1
|
Diamond SE, da Silva CRB, Medina-Báez OA. A multicontinental dataset of butterfly thermal physiological traits. Sci Data 2024; 11:1348. [PMID: 39695139 PMCID: PMC11655982 DOI: 10.1038/s41597-024-04191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024] Open
Abstract
Butterflies serve as key indicators of climate change impacts such as shifts in emergence timing and shifts in geographic range and distribution. However, the development of commonly used ecological forecasts based on butterfly physiological tolerance of temperature change has lagged behind that of other taxonomic groups. Here, we provide a series of related datasets comprising butterfly thermal physiological traits to enable such forecasts. We compiled data from the literature on butterfly heat and cold tolerance (critical thermal maxima and minima) for 117 species as well as heat resistance (knockdown time) for 45 species. We also present a new dataset comprising heat and cold tolerance and thermal sensitivity of metabolic rate of 28 common North American butterfly species. We envision these data to not only provide foundations for contemporary ecological forecasts of vulnerability to recent climate change, but also to aid in our understanding of butterfly ecology and evolution over historical timescales.
Collapse
Affiliation(s)
- Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, Ohio, USA.
| | - Carmen R B da Silva
- School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | | |
Collapse
|
2
|
Medina-Báez OA, Lenard A, Muzychuk RA, da Silva CRB, Diamond SE. Life cycle complexity and body mass drive erratic changes in climate vulnerability across ontogeny in a seasonally migrating butterfly. CONSERVATION PHYSIOLOGY 2023; 11:coad058. [PMID: 37547363 PMCID: PMC10401068 DOI: 10.1093/conphys/coad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Physiological traits are often used for vulnerability assessments of organismal responses to climate change. Trait values can change dramatically over the life cycle of organisms but are typically assessed at a single developmental stage. Reconciling ontogenetic changes in physiological traits with vulnerability assessments often reveals early life-stage vulnerabilities. The degree to which ontogenetic changes in physiological traits are due to changes in body mass over development versus stage-specific responses determines the degree to which mass can be used as a proxy for vulnerability. Here, we use the painted lady butterfly, Vanessa cardui, to test ontogenetic changes in two physiological traits, the acute thermal sensitivity of routine metabolic rate (RMR Q10) and the critical thermal maximum (CTmax). RMR Q10 generally followed ontogenetic changes in body mass, with stages characterized by smaller body mass exhibiting lower acute thermal sensitivity. However, CTmax was largely decoupled from ontogenetic changes in body mass. In contrast with trends from other studies showing increasing vulnerability among progressively earlier developmental stages, our study revealed highly erratic patterns of vulnerability across ontogeny. Specifically, we found the lowest joint-trait vulnerability (both RMR Q10 and CTmax) in the earliest developmental stage we tested (3rd instar larvae), the highest vulnerabilities in the next two developmental stages (4th and 5th instar larvae), and reduced vulnerability into the pupal and adult stages. Our study supports growing evidence of mechanistic decoupling of physiology across developmental stages and suggests that body mass is not a universal proxy for all physiological trait indicators of climate vulnerability.
Collapse
Affiliation(s)
- Osmary A Medina-Báez
- Corresponding author: Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA. Tel: 1-216-368-0699.
| | - Angie Lenard
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| | - Rut A Muzychuk
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| | - Carmen R B da Silva
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
- School of Biological Sciences, Monash University, 25 Rainforest Walk, Clayton 3800, Australia
- College of Science and Engineering, Flinders University, Anchor Court, Bedford Park 5042, South Australia, Australia
| | - Sarah E. Diamond
- Department of Biology, Case Western Reserve University, 2074 Adelbert Rd, Cleveland, OH 44106, USA
| |
Collapse
|
3
|
Laird‐Hopkins BC, Ashe‐Jepson E, Basset Y, Arizala Cobo S, Eberhardt L, Freiberga I, Hellon J, Hitchcock GE, Kleckova I, Linke D, Lamarre GPA, McFarlane A, Savage AF, Turner EC, Zamora AC, Sam K, Bladon AJ. Thermoregulatory ability and mechanism do not differ consistently between neotropical and temperate butterflies. GLOBAL CHANGE BIOLOGY 2023; 29:4180-4192. [PMID: 37315654 PMCID: PMC10946725 DOI: 10.1111/gcb.16797] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023]
Abstract
Climate change is a major threat to species worldwide, yet it remains uncertain whether tropical or temperate species are more vulnerable to changing temperatures. To further our understanding of this, we used a standardised field protocol to (1) study the buffering ability (ability to regulate body temperature relative to surrounding air temperature) of neotropical (Panama) and temperate (the United Kingdom, Czech Republic and Austria) butterflies at the assemblage and family level, (2) determine if any differences in buffering ability were driven by morphological characteristics and (3) used ecologically relevant temperature measurements to investigate how butterflies use microclimates and behaviour to thermoregulate. We hypothesised that temperate butterflies would be better at buffering than neotropical butterflies as temperate species naturally experience a wider range of temperatures than their tropical counterparts. Contrary to our hypothesis, at the assemblage level, neotropical species (especially Nymphalidae) were better at buffering than temperate species, driven primarily by neotropical individuals cooling themselves more at higher air temperatures. Morphology was the main driver of differences in buffering ability between neotropical and temperate species as opposed to the thermal environment butterflies experienced. Temperate butterflies used postural thermoregulation to raise their body temperature more than neotropical butterflies, probably as an adaptation to temperate climates, but the selection of microclimates did not differ between regions. Our findings demonstrate that butterfly species have unique thermoregulatory strategies driven by behaviour and morphology, and that neotropical species are not likely to be more inherently vulnerable to warming than temperate species.
Collapse
Affiliation(s)
- Benita C. Laird‐Hopkins
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanama CityPanama
| | | | - Yves Basset
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanama CityPanama
- Maestria de EntomologiaUniversity of PanamaPanama CityPanama
| | | | | | - Inga Freiberga
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Josh Hellon
- Wildlife Trust of Bedfordshire, Cambridgeshire, and NorthamptonshireCambourneUK
| | - Gwen E. Hitchcock
- Wildlife Trust of Bedfordshire, Cambridgeshire, and NorthamptonshireCambourneUK
| | - Irena Kleckova
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
| | - Daniel Linke
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | - Greg P. A. Lamarre
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Smithsonian Tropical Research InstitutePanama CityPanama
| | - Alex McFarlane
- Smithsonian Tropical Research InstitutePanama CityPanama
| | | | | | | | - Katerina Sam
- Institute of EntomologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
- Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
| | | |
Collapse
|
4
|
da Silva CRB, Beaman JE, Youngblood JP, Kellermann V, Diamond SE. Vulnerability to climate change increases with trophic level in terrestrial organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161049. [PMID: 36549538 DOI: 10.1016/j.scitotenv.2022.161049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/17/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The resilience of ecosystem function under global climate change is governed by individual species vulnerabilities and the functional groups they contribute to (e.g. decomposition, primary production, pollination, primary, secondary and tertiary consumption). Yet it remains unclear whether species that contribute to different functional groups, which underpin ecosystem function, differ in their vulnerability to climate change. We used existing upper thermal limit data across a range of terrestrial species (N = 1701) to calculate species warming margins (degrees distance between a species upper thermal limit and the maximum environmental temperature they inhabit), as a metric of climate change vulnerability. We examined whether species that comprise different functional groups exhibit differential vulnerability to climate change, and if vulnerability trends change across geographic space while considering evolutionary history. Primary producers had the broadest warming margins across the globe (μ = 18.72 °C) and tertiary consumers had the narrowest warming margins (μ = 9.64 °C), where vulnerability tended to increase with trophic level. Warming margins had a nonlinear relationship (second-degree polynomial) with absolute latitude, where warming margins were narrowest at about 33°, and were broader at lower and higher absolute latitudes. Evolutionary history explained significant variation in species warming margins, as did the methodology used to estimate species upper thermal limits. We investigated if variation in body mass across the trophic levels could explain why higher trophic level organisms had narrower warming margins than lower trophic level organisms, however, we did not find support for this hypothesis. This study provides a critical first step in linking individual species vulnerabilities with whole ecosystem responses to climate change.
Collapse
Affiliation(s)
- Carmen R B da Silva
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA; School of Biological Sciences, Monash University, Victoria, Australia.
| | - Julian E Beaman
- College of Science and Engineering, Flinders University, South Australia, Australia
| | - Jacob P Youngblood
- School of Life Sciences, Arizona State University, Tempe, AZ, USA; Department of Biology, Southern Oregon University, Ashland, OR, USA
| | | | - Sarah E Diamond
- Department of Biology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
5
|
Vaes O, Detrain C. Colony specificity and starvation-driven changes in activity patterns of the red ant Myrmica rubra. PLoS One 2022; 17:e0273087. [PMID: 35960741 PMCID: PMC9374231 DOI: 10.1371/journal.pone.0273087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 08/02/2022] [Indexed: 11/18/2022] Open
Abstract
Although the activity levels of insect societies are assumed to contribute to their ergonomic efficiency, most studies of the temporal organization of ant colony activity have focused on only a few species. Little is known about the variation in activity patterns across colonies and species, and in different environmental contexts. In this study, the activity patterns of colonies of the red ant Myrmica rubra were characterized over 15 consecutive days. The main goals were to evaluate the colony specificity of the activity patterns and the impact of food deprivation on these patterns. We found that the average activity level varied across colonies and remained consistent over 1 week, providing evidence that the activity level is a colony-specific life trait. Furthermore, all colonies applied an energy-saving strategy, decreasing their average levels of activity inside the nest, when starved. Starvation induced no consistent change in the activity level outside of the nest. An analysis of activity time series revealed activity bursts, with nestmates being active (or inactive) together, the amplitudes of which reflected the ants’ degree of synchronization. Food deprivation increased the amplitude and number of these activity bursts. Finally, wavelet analyses of daily activity patterns revealed no evidence of any periodicity of activity bouts occurring inside or outside of the nest. This study showed that M. rubra ant colonies are characterized by specific activity levels that decrease in response to starvation with the adoption of an energy-saving strategy. In addition, our results help to understand the functional value associated with synchronized and/or periodic fluctuation in activity, which has been debated for years.
Collapse
Affiliation(s)
- Oscar Vaes
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| | - Claire Detrain
- Unit of Social Ecology, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
6
|
Wu X, Niklas KJ, Sun S. Climate change affects detritus decomposition rates by modifying arthropod performance and species interactions. CURRENT OPINION IN INSECT SCIENCE 2021; 47:62-66. [PMID: 34033945 DOI: 10.1016/j.cois.2021.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Climate change can indirectly affect ecosystem functions including detritus decomposition by modifying physiological traits, feeding behavior, and species interactions (including consumptive and non-consumptive top-down cascading effects) of decomposing arthropods. It is known that the effect of climate change on decomposition can be negative, neutral, or positive, and that it is highly context-dependent, depending on detritus quality, species identity, species interactions, and ecosystem type. Thus, ongoing climate change will undoubtedly influence the effects of arthropods on decomposition rates. More comprehensive studies are urgently needed to elucidate the effect of climate change on arthropod-detritus decomposers, particularly in the context of the decomposition of animal droppings and carrion.
Collapse
Affiliation(s)
- Xinwei Wu
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Karl J Niklas
- Department of Plant Biology, Cornell University, Ithaca, NY 14850, USA
| | - Shucun Sun
- Department of Ecology, College of Life Sciences, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
7
|
Marshall KE, Gotthard K, Williams CM. Evolutionary impacts of winter climate change on insects. CURRENT OPINION IN INSECT SCIENCE 2020; 41:54-62. [PMID: 32711362 DOI: 10.1016/j.cois.2020.06.003] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 06/11/2023]
Abstract
Overwintering is a serious challenge for insects, and winters are rapidly changing as climate shifts. The capacity for phenotypic plasticity and evolutionary adaptation will determine which species profit or suffer from these changes. Here we discuss current knowledge on the potential and evidence for evolution in winter-relevant traits among insect species and populations. We conclude that the best evidence for evolutionary shifts in response to changing winters remain those related to changes in phenology, but all evidence points to cold hardiness as also having the potential to evolve in response to climate change. Predicting future population sizes and ranges relies on understanding to what extent evolution in winter-related traits is possible, and remains a serious challenge.
Collapse
Affiliation(s)
| | - Karl Gotthard
- Department of Zoology, Stockholm University, Stockholm SE-106 91, Sweden
| | | |
Collapse
|
8
|
Batz ZA, Clemento AJ, Fritzenwanker J, Ring TJ, Garza JC, Armbruster PA. Rapid adaptive evolution of the diapause program during range expansion of an invasive mosquito. Evolution 2020; 74:1451-1465. [PMID: 32490563 PMCID: PMC8023039 DOI: 10.1111/evo.14029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/25/2020] [Indexed: 12/25/2022]
Abstract
In temperate climates, the recurring seasonal exigencies of winter represent a fundamental physiological challenge for a wide range of organisms. In response, many temperate insects enter diapause, an alternative developmental program, including developmental arrest, that allows organisms to synchronize their life cycle with seasonal environmental variation. Geographic variation in diapause phenology contributing to local climatic adaptation is well documented. However, few studies have examined how the rapid evolution of a suite of traits expressed across the diapause program may contribute to climatic adaptation on a contemporary timescale. Here, we investigate the evolution of the diapause program over the past 35 years by leveraging a "natural experiment" presented by the recent invasion of the Asian tiger mosquito, Aedes albopictus, across the eastern United States. We sampled populations from two distinct climatic regions separated by 6° of latitude (∼700 km). Using common-garden experiments, we identified regional genetic divergence in diapause-associated cold tolerance, diapause duration, and postdiapause starvation tolerance. We also found regional divergence in nondiapause thermal performance. In contrast, we observed minimal regional divergence in nondiapause larval growth traits and at neutral molecular marker loci. Our results demonstrate rapid evolution of the diapause program and imply strong selection caused by differences in winter conditions.
Collapse
Affiliation(s)
- Zachary A. Batz
- Department of BiologyGeorgetown UniversityWashingtonDC20057
- Current Address: Neurobiology‐Neurodegeneration and Repair LaboratoryNational Eye Institute, National Institute of Health6 Center Drive, Room 307BethesdaMaryland20892
| | - Anthony J. Clemento
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCalifornia95064
| | | | | | - John Carlos Garza
- Institute of Marine SciencesUniversity of CaliforniaSanta CruzCalifornia95064
- Department of Ocean SciencesUniversity of CaliforniaSanta CruzCalifornia95064
| | | |
Collapse
|
9
|
Johansson F, Orizaola G, Nilsson-Örtman V. Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Sci Rep 2020; 10:8822. [PMID: 32483233 PMCID: PMC7264184 DOI: 10.1038/s41598-020-65608-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/09/2020] [Indexed: 11/12/2022] Open
Abstract
The magnitude and ecological impact of climate change varies with latitude. Several recent models have shown that tropical ectotherms face the greatest risk from warming because they currently experience temperatures much closer to their physiological optimum than temperate taxa. Even a small increase in temperature may thus result in steep fitness declines in tropical species but increased fitness in temperate species. This prediction, however, is based on a model that does not account for latitudinal differences in activity periods. Temperate species in particular may often experience considerably higher temperatures than expected during the active season. Here, we integrate data on insect warming tolerance and temperature-dependent development to re-evaluate latitudinal trends in thermal safety margins after accounting for latitudinal trends in insect seasonal activity. Our analyses suggest that temperate and tropical species differ far less in thermal safety margins than commonly assumed, and add to the recent number of studies suggesting that tropical and temperate species might face similar levels of threat from climate change.
Collapse
Affiliation(s)
- Frank Johansson
- Uppsala University, Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Norbyvägen 18D, S-75236, Uppsala, Sweden.
| | - Germán Orizaola
- Uppsala University, Animal Ecology, Department of Ecology and Genetics, Evolutionary Biology Center, Norbyvägen 18D, S-75236, Uppsala, Sweden
- IMIB-Biodiversity Research Institute (Univ. Oviedo-CSIC-Princ. Asturias), c/ Gonzalo Gutiérrez Quirós s/n, 33600, Mieres-Asturias, Spain
- University of Oviedo, Zoology Unit, Dept Biology of Organisms and Systems, c/Rodrigo Uría s/n, 33071, Oviedo-Asturias, Spain
| | - Viktor Nilsson-Örtman
- Lund University, Department of Biology, Evolutionary Ecology Unit, Sölvegatan 12, S-22362, Lund, Sweden
| |
Collapse
|
10
|
Abstract
Several amphibian lineages epitomize the faunal biodiversity crises, with numerous reports of population declines and extinctions worldwide. Predicting how such lineages will cope with environmental changes is an urgent challenge for biologists. A promising framework for this involves mechanistic modeling, which integrates organismal ecophysiological features and ecological models as a means to establish causal and consequential relationships of species with their physical environment. Solid frameworks built for other tetrapods (e.g., lizards) have proved successful in this context, but its extension to amphibians requires care. First, the natural history of amphibians is distinct within tetrapods, for it includes a biphasic life cycle that undergoes major habitat transitions and changes in sensitivity to environmental factors. Second, the accumulated data on amphibian ecophysiology is not nearly as expressive, is heavily biased towards adult lifeforms of few non-tropical lineages, and overlook the importance of hydrothermal relationships. Thus, we argue that critical usage and improvement in the available data is essential for enhancing the power of mechanistic modeling from the physiological ecology of amphibians. We highlight the complexity of ecophysiological variables and the need for understanding the natural history of the group under study and indicate directions deemed crucial to attaining steady progress in this field.
Collapse
|