interaction of the virus with its insect host/vector requires specific molecular interactions between virus and host, commonly via proteins. Understanding the interactions between plant viruses and their insect host can underpin approaches to protect plants from infection by interfering with virus uptake and transmission. Here, we provide a perspective focused on identifying novel approaches and research directions to facilitate control of plant viruses by better understanding and targeting virus-insect molecular interactions. We also draw parallels with molecular interactions in insect vectors of animal viruses, and consider technical advances for their control that may be more broadly applicable to plant virus vectors.
Collapse
Affiliation(s)
- Ralf G Dietzgen
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia QLD 4072, Australia.
| | - Krin S Mann
- Agriculture and Agri-Food Canada, Summerland Research and Development Centre, Summerland, BC V0H 1Z0, Canada.
| | - Karyn N Johnson
- School of Biological Sciences, The University of Queensland, St. Lucia QLD 4072, Australia.
| |
Collapse
|
28
|
Abstract
The genus Tospovirus is unique within the family Bunyaviridae in that it is made up of viruses that infect plants. Initially documented over 100 years ago, tospoviruses have become increasingly important worldwide since the 1980s due to the spread of the important insect vector Frankliniella occidentalis and the discovery of new viruses. As a result, tospoviruses are now recognized globally as emerging agricultural diseases. Tospoviruses and their vectors, thrips species in the order Thysanoptera, represent a major problem for agricultural and ornamental crops that must be managed to avoid devastating losses. In recent years, the number of recognized species in the genus has increased rapidly, and our knowledge of the molecular interactions of tospoviruses with their host plants and vectors has expanded. In this review, we present an overview of the genus Tospovirus with particular emphasis on new understandings of the molecular plant-virus and vector-virus interactions as well as relationships among genus members.
Collapse
Affiliation(s)
- J E Oliver
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| | - A E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506;
| |
Collapse
|
29
|
Labroussaa F, Zeilinger AR, Almeida RPP. Blocking the Transmission of a Noncirculative Vector-Borne Plant Pathogenic Bacterium. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:535-544. [PMID: 27049684 DOI: 10.1094/mpmi-02-16-0032-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The successful control of insect-borne plant pathogens is often difficult to achieve due to the ecologically complex interactions among pathogens, vectors, and host plants. Disease management often relies on pesticides and other approaches that have limited long-term sustainability. To add a new tool to control vector-borne diseases, we attempted to block the transmission of a bacterial insect-transmitted pathogen, the bacterium Xylella fastidiosa, by disrupting bacteria-insect vector interactions. X. fastidiosa is known to attach to and colonize the cuticular surface of the mouthparts of vectors; a set of recombinant peptides was generated and the chemical affinities of these peptides to chitin and related carbohydrates was assayed in vitro. Two candidates, the X. fastidiosa hypothetical protein PD1764 and an N-terminal region of the hemagglutinin-like protein B (HxfB) showed affinity for these substrates. These proteins were provided to vectors via an artificial diet system in which insects acquire X. fastidiosa, followed by an inoculation access period on plants under greenhouse conditions. Both PD1764 and HxfAD1-3 significantly blocked transmission. Furthermore, bacterial populations within insects over a 10-day period demonstrated that these peptides inhibited cell adhesion to vectors but not bacterial multiplication, indicating that the mode of action of these peptides is restricted to limiting cell adhesion to insects, likely via competition for adhesion sites. These results open a new venue in the search for sustainable disease-control strategies that are pathogen specific and may have limited nontarget effects.
Collapse
Affiliation(s)
- Fabien Labroussaa
- Department of Environmental Science, Policy and Management, 130 Mulford Hall, University of California, Berkeley, CA 94720, U.S.A
| | - Adam R Zeilinger
- Department of Environmental Science, Policy and Management, 130 Mulford Hall, University of California, Berkeley, CA 94720, U.S.A
| | - Rodrigo P P Almeida
- Department of Environmental Science, Policy and Management, 130 Mulford Hall, University of California, Berkeley, CA 94720, U.S.A
| |
Collapse
|
30
|
Montero-Astúa M, Ullman DE, Whitfield AE. Salivary gland morphology, tissue tropism and the progression of tospovirus infection in Frankliniella occidentalis. Virology 2016; 493:39-51. [PMID: 26999025 DOI: 10.1016/j.virol.2016.03.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/03/2016] [Accepted: 03/05/2016] [Indexed: 12/21/2022]
Abstract
Tomato spotted wilt virus (TSWV) is transmitted by thrips in a propagative manner; however, progression of virus infection in the insect is not fully understood. The goal of this work was to study the morphology and infection of thrips salivary glands. The primary salivary glands (PSG) are complex, with three distinct regions that may have unique functions. Analysis of TSWV progression in thrips revealed the presence of viral proteins in the foregut, midgut, ligaments, tubular salivary glands (TSG), and efferent duct and filament structures connecting the TSG and PSG of first and second instar larvae. The primary site of virus infection shifted from the midgut and TSG in the larvae to the PSG in adults, suggesting that tissue tropism changes with insect development. TSG infection was detected in advance of PSG infection. These findings support the hypothesis that the TSG are involved in trafficking of TSWV to the PSG.
Collapse
Affiliation(s)
- Mauricio Montero-Astúa
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, United States
| | - Diane E Ullman
- Department of Entomology and Nematology, University of California, Davis, CA 95616-5270, United States
| | - Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506-5502, United States.
| |
Collapse
|
31
|
Poelchau MF, Coates BS, Childers CP, Peréz de León AA, Evans JD, Hackett K, Shoemaker D. Agricultural applications of insect ecological genomics. CURRENT OPINION IN INSECT SCIENCE 2016; 13:61-69. [PMID: 27436554 DOI: 10.1016/j.cois.2015.12.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 12/07/2015] [Accepted: 12/13/2015] [Indexed: 06/06/2023]
Abstract
Agricultural entomology is poised to benefit from the application of ecological genomics, particularly the fields of biofuels generation and pest control. Metagenomic methods can characterize microbial communities of termites, wood-boring beetles and livestock pests, and transcriptomic approaches reveal molecular bases behind wood-digesting capabilities of these insects, leading to potential mechanisms for biofuel generation. Genome sequences are being exploited to develop new pest control methods, identify candidate antigens to vaccinate livestock, and discover RNAi target sequences and potential non-target effects in other insects. Gene content analyses of pest genome sequences and their endosymbionts suggest metabolic interdependencies between organisms, exposing potential gene targets for insect control. Finally, genome-wide association studies and genotyping by high-throughput sequencing promise to improve management of pesticide resistance.
Collapse
Affiliation(s)
- Monica F Poelchau
- USDA-ARS, National Agricultural Library, Beltsville, MD 20705, United States.
| | - Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA 50011, United States
| | | | - Adalberto A Peréz de León
- USDA-ARS, Knipling-Bushland U.S. Livestock Insects Research Laboratory and Veterinary Pest Genomics Center, Kerrville, TX 78028, United States
| | - Jay D Evans
- USDA-ARS, Bee Research Laboratory, Beltsville, MD 20705, United States
| | - Kevin Hackett
- USDA-ARS, Office of National Programs, Crop Production and Protection, Beltsville, MD 20705, United States
| | - DeWayne Shoemaker
- USDA-ARS, Imported Fire Ant and Household Insects Research Unit, Gainesville, FL 32608, United States.
| |
Collapse
|
32
|
Thrips transmission of tospoviruses. Curr Opin Virol 2015; 15:80-9. [DOI: 10.1016/j.coviro.2015.08.003] [Citation(s) in RCA: 163] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 07/28/2015] [Accepted: 08/09/2015] [Indexed: 11/18/2022]
|
33
|
Insect vector-mediated transmission of plant viruses. Virology 2015; 479-480:278-89. [DOI: 10.1016/j.virol.2015.03.026] [Citation(s) in RCA: 307] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 02/17/2015] [Accepted: 03/06/2015] [Indexed: 12/24/2022]
|