1
|
Cator LJ, Bonsall MB. Anticipating evolutionary responses of mosquito mating systems to population suppression with mass-reared males. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101302. [PMID: 39571679 DOI: 10.1016/j.cois.2024.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/28/2024] [Accepted: 11/15/2024] [Indexed: 12/12/2024]
Abstract
Strategies that rely on the mass release of males to suppress mosquito populations will exert selective pressure on natural mating systems. Here, we investigate how mass releases might affect the mating behaviors of wild target populations. We highlight gaps in our understanding of both variation in these aspects of mosquito behavior and the evolutionary forces that maintain variation within and between populations. We provide a mathematical framework for integrating mosquito mating ecology into models of population suppression. Given that these strategies are being increasingly deployed, anticipating and managing evolutionary responses of target population behavior should be a priority for research.
Collapse
Affiliation(s)
- Lauren J Cator
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot SL57PY, UK.
| | - Michael B Bonsall
- Department of Biology, University of Oxford, Oxford OX1 2DL, UK; St Peter's College, Oxford OX1 2DL, UK
| |
Collapse
|
2
|
Xie C, Zeng B, Du X, Yan S, Shen J, Zhang J. Detoxification of Chlorfenapyr by a Parkin-GSTd2 Module in Bactrocera dorsalis (Diptera: Tephritidae). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25490-25499. [PMID: 39509650 DOI: 10.1021/acs.jafc.4c06416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
The oriental fruit fly, Bactrocera dorsalis (Hendel), is a highly invasive and destructive pest. Chlorfenapyr is a widely used insecticide that disrupts mitochondrial activity. The Parkin protein plays conserved roles in maintaining mitochondrial homeostasis, but the role of Parkin in response to chlorfenapyr remains largely unknown. Here, we report that BdParkin is required for chlorfenapyr detoxification, and dsRNA targeting BdParkin improves the insecticidal efficacy of chlorfenapyr. Among the genes whose expression levels are affected by BdParkin RNAi, knock-down of the glutathione S-transferase gene BdGSTd2 increases the insecticidal efficacy of chlorfenapyr. Molecular docking reveals potential interactions between BdGSTd2 and tralopyril, an insecticidal metabolite of chlorfenapyr. These results suggest that BdParkin could impact the response of B. dorsalis to chlorfenapyr through metabolic processes regulated by BdGSTd2. Our findings could offer new insights into how insects detoxify chlorfenapyr and provide molecular targets for developing a sustainable management strategy for B. dorsalis.
Collapse
Affiliation(s)
- Chao Xie
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Biao Zeng
- Science and Technology Achievement Transformation Management Office, Yunnan Academy of Agricultural Sciences, Kunming 650224, China
| | - Xiangge Du
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Shuo Yan
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Jie Shen
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Junzheng Zhang
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Phanthian C, Tandavanitj N, Chaisuekul C. Dominant strain shift in the invasive fall armyworm (Lepidoptera: Noctuidae) populations in Thailand as inferred from mitochondrial COI and nuclear Tpi genes. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:2100-2112. [PMID: 39250710 DOI: 10.1093/jee/toae177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/09/2024] [Accepted: 07/22/2024] [Indexed: 09/11/2024]
Abstract
The fall armyworm, Spodoptera frugiperda (J. E. Smith, 1797) (Lepidoptera: Noctuidae), is a significant global pest, that exhibits 2 discernible strains, corn strain (CS) and rice strain (RS). After initial detection in the eastern hemisphere in 2016, the dominant strain was identified as RS based only on cytochrome C oxidase subunit I (COI) mitochondrial gene from limited samples from various countries, including Thailand. This study aimed to assess strain and haplotype variation in the S. frugiperda populations in Thailand using both mitochondrial COI and nuclear triosephosphate isomerase (Tpi) genes. Analyses of COI sequences (n = 105) revealed 2 predominant haplotypes, COICSh4 (82.86%) and COIRSh1 (17.14%), and the analyses of Tpi sequences (n = 99) revealed 6 haplotypes, with TpiCa1a (53.53%) being the most prevalent. Of the 98 caterpillar samples, the majority exhibited true CS (83.67%) for both genes. Meanwhile, interstrain hybrids, indicated by gene discordance, accounted for the minority (16.33%). Interestingly, despite the initial dominance of RS during the 2018 outbreak, the current study identified CS as the prevalent strain across all localities in Thailand. These findings suggested a shift in S. frugiperda dynamics in Thailand that was possibly influenced by factors, such as competitive exclusion principle, pesticide usage in rice cultivation, and preferences for corn over rice. Our study suggests a need to reexamine the previous reports of rice-strain dominance in various countries in the eastern hemisphere after the initial invasion.
Collapse
Affiliation(s)
- Chitsanuphong Phanthian
- Zoology Program, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Integrative Insect Ecology Research Unit (IIERU), Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nontivich Tandavanitj
- Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chatchawan Chaisuekul
- Integrative Insect Ecology Research Unit (IIERU), Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
4
|
Sappington TW. Aseasonal, undirected migration in insects: 'Invisible' but common. iScience 2024; 27:110040. [PMID: 38883831 PMCID: PMC11177203 DOI: 10.1016/j.isci.2024.110040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Abstract
Many insect pests are long-distance migrants, moving from lower latitudes where they overwinter to higher latitudes in spring to exploit superabundant, but seasonally ephemeral, host crops. These seasonal long-distance migration events are relatively easy to recognize, and justifiably garner much research attention. Evidence indicates several pest species that overwinter in diapause, and thus inhabit a year-round range, also engage in migratory flight, which is somewhat "invisible" because displacement is nondirectional and terminates among conspecifics. Support for aseasonal, undirected migration is related to recognizing true migratory flight behavior, which differs fundamentally from most other kinds of flight in that it is nonappetitive. Migrating adults are not searching for resources and migratory flight is not arrested by encounters with potential resources. The population-level consequence of aseasonal, undirected migration is spatial mixing of individuals within the larger metapopulation, which has important implications for population dynamics, gene flow, pest management, and insect resistance management.
Collapse
Affiliation(s)
- Thomas W Sappington
- USDA, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
5
|
Erdem E, Koç-İnak N, Rüstemoğlu M, İnak E. Geographical distribution of pyrethroid resistance mutations in Varroa destructor across Türkiye and a European overview. EXPERIMENTAL & APPLIED ACAROLOGY 2024; 92:309-321. [PMID: 38401013 PMCID: PMC11035437 DOI: 10.1007/s10493-023-00879-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/29/2023] [Indexed: 02/26/2024]
Abstract
Varroa destructor Anderson & Trueman (Acari: Varroidae) is of paramount significance in modern beekeeping, with infestations presenting a primary challenge that directly influences colony health, productivity, and overall apicultural sustainability. In order to control this mite, many beekeepers rely on a limited number of approved synthetic acaricides, including the pyrethroids tau-fluvalinate, flumethrin and organophosphate coumaphos. However, the excessive use of these substances has led to the widespread development of resistance in various beekeeping areas globally. In the present study, the occurrence of resistance mutations in the voltage-gated sodium channel (VGSC) and acetylcholinesterase (AChE), the target-site of pyrethroids and coumaphos, respectively, was examined in Varroa populations collected throughout the southeastern and eastern Anatolia regions of Türkiye. All Varroa samples belonged to the Korean haplotype, and a very low genetic distance was observed based on cytochrome c oxidase subunit I (COI) gene sequences. No amino acid substitutions were determined at the key residues of AChE. On the other hand, three amino acid substitutions, (L925V/I/M), previously associated with pyrethroid resistance, were identified in nearly 80% of the Turkish populations. Importantly, L925M, the dominant mutation in the USA, was detected in Turkish Varroa populations for the first time. To gain a more comprehensive perspective, we conducted a systematic analysis of the distribution of pyrethroid resistance mutations across Europe, based on the previously reported data. Varroa populations from Mediterranean countries such as Türkiye, Spain, and Greece exhibited the highest frequency of resistance mutation. Revealing the occurrence and geographical distribution of pyrethroid resistance mutations in V. destructor populations across the country will enhance the development of more efficient strategies for mite management.
Collapse
Affiliation(s)
- Esengül Erdem
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Nafiye Koç-İnak
- Department of Parasitology, Faculty of Veterinary Medicine, Ankara University, Altindag, 06070, Ankara, Turkey
| | - Mustafa Rüstemoğlu
- Plant Protection Department, Faculty of Agriculture, Şırnak University, Şirnak, Turkey
| | - Emre İnak
- Department of Plant Protection, Faculty of Agriculture, Ankara University, 06110, Ankara, Turkey.
| |
Collapse
|
6
|
Sappington TW, Spencer JL. Movement Ecology of Adult Western Corn Rootworm: Implications for Management. INSECTS 2023; 14:922. [PMID: 38132596 PMCID: PMC10744206 DOI: 10.3390/insects14120922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/23/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Movement of adult western corn rootworm, Diabrotica virgifera virgifera LeConte, is of fundamental importance to this species' population dynamics, ecology, evolution, and interactions with its environment, including cultivated cornfields. Realistic parameterization of dispersal components of models is needed to predict rates of range expansion, development, and spread of resistance to control measures and improve pest and resistance management strategies. However, a coherent understanding of western corn rootworm movement ecology has remained elusive because of conflicting evidence for both short- and long-distance lifetime dispersal, a type of dilemma observed in many species called Reid's paradox. Attempts to resolve this paradox using population genetic strategies to estimate rates of gene flow over space likewise imply greater dispersal distances than direct observations of short-range movement suggest, a dilemma called Slatkin's paradox. Based on the wide-array of available evidence, we present a conceptual model of adult western corn rootworm movement ecology under the premise it is a partially migratory species. We propose that rootworm populations consist of two behavioral phenotypes, resident and migrant. Both engage in local, appetitive flights, but only the migrant phenotype also makes non-appetitive migratory flights, resulting in observed patterns of bimodal dispersal distances and resolution of Reid's and Slatkin's paradoxes.
Collapse
Affiliation(s)
- Thomas W. Sappington
- Corn Insects and Crop Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Ames, IA 50011, USA
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA 50011, USA
| | - Joseph L. Spencer
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, IL 61820, USA
| |
Collapse
|
7
|
Beche M, Arnemann JA, Silva J, Pozebon H, Valmorbida I, Brondani L, Camatti G, Aita L, Smagghe G, Stacke RS, Maebe K, Guedes JVC. High Genetic Diversity and Gene Flow Detected in Populations of Bombus morio from South Brazil. NEOTROPICAL ENTOMOLOGY 2022; 51:809-820. [PMID: 36315395 DOI: 10.1007/s13744-022-00995-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
Bumblebees are essential insects for the preservation of biodiversity in many ecosystems, as they can pollinate a wide variety of wild and cultivated plants. Knowledge of the genetic diversity of bumblebees can be used to understand and predict the health status of bee populations, enabling the development of strategies for crop management and conservation of this important group of pollinators. Here, we characterized the genetic diversity of B. morio populations from the Rio Grande do Sul state, Brazil, by amplification of the partial mitochondrial cytochrome oxidase I gene. The resulting data were then compared with genetic parameters of Bombus morio (Swederus 1787) obtained in populations from this species' full geographic range in South America. Our results revealed the presence of nine mitochondrial haplotypes in Rio Grande do Sul, three of which were novel haplotypes, and of significant genetic divergence among bumblebee populations from Brazil and South America. The mitochondrial haplotype BM01 was the most common and is probably the ancestral haplotype from which the others originated. There is also evidence that strong gene flow has taken place among Brazilian B. morio populations, explaining the sharing of haplotypes between distant populations. The populations of B. morio from Rio Grande do Sul present significant genetic diversity as the species is native to Southern/Southeastern Brazil and adapted to the ecological conditions in this wide range. Having well-connected populations with a large genetic potential will help this species to remain well adapted to the different environmental conditions within its native range.
Collapse
Affiliation(s)
- Manoela Beche
- Departament of Crop Protection, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Jonas Andre Arnemann
- Departament of Crop Protection, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| | - Jocélia Silva
- Departament of Crop Protection, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Henrique Pozebon
- Departament of Crop Protection, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | | | - Lauren Brondani
- Departament of Crop Protection, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Gabriel Camatti
- Departament of Crop Protection, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Lorenzo Aita
- Departament of Crop Protection, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | - Regina Sonete Stacke
- Departament of Crop Protection, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Kevin Maebe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure links 653, B-9000, Ghent, Belgium
| | | |
Collapse
|
8
|
Valmorbida I, Coates BS, Hodgson EW, Ryan M, O’Neal ME. Evidence of enhanced reproductive performance and lack-of-fitness costs among soybean aphids, Aphis glycines, with varying levels of pyrethroid resistance. PEST MANAGEMENT SCIENCE 2022; 78:2000-2010. [PMID: 35102702 PMCID: PMC9310592 DOI: 10.1002/ps.6820] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Foliar application of insecticides is the main strategy to manage soybean aphid, Aphis glycines (Hemiptera: Aphididae), in the northcentral United States. Subpopulations of A. glycines have multiple nonsynonymous mutations in the voltage-gated sodium channel (vgsc) genes that are associated with pyrethroid resistance. We explored if fitness costs are associated with phenotypes conferred by vgsc mutations using life table analyses. We predicted that there would be significant differences between pyrethroid susceptibility and field-collected, parthenogenetic isofemale clones with differing, nonsynonymous mutations in vgsc genes. RESULTS Estimated resistance ratios for the pyrethroid-resistant clones ranged from 3.1 to 37.58 and 5.6 to 53.91 for lambda-cyhalothrin and bifenthrin, respectively. Although life table analyses revealed some biological and demographic parameters to be significantly different among the clonal lines, there was no association between levels of pyrethroid resistance and a decline in fitness. By contrast, one of the most resistant clonal lines (SBA-MN1-2017) had a significantly higher finite rate of increase, intrinsic rate of increase and greater overall fitness compared to the susceptible control and other pyrethroid-resistant clonal lines. CONCLUSIONS Our life history analysis suggests that there are no negative pleotropic effects associated with the pyrethroid resistance in the clonal A. glycines lines used in this study. We discuss the potential impact of these results on efficacies of insecticide resistance management (IRM) and integrated pest management (IPM) plans directed at delaying the spread of pyrethroid-resistant A. glycines.
Collapse
Affiliation(s)
| | - Brad S. Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects & Crop Genetics ResearchAmesIAUSA
| | | | - Molly Ryan
- Corteva Agriscience, Agriculture Division of DowDuPontDallas CenterIAUSA
| | | |
Collapse
|
9
|
St. Clair CR, Head GP, Gassmann AJ. Western corn rootworm abundance, injury to corn, and resistance to Cry3Bb1 in the local landscape of previous problem fields. PLoS One 2020; 15:e0237094. [PMID: 32735582 PMCID: PMC7394452 DOI: 10.1371/journal.pone.0237094] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 07/20/2020] [Indexed: 11/20/2022] Open
Abstract
Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), is a major pest of corn in the United States. Transgenic corn expressing insecticidal proteins derived from the bacterium Bacillus thuringiensis (Bt) is an important tool used to manage rootworm populations. However, field-evolved resistance to Bt threatens this technology. In areas where resistance is present, resistant individuals may travel from one field to a neighboring field, spreading resistance alleles. An important question that remains to be answered is the extent to which greater-than-expected root injury (i.e., >1 node of injury) to Cry3Bb1 corn from western corn rootworm is associated with rootworm abundance, root injury, and levels of resistance in neighboring fields. To address this question, fields with a history of greater-than-expected injury to Cry3Bb1 corn (focal fields) and surrounding fields (< 2.2 km from focal fields) were examined to quantify rootworm abundance, root injury, and resistance to Cry3Bb1 corn. Additionally, use of Bt corn and soil insecticide use for the previous six years were quantified for each field. Resistance to Cry3Bb1 was present in all fields assayed, even though focal fields had grown more Cry3 corn and less non-Bt corn than surrounding fields. This finding implies that some movement of resistance alleles had occurred between focal fields and surrounding fields. Overall, our data suggest that resistance to Cry3Bb1 in the landscape has been influenced by both local rootworm movement and field-level management tactics.
Collapse
Affiliation(s)
- Coy R. St. Clair
- Department of Entomology, Iowa State University, Ames, IA, United States of America
- * E-mail:
| | - Graham P. Head
- Bayer Crop Science, Resistance Management, Chesterfield, MO, United States of America
| | - Aaron J. Gassmann
- Department of Entomology, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
10
|
Renault D. A Review of the Phenotypic Traits Associated with Insect Dispersal Polymorphism, and Experimental Designs for Sorting out Resident and Disperser Phenotypes. INSECTS 2020; 11:insects11040214. [PMID: 32235446 PMCID: PMC7240479 DOI: 10.3390/insects11040214] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
Abstract
Dispersal represents a key life-history trait with several implications for the fitness of organisms, population dynamics and resilience, local adaptation, meta-population dynamics, range shifting, and biological invasions. Plastic and evolutionary changes of dispersal traits have been intensively studied over the past decades in entomology, in particular in wing-dimorphic insects for which literature reviews are available. Importantly, dispersal polymorphism also exists in wing-monomorphic and wingless insects, and except for butterflies, fewer syntheses are available. In this perspective, by integrating the very latest research in the fast moving field of insect dispersal ecology, this review article provides an overview of our current knowledge of dispersal polymorphism in insects. In a first part, some of the most often used experimental methodologies for the separation of dispersers and residents in wing-monomorphic and wingless insects are presented. Then, the existing knowledge on the morphological and life-history trait differences between resident and disperser phenotypes is synthetized. In a last part, the effects of range expansion on dispersal traits and performance is examined, in particular for insects from range edges and invasion fronts. Finally, some research perspectives are proposed in the last part of the review.
Collapse
Affiliation(s)
- David Renault
- Université de Rennes 1, CNRS, ECOBIO (Ecosystèmes, Biodiversité, Évolution) UMR 6553, F-35000 Rennes, France; ; Tel.: +33-(0)2-2323-6627
- Institut Universitaire de France, 1 Rue Descartes, 75231 Paris CEDEX 05, France
| |
Collapse
|
11
|
Reed EMX, Serr ME, Maurer AS, Burford Reiskind MO. Gridlock and beltways: the genetic context of urban invasions. Oecologia 2020; 192:615-628. [PMID: 32056021 DOI: 10.1007/s00442-020-04614-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 01/30/2020] [Indexed: 01/16/2023]
Abstract
The rapid expansion of urban land across the globe presents new and numerous opportunities for invasive species to spread and flourish. Ecologists historically rejected urban ecosystems as important environments for ecology and evolution research but are beginning to recognize the importance of these systems in shaping the biology of invasion. Urbanization can aid the introduction, establishment, and spread of invaders, and these processes have substantial consequences on native species and ecosystems. Therefore, it is valuable to understand how urban areas influence populations at all stages in the invasion process. Population genetic tools are essential to explore the driving forces of invasive species dispersal, connectivity, and adaptation within cities. In this review, we synthesize current research about the influence of urban landscapes on invasion genetics dynamics. We conclude that urban areas are not only points of entry for many invasive species, they also facilitate population establishment, are pools for genetic diversity, and provide corridors for further spread both within and out of cities. We recommend the continued use of genetic studies to inform invasive species management and to understand the underlying ecological and evolutionary processes governing successful invasion.
Collapse
Affiliation(s)
- E M X Reed
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
| | - M E Serr
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - A S Maurer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| | - M O Burford Reiskind
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
12
|
Wei DD, He W, Lang N, Miao ZQ, Xiao LF, Dou W, Wang JJ. Recent research status of Bactrocera dorsalis: Insights from resistance mechanisms and population structure. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 102:e21601. [PMID: 31328817 DOI: 10.1002/arch.21601] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bactrocera dorsalis (Hendel) is considered to be a highly invasive and destructive agricultural pest due to its strong dispersal and adaptive capacity. Rapid development of insecticide resistance poses a serious threat to the sustainable control of this pest. Here, the resistance mechanisms and invasion pathways of this fly are outlined for a better understanding of the resistance-gene flow pattern and invasion routes. We believe this microreview will provide a glimpse of the native regions, spread and management of resistance, and guide future work on these important topics.
Collapse
Affiliation(s)
- Dan-Dan Wei
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wang He
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ning Lang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ze-Qing Miao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lin-Fan Xiao
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Dou
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jin-Jun Wang
- Key Laboratory of Entomology and Pest Control Engineering, College of Plant Protection, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| |
Collapse
|
13
|
Valmorbida I, Arnemann JA, Cherman MA, Bevilacqua CB, Perini CR, Ugalde GA, Guedes JVC. Phylogeography Approach of Diloboderus abderus (Coleoptera: Melolonthidae) in the Southern Cone of America. NEOTROPICAL ENTOMOLOGY 2019; 48:332-339. [PMID: 30374736 DOI: 10.1007/s13744-018-0637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 09/19/2018] [Indexed: 06/08/2023]
Abstract
Diloboderus abderus (Sturm, 1826) (Coleoptera: Melolonthidae) is a serious soil pest of corn, wheat, oat, and natural and cultivated pastures in Argentina, Paraguay, Uruguay, and southern Brazil. Despite its economic importance, the genetic diversity and population structure of D. abderus remain unknown. We sequenced a fragment of the mitochondrial gene cytochrome oxidase I region (COI), of six populations of D. abderus from the Southern Cone of America. The mtDNA marker revealed a high haplotype diversity, high pairwise FST values, and significant genetic variations among populations. No correlation was found between genetic and geographical distances, yet the most common haplotype (Dab01) was present in four out of the six populations. Analysis of molecular variance showed that most of the variation was within populations of D. abderus. Tajima's D and Fu's FS tests indicated no evidence that D. abderus populations are under recent expansion. Our results indicate that genetic-based traits will likely remain localized or spread slowly, and management strategies need to be undertaken on a small scale.
Collapse
Affiliation(s)
- I Valmorbida
- Dept of Crop Protection, Federal Univ of Santa Maria, Santa Maria, Rio Grande do Sul, Brasil.
| | - J A Arnemann
- Dept of Crop Protection, Federal Univ of Santa Maria, Santa Maria, Rio Grande do Sul, Brasil
| | - M A Cherman
- Dept of Zoology, Federal Univ of Paraná, Curitiba, PR, Brasil
| | - C B Bevilacqua
- Dept of Crop Protection, Federal Univ of Santa Maria, Santa Maria, Rio Grande do Sul, Brasil
| | - C R Perini
- Dept of Crop Protection, Federal Univ of Santa Maria, Santa Maria, Rio Grande do Sul, Brasil
| | - G A Ugalde
- Dept of Crop Protection, Federal Univ of Santa Maria, Santa Maria, Rio Grande do Sul, Brasil
| | - J V C Guedes
- Dept of Crop Protection, Federal Univ of Santa Maria, Santa Maria, Rio Grande do Sul, Brasil
| |
Collapse
|
14
|
Hackett SC, Bonsall MB. Insect pest control, approximate dynamic programming, and the management of the evolution of resistance. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2019; 29:e01851. [PMID: 30656770 PMCID: PMC6850168 DOI: 10.1002/eap.1851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 12/09/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Ecological decision problems, such as those encountered in agriculture, often require managing conflicts between short-term costs and long-term benefits. Dynamic programming is an ideal method for optimally solving such problems but agricultural problems are often subject to additional complexities that produce state spaces intractable to exact solutions. In contrast, look-ahead policies, a class of approximate dynamic programming (ADP) algorithm, may attempt to solve problems of arbitrary magnitude. However, these algorithms focus on a temporally truncated caricature of the full decision problem over a defined planning horizon and as such are not guaranteed to suggest optimal actions. Thus, look-ahead policies may offer promising means of addressing detail-rich ecological decision problems but may not be capable of fully utilizing the information available to them, especially in scenarios where the best short- and long-term solutions may differ. We constructed and applied look-ahead policies to the management of a hypothetical, stage-structured, continually reproducing, agricultural insect pest. The management objective was to minimize the combined costs of management actions and crop damage over a 16-week growing season. The manager could elect to utilize insecticidal sprays or one of six release ratios of male-selecting transgenic insects where the release ratio determines the number of transgenic insects to be released for each wild-type male insect in the population. Complicating matters was the expression of insecticide resistance at non-trivial frequencies in the pest population. We assessed the extent to which look-ahead policies were able to recognize the potential threat of insecticide resistance and successfully integrate insecticides and transgenic releases to capitalize upon their respective benefits. Look-ahead policies were competent at anticipating and responding to ecological and economic information. Policies with longer planning horizons made fewer, better-timed insecticidal sprays and made more frequent transgenic releases, which consequently facilitated lower resistance allele frequencies. However, look-ahead policies were ultimately inefficient resistance managers, and directly responded to resistance only when it was dominant and prevalent. Effective long-term agricultural management requires the capacity to anticipate and respond to the evolution of resistance. Look-ahead policies can accommodate all the information pertinent to making the best long-term decision but may lack the perspective to actually do so.
Collapse
Affiliation(s)
- Sean C. Hackett
- Department of ZoologyMathematical Ecology Research GroupSouth Parks RoadOxfordOX1 3PSUnited Kingdom
| | - Michael B. Bonsall
- Department of ZoologyMathematical Ecology Research GroupSouth Parks RoadOxfordOX1 3PSUnited Kingdom
- St. Peter's CollegeNew Inn Hall StreetOxfordOX1 2DLUnited Kingdom
| |
Collapse
|
15
|
Yu EY, Gassmann AJ, Sappington TW. Effects of larval density on dispersal and fecundity of western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae). PLoS One 2019; 14:e0212696. [PMID: 30822329 PMCID: PMC6396902 DOI: 10.1371/journal.pone.0212696] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/07/2019] [Indexed: 11/24/2022] Open
Abstract
The western corn rootworm, Diabrotica virgifera virgifera (LeConte) (Coleoptera: Chrysomelidae), is an economically important pest of corn in the northern United States. Some populations have developed resistance to management strategies including transgenic corn that produces insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt). Knowledge of insect dispersal is of critical importance for models of resistance evolution. Larval density affects survival in the field, and stress from crowding often affects facultative long-distance dispersal of adult insects. In this study, we used laboratory flight mills to characterize western corn rootworm flight performance as a function of larval rearing density. Larvae were reared under three densities and the resulting adult females were either allowed to fly voluntarily for 22 h or forced to fly specified durations. For both experiments we also measured lifetime fecundity following flight. The three rearing densities placed differential levels of stress on individuals, as evidenced by decreased survival to adulthood and decreased size of adults at greater rearing density. When larvae were reared under crowded conditions the resulting females were more likely to engage in flight activity, including long uninterrupted flights lasting >10 min, than those reared under low density conditions. Flight and egg production are both energy intensive processes. However, we found no evidence in either voluntary or forced flight experiments of a tradeoff between flight activity and female fecundity. The results suggest that females emerging from high density populations in cornfields are more likely to disperse and disperse farther than those emerging from low density populations. These results are important because they imply that variation in population density in the landscape will affect dispersal, which may in turn require computer models of resistance evolution to incorporate multiple dispersal rates arising from varying larval densities among fields.
Collapse
Affiliation(s)
- Eric Yu Yu
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Aaron J. Gassmann
- Department of Entomology, Iowa State University, Ames, Iowa, United States of America
| | - Thomas W. Sappington
- Corn Insects & Crop Genetics Research Unit, USDA-Agricultural Research Service, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|
16
|
Spatial variation in western corn rootworm (Coleoptera: Chrysomelidae) susceptibility to Cry3 toxins in Nebraska. PLoS One 2018; 13:e0208266. [PMID: 30496268 PMCID: PMC6264490 DOI: 10.1371/journal.pone.0208266] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 11/14/2018] [Indexed: 11/19/2022] Open
Abstract
Repeated use of field corn (Zea mays L.) hybrids expressing the Cry3Bb1 and mCry3A traits in Nebraska has selected for field-evolved resistance in some western corn rootworm (WCR; Diabrotica virgifera virgifera LeConte) populations. Therefore, this study was conducted to characterize spatial variation in local WCR susceptibility to Cry3Bb1 and mCry3A traits in Keith and Buffalo counties, Nebraska, and determine the relationship between past management practices and current WCR susceptibility. Adult WCR populations were collected from sampling grids during 2015 and 2016 and single-plant larval bioassays conducted with F1 progeny documented significant variation in WCR susceptibility to Cry3Bb1 and mCry3A on different spatial scales in both sampling grids. At the local level, results revealed that neighboring cornfields may support WCR populations with very different susceptibility levels, indicating that gene flow of resistant alleles from high trait survival sites is not inundating large areas. A field history index, comprised of additive and weighted variables including past WCR management tactics and agronomic practices, was developed to quantify relative selection pressure in individual fields. The field history index-Cry3 trait survivorship relationship from year 1 data was highly predictive of year 2 Cry3 trait survivorship when year 2 field history indices were inserted into the year 1 base model. Sensitivity analyses indicated years of trait use and associated selection pressure at the local level were the key drivers of WCR susceptibility to Cry3 traits in this system. Retrospective case histories from this study will inform development of optimal resistance management programs and increase understanding of plant-insect interactions that may occur when transgenic corn is deployed in the landscape. Results from this study also support current recommendations to slow or mitigate the evolution of resistance by using a multi-tactic approach to manage WCR densities in individual fields within an integrated pest management framework.
Collapse
|
17
|
Coates BS, Dopman EB, Wanner KW, Sappington TW. Genomic mechanisms of sympatric ecological and sexual divergence in a model agricultural pest, the European corn borer. CURRENT OPINION IN INSECT SCIENCE 2018; 26:50-56. [PMID: 29764660 DOI: 10.1016/j.cois.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
The European corn borer, Ostrinia nubilalis, is a model species for elucidating mechanisms underlying adaptively differentiated subpopulations in the face of reciprocal gene flow, and is a major pest of cultivated maize in North America and Eurasia. Strains are characterized by different pheromone communication systems in combination with voltinism strains that are adapted to distinct local climate and photoperiod through adjustments in diapause traits. However, only partial barriers to inter-strain hybridization exist in areas of sympatry. Recent research shows that genes governing important strain-specific isolating traits are disproportionately located on the Z-chromosome. Furthermore, co-adapted combinations of some of these genes are non-recombining due to location within a large chromosomal inversion, and assist in maintaining strain integrity despite hybridization.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, United States.
| | - Erik B Dopman
- Tufts University, Department of Biology, Medford, MA, United States
| | - Kevin W Wanner
- Montana State University, Department of Plant Sciences and Plant Pathology, Bozeman, MT, United States
| | - Thomas W Sappington
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, United States
| |
Collapse
|