1
|
Kim SY, Jeong JW, Kim AJ, Lee YR, Lee HS, Lee K, Kim SJ. Effect of hydrophilic polymers on the formation of size-controllable aqueous droplets in water-in-oil emulsion and the fabrication of porous micro-silica particles therefrom. J Colloid Interface Sci 2025; 690:137304. [PMID: 40088820 DOI: 10.1016/j.jcis.2025.137304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/17/2025]
Abstract
Size-controllable droplets were formed in a water in oil (W/O) emulsion using only hydrophilic polymers without a surfactant to fabricate porous micro-silica particles larger than 20 μm. Droplets of various size ranging from 1 to 30 μm were prepared by emulsifying aqueous solutions containing four types of polymers, namely polyethylene glycol (PEG), polyvinyl alcohol (PVA), polyvinylpyrrolidone (PVP), and polypropylene glycol (PPG), in a pentanol oil phase. Following the addition of tetraethyl orthosilicate (TEOS) as a silica precursor, silica particles were grown via hydrolysis and condensation reactions. The silica particle size depends on the degree of hydrophilicity of the polymers, which determines the interfacial tension between the water droplets and oil. Micro-silica particles >20 μm were obtained from PEG-based emulsion droplets. Notably, the distribution and stability of silica particles can be optimized by controlling the molecular weight and concentration of the hydrophilic polymer. A porous silica structure was successfully obtained by decomposing the residual polymer via an appropriate calcination process. The most uniform and stable porous micro-silica particles with an average size of 20 μm were obtained from an emulsion containing 5 wt% PEG (molecular weight: 4000) after calcination at 500 °C. This novel process enables the eco-friendly synthesis of porous micro-silica particles using only hydrophilic polymer without a surfactant and control of pore size and particle size of >20 μm.
Collapse
Affiliation(s)
- Seung-Yeon Kim
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea; Department of Applied Bioengineering, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Jin-Woo Jeong
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - A-Jin Kim
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea; Department of Chemical Engineering, Chung Buk National University, Chungdae-ro 1, Seowon-gu, Cheongju, Chungbuk 28644, Republic of Korea
| | - Young-Ran Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Hye Sun Lee
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Kangwon Lee
- Department of Applied Bioengineering, Seoul National University, 145 Gwanggyo-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Republic of Korea.
| | - Seong-Joong Kim
- Bio-Convergence R&D Division, Korea Institute of Ceramic Engineering and Technology (KICET), 202 Osongsaengmyeong 1-ro, Osong-eup, Heungdeok-gu, Cheongju-si, Chungcheongbuk-do, Republic of Korea.
| |
Collapse
|
2
|
Liu J, Liu S, Zhong L, Li Z, Chen X, Yuan S. Advances of emulsification during the lifetime development of heavy oil reservoirs. Adv Colloid Interface Sci 2025; 340:103445. [PMID: 39987790 DOI: 10.1016/j.cis.2025.103445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 02/07/2025] [Accepted: 02/16/2025] [Indexed: 02/25/2025]
Abstract
Emulsifications are associated with the reservoir formation and lifetime development due to the characteristics of heavy oil and influence of injected fluid. The types of formed emulsions (W/O, O/W, or W/O/W) are also change as time goes. Therefore, based on the characteristics and development methods of heavy oil reservoir, emulsifications and their properties during lifetime development are summarized in detail. Heavy oil reservoirs are usually developed by water injection/steam, followed by chemical agents flooding. Tremendous stable W/O emulsions would be formed during water/steam injection due to the action of active components in heavy oil. Resulting in significant changes of viscosity, freezing point, interface characteristics and yield characteristics. Therefore, the efficient development may severely restricted. Chemical agents can emulsify heavy oil to form O/W emulsion and greatly improve the fluidity. Its formation, stability, and interface characteristics are all affected by properties, types and adsorption forms of chemical agents on interface. Researchers are also committed to the study of interface characteristics and stability mechanism, to solve the problem of efficient development of heavy oil. However, serious W/O emulsion has occurred before chemical injection. In fact, the more common type of emulsion formed is W/O/W emulsion. Its properties are also very different from O/W emulsions due to the complexity of composition and structure. The study of W/O/W emulsion formation, stability and flow behavior is more suitable for chemical flooding. Similarly, the development and evaluation of chemical agents should focus more in its emulsification on W/O emulsion in porous media. The results obtained can provide the basic theory for study of interface characteristics and micro-dynamics of heavy oil-water-chemical agent during the lifetime development of heavy oil reservoir.
Collapse
Affiliation(s)
- Jianbin Liu
- Xi'an Shiyou University, Xi'an 710065, China; Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi'an 710065, China.
| | - Shun Liu
- Xi'an Shiyou University, Xi'an 710065, China; Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi'an 710065, China.
| | - Liguo Zhong
- China University of Petroleum, Beijing 102249, China
| | - Zhe Li
- State Key Laboratory of Coking Coal Resources Green Exploitation, China University of Mining and Technology, Xuzhou 221116, China
| | - Xin Chen
- Xi'an Shiyou University, Xi'an 710065, China; Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi'an 710065, China
| | - Shibao Yuan
- Xi'an Shiyou University, Xi'an 710065, China; Shaanxi Key Laboratory of Advanced Stimulation Technology for Oil & Gas Reservoirs, Xi'an 710065, China
| |
Collapse
|
3
|
Ryu KH, Kim US, Kim JH, Choi JH, Han KS. Impact of Optimal Silane Concentration on the Rheological Properties and 3D Printing Performance of Al 2O 3-Acrylate Composite Slurries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5541. [PMID: 39597365 PMCID: PMC11595973 DOI: 10.3390/ma17225541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/11/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
In this study, 3-trimethoxy-silylpropane-1-thiol (MPTMS) was used as a surface modifier for Al2O3 powder to systematically analyze the effects of MPTMS concentration on the rheological properties, photocuring characteristics, and 3D printing performance of photocurable composite slurries. MPTMS concentration significantly influenced the rheological behavior of the slurry. Slurries containing 2 wt.% and 5 wt.% MPTMS exhibited a wide linear viscoelastic range (LVR). However, at concentrations of 10 wt.% and 20 wt.%, the LVR range narrowed, which led to reduced dispersion stability. In dispersion stability tests, the slurry with 2 wt.% MPTMS showed the most stable dispersion, while the 5 wt.% MPTMS concentration exhibited the highest photocuring rate. In 3D printing experiments, the 5 wt.% MPTMS concentration resulted in the most stable printed structures, whereas printing failures occurred with the 2 wt.% concentration. At 10 wt.% and 20 wt.%, internal cracking was observed, leading to structural defects. In conclusion, MPTMS forms silane bonds on the Al2O3 surface, significantly impacting the stability, rheological properties, and printing quality of Al2O3-acrylate composite slurries. An MPTMS concentration of 5 wt.% was found to be optimal, contributing to the formation of stable and robust structures.
Collapse
Affiliation(s)
| | | | | | | | - Kyu-Sung Han
- Korea Institute of Ceramic Engineering & Technology, Icheon 17303, Gyeonggi-do, Republic of Korea; (K.-H.R.); (U.-S.K.); (J.-H.K.); (J.-H.C.)
| |
Collapse
|
4
|
Painuly R, Anand V. Examining the Interplay of Hydrolysed Polyacrylamide and Sodium Dodecyl Sulfate on Emulsion Stability: Insights from Turbiscan and Electrocoalescence Studies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17710-17721. [PMID: 39119715 DOI: 10.1021/acs.langmuir.4c02115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Enhanced oil recovery (EOR) is utilized in the oil and gas production industry to extract additional oil from underground reservoirs. In chemically enhanced oil recovery, surfactant and polymeric water are injected separately or in a mixture. Injected fluids can form stable emulsions during oil production. This surfactant, polymer-loaded water-in-oil emulsion, must be separated to treat crude oil and avoid any corrosion or deactivation of catalysts in the refinery. An electrocoalecer technique is utilized to separate the water from the emulsion under the application of an electric field. To improve the efficiency of the EOR and electrocoalescers, it is essential to investigate the impact of surfactants, polymers, and their mixture interaction. In this study, the effects of surfactant (sodium dodecyl sulfate (SDS)), polymer (hydrolyzed polyacrylamide (HPAM)), and their mixture with a wide range of concentrations were analyzed using turbiscan, bottle electrocoalecer, interfacial tension (IFT), and conductivity. Our study shows that when SDS was used independently, the viscosity of the dispersed phase did not change. Surprisingly, when SDS was combined with HPAM, the overall viscosity of the dispersed phase mixture decreased. HPAM and SDS contribute to an increase in the conductivity of the dispersed phase. Conductivity, IFT, and viscosity are critical factors in studying electrocoalescence. Our detailed study found that SDS is the primary factor in stabilizing the emulsion compared to HPAM using turbiscan. The electrocoalecer study shows that in the case of a deionized water-based emulsion, the separation efficiency is 98% in 10 min. In contrast, a mixture of HPAM polymer with a concentration of 2000 ppm and SDS with a concentration of 5000 ppm stabilized emulsion shows 84% separation in 10 min. The outcome of this study helps design the electrocoalescer for separating complex water-in-oil emulsion.
Collapse
Affiliation(s)
- Rahul Painuly
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| | - Vikky Anand
- Department of Chemical Engineering, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
- Rishabh Centre for Research and Innovation in Clean Energy, Indian Institute of Technology Jodhpur, Karwar, Jodhpur 342030, India
| |
Collapse
|
5
|
Baldassarre F, Schiavi D, Di Lorenzo V, Biondo F, Vergaro V, Colangelo G, Balestra GM, Ciccarella G. Cellulose Nanocrystal-Based Emulsion of Thyme Essential Oil: Preparation and Characterisation as Sustainable Crop Protection Tool. Molecules 2023; 28:7884. [PMID: 38067613 PMCID: PMC10707935 DOI: 10.3390/molecules28237884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Essential oil-based pesticides, which contain antimicrobial and antioxidant molecules, have potential for use in sustainable agriculture. However, these compounds have limitations such as volatility, poor water solubility, and phytotoxicity. Nanoencapsulation, through processes like micro- and nanoemulsions, can enhance the stability and bioactivity of essential oils. In this study, thyme essential oil from supercritical carbon dioxide extraction was selected as a sustainable antimicrobial tool and nanoencapsulated in an oil-in-water emulsion system. The investigated protocol provided high-speed homogenisation in the presence of cellulose nanocrystals as stabilisers and calcium chloride as an ionic crosslinking agent. Thyme essential oil was characterised via GC-MS and UV-vis analysis, indicating rich content in phenols. The cellulose nanocrystal/essential oil ratio and calcium chloride concentration were varied to tune the nanoemulsions' physical-chemical stability, which was investigated via UV-vis, direct observation, dynamic light scattering, and Turbiscan analysis. Transmission electron microscopy confirmed the nanosized droplet formation. The nanoemulsion resulting from the addition of crosslinked nanocrystals was very stable over time at room temperature. It was evaluated for the first time on Pseudomonas savastanoi pv. savastanoi, the causal agent of olive knot disease. In vitro tests showed a synergistic effect of the formulation components, and in vivo tests on olive seedlings demonstrated reduced bacterial colonies without any phytotoxic effect. These findings suggest that crosslinked cellulose nanocrystal emulsions can enhance the stability and bioactivity of thyme essential oil, providing a new tool for crop protection.
Collapse
Affiliation(s)
- Francesca Baldassarre
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Daniele Schiavi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Veronica Di Lorenzo
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Francesca Biondo
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
| | - Viviana Vergaro
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| | - Gianpiero Colangelo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy;
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, snc, 01100 Viterbo, Italy; (D.S.); (V.D.L.); (G.M.B.)
| | - Giuseppe Ciccarella
- Department of Biological and Environmental Sciences, UdR INSTM of Lecce University of Salento, Via Monteroni, 73100 Lecce, Italy; (F.B.); (V.V.)
- Institute of Nanotechnology, CNR NANOTEC, Consiglio Nazionale delle Ricerche, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
6
|
Amini N, Fan B, Hsia T, Moon EM, Hapgood K, Thang SH. RAFT Polymer-Based Surfactants for Minerals Recovery. ACS OMEGA 2023; 8:40532-40546. [PMID: 37929102 PMCID: PMC10620920 DOI: 10.1021/acsomega.3c05270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/29/2023] [Indexed: 11/07/2023]
Abstract
Reagent consumption is an ongoing sustainability challenge for the mineral processing industry. There is a need to recover, regenerate, and reuse as many of the chemical inputs as possible. This study investigated the design and synthesis via reversible addition-fragmentation chain transfer (RAFT) polymerization of a novel polymer for use as a surfactant in a water-in-oil (w/o) emulsion system for ultrafine minerals recovery. The polymers were designed to hold a thermoresponsive moiety to allow for future recovery. The performance of the novel emulsion was tested for agglomeration of ultrafine talc mineral particles. A traditional emulsion containing sorbitan monooleate as the surfactant was used as a research benchmark to compare against the novel emulsion's stability and performance in minerals recovery. The novel RAFT polymer-based emulsions formed large and stable water droplets surrounded by a halo of smaller water droplets. Over time, the smaller droplets coalesced and a more uniform size distribution of droplets was formed, keeping the emulsion stable. Rheological testing of freshly made and aged emulsions showed both traditional and novel emulsions to have a high viscosity at a low shear rate. RAFT polymer B with a hydrophilic-lipophilic block ratio of 5:10 performed adequately as a surfactant replacement to stabilize w/o emulsions. The mineral recovery using the novel emulsion was on par with the traditional emulsions. The novel RAFT emulsion containing 2.5 wt % polymer B achieved 90% minerals recovery, a similar yield to the traditional emulsions. This study demonstrates that surfactants containing stimuli-responsive moieties can be synthesized via RAFT polymerization and successfully used in mineral processing applications to recover ultrafine particles. Work is ongoing to exploit the stimuli responsiveness to recover the polymer surfactant for reuse.
Collapse
Affiliation(s)
- Negin Amini
- School
of Engineering, Deakin University, Waurn Ponds, VIC 3216, Australia
- ARC
Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals
| | - Bo Fan
- School
of Chemistry, Monash University, Clayton Campus, VIC 3800, Australia
- ARC
Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals
| | - Tina Hsia
- School
of Chemistry, Monash University, Clayton Campus, VIC 3800, Australia
- ARC
Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals
| | - Ellen M. Moon
- School
of Engineering, Deakin University, Waurn Ponds, VIC 3216, Australia
- ARC
Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals
| | - Karen Hapgood
- Swinburne
University, Hawthorn, VIC 3122, Australia
- ARC
Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals
| | - San H. Thang
- School
of Chemistry, Monash University, Clayton Campus, VIC 3800, Australia
- ARC
Centre of Excellence for Enabling Eco-efficient Beneficiation of Minerals
| |
Collapse
|
7
|
Sun Q, Hu FT, Han L, Zhu XY, Zhang F, Ma GY, Zhang L, Zhou ZH, Zhang L. The Synergistic Effects between Sulfobetaine and Hydrophobically Modified Polyacrylamide on Properties Related to Enhanced Oil Recovery. Molecules 2023; 28:molecules28041787. [PMID: 36838776 PMCID: PMC9965099 DOI: 10.3390/molecules28041787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
In order to explore the mechanism responsible for the interactions in the surfactant-polymer composite flooding and broaden the application range of the binary system in heterogeneous oil reservoirs, in this paper, the influences of different surfactants on the viscosity of two polymers with similar molecular weights, partially hydrolyzed polyacrylamide (HPAM) and hydrophobically modified polyacrylamide (HMPAM), were studied at different reservoir environments. In addition, the relationship between the surfactant-polymer synergistic effects and oil displacement efficiency was also investigated. The experimental results show that for HPAM, surfactants mainly act as an electrolyte to reduce its viscosity. For HMPAM, SDBS and TX-100 will form aggregates with the hydrophobic blocks of polymer molecules, reducing the bulk viscosity. However, zwitterionic surfactant aralkyl substituted alkyl sulfobetaine BSB molecules can build "bridges" between different polymer molecules through hydrogen bonding and electrostatic interaction. After forming aggregates with HMPAM molecules, the viscosity will increase. The presence of two polymers all weakened the surfactant oil-water interfacial membrane strength to a certain extent, but had little effect on the interfacial tension. The synergistic effect of the "bridge" between HMPAM and BSB under macroscopic conditions also occurs in the microscopic pores of the core, which has a beneficial effect on improving oil recovery.
Collapse
Affiliation(s)
- Qi Sun
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fu-Tang Hu
- Research Institute of Drilling and Production Technology, PetroChina Qinghai Oilfield Company, Dunhuang 736202, China
| | - Lu Han
- State Key Laboratory of Enhanced Oil Recovery (PetroChina Research Institute of Petroleum Exploration & Development), Beijing 100083, China
| | - Xiu-Yu Zhu
- Research Institute of Drilling and Production Technology, PetroChina Qinghai Oilfield Company, Dunhuang 736202, China
| | - Fan Zhang
- State Key Laboratory of Enhanced Oil Recovery (PetroChina Research Institute of Petroleum Exploration & Development), Beijing 100083, China
| | - Gui-Yang Ma
- College of Petroleum Engineering, Liaoning Petrochemical University, Fushun 113001, China
| | - Lei Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhao-Hui Zhou
- State Key Laboratory of Enhanced Oil Recovery (PetroChina Research Institute of Petroleum Exploration & Development), Beijing 100083, China
- Correspondence: (Z.-H.Z.); (L.Z.); Tel.: +86-10-82543587 (L.Z.); Fax: +86-10-62554670 (L.Z.)
| | - Lu Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Correspondence: (Z.-H.Z.); (L.Z.); Tel.: +86-10-82543587 (L.Z.); Fax: +86-10-62554670 (L.Z.)
| |
Collapse
|
8
|
Graffiti coating eco-remover developed for sensitive surfaces by using an optimized high-pressure homogenization process. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Yellow horn as an alternative source of plant-based protein: The effects of high-intensity ultrasonication treatment on its physicochemical properties and emulsifying properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Villalobos-Espinosa JC, García-Armenta E, Alamilla-Beltrán L, Quintanilla-Carvajal MX, Azuara-Nieto E, Hernández-Sánchez H, Perea-Flores MDJ, Gutiérrez-López GF. Effect of pumping and atomisation on the stability of oil/water emulsions. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
The 3D Printing Behavior of Photocurable Ceramic/Polymer Composite Slurries Prepared with Different Particle Sizes. NANOMATERIALS 2022; 12:nano12152631. [PMID: 35957061 PMCID: PMC9370641 DOI: 10.3390/nano12152631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023]
Abstract
Ceramic polymer composite slurries were prepared using nano- and micro-sized Al2O3 in order to analyze rheological properties, sedimentation, and curing behavior. Slurries with different Al2O3 particle sizes were prepared with varying concentrations of photoinitiator, and subjected to different exposure times to prepare a printing object. All slurries exhibit shear-thinning behavior, and the viscosity increases with decreasing Al2O3 particle size. The 100 nm Al2O3 slurry is confirmed to be more sol-like, while the 500 nm and 2 μm Al2O3 slurries have a gel-like structure. As the Al2O3 particle size increases, a thick sedimentation layer forms due to rapid settling, but as the distance between particles increases, the UV light scattering reduces, and the curing rate increases. The exposure time range viable for printing, and the dimension conformity of the printed specimen with the design file, is improved by increasing the Al2O3 particle size. In the case of 500 nm and 2 μm Al2O3 slurries, the maximum heat flow, curing enthalpy, and conversion rate are high with respect to photoinitiator concentration, in the order of 1.0 > 0.1 > 3.0 wt.%. When the photoinitiator concentration exceeds 1 wt.%, it appears to affect the reactivity of the slurry.
Collapse
|
12
|
Ma L, Zhu M, Liu T. Effects of chain length of surfactants and their adsorption on nanoparticles on stability of CO2-in-water emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Demulsification of (W1+W2+W3)/O Reverse Cerberus Emulsion from Vibrational Emulsification. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Ramadhan MG, Khalid N, Uemura K, Neves MA, Ichikawa S, Nakajima M. Efficient water removal from water-in-oil emulsions by high electric field demulsification. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2086882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Muhammad Gilang Ramadhan
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba Life Science Innovation Program (T-LSI), Tsukuba, Japan
- Department of Agroindustry, Politeknik Negeri Subang, Subang, Indonesia
| | - Nauman Khalid
- Department of Food Science and Technology, School of Food and Agricultural Sciences, University of Management and Technology, Lahore
| | - Kunihiko Uemura
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba Life Science Innovation Program (T-LSI), Tsukuba, Japan
- Food Research Institute, Tsukuba, Japan
| | - Marcos A. Neves
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba Life Science Innovation Program (T-LSI), Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Sosaku Ichikawa
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba Life Science Innovation Program (T-LSI), Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Mitsutoshi Nakajima
- School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba Life Science Innovation Program (T-LSI), Tsukuba, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
15
|
Freshly Milled Quartz Particles Obtained from River Sand as an Efficient Natural Demulsifier for Crude Oil Emulsions. Processes (Basel) 2022. [DOI: 10.3390/pr10050811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Saline water necessarily contained in crude oil forms complex and stable water-in-oil (w/o) emulsions with oil. Due to the negative impact of this emulsion on the oil’s transportation and refining, special materials are added to help break the emulsion and separate water. Herein, a comparative study of the demulsifying ability concerning w/o emulsion of the original and freshly milled quartz (FMQ) particles isolated from river sand was carried out. The effect of quartz with a mesh size of 75 μm on reducing emulsion stability was investigated using rheological measurements, interfacial tension measurements, demulsification tests, as well as routine methods for characterizing solid and liquid materials. With the addition of 3 wt% FMQ, 97% demulsification efficiency was achieved after 100 min of settling, against 140 min for the original quartz. The role of milling quartz is to increase the ability of water to adhere and thus locally increase the pH value; this results in a reduction in the stability of the emulsion and its destruction. The prolonging effect of quartz milling lasted about 2.5–3.0 h, after which the demulsifying ability of milled quartz became comparable to that of the starting material.
Collapse
|
16
|
The influence of fucoidan on stability, adsorption and electrokinetic properties of ZnO and TiO2 suspensions. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-01760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
AbstractStabilization of nano-oxide suspensions is a very important process. Nowadays, synthetic polymers are used to increase stability of the colloidal systems. However, this solution is not ecological and incompatible with the principles of green chemistry. Instead of synthetic polymers, their natural counterparts can be used. Herein, we present the use of natural bioactive polysaccharide—fucoidan as a stabilizer of nano-zinc(II) and nano-titanium(IV) oxide suspensions. These two oxides are commercially available and are widely used in the cosmetic and pharmaceutical industries. The turbidimetric studies (Turbiscan Lab) showed that the addition of fucoidan leads to the increase of stability and that the effect depends on the polymer concentration. To fully describe the systems’ stability, the adsorption (UV–Vis and FT-IR/PAS) and the electrokinetic properties (zeta potential and surface charge density) were studied. The obtained results indicate that fucoidan adsorbs by the electrostatic and non-electrostatic interactions on the used oxides forming the tight adsorption layer. The following paper thoroughly explains the stabilization mechanism of fucoidan toward the nano-oxide suspensions. Moreover, the presented results could be useful in the preparation of new cosmetic and pharmaceutical products containing nano-oxides.
Collapse
|
17
|
Li X, Liu D, Sun H, Li X. Effect of Oil-Displacing Agent Composition on Oil/Water Interface Stability of the Asphaltene-Rich ASP Flooding-Produced Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3329-3338. [PMID: 35261247 DOI: 10.1021/acs.langmuir.1c02466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, the effect of oil-displacing agent composition on oil/water interface stability of the asphaltene-rich alkali-surfactant-polymer (ASP) flooding-produced water was systematically investigated, especially from the perspective of the interaction between oil displacement agents and asphaltene at the oil/water interface. Primarily, adsorption behavior of the artificial and natural interfacial substances (oil displacement surfactant and asphaltenes) on the oil/water interface was investigated by molecular dynamics simulation. The oil displacement surfactant and asphaltenes formed a cross-linked and compact interfacial film structure, which significantly enhanced the interface stability; the more the oil displacement surfactants adsorbed on the interface, the more stable is the cross-linked structure formed between them and asphaltenes. Then, the interfacial property variations that are originating from the interactions differences between oil displacement agents and asphaltenes were monitored via interfacial tension, zeta potential, and interfacial film rheology tests. Moreover, the effect of oil displacement agent concentrations on the interfacial film thinning and rupture kinetic behavior was further investigated. Finally, cream experiments were conducted to verify the effect of oil displacement agent composition on the oil/water separation efficiencies of asphaltene-rich ASP flooding-produced water. When 5% asphaltenes was added, the creaming oil removal rate reduced from 90.0 to 85.3% at 19 h. The interactions between asphaltenes and oil displacement agents immensely enhance the oil/water interfacial film strength and impede the oil/water separation process.
Collapse
Affiliation(s)
- Xiaoqing Li
- National Center for Coal Preparation and Purification Engineering Research, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Dandan Liu
- National Center for Coal Preparation and Purification Engineering Research, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Hao Sun
- National Center for Coal Preparation and Purification Engineering Research, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| | - Xiaobing Li
- National Center for Coal Preparation and Purification Engineering Research, China University of Mining and Technology, Xuzhou 221116, Jiangsu, China
| |
Collapse
|
18
|
Effecting factor analysis to stability of ultra-dry CO2-in-water foams stabilized with zwitterionic surfactants, polymers and nanoparticles. J Supercrit Fluids 2022. [DOI: 10.1016/j.supflu.2021.105487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
19
|
Cinnamon and paprika oleoresin emulsions: A study of physicochemical stability and antioxidant synergism. Food Res Int 2021; 150:110777. [PMID: 34865792 DOI: 10.1016/j.foodres.2021.110777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/13/2021] [Accepted: 10/18/2021] [Indexed: 11/24/2022]
Abstract
Cinnamon and paprika oleoresins (CPO) are by-products of the spice Cinnamomum zeylanicum Blume and the fruit Capsicum annuum L., respectively. They present a hydrophobic nature and various active compounds that can act synergistically. However, they are both susceptible to degradation by light, oxygen, and temperature. This work aimed at identifying the synergistic effect of these oleoresin mixtures, incorporating them into emulsions and characterizing the obtained systems. The CPO concentration was 10%, and whey protein isolate (WPI), gum Arabic (GA), or maltodextrin (MD) were used as wall materials in different proportions, totalizing 30% solids. The synergistic effect was observed in the FRAP assay at a 1:1 CPO ratio, with its expected value being significantly higher than the values for individual oleoresins (p < 0.05). Emulsions containing GA were unstable, while the emulsions containing MD and WPI showed reduced droplet size and viscosity, remaining stable for 7 days. The sample with a 1:3 proportion of MD:WPI as wall material showed higher FRAP and ORAC antioxidant values (24.74 ± 0.83 and 28.77 ± 1.23 mmol TE/g of oleoresin, respectively) and 4.18 mg total carotenoids/g sample. These results suggest the emulsions have a protective effect on active compounds content and can be used as efficient delivery systems for food product applications.
Collapse
|
20
|
Li Q, Cao J, Liu Y, Cheng Q, Liu C. Effect of dispersed water on the paraffin crystallization and deposition of emulsified waxy crude oil via dissipative particle dynamics. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Sun H, Li X, Liu D, Li X. Synergetic adsorption of asphaltenes and oil displacement surfactants on the oil-water interface: Insights on stabilization mechanism of the interfacial film. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Zhao GX, Zhu LJ, Li H, Liu XY, Yang LN, Wang SN, Liu H, Ma T. A hierarchical emulsion system stabilized by soyasaponin emulsion droplets. Food Funct 2021; 12:10571-10580. [PMID: 34581363 DOI: 10.1039/d1fo01607e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Oil/water (O/W) emulsion droplets coated with soyasaponin (Ssa) were used as emulsifiers to prepare emulsions with hierarchical configurations (2.82 μm). Ssa is a natural triterpenoid with amphiphilic properties and an excellent emulsifying activity. Stable O/W emulsions were prepared and characterized using an ultrasonic method at a Ssa concentration of 2.5 wt%. The resultant hierarchical emulsions were further prepared using O/W droplets as emulsifiers. It was observed that the stability of the hierarchical emulsions changed with alterations to the ratio of O/W droplets to the oil phase. As the number of droplets increased, the more the surface area of the hierarchical emulsion was covered. Additional observations included a decreased particle size, increased negative charge and viscoelastic behavior, and enhanced emulsion stability. The emulsion was most stable when the O/W droplet addition was 29%. The addition of O/W droplets continued to increase, and there was an imbalance in the ratio of O/W droplets to the oil phase; the excess O/W droplets induced instability in the emulsion, resulting in a degradation of the emulsion quality. We monitored hierarchical emulsions with different concentrations of emulsifiers for 30 days, and the results indicated that hierarchical emulsions could meet the demand for long-term storage. This provides a new theoretical basis for the construction and application of complex emulsion systems.
Collapse
Affiliation(s)
- Guo-Xiu Zhao
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Li-Jie Zhu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - He Li
- National Soybean Processing Industry Technology Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiu-Ying Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Li-Na Yang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Sheng-Nan Wang
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - He Liu
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| | - Tao Ma
- College of Food Science and Technology, Bohai University, Food Safety Key Lab of Liaoning Province, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
23
|
Zhang H, Zhu Z, Wu Z, Wang F, Xu B, Wang S, Zhang L. Investigation on the formation and stability of microemulsions with Gemini surfactants: DPD simulation. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1961588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Haixia Zhang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Zhenxing Zhu
- Binzhou City Building and Design Institute, Binzhou, People’s Republic of China
| | - Zongxu Wu
- Binzhou Dayou New Energy Development Company Limited, Binzhou, People’s Republic of China
| | - Fang Wang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Bin Xu
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Shoulong Wang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Lijuan Zhang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| |
Collapse
|
24
|
Sang Y, He L, Chen J. Preparation and characterization of experimental oily wastewater: effect of rotor speeds and oil/water ratios in an in-line high-share mixer. SEP SCI TECHNOL 2021. [DOI: 10.1080/01496395.2021.1950764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Yimin Sang
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Liao He
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| | - Jiaqing Chen
- Department of Environmental Engineering, Beijing Institute of Petrochemical Technology, Beijing, China
| |
Collapse
|
25
|
Jin Y, Liu D, Hu J. Effect of Surfactant Molecular Structure on Emulsion Stability Investigated by Interfacial Dilatational Rheology. Polymers (Basel) 2021; 13:polym13071127. [PMID: 33918141 PMCID: PMC8037813 DOI: 10.3390/polym13071127] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/27/2021] [Indexed: 01/15/2023] Open
Abstract
Polyglycerol polyricinolate (PGPR) and polyglycerol-2 dioleate were selected as model surfactants to construct water-in-oil (W/O) emulsions, and the effect of interfacial rheological properties of surfactant film on the stability of emulsions were investigated based on the interfacial dilatational rheological method. The hydrophobicity chain of PGPR is polyricinic acid condensed from ricinic acid, and that of polyglycerol-2 dioleate is oleic acid. Their dynamic interfacial tensions in 15 cycles of interfacial compression-expansion were determined. The interfacial dilatational viscoelasticity was analyzed by amplitude scanning in the range of 1–28% amplitude and frequency sweep in the range of 5–45 mHz under 2% amplitude. It was found that PGPR could quickly reach adsorption equilibrium and form interfacial film with higher interfacial dilatational viscoelastic modulus to resist the deformation of interfacial film caused by emulsion coalescence, due to its branched chain structure and longer hydrophobic chain, and the emulsion thus presented good stability. However, polyglycerol-2 dioleate with a straight chain structure had lower interfacial tension, and it failed to resist the interfacial disturbance caused by coalescence because of its lower interfacial dilatational viscoelastic modulus, and thus the emulsion was unstable. This study reveals profound understanding of the influence of branched structure of PGPR hydrophobic chain on the interfacial film properties and the emulsion stability, providing experimental reference and theoretical guidance for future design or improvement of surfactant.
Collapse
Affiliation(s)
- Yuejie Jin
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Dingrong Liu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
| | - Jinhua Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China;
- Synergetic Innovation Center of Food Safety and Nutrition, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
26
|
Yuan J, Liu D, Li J, Cui J, Tang H, Wei X, He J, Zhang X, Huang P, Jia H. Study of a Novel Carboxylic Cellulose Nanofibrils‐Ethoxylated Phytosterol‐Alcohol Environmentally Friendly System on the Application in Enhanced Oil Recovery. J SURFACTANTS DETERG 2021. [DOI: 10.1002/jsde.12505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jie Yuan
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)) Ministry of Education Qingdao 266580 China
- Shengli Oil Production Plant, Shengli Oilfield Company, SINOPEC Dongying 257000 China
| | - Dexin Liu
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)) Ministry of Education Qingdao 266580 China
| | - Jiankang Li
- Shengli Oil Production Plant, Shengli Oilfield Company, SINOPEC Dongying 257000 China
| | - Jie Cui
- Shengli Oil Production Plant, Shengli Oilfield Company, SINOPEC Dongying 257000 China
| | - Hongtao Tang
- Shengli Oil Production Plant, Shengli Oilfield Company, SINOPEC Dongying 257000 China
| | - Xin Wei
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)) Ministry of Education Qingdao 266580 China
| | - Juan He
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)) Ministry of Education Qingdao 266580 China
| | - Xuehao Zhang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)) Ministry of Education Qingdao 266580 China
| | - Pan Huang
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)) Ministry of Education Qingdao 266580 China
| | - Han Jia
- Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)) Ministry of Education Qingdao 266580 China
| |
Collapse
|
27
|
Tian H, Xiang D, Wang B, Zhang W, Li C. Using hydrogels in dispersed phase of water-in-oil emulsion for encapsulating tea polyphenols to sustain their release. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125999] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
28
|
Zhang J, Ge D, Wang X, Wang W, Cui D, Yuan G, Wang K, Zhang W. Influence of Surfactant and Weak-Alkali Concentrations on the Stability of O/W Emulsion in an Alkali-Surfactant-Polymer Compound System. ACS OMEGA 2021; 6:5001-5008. [PMID: 33644608 PMCID: PMC7905936 DOI: 10.1021/acsomega.0c06142] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Emulsions have emerged as advanced materials for wide industrial applications because of their unique properties. In the actual application in oilfields, emulsions can significantly enhance oil recovery. In the present study, the stability test shows that the concentrations of a surfactant and alkali and salinity have a great influence on the stability of the emulsion, but the addition of excessive chemical agents may adversely affect the emulsion stability. The addition of excessive alkali causes the phase inversion behavior of the emulsion to be discovered, which is also the main reason for the destabilization of the oil-in-water emulsion. Rheological experiments reveal that the emulsion produced by the chemical-flooding fluid is a pseudoplastic fluid, and the apparent viscosity decreases with the increase of the shear rate. Core-flooding experiments were conducted to study the effect of the emulsion stability on enhanced oil recovery, and the results indicate that the system with a better emulsion stability has higher oil recovery and displacement pressure.
Collapse
Affiliation(s)
- Jie Zhang
- Production
Technology Research Institute, PetroChina
Dagang Oilfield, Tianjin 300450, China
| | - Dangke Ge
- Production
Technology Research Institute, PetroChina
Dagang Oilfield, Tianjin 300450, China
| | - Xiaoyan Wang
- Production
Technology Research Institute, PetroChina
Dagang Oilfield, Tianjin 300450, China
| | - Wei Wang
- Production
Technology Research Institute, PetroChina
Dagang Oilfield, Tianjin 300450, China
| | - Dandan Cui
- Production
Technology Research Institute, PetroChina
Dagang Oilfield, Tianjin 300450, China
| | - Guangyu Yuan
- Production
Technology Research Institute, PetroChina
Dagang Oilfield, Tianjin 300450, China
| | - Keliang Wang
- School
of Petroleum Engineering, Northeast Petroleum
University, Daqing, Heilongjiang 163318, China
| | - Wei Zhang
- School
of Petroleum Engineering, Northeast Petroleum
University, Daqing, Heilongjiang 163318, China
| |
Collapse
|
29
|
Hou J, Chu C, Xu HN, Zhang L. Bulk and Interfacial Contributions to Stabilization of Cyclodextrin-Based Emulsions Mediated by Bacterial Cellulose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1961-1969. [PMID: 33481604 DOI: 10.1021/acs.langmuir.0c03478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cyclodextrin (CD)-based emulsions have a characteristic of rapid droplet flocculation, which limits their application as functional material templates, so it is very important to improve the stability of CD-based emulsions. In this study, we select bacterial cellulose (BC) as a nonadsorbing inhibitor to prevent flocculation of CD-based emulsions. We map a phase diagram of the aqueous dispersions of CD inclusion complexes (ICs) and BC from morphological observations and investigate the effects of BC on properties of the IC-laden films. We further explore the effects of BC concentration on the stability of the CD-based emulsions and investigate rheological behavior of the emulsions through large-amplitude oscillatory shear experiments. It shows that BC can effectively suppress the flocculation of CD-based emulsion droplets even at a concentration as low as 0.01 wt %. We propose that BC has dual effects from bulk and interfacial contributions on increasing emulsion stability. At low concentrations, BC mainly results in higher packing density of ICs on the emulsion droplet surface through excluded volume repulsion, and at high concentrations, BC creates a network structure that confines the motion of emulsion droplets and retards flocculation.
Collapse
Affiliation(s)
- Jie Hou
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Cailing Chu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hua-Neng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| | - Lianfu Zhang
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
30
|
Zhang H, Xu B, Zhang H. Mesoscopic simulation on the microemulsion system stabilized by bola surfactant. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1869033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Haixia Zhang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Bin Xu
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| | - Huiming Zhang
- Department of Chemical Engineering and Safety, Binzhou University, Binzhou, People’s Republic of China
| |
Collapse
|
31
|
da Silva Anthero AG, Comunian TA, Bezerra EO, Hubinger MD. Barley Malt Esterification after Ultrasound and Stearic Acid Treatment: Characterization and Use as Stabilizing Agent in Oil-in-Water Emulsions. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02569-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Lee J, Babadagli T. Comprehensive review on heavy-oil emulsions: Colloid science and practical applications. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115962] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
33
|
Effect of doped emulsifiers on the morphology of precipitated wax crystals and the gel structure of water-in-model-oil emulsions. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125434] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
34
|
Jin H, Ge L, Li X, Guo R. Destabilization mechanism of (W 1+W 2)/O reverse Janus emulsions. J Colloid Interface Sci 2020; 585:205-216. [PMID: 33285459 DOI: 10.1016/j.jcis.2020.11.062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 12/01/2022]
Abstract
HYPOTHESIS Reverse Janus emulsion, with droplets composed by "two rooms" of water phases, is a novel multiple emulsion attributed to excellent integration capability and biocompatibility. However, significant instability compared with normal Janus emulsions renders the stability issue of great importance. Moreover, the ultra-low aqueous-aqueous inner interfacial tension, the anisotropic nature of the droplets with distinct lobe composition, and the random orientation in the continuous phase endow the complicated and various demulsification mechanisms. EXPERIMENTS Reverse Janus emulsion of (W1+W2)/O, employing typical salt-alcohol aqueous two-phase system (ATPS) as inner phases, is prepared in batch scale by conventional one-step vortex mixing. The demulsification process is detected by multiple light scattering technique, which provides real-time, in-situ, and quantitative information of emulsion evolution. Moreover, the fusion pattern of the anisotropic droplets is illustrated by the combination with light microscopy and size distribution measurement. FINDINGS Coalescence and sedimentation are found to be two main demulsification processes. Two salt "body" lobes of the "snowman" shaped Janus droplets combine first resulting in an intermediate Cerberus topology with two alcohol "heads" on one salt "body". Subsequently, two "head" lobes coalesce resulting in a larger Janus droplet. Ultimately, the Gibbs free energy leads to a final state with three separated liquids. In addition, the variation in lobe viscosity, density, and properties of interfacial film greatly affect the demulsification rate and fusion pattern. A critical alcohol/surfactant mass ratio of 2 is found, beyond which a completely different fusion pattern occurs. Two alcohol "body" lobes combine first resulting in an intermediate Cerberus topology with two salt "heads" on one alcohol "body". Subsequently, two "head" lobes coalesce resulting in a larger Janus droplet. The findings are instructive in the stability of aqueous based multiple emulsions with advanced morphologies and meanwhile, promote the future application of this novel emulsion in food science, pharmacy, and biomimetic compartmentalization.
Collapse
Affiliation(s)
- Haimei Jin
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China
| | - Lingling Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China.
| | - Xia Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China
| | - Rong Guo
- School of Chemistry and Chemical Engineering, Yangzhou University, Jiangsu Province, China.
| |
Collapse
|
35
|
Rangel-Muñoz N, González-Barrios AF, Pradilla D, Osma JF, Cruz JC. Novel Bionanocompounds: Outer Membrane Protein A and Lacasse Co-Immobilized on Magnetite Nanoparticles for Produced Water Treatment. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2278. [PMID: 33213016 PMCID: PMC7698600 DOI: 10.3390/nano10112278] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/10/2020] [Accepted: 11/13/2020] [Indexed: 02/02/2023]
Abstract
The oil and gas industry generates large amounts of oil-derived effluents such as Heavy Crude Oil (HCO) in water (W) emulsions, which pose a significant remediation and recovery challenge due to their high stability and the presence of environmentally concerning compounds. Nanomaterials emerge as a suitable alternative for the recovery of such effluents, as they can separate them under mild conditions. Additionally, different biomolecules with bioremediation and interfacial capabilities have been explored to functionalize such nanomaterials to improve their performance even further. Here, we put forward the notion of combining these technologies for the simultaneous separation and treatment of O/W effluent emulsions by a novel co-immobilization approach where both OmpA (a biosurfactant) and Laccase (a remediation enzyme) were effectively immobilized on polyether amine (PEA)-modified magnetite nanoparticles (MNPs). The obtained bionanocompounds (i.e., MNP-PEA-OmpA, MNP-PEA-Laccase, and MNP-PEA-OmpA-Laccase) were successfully characterized via DLS, XRD, TEM, TGA, and FTIR. The demulsification of O/W emulsions was achieved by MNP-PEA-OmpA and MNP-PEA-OmpA-Laccase at 5000 ppm. This effect was further improved by applying an external magnetic field to approach HCO removal efficiencies of 81% and 88%, respectively. The degradation efficiencies with these two bionanocompounds reached levels of between 5% and 50% for the present compounds. Taken together, our results indicate that the developed nanoplatform holds significant promise for the efficient treatment of emulsified effluents from the oil and gas industry.
Collapse
Affiliation(s)
- Nathaly Rangel-Muñoz
- Department of Biomedical Engineering, Universidad de Los Andes, Carrera 1 este No 19A-40, Bogotá 111711, Colombia;
| | - Andres Fernando González-Barrios
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia; (A.F.G.-B.); (D.P.)
| | - Diego Pradilla
- Grupo de Diseño de Productos y Procesos (GDPP), Department of Chemical and Food Engineering, Universidad de los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia; (A.F.G.-B.); (D.P.)
| | - Johann F. Osma
- CMUA, Department of Electrical and Electronic Engineering, Universidad de Los Andes, Carrera. 1 este No. 19a–40, Bogotá 111711, Colombia;
| | - Juan C. Cruz
- Department of Biomedical Engineering, Universidad de Los Andes, Carrera 1 este No 19A-40, Bogotá 111711, Colombia;
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide 5005, Australia
| |
Collapse
|
36
|
Nam SH, Choi YJ, Kim YW, Jun K, Jeong NH, Oh SG, Kang HC. Syntheses and characterization of new photoresponsive surfactants, N-(azobenzene-4-oxy-2-hydroxypropyl)-N-(alkyloxy-2-hydroxypropyl) aminopropyl sulfonic acid sodium salt. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
37
|
Wang R, Wang F, Gong Y, Cheng H, Shu M, Qin T, Ding X, Hu R, Zheng K, Zhang X, Chen L, Tian X. Polymer/particle/water intermolecular interaction regulated freeze-dried Pickering emulsion morphology. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
38
|
Synthesis of erucic amide propyl betaine compound fracturing fluid system. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Sekeri SH, Ibrahim MNM, Umar K, Yaqoob AA, Azmi MN, Hussin MH, Othman MBH, Malik MFIA. Preparation and characterization of nanosized lignin from oil palm (Elaeis guineensis) biomass as a novel emulsifying agent. Int J Biol Macromol 2020; 164:3114-3124. [PMID: 32853611 DOI: 10.1016/j.ijbiomac.2020.08.181] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 12/01/2022]
Abstract
A study was carried out to determine the effectiveness of lignin, extracted from oil palm (Elaeis guineensis) biomass as water-in-oil (W/O) emulsifying agent. To achieve this goal, soda lignin (SL) was extracted via soda pulping process and a series of nanosized soda lignin (NSL) were prepared using homogenizer at three different speed i.e. 10,400 rpm (NSL 10), 11,400 rpm (NSL 11) and 12,400 rpm (NSL 12) for one hour. All prepared samples were characterized by FT-IR, UV-Vis spectroscopy, thermogravimetric analysis (TGA), zeta potential analyser, Transmission Electron Microscope (TEM) and Extreme High Resolution Field Emission Scanning Electron Microscope (XHR-FESEM). The result of FTIR showed that there is no prominent change occurred in spectra of all samples while a good stability was reflected by TGA curves. The percentage of creaming index and visual observations of all samples demonstrated that NSL 12 and dosage 2 g (out of 1 g, 1.5 g and 2 g) were found to be the best among all samples. Furthermore, the results of IFT indicate that NSL 12 was proven to be more stable than the commercial product. Therefore, NSL 12 is selected for toxicological studies and was found safe in both, in vitro and in vivo studies.
Collapse
Affiliation(s)
- Siti Hajar Sekeri
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Mohamad Nasir Mohamad Ibrahim
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | - Khalid Umar
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Asim Ali Yaqoob
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Mohamad Nurul Azmi
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | - Muhammad Bisyrul Hafi Othman
- Materials Technology Research Group (MaTRec), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia
| | | |
Collapse
|
40
|
Zhang H, Yang H, Wang F, Zhao H, Li X, Zhou B, Zhang M, Kang W, Sarsenbekuly B, Aidarova S, Gabdullin M. Study on the stabilization of emulsion formed by Two different inclusion Complexes. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124651] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
41
|
Preparation of submicron capsules containing fragrance and their application as emulsifier. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03186-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
42
|
Oil-water interfacial behavior of soy β-conglycinin–soyasaponin mixtures and their effect on emulsion stability. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105531] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Hou Y, Li Y, Wang L, Chen D, Bao M, Wang Z. Amphiphilic Janus particles for efficient dispersion of oil contaminants in seawater. J Colloid Interface Sci 2019; 556:54-64. [DOI: 10.1016/j.jcis.2019.08.042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 12/14/2022]
|
44
|
Shang X, Bai Y, Sun J, Dong C. Performance and displacement mechanism of a surfactant/compound alkaline flooding system for enhanced oil recovery. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123679] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
45
|
Karthik P, Ettelaie R, Chen J. Oral behaviour of emulsions stabilized by mixed monolayer. Food Res Int 2019; 125:108603. [PMID: 31554053 DOI: 10.1016/j.foodres.2019.108603] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/30/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022]
Abstract
Controlled flavour release is highly important for the formulation of food emulsions. However, manipulating oral behavior and maintaining the stability of the flavoured emulsion is quite challenging. Hence, this study aims to investigate the effect of emulsion stability and oral behaviour using mixed emulsifier monolayers of different nature for their controlled flavour release. Orange oil flavoured (0.1% orange oil +10% sunflower oil) oil-in-water emulsions were prepared by microfluidization through modified starch (MS) and whey protein isolate (WPI) with different mass ratios (0.5:0.5, 0.5:1, 1:0.5, 1:1, 1:0 and 0:1) of emulsifiers. The fabricated emulsions were <0.13 μm in size (d32) with stable oil droplets having strong negative charges. The 0.5:0.5 and 0:1 emulsion were depicted an increase in size d32 (1.17 and 0.93 μm) and unstable during storage at 28 ± 1 °C than the emulsions stored at 4 ± 0.1 °C. All the emulsions were exhibited Newtonian flow; however once mixed with artificial saliva, the 1:0 emulsion showed shear thinning behaviour. During oral processing, in-vitro and in-vivo exhibited flocculation and coalescence; subsequently, structural deformation was observed with an increase in size (d32) and weak negative charge in 1:0.5 and 1:0 emulsions. Backscattering profile revealed more destabilization for 1:0 and less for 1:0.5 emulsions. Contrarily, other emulsions did not show any changes. Therefore, oral processing of emulsions results suggested that 1:0 had quick destabilization and 1:0.5 changed gradually. Thus, mixed emulsifier monolayer contributed significantly to the behavior of emulsions when interacting with saliva and it can be useful for controlled flavour release.
Collapse
Affiliation(s)
- P Karthik
- Food Oral Processing Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310021, China
| | - Rammile Ettelaie
- Food Colloids Group, School of Food Science and Nutrition, University of Leeds, Woodhouse Lane, Leeds LS2 9JT, UK
| | - Jianshe Chen
- Food Oral Processing Laboratory, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310021, China.
| |
Collapse
|
46
|
Wu X, Hou Z, Wu G, Sun J, Zheng L. Aggregation behaviors of SDBSs at oil/water interface: Theoretical and experimental study. Chem Phys Lett 2019. [DOI: 10.1016/j.cplett.2019.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Lee J, Babadagli T, Giesbrecht R. Impact of Divalent Ions on Heavy Oil Recovery by
in situ
Emulsification. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12345] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Jungin Lee
- School of Mining and PetroleumUniversity of Alberta Edmonton Canada
| | - Tayfun Babadagli
- School of Mining and PetroleumUniversity of Alberta Edmonton Canada
| | | |
Collapse
|
48
|
Xu HN, Chu C, Wang L, Zhang L. Droplet clustering in cyclodextrin-based emulsions mediated by methylcellulose. SOFT MATTER 2019; 15:6842-6851. [PMID: 31406969 DOI: 10.1039/c9sm00875f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Rapid droplet aggregation in cyclodextrin (CD)-stabilized emulsions limits their practical use as material templates. Herein, we formulate mixtures of submicron CD-based emulsion droplets suspended in aqueous solutions of methylcellulose (MC) with various concentrations and molecular weights. We evaluate the effects of MC on the microstructure and stability of the emulsions using different techniques including optical microscopy, laser particle analysis, confocal laser scanning microscopy and multiple light scattering, explore the rheological behavior of the emulsions through large amplitude oscillatory shear experiments, and study the viscoelastic nonlinearities of the emulsions as a function of strain and strain-rate space through nondimensional elastic and viscous Lissajous-Bowditch plots. It is demonstrated that the emulsion droplets are present in the form of small clusters and their size is almost independent of MC concentration and molecular weight. The clustering pattern is also supported by the changes in viscoelastic properties of the emulsions and the intracycle nonlinear behavior of the Lissajous-Bowditch plots. We propose for the first time that glass-like dynamic arrest takes place with the formation of small equilibrium droplet clusters in the situation where the CD-based emulsion droplets are forced by depletion flocculation and kinetic trapping simultaneously exerted by MC.
Collapse
Affiliation(s)
- Hua-Neng Xu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, People's Republic of China.
| | | | | | | |
Collapse
|
49
|
Study on the stability of heavy crude oil-in-water emulsions stabilized by two different hydrophobic amphiphilic polymers. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
50
|
Mirshekari F, Pakzad L, Fatehi P. An investigation on the stability of the hazelnut oil-water emulsion. J DISPER SCI TECHNOL 2019. [DOI: 10.1080/01932691.2019.1614459] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Fahimeh Mirshekari
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Canada
| | - Leila Pakzad
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Canada
| | - Pedram Fatehi
- Department of Chemical Engineering, Lakehead University, Thunder Bay, Canada
| |
Collapse
|