1
|
Robertson RM, Wang Y. Recovery from spreading depolarization is slowed by aging and accelerated by antioxidant treatment in locusts. J Neurophysiol 2025; 133:245-256. [PMID: 39665253 DOI: 10.1152/jn.00487.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
Spreading depolarization (SD) temporarily shuts down neural processing in mammals and insects. Age is a critical factor for predicting the consequences of SD in humans. We investigated the effect of aging in an insect model of SD and explored the contribution of oxidative stress. Aging slowed the recovery of intact locusts from asphyxia. We monitored SD by recording the DC potential across the blood-brain barrier in response to bath application of the Na+/K+-ATPase inhibitor, ouabain. Ouabain induced changes to the DC potential that could be separated into two distinct components: a slow, permanent negative shift, like the negative ultraslow potential recorded in mammals and human patients, and rapid, reversible negative DC shifts (SD events). Aging had no effect on the slow shift but increased the duration of SD events. This was accompanied by a decrease in the rate of recovery of DC potential at the end of the SD event. An attempt to generate oxidative stress using rotenone was unsuccessful, but pretreatment with the antioxidant, N-acetylcysteine amide, had opposite effects to those of aging, reducing duration, and increasing rate of recovery, suggesting that it prevented oxidative damage occurring during the ouabain treatment. The antioxidant also reduced the rate of the slow negative shift. We propose that the aging locust nervous system is more vulnerable to stress due to a prior accumulation of oxidative damage. Our findings strengthen the notion that insects provide useful models for the investigation of cellular and molecular mechanisms underlying SD in mammals.NEW & NOTEWORTHY Anoxia and similar energetic crises trigger a shutdown of central neural processing in a process of spreading depolarization (SD) that is generally pathological in mammals and protective in insects. We show that older animals are slower to recover from SD in an insect model. Moreover, preventing oxidative stress with an antioxidant speeds recovery. These findings demonstrate the role of oxidative stress in contributing to the vulnerability of the aging insect central nervous system (CNS) in energetic emergencies.
Collapse
Affiliation(s)
| | - Yuyang Wang
- Department of Biology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Helou B, Ritchie MW, MacMillan HA, Andersen MK. Dietary potassium and cold acclimation additively increase cold tolerance in Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2024; 159:104701. [PMID: 39251183 DOI: 10.1016/j.jinsphys.2024.104701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/01/2024] [Accepted: 09/04/2024] [Indexed: 09/11/2024]
Abstract
In the cold, chill susceptible insects lose the ability to regulate ionic and osmotic gradients. This leads to hemolymph hyperkalemia that drives a debilitating loss of cell membrane polarization, triggering cell death pathways and causing organismal injury. Biotic and abiotic factors can modulate insect cold tolerance by impacting the ability to mitigate or prevent this cascade of events. In the present study, we test the combined and isolated effects of dietary manipulations and thermal acclimation on cold tolerance in fruit flies. Specifically, we acclimated adult Drosophila melanogaster to 15 or 25 °C and fed them either a K+-loaded diet or a control diet. We then tested the ability of these flies to recover from and survive a cold exposure, as well as their capacity to protect transmembrane K+ gradients, and intracellular Na+ concentration. As predicted, cold-exposed flies experienced hemolymph hyperkalemia and cold-acclimated flies had improved cold tolerance due to an improved maintenance of the hemolymph K+ concentration at low temperature. Feeding on a high-K+ diet improved cold tolerance additively, but paradoxically reduced the ability to maintain extracellular K+ concentrations. Cold-acclimation and K+-feeding additively increased the intracellular K+ concentration, aiding in maintenance of the transmembrane K+ gradient during cold exposure despite cold-induced hemolymph hyperkalemia. There was no effect of acclimation or diet on intracellular Na+ concentration. These findings suggest intracellular K+ loading and reduced muscle membrane K+ sensitivity as mechanisms through which cold-acclimated and K+-fed flies are able to tolerate hemolymph hyperkalemia.
Collapse
Affiliation(s)
- Bassam Helou
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Marshall W Ritchie
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada
| | - Mads Kuhlmann Andersen
- Department of Biology, Carleton University, Ottawa, Ontario K1S 5B6, Canada; Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
3
|
Teets NM, MacMillan HA. Editorial overview: Insect cold tolerance research reaches a Swift new Era. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101284. [PMID: 39426675 DOI: 10.1016/j.cois.2024.101284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Affiliation(s)
- Nicholas M Teets
- Department of Entomology, Martin-Gaton College of Food, Agriculture, and the Environment, University of Kentucky, Lexington, KY, USA.
| | - Heath A MacMillan
- Department of Biology and Institute of Biochemistry, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
4
|
Stein W, Städele C. Neuromodulator-induced temperature robustness in a motor pattern: a comparative study between two decapod crustaceans. J Exp Biol 2024; 227:jeb247266. [PMID: 39211959 DOI: 10.1242/jeb.247266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
While temperature fluctuations pose significant challenges to the nervous system, many vital neuronal systems in poikilothermic animals function over a broad temperature range. Using the gastric mill pattern generator in the Jonah crab, we previously demonstrated that temperature-induced increases in leak conductance disrupt neuronal function and that neuropeptide modulation provides thermal protection. Here, we show that neuropeptide modulation also increases temperature robustness in Dungeness and green crabs. As in Jonah crabs, higher temperatures increased leak conductance in both species' pattern-generating lateral gastric neuron and terminated rhythmic gastric mill activity. Likewise, increasing descending modulatory projection neuron activity or neuropeptide transmitter application rescued rhythms at elevated temperatures. However, decreasing input resistance using dynamic clamp only restored the rhythm in half of the experiments. Thus, neuropeptide modulation increased temperature robustness in both species, demonstrating that neuropeptide-mediated temperature compensation is not limited to one species, although the underlying cellular compensation mechanisms may be distinct.
Collapse
Affiliation(s)
- Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL 61790, USA
| | - Carola Städele
- Institute for Neuro- and Sensory Physiology, University of Göttingen Medical Center, 37073 Göttingen, Lower Saxony, Germany
| |
Collapse
|
5
|
Boardman L. Cross-talk between low temperature and other environmental factors. CURRENT OPINION IN INSECT SCIENCE 2024; 63:101193. [PMID: 38490451 DOI: 10.1016/j.cois.2024.101193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Low temperatures are rarely experienced in isolation. The impacts of low temperatures on insects can be exacerbated or alleviated by the addition of other environmental factors, including, for example, desiccation, hypoxia, or infection. One way in which environmental factors can interact is through cross-talk where different factors enact common signaling pathways. In this review, I highlight the breadth of abiotic and biotic factors that can interact with low-temperature tolerance in both natural and artificial environments; and discuss some of the candidate pathways that are possibly responsible for cross-talk between several factors. Specifically, I discuss three interesting candidates: the neurohormone octopamine, circadian clock gene vrille, and microbes. Finally, I discuss applications of cross-talk studies, and provide recommendations for researchers.
Collapse
Affiliation(s)
- Leigh Boardman
- Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA.
| |
Collapse
|
6
|
Golding D, Rupp KL, Sustar A, Pratt B, Tuthill JC. Snow flies self-amputate freezing limbs to sustain behavior at sub-zero temperatures. Curr Biol 2023; 33:4549-4556.e3. [PMID: 37757830 PMCID: PMC10842534 DOI: 10.1016/j.cub.2023.09.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/02/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023]
Abstract
Temperature profoundly impacts all living creatures. In spite of the thermodynamic constraints on biology, some animals have evolved to live and move in extremely cold environments. Here, we investigate behavioral mechanisms of cold tolerance in the snow fly (Chionea spp.), a flightless crane fly that is active throughout the winter in boreal and alpine environments of the northern hemisphere. Using thermal imaging, we show that adult snow flies maintain the ability to walk down to an average body temperature of -7°C. At this supercooling limit, ice crystallization occurs within the snow fly's hemolymph and rapidly spreads throughout the body, resulting in death. However, we discovered that snow flies frequently survive freezing by rapidly amputating legs before ice crystallization can spread to their vital organs. Self-amputation of freezing limbs is a last-ditch tactic to prolong survival in frigid conditions that few animals can endure. Understanding the extreme physiology and behavior of snow insects holds particular significance at this moment when their alpine habitats are rapidly changing due to anthropogenic climate change. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Dominic Golding
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Katie L Rupp
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Anne Sustar
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Brandon Pratt
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
7
|
Stein W, Torres G, Giménez L, Espinosa-Novo N, Geißel JP, Vidal-Gadea A, Harzsch S. Thermal acclimation and habitat-dependent differences in temperature robustness of a crustacean motor circuit. Front Cell Neurosci 2023; 17:1263591. [PMID: 37920203 PMCID: PMC10619761 DOI: 10.3389/fncel.2023.1263591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023] Open
Abstract
Introduction At the cellular level, acute temperature changes alter ionic conductances, ion channel kinetics, and the activity of entire neuronal circuits. This can result in severe consequences for neural function, animal behavior and survival. In poikilothermic animals, and particularly in aquatic species whose core temperature equals the surrounding water temperature, neurons experience rather rapid and wide-ranging temperature fluctuations. Recent work on pattern generating neural circuits in the crustacean stomatogastric nervous system have demonstrated that neuronal circuits can exhibit an intrinsic robustness to temperature fluctuations. However, considering the increased warming of the oceans and recurring heatwaves due to climate change, the question arises whether this intrinsic robustness can acclimate to changing environmental conditions, and whether it differs between species and ocean habitats. Methods We address these questions using the pyloric pattern generating circuits in the stomatogastric nervous system of two crab species, Hemigrapsus sanguineus and Carcinus maenas that have seen a worldwide expansion in recent decades. Results and discussion Consistent with their history as invasive species, we find that pyloric activity showed a broad temperature robustness (>30°C). Moreover, the temperature-robust range was dependent on habitat temperature in both species. Warm-acclimating animals shifted the critical temperature at which circuit activity breaks down to higher temperatures. This came at the cost of robustness against cold stimuli in H. sanguineus, but not in C. maenas. Comparing the temperature responses of C. maenas from a cold latitude (the North Sea) to those from a warm latitude (Spain) demonstrated that similar shifts in robustness occurred in natural environments. Our results thus demonstrate that neuronal temperature robustness correlates with, and responds to, environmental temperature conditions, potentially preparing animals for changing ecological conditions and shifting habitats.
Collapse
Affiliation(s)
- Wolfgang Stein
- School of Biological Sciences, Illinois State University, Normal, IL, United States
- Stiftung Alfried Krupp Kolleg Greifswald, Greifswald, Germany
| | - Gabriela Torres
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Luis Giménez
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- School of Ocean Sciences, Bangor University, Bangor, United Kingdom
| | - Noé Espinosa-Novo
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
| | - Jan Phillipp Geißel
- Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung, Biologische Anstalt Helgoland, Helgoland, Germany
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| | - Andrés Vidal-Gadea
- School of Biological Sciences, Illinois State University, Normal, IL, United States
| | - Steffen Harzsch
- Department of Cytology and Evolutionary Biology, Zoological Institute and Museum, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Andersen MK, Willot Q, MacMillan HA. A neurophysiological limit and its biogeographic correlations: cold-induced spreading depolarization in tropical butterflies. J Exp Biol 2023; 226:jeb246313. [PMID: 37665251 DOI: 10.1242/jeb.246313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The physiology of insects is directly influenced by environmental temperature, and thermal tolerance is therefore intrinsically linked to their thermal niche and distribution. Understanding the mechanisms that limit insect thermal tolerance is crucial to predicting biogeography and range shifts. Recent studies on locusts and flies suggest that the critical thermal minimum (CTmin) follows a loss of CNS function via a spreading depolarization. We hypothesized that other insect taxa share this phenomenon. Here, we investigate whether spreading depolarization events occur in butterflies exposed to cold. Supporting our hypothesis, we found that exposure to stressful cold induced spreading depolarization in all 12 species tested. This reinforces the idea that spreading depolarization is a common mechanism underlying the insect CTmin. Furthermore, our results highlight how CNS function is tuned to match the environment of a species. Further research into the physiology underlying spreading depolarization will likely elucidate key mechanisms determining insect thermal tolerance and ecology.
Collapse
Affiliation(s)
| | - Quentin Willot
- Department of Biology, Aarhus University, Aarhus 8000, Denmark
| | - Heath A MacMillan
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|