1
|
Lozada-Chávez AN, Lozada-Chávez I, Alfano N, Palatini U, Sogliani D, Elfekih S, Degefa T, Sharakhova MV, Badolo A, Sriwichai P, Casas-Martínez M, Carlos BC, Carballar-Lejarazú R, Lambrechts L, Souza-Neto JA, Bonizzoni M. Adaptive genomic signatures of globally invasive populations of the yellow fever mosquito Aedes aegypti. Nat Ecol Evol 2025; 9:652-671. [PMID: 40155778 PMCID: PMC11976285 DOI: 10.1038/s41559-025-02643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 01/14/2025] [Indexed: 04/01/2025]
Abstract
In the arboviral vector Aedes aegypti, adaptation to anthropogenic environments has led to a major evolutionary shift separating the domestic Aedes aegypti aegypti (Aaa) ecotype from the wild Aedes aegypti formosus (Aaf) ecotype. Aaa mosquitoes are distributed globally and have higher vectorial capacity than Aaf, which remained in Africa. Despite the evolutionary and epidemiological relevance of this separation, inconsistent morphological data and a complex population structure have hindered the identification of genomic signals distinguishing the two ecotypes. Here we assessed the correspondence between the geographic distribution, population structure and genome-wide selection of 511 Aaf and 123 Aaa specimens and report adaptive signals in 186 genes that we call Aaa molecular signatures. Our results indicate that Aaa molecular signatures arose from standing variation associated with extensive ancestral polymorphisms in Aaf populations and have been co-opted for self-domestication through genomic and functional redundancy and local adaptation. Overall, we show that the behavioural shift of Ae. aegypti mosquitoes to live in association with humans relied on the fine regulation of chemosensory, neuronal and metabolic functions, as seen in the domestication processes of rabbits and silkworms. Our results also provide a foundation for the investigation of new genic targets for the control of Ae. aegypti populations.
Collapse
Affiliation(s)
| | - Irma Lozada-Chávez
- Evo-devo, Bioinformatics and Neuromorphic Information Processing groups, Institute of Computer Science and Faculty of Mathematics and Computer Science, Leipzig University, Leipzig, Germany
| | - Niccolò Alfano
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Human Technopole, Milan, Italy
| | - Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, NY, USA
| | - Davide Sogliani
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Samia Elfekih
- Australian Centre for Disease Preparedness, CSIRO Australia Bio21 Institute, School of Biosciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Maria V Sharakhova
- Department of Entomology and the Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Athanase Badolo
- Laboratoire d'Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Patchara Sriwichai
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Mauricio Casas-Martínez
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| | - Bianca C Carlos
- School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- Research Group on Integrated Pest Management, School of Agronomy, Crop Protection Department, São Paulo State University, Botucatu, Brazil
| | - Rebeca Carballar-Lejarazú
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA
| | - Louis Lambrechts
- Insect-Virus Interactions Unit, Institut Pasteur, Université Paris Cité, CNRS UMR2000, Paris, France
| | - Jayme A Souza-Neto
- School of Agricultural Sciences, São Paulo State University, Botucatu, Brazil
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | | |
Collapse
|
2
|
Tchouassi DP, Kisero RO, Rotich G, Dunlap C, Torto B, Muturi EJ. Next generation sequencing improves the resolution of detecting mixed host blood meal sources in field collected arboviral mosquito vectors. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:407-415. [PMID: 38747253 DOI: 10.1111/mve.12725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/01/2024] [Indexed: 11/06/2024]
Abstract
Accurate knowledge of blood meal hosts of different mosquito species is critical for identifying potential vectors and establishing the risk of pathogen transmission. We compared the performance of Miseq next generation sequencing approach relative to conventional Sanger sequencing approach in identification of mosquito blood meals using genetic markers targeting the 12S rRNA and cytochrome oxidase I (COI) genes. We analysed the blood meals of three mosquito vector species (Aedes aegypti, Aedes simpsoni s.l. and Culex pipiens s.l.) collected outdoors, and compared the frequency of single- versus multiple-blood feeding. Single host blood meals were mostly recovered for Sanger-based sequencing of the mitochondrial 12S rRNA gene, whereas Miseq sequencing employing this marker and the COI marker detected both single and multiple blood meal hosts in individual mosquitoes. Multiple blood meals (two or more hosts) which mostly included humans were detected in 19%-22.7% of Ae. aegypti samples. Most single host blood meals for this mosquito species were from humans (47.7%-57.1%) and dogs (9.1%-19.0%), with livestock, reptile and rodent hosts collectively accounting for 4.7%-28.9% of single host blood meals. The frequency of two or more host blood meals in Ae. simpsoni s.l. was 26.3%-45.5% mostly including humans, while single host blood meals were predominantly from humans (31.8%-47.4%) with representation of rodent, reptile and livestock blood meals (18.2%-68.2%). Single host blood meals from Cx. pipiens s.l. were mostly from humans (27.0%-39.4%) and cows (11.5%-27.36%). Multiple blood meal hosts that mostly included humans occurred in 21.2%-24.4% of Cx. pipiens s.l. samples. Estimated human blood indices ranged from 53%-76% for Ae. aegypti, 32%-82% for Ae. simpsoni s.l. and 26%-61% for Cx. pipiens s.l. and were consistently lower for Sanger-based sequencing approach compared to Miseq-based sequencing approach. These findings demonstrate that Miseq sequencing approach is superior to Sanger sequencing approach as it can reliably identify mixed host blood meals in a single mosquito, improving our ability to understand the transmission dynamics of mosquito-borne pathogens.
Collapse
Affiliation(s)
- David P Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Robinson O Kisero
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Gilbert Rotich
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Christopher Dunlap
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, Illinois, USA
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Ephantus J Muturi
- USDA, Agricultural Research Service, National Center for Agricultural Utilization Research, Crop Bioprotection Research Unit, Peoria, Illinois, USA
| |
Collapse
|
3
|
Zhang Y, Wang M, Huang M, Zhao J. Innovative strategies and challenges mosquito-borne disease control amidst climate change. Front Microbiol 2024; 15:1488106. [PMID: 39564491 PMCID: PMC11573536 DOI: 10.3389/fmicb.2024.1488106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
The revival of the transmission dynamics of mosquito-borne diseases grants striking challenges to public health intensified by climate change worldwide. This inclusive review article examines multidimensional strategies and challenges linked to climate change and the epidemiology of mosquito-borne diseases such as malaria, dengue, Zika, chikungunya, and yellow fever. It delves into how the biology, pathogenic dynamics, and vector distribution of mosquitoes are influenced by continuously rising temperatures, modified rainfall patterns, and extreme climatic conditions. We also highlighted the high likelihood of malaria in Africa, dengue in Southeast Asia, and blowout of Aedes in North America and Europe. Modern predictive tools and developments in surveillance, including molecular gears, Geographic Information Systems (GIS), and remote sensing have boosted our capacity to predict epidemics. Integrated data management techniques and models based on climatic conditions provide a valuable understanding of public health planning. Based on recent data and expert ideas, the objective of this review is to provide a thoughtful understanding of existing landscape and upcoming directions in the control of mosquito-borne diseases regarding changing climate. This review determines emerging challenges and innovative vector control strategies in the changing climatic conditions to ensure public health.
Collapse
Affiliation(s)
- Yuan Zhang
- Ningbo Research Institute of Ecological and Environmental Sciences, Ningbo, China
| | - Minhao Wang
- Department of Chemistry, University of Liverpool, Liverpool, United Kingdom
| | - Mingliu Huang
- Chou Io Insect Museum, Ningbo Yinzhou Cultural Relics Protection and Management Center, Ningbo, China
| | - Jinyi Zhao
- Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Adhiambo EF, Gouagna LC, Owino EA, Mutuku F, Getahun MN, Torto B, Tchouassi DP. Polymer Beads Increase Field Responses to Host Attractants in the Dengue Vector Aedes aegypti. J Chem Ecol 2024; 50:654-662. [PMID: 38532168 DOI: 10.1007/s10886-024-01489-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/02/2024] [Accepted: 03/17/2024] [Indexed: 03/28/2024]
Abstract
This study investigates the efficacy of three different olfactory cues - cyclohexanone, linalool oxide (LO), and 6-methyl-5-heptan-2-one (sulcatone) - in attracting Aedes aegypti, the primary vector of dengue, using BG sentinel traps in a dengue-endemic area (urban Ukunda) in coastal Kenya. Two experiments were conducted. Experiment 1 compared solid formulations of the compounds in polymer beads against liquid formulations with hexane as the solvent. CO2-baited traps served as controls. In Experiment 2, traps were baited with each compound in the polymer beads, commercial BG-Lure, and CO2. Our results indicate that CO2-baited traps recorded the greatest Ae. aegypti captures in both Experiment 1 and 2, whereas trap captures with polymer beads and solvent-based treatments were comparable. In experiment 2, polymer bead-based treatments yielded significantly greater female captures, each recording ~ 2-fold more captures than traps baited with the BG-Lure. There was no significant difference, however, between the treatments. Female Ae. aegypti captured in CO2-baited traps were mainly unfed (91%), with fewer gravid mosquitoes (6.4%) compared to traps with test compounds (range; 12.7-21.1%). Male captures were lower in LO and BG-Lure baited traps compared to other treatments. Gravimetric analysis showed LO had a slower release rate compared to other compounds. The findings suggest that host-associated compounds loaded on polymer beads are more effective in trapping Ae. aegypti than commercial BG-Lure and reveal sex-specific differences in mosquito responses. These results have implications for mosquito surveillance and control programs, highlighting the potential for selective trapping strategies.
Collapse
Affiliation(s)
- Elizabeth F Adhiambo
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya
- Faculty of Science and Technology, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | | | - Eunice A Owino
- Faculty of Science and Technology, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | | | - Merid N Getahun
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
5
|
Belay AK, Asale A, Sole CL, Yusuf AA, Torto B, Mutero CM, Tchouassi DP. Feeding habits and malaria parasite infection of Anopheles mosquitoes in selected agroecological areas of Northwestern Ethiopia. Parasit Vectors 2024; 17:412. [PMID: 39363366 PMCID: PMC11451063 DOI: 10.1186/s13071-024-06496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Surveillance of the host-anopheline mosquitoes' interaction is important for assessing malaria transmission risk and guiding vector control. We assume that changes in malaria vector species' feeding habits, as well as the surrounding environment, have a substantial impact on varied malaria transmission. In this study, we determined the vertebrate host feeding patterns of anopheline mosquitoes to characterize entomologic risk factors for malaria in Jabi Tehnan, Northwestern Ethiopia. METHODS Blood-fed anophelines surveyed during malaria surveillance in Jabi Tehnan district of northwestern Ethiopia were utilized in this study. They were collected using Centers for Disease Control and Prevention (CDC) light traps deployed in selected households per village, placed indoors and outdoors, spanning three agroecological settings (dry mountain, plateau, and semiarid highlands) between June 2020 and May 2021. The engorged mosquitoes were analyzed for host blood meal sources and Plasmodium infection via polymerase chain reaction (PCR) and/or sequencing. Infection rates and bovine and human blood indices were calculated and compared for abundant species; between indoors and outdoors and between agroecology using a chi-squared test for equality of proportion in R package at a significant level of p ≤ 0.05. RESULTS A total of 246 mosquitoes were successfully typed (indoor, 121; outdoor, 125), with greater relative abundance indoors in mountain and plateau highlands, and outdoors in semiarid areas. Despite ecological differences in blood-fed capture rates, cattle served as the most utilized blood meal source by 11 anopheline species with an overall bovine blood index (BBI) of 74.4%. This trend was dictated by Anopheles gambiae s.l. (198/246; BBI = 73.7%), which exhibited the most plastic feeding habits that included humans (human blood index = 15.7%) and other livestock and rodents. A total of five anopheline species (An. gambiae s.l., An. funestus s.l., An. coustani s.l., An. pretoriensis, and An. pharoensis) fed on humans, of which the first three were found infected with Plasmodium parasites. Most of the infected specimens were An. arabiensis (5.6%, 11/198) and had recently fed mainly on cattle (72.7%, 8/11); one each of infected An. funestus s.l. and An. coustani s.l. had fed on humans and cattle, respectively. CONCLUSIONS The results demonstrate communal feeding on cattle by anophelines including primary and secondary malaria vectors. This study also indicates the importance of cattle-targeted interventions for sustainable control of malaria vectors in the study areas.
Collapse
Affiliation(s)
- Aklilu K Belay
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - Abebe Asale
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-5689, Addis Ababa, Ethiopia
| | - Catherine L Sole
- Department of Zoology and Entomology, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - Abdullahi A Yusuf
- Department of Zoology and Entomology, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - Clifford M Mutero
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya
- School of Health Systems and Public Health, University of Pretoria, Private Bag X0028, Pretoria, South Africa
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, P.O. Box 30772-00100, Nairobi, Kenya.
| |
Collapse
|
6
|
Abstract
Dengue, caused by the dengue virus, is the most widespread arboviral infectious disease of public health significance globally. This review explores the communicative function of olfactory cues that mediate host-seeking, egg-laying, plant-feeding, and mating behaviors in Aedes aegypti and Aedes albopictus, two mosquito vectors that drive dengue virus transmission. Aedes aegypti has adapted to live in close association with humans, preferentially feeding on them and laying eggs in human-fabricated water containers and natural habitats. In contrast, Ae. albopictus is considered opportunistic in its feeding habits and tends to inhabit more vegetative areas. Additionally, the ability of both mosquito species to locate suitable host plants for sugars and find mates for reproduction contributes to their survival. Advances in chemical ecology, functional genomics, and behavioral analyses have improved our understanding of the underlying neural mechanisms and reveal novel and specific olfactory semiochemicals that these species use to locate and discriminate among resources in their environment. Physiological status; learning; and host- and habitat-associated factors, including microbial infection and abundance, shape olfactory responses of these vectors. Some of these semiochemicals can be integrated into the toolbox for dengue surveillance and control.
Collapse
Affiliation(s)
- Baldwyn Torto
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya; ,
| | - David P Tchouassi
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya; ,
| |
Collapse
|
7
|
Cannet A, Simon-Chane C, Histace A, Akhoundi M, Romain O, Souchaud M, Jacob P, Sereno D, Gouagna LC, Bousses P, Mathieu-Daude F, Sereno D. Wing Interferential Patterns (WIPs) and machine learning for the classification of some Aedes species of medical interest. Sci Rep 2023; 13:17628. [PMID: 37848666 PMCID: PMC10582169 DOI: 10.1038/s41598-023-44945-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/13/2023] [Indexed: 10/19/2023] Open
Abstract
Hematophagous insects belonging to the Aedes genus are proven vectors of viral and filarial pathogens of medical interest. Aedes albopictus is an increasingly important vector because of its rapid worldwide expansion. In the context of global climate change and the emergence of zoonotic infectious diseases, identification tools with field application are required to strengthen efforts in the entomological survey of arthropods with medical interest. Large scales and proactive entomological surveys of Aedes mosquitoes need skilled technicians and/or costly technical equipment, further puzzled by the vast amount of named species. In this study, we developed an automatic classification system of Aedes species by taking advantage of the species-specific marker displayed by Wing Interferential Patterns. A database holding 494 photomicrographs of 24 Aedes spp. from which those documented with more than ten pictures have undergone a deep learning methodology to train a convolutional neural network and test its accuracy to classify samples at the genus, subgenus, and species taxonomic levels. We recorded an accuracy of 95% at the genus level and > 85% for two (Ochlerotatus and Stegomyia) out of three subgenera tested. Lastly, eight were accurately classified among the 10 Aedes sp. that have undergone a training process with an overall accuracy of > 70%. Altogether, these results demonstrate the potential of this methodology for Aedes species identification and will represent a tool for the future implementation of large-scale entomological surveys.
Collapse
Affiliation(s)
- Arnaud Cannet
- Direction des affaires sanitaires et sociales de la Nouvelle-Calédonie, Nouméa, France
| | | | - Aymeric Histace
- ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
| | | | | | - Marc Souchaud
- ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
| | - Pierre Jacob
- ETIS UMR 8051, Cergy Paris University, ENSEA, CNRS, 95000, Cergy, France
- Univ. Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800, 33400, Talence, France
| | - Darian Sereno
- InterTryp, Univ Montpellier, IRD-CIRAD, Infectiology Medical Entomology and One Health Research Group, Montpellier, France
| | | | | | - Françoise Mathieu-Daude
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France
- Institut Louis Malardé, Tahiti, French Polynesia
| | - Denis Sereno
- InterTryp, Univ Montpellier, IRD-CIRAD, Infectiology Medical Entomology and One Health Research Group, Montpellier, France.
- MIVEGEC, Univ Montpellier, CNRS, IRD, Montpellier, France.
| |
Collapse
|
8
|
Kamau WW, Sang R, Rotich G, Agha SB, Menza N, Torto B, Tchouassi DP. Patterns of Aedes aegypti abundance, survival, human-blood feeding and relationship with dengue risk, Kenya. FRONTIERS IN TROPICAL DISEASES 2023. [DOI: 10.3389/fitd.2023.1113531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Dengue virus (DENV) transmission risk is influenced by the bionomic traits of the key vector, Aedes aegypti. We investigated patterns of abundance, survival, and human blood-feeding of Ae. aegypti populations in two environments in Kenya: peri-urban Rabai (coastal Region, dengue-endemic) and rural Kerio Valley (Rift Valley Region, no reported dengue outbreak). In both environments, Ae. aegypti survival (estimated by parity), was inversely correlated with vector abundance, and this was influenced by weather conditions, notably temperature and relative humidity. In Rabai, Ae. aegypti mostly fed on humans (human blood index=51%), a pattern that corroborates with dengue cases in the coastal region. Aedes aegypti additionally, exhibited opportunistic feeding (livestock, rodents, reptiles, birds), suggesting the risk of human exposure to zoonotic pathogens via spillover transmission events aided by the vector. Abundance and human blood-feeding rates were consistently lower in Kerio Valley likely related to the degree of urbanization. Remarkably, the periods of high human feeding in Rabai coincided with high vector survival rates, a trend that could potentially drive intense DENV transmission at certain times of the year. We found a genetic influence of Ae. aegypti on the degree of anthropophagy but this could be influenced by potential seasonal shifts in human feeding. The findings of this study have implications both for DENV transmission risk and vector control strategies, but also in modeling which should integrate vector bionomic factors beyond vector abundance.
Collapse
|
9
|
Vector Competence of a Coastal Population of Aedes aegypti for Dengue 2 and 3 Virus Serotypes in Kenya. BIOMED RESEARCH INTERNATIONAL 2023. [DOI: 10.1155/2023/8402682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Aedes aegypti is the primary vector of dengue, an arboviral disease caused by dengue virus (DENV) that exists as four distinct serotypes (DENV 1-4). While all four DENV serotypes circulate in Kenya, differential distribution of the serotypes in specific regions suggests virus transmission may differ among local vector populations. In this study, we tested the hypothesis that a coastal Ae. aegypti population (Rabai, Kilifi County) varies in its ability to transmit DENV-2 (predominant) and DENV-3 (less dominant) and that transmission is related to Ae. aegypti subspecies—domestic Ae. aegypti aegypti (Aaa) and sylvtic Ae. aegypti formosus (Aaf). We orally exposed F1 females (3-10 days old) to blood meals containing DENV-2 (10 5.30 pfu/ml) or DENV-3 (10 5.13 pfu/ml), tested them individually for infection (body), dissemination (legs), and transmission (saliva) at 7, 14, and 21 days postinfection (DPI), respectively, and compared the rates between the serotypes. We analyzed cytochrome c oxidase I gene (cox-I) sequences among DENV-susceptible and nonsusceptible cohorts. Of 489 mosquitoes tested (DENV-2: 240; DENV-3: 249), we found consistently higher but nonsignificant rates of infection (16% vs. 10%), dissemination (47% (18/38) vs. 35% (9/26)), and transmission (39% (7/18) vs. 11% (1/9)) for DENV-2 than DENV-3. However, DENV-2 exhibited a shorter extrinsic incubation period (EIP) for disseminated infection (7-DPI vs. 14-DPI) and transmission (14-DPI vs. 21-DPI) compared to DENV-3. Two cox-I lineages were recovered in phylogeny, one predominantly clustered with referenced Aaa and a minor lineage grouped with Aaf. Infected mosquitoes and those with disseminated infection were represented in both lineages; those that transmitted the viruses grouped with the Aaa-associated lineage only. We conclude that the coastal Ae. aegypti population is a competent vector for DENV-2 and DENV-3 likely driven by the domestic Aaa that is predominant. The shorter EIP to attain dissemination and transmission for DENV-2 could favour its transmission over DENV-3.
Collapse
|