1
|
Ali S, Mirza R, Shah KU, Javed A, Dilawar N. "Harnessing green synthesized zinc oxide nanoparticles for dual action in wound management: Antibiotic delivery and healing Promotion". Microb Pathog 2025; 200:107314. [PMID: 39848301 DOI: 10.1016/j.micpath.2025.107314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 01/02/2025] [Accepted: 01/18/2025] [Indexed: 01/25/2025]
Abstract
Wound infections are characterized by the invasion of microorganisms into bodily tissues, leading to inflammation and potentially affecting any type of wound, including surgical incisions and chronic ulcers. If left untreated, they can delay recovery and cause tissue damage. Healthcare providers face challenges in treating these infections, which necessitate efficient treatment plans involving microbiological testing and clinical evaluation. The effectiveness of conventional treatments like antibiotics is limited by resistance. Various forms of nanotechnology have been developed, each exhibiting unique properties that address particular issues with conventional therapies. Among all the Nanocarriers, zinc oxide nanoparticles (ZnO NPs), offer promising treatments for persistent wound infections. ZnO NPs possess strong antibacterial, antioxidant, anti-inflammatory, and anti-diabetic properties, making them suitable for wound care applications. These nanoparticles can be produced economically and environmentally using green synthesis techniques that minimize toxicity and are biocompatible. While chemical and physical techniques offer precise control over nanoparticle characteristics, they often involve hazardous substances and energy-intensive procedures. The antibacterial qualities, low toxicity, and biological compatibility of green-synthesized ZnO NPs make them a promising treatment for wound infections. Their use in scaffolds, drug delivery systems, and wound dressings provides a viable approach to combat antibiotic resistance and enhance wound treatment outcomes. Furthermore research is necessary to fully realize the benefits of ZnO NPs in clinical practice.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Rashna Mirza
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Kifayat Ullah Shah
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Aqeedat Javed
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Naz Dilawar
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
2
|
Al-Tameemi AI, Masarudin MJ, Rahim RA, Mizzi R, Timms VJ, Isa NM, Neilan BA. Eco-friendly zinc oxide nanoparticle biosynthesis powered by probiotic bacteria. Appl Microbiol Biotechnol 2025; 109:32. [PMID: 39878901 PMCID: PMC11779794 DOI: 10.1007/s00253-024-13355-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 01/31/2025]
Abstract
The rapid advancement of nanotechnology, particularly in the realm of pharmaceutical sciences, has significantly transformed the potential for treating life-threatening diseases. A pivotal aspect of this evolution is the emergence of "green nanotechnology," which emphasizes the environmentally sustainable synthesis of raw materials through biological processes. This review focuses on the biological synthesis and application of zinc oxide (ZnO) nanoparticles (NPs) from probiotic bacteria, particularly those sourced from wastewater. Microorganisms from wastewater tolerate harmful elements and enzymatically convert toxic heavy metals into eco-friendly materials. These probiotic bacteria are instrumental in the synthesis of ZnO NPs and exhibit remarkable antimicrobial properties with diverse industrial applications. As the challenge of drug-resistant pathogens escalates, innovative strategies for combating microbial infections are essential. This review explores the intersection of nanotechnology, microbiology, and antibacterial resistance, highlighting the importance of selecting suitable probiotic bacteria for synthesizing ZnO NPs with potent antibacterial activity. Additionally, the review addresses the biofunctionalization of NPs and their applications in environmental remediation and therapeutic innovations, including wound healing, antibacterial, and anticancer treatments. Eco-friendly NP synthesis relies on the identification of these suitable microbial "nano-factories." Targeting probiotic bacteria from wastewater can uncover new microbial NP synthesis capabilities, advancing environmentally friendly NP production methods. KEY POINTS: • Innovative strategies are needed to combat drug-resistant pathogens like MRSA. • Wastewater-derived probiotic bacteria are an eco-friendly method for ZnO synthesis. • ZnO NPs show significant antimicrobial activity against various pathogens.
Collapse
Affiliation(s)
- Ahmed Issa Al-Tameemi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
- College of Dentistry, Al-Iraqia University, 10053 Al Adhamiya, Baghdad, Iraq
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Rachel Mizzi
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Verlaine J Timms
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Nurulfiza Mat Isa
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
- Institute of Bioscience, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
3
|
Senthamizh R, Vishwakarma P, Sinharoy A, Sinha R, Sharma S, Mal J. Biogenic nanoparticles and its application in crop protection against abiotic stress: A new dimension in agri-nanotechnology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177884. [PMID: 39647194 DOI: 10.1016/j.scitotenv.2024.177884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/30/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
The food demand to support the growing population worldwide is expected to increase up to 60 % by 2050. But, various abiotic stress including heat, drought, salinity, and heavy metal stress are becoming more prevalent due to global warming and seriously affecting the crop productivity. Nanotechnology has a great potential to solve this issue, as various nanoparticles (NPs) with their unique physical and chemical characteristics, have shown promising ability to enhance the stress tolerance and subsequently, improving the plant growth and development. Although NPs can be synthesized either via physically or chemically or biologically, application of biogenic NPs in agriculture are gaining strong attention due to their economic, environmental friendly, and sustainable benefits. The implementations of biogenic NPs have been reported to be enhancing both the quantitative and qualitative properties of crop production significantly by mitigating abiotic stress. Hence, this review paper critically discussed the application of biogenic NPs, synthesized using various biological methods i.e. bacteria, fungi, algae, and plant-based, in enhancing the abiotic stress resilience and crop production. Adverse effects of the major abiotic stresses on crops have also been highlighted in the paper. The paper also focused on the mechanistic insights of plant-NPs interactions, uptake, translocation and NPs-induced biochemical and molecular changes in plants to help mitigating the abiotic stress. The potential challenges and environmental implications of extensive use of biogenic NPs in agriculture compared to the chemogenic NPs has also been critically assessed. Future research direction is provided to delve into the potential of biogenic NPs as promising tools for mitigating abiotic stress, and improving plant growth and development for a sustainable agriculture via nanotechnology.
Collapse
Affiliation(s)
- R Senthamizh
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Preeti Vishwakarma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Arindam Sinharoy
- Department of Environmental Science and Biotechnology, Jeonju University, Jeonju 55069, Republic of Korea
| | - Rupika Sinha
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India
| | - Joyabrata Mal
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj 211004, Uttar Pradesh, India.
| |
Collapse
|
4
|
El-Saadony MT, Fang G, Yan S, Alkafaas SS, El Nasharty MA, Khedr SA, Hussien AM, Ghosh S, Dladla M, Elkafas SS, Ibrahim EH, Salem HM, Mosa WFA, Ahmed AE, Mohammed DM, Korma SA, El-Tarabily MK, Saad AM, El-Tarabily KA, AbuQamar SF. Green Synthesis of Zinc Oxide Nanoparticles: Preparation, Characterization, and Biomedical Applications - A Review. Int J Nanomedicine 2024; 19:12889-12937. [PMID: 39651353 PMCID: PMC11624689 DOI: 10.2147/ijn.s487188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 12/11/2024] Open
Abstract
Over the last decade, biomedical nanomaterials have garnered significant attention due to their remarkable biological properties and diverse applications in biomedicine. Metal oxide nanoparticles (NPs) are particularly notable for their wide range of medicinal uses, including antibacterial, anticancer, biosensing, cell imaging, and drug/gene delivery. Among these, zinc oxide (ZnO) NPs stand out for their versatility and effectiveness. Recently, ZnO NPs have become a primary material in various sectors, such as pharmaceutical, cosmetic, antimicrobials, construction, textile, and automotive industries. ZnO NPs can generate reactive oxygen species and induce cellular apoptosis, thus underpinning their potent anticancer and antibacterial properties. To meet the growing demand, numerous synthetic approaches have been developed to produce ZnO NPs. However, traditional manufacturing processes often involve significant economic and environmental costs, prompting a search for more sustainable alternatives. Intriguingly, biological synthesis methods utilizing plants, plant extracts, or microorganisms have emerged as ideal for producing ZnO NPs. These green production techniques offer numerous medicinal, economic, environmental, and health benefits. This review highlights the latest advancements in the green synthesis of ZnO NPs and their biomedical applications, showcasing their potential to revolutionize the field with eco-friendly and cost-effective solutions.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Guihong Fang
- School of Public Health, Heinz Mehlhorn Academician Workstation, Hainan Medical University, Haikou, Hainan, 571199, People’s Republic of China
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Si Yan
- Qionghai People’s Hospital, Qionghai, Hainan, 571400, People’s Republic of China
| | - Samar Sami Alkafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mahmoud A El Nasharty
- Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sohila A Khedr
- Industrial Biotechnology Department, Faculty of Science, Tanta University, Tanta, 31733, Egypt
| | - Aya Misbah Hussien
- Biotechnology Department at Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21531, Egypt
| | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, 616, Oman
| | - Mthokozisi Dladla
- Human Molecular Biology Unit (School of Biomedical Sciences), Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design Department, Faculty of Engineering, Menofia University, Shebin El Kom, Menofia, 32511, Egypt
- Faculty of Control System and Robotics, ITMO University, Saint-Petersburg, 197101, Russia
| | - Essam H Ibrahim
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
- Blood Products Quality Control and Research Department, National Organization for Research and Control of Biologicals, Cairo, 12611, Egypt
| | - Heba Mohammed Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Walid F A Mosa
- Plant Production Department (Horticulture-Pomology), Faculty of Agriculture, Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Ezzat Ahmed
- Biology Department, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Dina Mostafa Mohammed
- Nutrition and Food Sciences Department, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Sameh A Korma
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | | | - Ahmed M Saad
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, 15551, United Arab Emirates
| |
Collapse
|
5
|
Thirumavalavan M, Sukumar K, Sabarimuthu SQ. Trends in green synthesis, pharmaceutical and medical applications of nano ZnO: A review. INORG CHEM COMMUN 2024; 169:113002. [DOI: 10.1016/j.inoche.2024.113002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
|
6
|
Vagena IA, Gatou MA, Theocharous G, Pantelis P, Gazouli M, Pippa N, Gorgoulis VG, Pavlatou EA, Lagopati N. Functionalized ZnO-Based Nanocomposites for Diverse Biological Applications: Current Trends and Future Perspectives. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:397. [PMID: 38470728 PMCID: PMC10933906 DOI: 10.3390/nano14050397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024]
Abstract
The wide array of structures and characteristics found in ZnO-based nanostructures offers them a versatile range of uses. Over the past decade, significant attention has been drawn to the possible applications of these materials in the biomedical field, owing to their distinctive electronic, optical, catalytic, and antimicrobial attributes, alongside their exceptional biocompatibility and surface chemistry. With environmental degradation and an aging population contributing to escalating healthcare needs and costs, particularly in developing nations, there's a growing demand for more effective and affordable biomedical devices with innovative functionalities. This review delves into particular essential facets of different synthetic approaches (chemical and green) that contribute to the production of effective multifunctional nano-ZnO particles for biomedical applications. Outlining the conjugation of ZnO nanoparticles highlights the enhancement of biomedical capacity while lowering toxicity. Additionally, recent progress in the study of ZnO-based nano-biomaterials tailored for biomedical purposes is explored, including biosensing, bioimaging, tissue regeneration, drug delivery, as well as vaccines and immunotherapy. The final section focuses on nano-ZnO particles' toxicity mechanism with special emphasis to their neurotoxic potential, as well as the primary toxicity pathways, providing an overall review of the up-to-date development and future perspectives of nano-ZnO particles in the biomedicine field.
Collapse
Affiliation(s)
- Ioanna-Aglaia Vagena
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
| | - Maria-Anna Gatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Giorgos Theocharous
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
| | - Maria Gazouli
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- School of Science and Technology, Hellenic Open University, 26335 Patra, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National Kapodistrian University of Athens (NKUA), 15771 Athens, Greece;
| | - Vassilis G. Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (G.T.); (P.P.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD19SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7YH, UK
| | - Evangelia A. Pavlatou
- Laboratory of General Chemistry, School of Chemical Engineering, National Technical University of Athens, Zografou Campus, 15772 Athens, Greece; (M.-A.G.); (E.A.P.)
| | - Nefeli Lagopati
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National Kapodistrian University of Athens (NKUA), 11527 Athens, Greece; (I.-A.V.); (M.G.)
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
| |
Collapse
|
7
|
Ashour MA, Abd-Elhalim BT. Biosynthesis and biocompatibility evaluation of zinc oxide nanoparticles prepared using Priestia megaterium bacteria. Sci Rep 2024; 14:4147. [PMID: 38378738 PMCID: PMC10879496 DOI: 10.1038/s41598-024-54460-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
The current study aimed to find an effective, simple, ecological, and nontoxic method for bacterial green synthesis of zinc oxide nanoparticles (ZnONPs) using the bacterial strain Priestia megaterium BASMA 2022 (OP572246). The biosynthesis was confirmed by the change in color of the cell-free supernatant added to the zinc nitrate from yellow to pale brown. The Priestia megaterium zinc oxide nanoparticles (Pm/ZnONPs) were characterized using UV-Vis spectroscopy, high-resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FTIR), and zeta potential. The Pm/ZnONPs characterization showed that they have a size ranging between 5.77 and 13.9 nm with a semi-sphere shape that is coated with a protein-carbohydrate complex. An EDX analysis of the Pm/ZnONPs revealed the presence of the shield matrix, which was composed of carbon, nitrogen, oxygen, chlorine, potassium, sodium, aluminum, sulfur, and zinc. The results of the FTIR analysis showed that the reduction and stabilization of the zinc salt solution were caused by the presence of O-H alcohols and phenols, O=C=O stretching of carbon dioxide, N=C=S stretching of isothiocyanate, and N-H bending of amine functional groups. The produced ZnONPs had good stability with a charge of - 16.2 mV, as evidenced by zeta potential analysis. The MTT assay revealed IC50 values of 8.42% and 200%, respectively, for the human A375 skin melanoma and human bone marrow 2M-302 cell lines. These findings revealed that the obtained Pm/ZnONPs have the biocompatibility to be applied in the pharmaceutical and biomedical sectors.
Collapse
Affiliation(s)
- Mona A Ashour
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Shubra El-Khaimah, Cairo, 11241, Egypt
| | - Basma T Abd-Elhalim
- Department of Agricultural Microbiology, Faculty of Agriculture, Ain Shams University, Shubra El-Khaimah, Cairo, 11241, Egypt.
| |
Collapse
|
8
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
9
|
Asif N, Amir M, Fatma T. Recent advances in the synthesis, characterization and biomedical applications of zinc oxide nanoparticles. Bioprocess Biosyst Eng 2023; 46:1377-1398. [PMID: 37294320 PMCID: PMC10251335 DOI: 10.1007/s00449-023-02886-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Zinc oxide nanoparticles (ZnONPs) have become the widely used metal oxide nanoparticles and drawn the interest of global researchers due to their biocompatibility, low toxicity, sustainability and cost-effective properties. Due to their unique optical and chemical properties, it emerges as a potential candidate in the fields of optical, electrical, food packaging and biomedical applications. Biological methods using green or natural routes are more environmentally friendly, simple and less use of hazardous techniques than chemical and/or physical methods in the long run. In addition, ZnONPs are less harmful and biodegradable while having the ability to greatly boost pharmacophore bioactivity. They play an important role in cell apoptosis because they enhance the generation of reactive oxygen species (ROS) and release zinc ions (Zn2+), causing cell death. Furthermore, these ZnONPs work well in conjunction with components that aid in wound healing and biosensing to track minute amounts of biomarkers connected to a variety of illnesses. Overall, the present review discusses the synthesis and most recent developments of ZnONPs from green sources including leaves, stems, bark, roots, fruits, flowers, bacteria, fungi, algae and protein, as well as put lights on their biomedical applications such as antimicrobial, antioxidant, antidiabetic, anticancer, anti-inflammatory, antiviral, wound healing, and drug delivery, and modes of action associated. Finally, the future perspectives of biosynthesized ZnONPs in research and biomedical applications are discussed.
Collapse
Affiliation(s)
- Nida Asif
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Mohammad Amir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Tasneem Fatma
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
10
|
Murali M, Gowtham HG, Shilpa N, Singh SB, Aiyaz M, Sayyed RZ, Shivamallu C, Achar RR, Silina E, Stupin V, Manturova N, Shati AA, Alfaifi MY, Elbehairi SEI, Kollur SP. Zinc oxide nanoparticles prepared through microbial mediated synthesis for therapeutic applications: a possible alternative for plants. Front Microbiol 2023; 14:1227951. [PMID: 37744917 PMCID: PMC10516225 DOI: 10.3389/fmicb.2023.1227951] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/26/2023] Open
Abstract
Zinc oxide nanoparticles (ZnO-NPs) synthesized through biogenic methods have gained significant attention due to their unique properties and potential applications in various biological fields. Unlike chemical and physical approaches that may lead to environmental pollution, biogenic synthesis offers a greener alternative, minimizing hazardous environmental impacts. During biogenic synthesis, metabolites present in the biotic sources (like plants and microbes) serve as bio-reductants and bio-stabilizers. Among the biotic sources, microbes have emerged as a promising option for ZnO-NPs synthesis due to their numerous advantages, such as being environmentally friendly, non-toxic, biodegradable, and biocompatible. Various microbes like bacteria, actinomycetes, fungi, and yeast can be employed to synthesize ZnO-NPs. The synthesis can occur either intracellularly, within the microbial cells, or extracellularly, using proteins, enzymes, and other biomolecules secreted by the microbes. The main key advantage of biogenic synthesis is manipulating the reaction conditions to optimize the preferred shape and size of the ZnO-NPs. This control over the synthesis process allows tailoring the NPs for specific applications in various fields, including medicine, agriculture, environmental remediation, and more. Some potential applications include drug delivery systems, antibacterial agents, bioimaging, biosensors, and nano-fertilizers for improved crop growth. While the green synthesis of ZnO-NPs through microbes offers numerous benefits, it is essential to assess their toxicological effects, a critical aspect that requires thorough investigation to ensure their safe use in various applications. Overall, the presented review highlights the mechanism of biogenic synthesis of ZnO-NPs using microbes and their exploration of potential applications while emphasizing the importance of studying their toxicological effects to ensure a viable and environmentally friendly green strategy.
Collapse
Affiliation(s)
| | - H. G. Gowtham
- Department of PG Studies in Biotechnology, Nrupathunga University, Bangalore, India
| | - N. Shilpa
- Department of Studies in Microbiology, University of Mysore, Mysuru, India
| | - S. Brijesh Singh
- Department of Studies in Botany, University of Mysore, Mysuru, India
| | - Mohammed Aiyaz
- Department of Studies in Biotechnology, University of Mysore, Mysuru, India
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s S I Patil Arts, G B Patel Science and STKV Sangh Commerce College, Shahada, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Myuru, India
| | - Raghu Ram Achar
- Division of Biochemistry, School of Life Sciences, JSS Academy of Higher Education and Research, Mysuru, India
| | - Ekaterina Silina
- Department of Human Pathology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Victor Stupin
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Natalia Manturova
- Department of Surgery, Pirogov Russian National Research Medical University (RNRMU), Moscow, Russia
| | - Ali A. Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Y. Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | | | | |
Collapse
|
11
|
Wilson JJ, Harimuralikrishnaa T, Sivakumar T, Mahendran S, Ponmanickam P, Thangaraj R, Sevarkodiyone S, Alharbi NS, Kadaikunnan S, Venkidasamy B, Thiruvengadam M, Govindasamy R. Biogenic Synthesis of Silver Nanoparticles Using Pantoea stewartii and Priestia aryabhattai and Their Antimicrobial, Larvicidal, Histopathological, and Biotoxicity Potential. Bioengineering (Basel) 2023; 10:bioengineering10020248. [PMID: 36829742 PMCID: PMC9952830 DOI: 10.3390/bioengineering10020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
In recent years, green nanotechnology has gained considerable importance for the synthesis of nanoparticles due to its economic viability and biosafety. In the current study, silver nanoparticles were synthesized using two bacterial isolates, H2 and H3, which were isolated from soil samples collected from the Western Ghats, Tamil Nadu, and identified at the species level as Pantoeastewartii (H2) and Priestiaaryabhattai (H3) by sequencing their 16s rRNA genes. Intracellularly synthesized silver nanoparticles were characterized by UV-visible spectroscopy, Fourier transform infrared spectroscopy, atomic force microscopy, and particle size analysis. AFM studies show that both of the bacterial synthesized Ag NPs were circular-shaped and disaggregated, with an average size distribution of 4 nm for Pantoeastewartii and 3.6 nm for Priestiaaryabhattai. Furthermore, their larvicidal activity, antimicrobial, histopathological, and biotoxicity effects were determined. The synthesized Ag NPs exhibited potent larvicidal activity against fourth instars of Ae.aegypti, An.stephensi, and Cx.quinquefasciatus exposed to a 50 µg/mL concentration for 24 h based on their LC50 and LC90 values. Histopathological studies of the affected mosquito larvae clearly show damage to the epithelial cells, food bolus, basement membrane, muscles, and midgut parts. The maximum antimicrobial activity of Priestiaaryabhattai-synthesized Ag NPs was observed for Streptomyces varsoviensis MTCC-1537, and that of Pantoea stewartii-synthesized Ag NPs was against Escherichia coli MTCC-43. The toxicity test on non-target organisms such as Artemia nauplii and zebrafish embryos indicates no visible abnormalities or mortality after their exposure for 48h. It is concluded that silver nanoparticles can easily be synthesized using Pantoea stewartii (H2) and Priestia aryabhattai (H3) as capping and reducing agents. Silver nanoparticles showed potent larvicidal activities and could potentially be used in integrated vector control programs because they are safe for other inhabitants of the same aquatic environment as mosquito larvae.
Collapse
Affiliation(s)
- Jeyaraj John Wilson
- Department of Microbiology, Ayya Nadar Janaki Ammal College, Sivakasi 626124, India
| | | | - Thangavel Sivakumar
- Department of Microbiology, Ayya Nadar Janaki Ammal College, Sivakasi 626124, India
| | - Shunmugiah Mahendran
- Department of Microbiology, Ayya Nadar Janaki Ammal College, Sivakasi 626124, India
| | | | - Ramasamy Thangaraj
- Department of Microbiology, Ayya Nadar Janaki Ammal College, Sivakasi 626124, India
| | | | - Naiyf S. Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Baskar Venkidasamy
- Department of Oral and Maxillofacial Surgery, Saveetha Dental College and Hospitals, Saveetha University, Chennai 600077, India
| | - Muthu Thiruvengadam
- Department of Applied Bioscience, College of Life and Environmental Sciences, Konkuk University, Seoul 05029, Republic of Korea
- Correspondence: (M.T.); (R.G.)
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Correspondence: (M.T.); (R.G.)
| |
Collapse
|
12
|
Zafar M, Iqbal T, Afsheen S, Iqbal A, Shoukat A. An overview of green synthesis of zinc oxide nanoparticle by using various natural entities. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2165681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Maria Zafar
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Tahir Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Sumera Afsheen
- Department of Zoology, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Amina Iqbal
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| | - Aleena Shoukat
- Department of Physics, Faculty of Sciences, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan
| |
Collapse
|
13
|
Comprehensive study upon physicochemical properties of bio-ZnO NCs. Sci Rep 2023; 13:587. [PMID: 36631546 PMCID: PMC9834250 DOI: 10.1038/s41598-023-27564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
In this study, for the first time, the comparison of commercially available chemical ZnO NCs and bio-ZnO NCs produced extracellularly by two different probiotic isolates (Latilactobacillus curvatus MEVP1 [OM736187] and Limosilactobacillus fermentum MEVP2 [OM736188]) were performed. All types of ZnO formulations were characterized by comprehensive interdisciplinary approach including various instrumental techniques in order to obtain nanocomposites with suitable properties for further applications, i.e. biomedical. Based on the X- ray diffraction analysis results, all tested nanoparticles exhibited the wurtzite structure with an average crystalline size distribution of 21.1 nm (CHEM_ZnO NCs), 13.2 nm (1C_ZnO NCs) and 12.9 nm (4a_ZnO NCs). The microscopy approach with use of broad range of detectors (SE, BF, HAADF) revealed the core-shell structure of bio-ZnO NCs, compared to the chemical one. The nanoparticles core of 1C and 4a_ZnO NCs are coated by the specific organic deposit coming from the metabolites produced by two probiotic strains, L. fermentum and L. curvatus. Vibrational infrared spectroscopy, photoluminescence (PL) and mass spectrometry (LDI-TOF-MS) have been used to monitor the ZnO NCs surface chemistry and allowed for better description of bio-NCs organic coating composition (amino acids residues). The characterized ZnO formulations were then assessed for their photocatalytic properties against methylene blue (MB). Both types of bio-ZnO NCs exhibited good photocatalytic activity, however, the effect of CHEM_ZnO NCs was more potent than bio-ZnO NCs. Finally, the colloidal stability of the tested nanoparticles were investigated based on the zeta potential (ZP) and hydrodynamic diameter measurements in dependence of the nanocomposites concentration and investigation time. During the biosynthesis of nano-ZnO, the increment of pH from 5.7 to around 8 were observed which suggested possible contribution of zinc aquacomplexes and carboxyl-rich compounds resulted in conversion of zinc tetrahydroxy ion complex to ZnO NCs. Overall results in present study suggest that used accessible source such us probiotic strains, L. fermentum and L. curvatus, for extracellular bio-ZnO NCs synthesis are of high interest. What is important, no significant differences between organic deposit (e.g. metabolites) produced by tested strains were noticed-both of them allowed to form the nanoparticles with natural origin coating. In comparison to chemical ZnO NCs, those synthetized via microbiological route are promising material with further biological potential once have shown high stability during 7 days.
Collapse
|
14
|
Yusof HM, Rahman NA, Mohamad R, Zaidan UH, Samsudin AA. Optimization of biosynthesis zinc oxide nanoparticles: Desirability-function based response surface methodology, physicochemical characteristics, and its antioxidant properties. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
15
|
Khairnar B, Dabhane H, Dashpute R, Girase M, Nalawade P, Gaikwad V. Study of biogenic fabrication of Zinc oxide nanoparticles and their applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
16
|
El-Sayed HS, El-Sayed SM, Youssef AM. Designated functional microcapsules loaded with green synthesis selenium nanorods and probiotics for enhancing stirred yogurt. Sci Rep 2022; 12:14751. [PMID: 36042364 PMCID: PMC9427739 DOI: 10.1038/s41598-022-18781-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/18/2022] [Indexed: 11/08/2022] Open
Abstract
Green synthesis selenium nanorods (Se-NRs) were produced based on Aloe vera leaf extract. The size, morphology, antimicrobial, and activation of Se-NRs for probiotics were analyzed. The Se-NRS was stable with a diameter of 12 and 40 nm, had an antimicrobial effect, and improved probiotics counts. The microcapsules loaded with Green Se-NRS (0, 0.05 or 0.1 mg/100 ml) and probiotics (Bifidobacterium lactis and Lactobacillus rhamnosus) were designated with efficiency between 95.25 and 97.27% and irregular shapes. Microcapsules were saved probiotics against gastrointestinal juices. The microcapsules were showed a minor inhibition effect against the cell line. Also, microcapsules integrated into stirred yogurt and exanimated for microbiology, chemically, and sensory for 30 days. The probiotics counts, acidity, total solids, and ash values of samples were increased during storage periods without affecting fat and protein contents. The overall acceptability of yogurt with microcapsules containing probiotics and Se-NRs was high without change in body, odor, color, and appearance.
Collapse
Affiliation(s)
- Hoda S El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Samah M El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir St.), Dokki, Giza, 12622, Egypt.
| |
Collapse
|
17
|
Alqarni LS, Alghamdi MD, Alshahrani AA, Nassar AM. Green Nanotechnology: Recent Research on Bioresource-Based Nanoparticle Synthesis and Applications. J CHEM-NY 2022; 2022:1-31. [DOI: 10.1155/2022/4030999] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025] Open
Abstract
In the last decades, the idea of green nanotechnology has been expanding, and researchers are developing greener and more sustainable techniques for synthesizing nanoparticles (NPs). The major objectives are to fabricate NPs using simple, sustainable, and cost-effective procedures while avoiding the use of hazardous materials that are usually utilized as reducing or capping agents. Many biosources, including plants, bacteria, fungus, yeasts, and algae, have been used to fabricate NPs of various shapes and sizes. The authors of this study emphasized the most current studies for fabricating NPs from biosources and their applications in a wide range of fields. This review addressed studies that cover green techniques for synthesizing nanoparticles of Ag, Au, ZnO, CuO, Co3O4, Fe3O4, TiO2, NiO, Al2O3, Cr2O3, Sm2O3, CeO2, La2O3, and Y2O3. Also, their applications were taken under consideration and discussed.
Collapse
Affiliation(s)
- Laila S. Alqarni
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - Maha D. Alghamdi
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Aisha A. Alshahrani
- Department of Chemistry, Faculty of Science, Albaha University, Albaha, Saudi Arabia
| | - Amr M. Nassar
- Chemistry Department, College of Science, Jouf University, Sakaka, Saudi Arabia
| |
Collapse
|
18
|
Rani S, Kumar P, Dahiya P, Dang AS, Suneja P. Biogenic Synthesis of Zinc Nanoparticles, Their Applications, and Toxicity Prospects. Front Microbiol 2022; 13:824427. [PMID: 35756000 PMCID: PMC9226681 DOI: 10.3389/fmicb.2022.824427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 04/28/2022] [Indexed: 12/16/2022] Open
Abstract
Nanofertilizers effectively deliver the micronutrients besides reducing the phytotoxicity and environmental damage associated with chemical fertilizers. Zinc, an essential micronutrient, is significant for chloroplast development, activation of certain enzymes, and primary metabolism. Nano zinc oxide (ZnO) is the most widely used zinc nanoparticle. Concerns regarding the toxicity of conventional physical and chemical methods of synthesizing the nanoparticles have generated the need for a green approach. It involves the biogenic synthesis of metallic nanoparticles using plants and microorganisms. Microbe-mediated biogenic synthesis of metallic nanoparticles is a bottom-up approach in which the functional biomolecules of microbial supernatant reduce the metal ions into its nanoparticles. This review discusses the biological synthesis of nano-ZnO from microorganisms and related aspects such as the mechanism of synthesis, factors affecting the same, methods of application, along with their role in conferring drought stress tolerance to the plants and challenges involved in their large-scale synthesis and applications.
Collapse
Affiliation(s)
- Simran Rani
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Pradeep Kumar
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Priyanka Dahiya
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| | - Amita Suneja Dang
- Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Suneja
- Plant-Microbe Interaction Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
19
|
Green synthesis, characterization and applications of iron and zinc nanoparticles by probiotics. Food Res Int 2022; 155:111097. [DOI: 10.1016/j.foodres.2022.111097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 12/17/2022]
|
20
|
Dutta G, Sugumaran A. Bioengineered zinc oxide nanoparticles: Chemical, green, biological fabrication methods and its potential biomedical applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102853] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
Comparison Study of Cytotoxicity of Bare and Functionalized Zinc Oxide Nanoparticles. Int J Mol Sci 2021; 22:ijms22179529. [PMID: 34502438 PMCID: PMC8431566 DOI: 10.3390/ijms22179529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/29/2021] [Accepted: 08/30/2021] [Indexed: 01/16/2023] Open
Abstract
In this paper, a study of the cytotoxicity of bare and functionalized zinc oxide nanoparticles (ZnO NPs) is presented. The functionalized ZnO NPs were obtained by various types of biological methods including microbiological (intra- and extracellular with Lactobacillus paracasei strain), phytochemical (Medicago sativa plant extract) and biochemical (ovalbumin from egg white protein) synthesis. As a control, the bare ZnO NPs gained by chemical synthesis (commercially available) were tested. The cytotoxicity was measured through the use of (3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) dye as well as lactate dehydrogenase (LDH) assays against murine fibroblast L929 and Caco-2 cell lines. As a complementary method, scanning electron microscopy (SEM) was performed to assess the morphology of the tested cells after treatment with ZnO NPs. The microscopic data confirmed the occurrence of apoptotic blebbing and loss of membrane permeability after the administration of all ZnO NPs. The reactive oxygen species (ROS) concentration during the cell lines’ exposure to ZnO NPs was measured fluorometrically. Additionally, the photocatalytic degradation of methylene blue (MB) dye in the different light conditions, as well as the antioxidant activity of bare and functionalized ZnO NPs, is also reported. The addition of all types of tested ZnO NPs to methylene blue resulted in enhanced rates of photo-degradation in the presence of both types of irradiation, but the application of UV light resulted in higher photocatalytic activity of ZnO NPs. Furthermore, bare (chemically synthetized) NPs have been recognized as the strongest photocatalysts. In the context of the obtained results, a mechanism underlying the toxicity of bio-ZnO NPs, including (a) the generation of reactive oxygen species and (b) the induction of apoptosis, is proposed.
Collapse
|
22
|
Barani M, Masoudi M, Mashreghi M, Makhdoumi A, Eshghi H. Cell-free extract assisted synthesis of ZnO nanoparticles using aquatic bacterial strains: Biological activities and toxicological evaluation. Int J Pharm 2021; 606:120878. [PMID: 34265392 DOI: 10.1016/j.ijpharm.2021.120878] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 10/20/2022]
Abstract
The introduction of novel bacterial strains and the development of microbial approaches for nanoparticles biosynthesis could minimize the negative environmental impact and eliminate the concern and challenges of the available approaches. In this study, a biological method based on microbial cell-free extract was used for biosynthesis of ZnO NPs using two new aquatic bacteria, Marinobacter sp. 2C8 and Vibrio sp. VLA. The synthesized ZnO NPs were characterized by UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), transmission electron microscopy (TEM), atomic force microscope (AFM), dynamic light scattering (DLS) and zeta potential. The UV-Visible absorption peak was found to be at 266 and 250 nm for ZnO-2C8 NPs and ZnO-VLA NPs, respectively. FTIR study suggested that the hydroxyl, amine, and carboxyl groups of bacterial proteins are mainly responsible for stabilizing the biosynthesized ZnO NPs. The formation of hexagonal wurtzite structure of ZnO NPs was confirmed by the XRD pattern. The morphology of the nanoparticles was found to be spherical with the average particle size of about 10.23 ± 2.48 nm and 20.26 ± 4.44 nm for ZnO-2C8 NPs and ZnO-VLA NPs, respectively. The values of zeta potential indicate the high stability of the biosynthesized ZnO NP. Zeta potential values indicated the high stability of the biosynthesized ZnO NP and were obtained -20.54 ± 7.15 and -23.87 ± 2.29 mV for ZnO-2C8 NPs and ZnO-VLA NPs, respectively. The biosynthesized ZnO NPs had antibacterial activity against Gram-negative and Gram-positive strains and possessed excellent antibiofilm activity with the maximum inhibition of about 96.55% at 250 µg/mL. The DPPH activity of ZnO-2C8 NPs and ZnO-VLA NPs were found 88.9% and 85.7% for 2500 μg/mL concentration, respectively. The toxicity test revealed the biocompatibility of the biosynthesized ZnO NPs. The results suggested that this approach is a very good route for synthesizing ZnO NPs with potential applications in biotechnology.
Collapse
Affiliation(s)
- Maryam Barani
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mina Masoudi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mansour Mashreghi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Industrial Microbiology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran; Nano Research Center, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Ali Makhdoumi
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| | - Hossein Eshghi
- Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
23
|
El-Sayed HS, El-Sayed SM, Youssef AM. Novel approach for biosynthesizing of zinc oxide nanoparticles using Lactobacillus gasseri and their influence on microbiological, chemical, sensory properties of integrated yogurt. Food Chem 2021; 365:130513. [PMID: 34247045 DOI: 10.1016/j.foodchem.2021.130513] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022]
Abstract
This research aimed to biosynthesizing zinc oxide nanoparticles (ZnO-NPs) using lactobacilli strains. All tested lactobacilli able to biosynthesis ZnO-NPs indicated by white precipitates. The characteristics of the biosynthesis ZnO-NPs from Lactobacillus gasseri were studied using UV-visible spectroscopy, TEM, SEM, DLS, FT-IR, XRD, and antimicrobial activity. The characteristic examination depicted cubic structures, pure and spherical ZnO-NPs with a diameter size of 22 nm. Antimicrobial study of ZnO-NPs displayed better higher antimicrobial activity on food pathogens in a dose-dependent manner. Moreover, integrated biosynthesis ZnO-NPs in yogurt positively affected the shelf life of yogurt during storage for four weeks without changes in the sensory evaluation. The microbiological population of fortified yogurt significantly reduced during storage than control. But chemically evaluation of fortified yogurt indicated an increase in dry matter, protein, and ash content than control. The achieved results suggested that the low amount of biosynthesized ZnO-NPs lead to the development of properties of integrated yogurt. Furthermore, the biosynthesized ZnO-NPs additive to yogurt could be a good food source for groups suffering from zinc deficiency such as the elderly groups or vegetarians who do not eat meat and at risk of zinc inadequacy.
Collapse
Affiliation(s)
- Hoda S El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), P.O. 12622, Dokki, Giza, Egypt
| | - Samah M El-Sayed
- Dairy Science Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), P.O. 12622, Dokki, Giza, Egypt
| | - Ahmed M Youssef
- Packaging Materials Department, National Research Centre, 33 El Bohouth St. (former El Tahrir st.), P.O. 12622, Dokki, Giza, Egypt.
| |
Collapse
|
24
|
Priya, Naveen, Kaur K, Sidhu AK. Green Synthesis: An Eco-friendly Route for the Synthesis of Iron Oxide Nanoparticles. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.655062] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Green approach has received major attention for the synthesis of metal oxide nanoparticles. One such metal oxide nanoparticles are iron oxide nanoparticles (IONPs). IONPs have fetched a great deal of interest in recent era because of their magnetic nature, as they can be easily recovered from the reaction mixture by applying an external magnetic field. Although, a variety of chemical and physical methods of synthesis are known, green synthesis is safer, sustainable and biologically acceptable. Plants and microbes are the main biological materials used for the green synthesis. In present review, the synthesis of IONPs by using plants, bacteria, fungi and algae have been highlighted. IONPs produced by plants, fungi, bacteria and algae usually falls in 1–100 nm range and are of distinct shapes like cubic, tetragonal crystalline, spherical, cylindrical, elliptical, octahedral, orthorhombic, hexagonal rods, nanosphere and quasi spherical. Furthermore, these biomaterials play role of reducing, capping, stabilizing and fabricating agents in green synthesis of nanoparticles. The review put forward a comprehensive report of various routes used for synthesizing IONP, biologically. Intuition into the procedures for synthesis of nanoparticles will help to nourish our learning in the area of nanotechnology.
Collapse
|
25
|
Mahana A, Mehta SK. Potential of Scenedesmus-fabricated ZnO nanorods in photocatalytic reduction of methylene blue under direct sunlight: kinetics and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28234-28250. [PMID: 33533000 DOI: 10.1007/s11356-021-12682-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Organic synthetic dyes are widely used in several industries; however, their inherent resistance to biodegradation necessitates to investigate alternative methods for the remediation of this class of hazardous substances. In the present study, a green synthesis of ZnO nanorods was achieved in a fast, environment-friendly, and safe microwave process employing algal extract. Different metabolites like sugars, proteins, fatty acids, amino acids, and vitamins present in the algal extract reduced the Zn2+ into ZnO. The XRD analysis showed that the nanostructure was a crystalline hexagonal nanorod having a crystalline size of 27.37 nm. The XPS spectra of ZnO nanorod showed characteristic peaks at binding energy 1043, 1020, 496, 137, 87, and 8 eV corresponding to Zn2p1/2, Zn2p3/2, ZnLMM, Zn3s, Zn3p, Zn3d, respectively. The synthesized ZnO nanorods were in-situ functionalized and showed strong catalytic activity in photoreduction of a model organic dye methylene blue (MB) under direct sunlight irradiation. Synthesized ZnO nanorods showed a complete (100%) reduction of model dye MB from its 10 mg/L aqueous solution. The photocatalytic degradation of MB followed the Michaelis-Menten kinetics. The rate of ZnO-catalyzed photocatalytic degradation depends on the concentrations of ZnO, pH, and sunlight irradiation. The ZnO nanorod-catalyzed photoreduction of MB involves hydroxyl radicals. Algal-mediated and microwave-assisted synthesis provides a scalable source of metal oxide nanoparticles for the remediation of dye-containing wastewaters under natural sunlight. Apart from application in the removal of dyes, ZnO nanorods are excellent material for applications in semiconductors, electronics, optics, bio-imaging, and drug delivery.
Collapse
Affiliation(s)
- Abhijeet Mahana
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Botany, Mizoram University, Aizawl, 796004, India
| | - Surya Kant Mehta
- Laboratory of Algal Biochemistry and Molecular Biology, Department of Botany, Mizoram University, Aizawl, 796004, India.
| |
Collapse
|
26
|
Suba S, Vijayakumar S, Vidhya E, Punitha V, Nilavukkarasi M. Microbial mediated synthesis of ZnO nanoparticles derived from Lactobacillus spp: Characterizations, antimicrobial and biocompatibility efficiencies. SENSORS INTERNATIONAL 2021. [DOI: 10.1016/j.sintl.2021.100104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
27
|
Mohd Yusof H, Abdul Rahman N, Mohamad R, Zaidan UH, Samsudin AA. Biosynthesis of zinc oxide nanoparticles by cell-biomass and supernatant of Lactobacillus plantarum TA4 and its antibacterial and biocompatibility properties. Sci Rep 2020; 10:19996. [PMID: 33204003 PMCID: PMC7673015 DOI: 10.1038/s41598-020-76402-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022] Open
Abstract
This study aims to utilize the cell-biomass (CB) and supernatant (CFS) of zinc-tolerant Lactobacillus plantarum TA4 as a prospective nanofactory to synthesize ZnO NPs. The surface plasmon resonance for the biosynthesized ZnO NPs-CFS and ZnO NPs-CB was 349 nm and 351 nm, respectively, thereby confirming the formation of ZnO NPs. The FTIR analysis revealed the presence of proteins, carboxyl, and hydroxyl groups on the surfaces of both the biosynthesized ZnO NPs that act as reducing and stabilizing agents. The DLS analysis revealed that the poly-dispersity indexes was less than 0.4 for both ZnO NPs. In addition, the HR-TEM micrographs of the biosynthesized ZnO NPs revealed a flower-like pattern for ZnO NPs-CFS and an irregular shape for ZnO NPs-CB with particles size of 291.1 and 191.8 nm, respectively. In this study, the biosynthesized ZnO NPs exhibited antibacterial activity against pathogenic bacteria in a concentration-dependent manner and showed biocompatibility with the Vero cell line at specific concentrations. Overall, CFS and CB of L. plantarum TA4 can potentially be used as a nanofactory for the biological synthesis of ZnO NPs.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Anjas Asmara Samsudin
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Mahdi ZS, Talebnia Roshan F, Nikzad M, Ezoji H. Biosynthesis of zinc oxide nanoparticles using bacteria: a study on the characterization and application for electrochemical determination of bisphenol A. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1835962] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Zahra Sadat Mahdi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Farid Talebnia Roshan
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Maryam Nikzad
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Hoda Ezoji
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| |
Collapse
|
29
|
Microbial Mediated Synthesis of Silver Nanoparticles by Lactobacillus Plantarum TA4 and its Antibacterial and Antioxidant Activity. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10196973] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The present study aimed to investigate the ability of Lactobacillus plantarum TA4 in tolerating Ag+ and its ability to produce silver nanoparticles (AgNPs). The biosynthesized AgNPs were characterized using UV–Visible spectroscopy (UV–Vis), dynamic light scattering (DLS), Fourier-transform infrared (FTIR), and high-resolution transmission electron microscope (HR-TEM). The cell biomass of L. plantarum TA4 demonstrated the ability to tolerate Ag+ at a concentration of 2 mM, followed by the formation of AgNPs. This was confirmed by the visual observation of color changes and a presence of maximum UV–Vis absorption centered at 429 nm. HR-TEM analysis revealed that the AgNPs were spherical with an average size of 14.0 ± 4.7 nm, while the SEM-EDX analysis detected that the particles were primarily located on the cell membrane of L. plantarum TA4. Further, DLS analysis revealed that the polydispersity index (PDI) value of biosynthesized AgNPs was 0.193, implying the monodispersed characteristic of NPs. Meanwhile, the FTIR study confirmed the involvement of functional groups from the cell biomass that involved in the reduction process. Moreover, biosynthesized AgNPs exhibited antibacterial activity against Gram-positive and Gram-negative pathogens in a concentration-dependent manner. Furthermore, the antioxidant property of biosynthesized AgNPs that was evaluated using the DPPH assay showed considerable antioxidant potential. Results from this study provide a sustainable and inexpensive method for the production of AgNPs.
Collapse
|
30
|
Pomastowski P, Król-Górniak A, Railean-Plugaru V, Buszewski B. Zinc Oxide Nanocomposites-Extracellular Synthesis, Physicochemical Characterization and Antibacterial Potential. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E4347. [PMID: 33007802 PMCID: PMC7579083 DOI: 10.3390/ma13194347] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/21/2020] [Accepted: 09/25/2020] [Indexed: 12/15/2022]
Abstract
This research presents, for the first time, the potential of the Lactobacillus paracasei LC20 isolated from sweet whey as a novel, effective and accessible source for post-cultured ZnO nanocomposites synthesis. The obtained nanocomposites were subjected to comprehensive characterization by a broad spectrum of instrumental techniques. Results of spectroscopic and microscopic analysis confirmed the hexagonal crystalline structure of ZnO in the nanometer size. The dispersion stability of the obtained nanocomposites was determined based on the zeta potential (ZP) measurements-the average ZP value was found to be -29.15 ± 1.05 mV in the 7-9 pH range. The ZnO nanocomposites (NCs) demonstrated thermal stability up to 130 °C based on the results of thermogravimetric TGA/DTG) analysis. The organic deposit on the nanoparticle surface was recorded by spectroscopic analysis in the infrared range (FT-IR). Results of the spectrometric study exhibited nanostructure-assisted laser desorption/ionization effects and also pointed out the presence of organic deposits and, what is more, allowed us to identify the specific amino acids and peptides present on the ZnO NCs surfaces. In this context, mass spectrometry (MS) data confirmed the nano-ZnO formation mechanism. Moreover, fluorescence data showed an increase in fluorescence signal in the presence of nanocomposites designed for potential use as, e.g., biosensors. Despite ZnO NCs' luminescent properties, they can also act as promising antiseptic agents against clinically relevant pathogens. Therefore, a pilot study on the antibacterial activity of biologically synthesized ZnO NCs was carried out against four strains (Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae and Pseudomonas aeruginosa) by using MIC (minimal inhibitory concentration). Additionally, the colony forming units (CFU) assay was performed and quantified for all bacterial cells as the percentage of viable cells in comparison to a control sample (untreated culture) The nanocomposites were effective among three pathogens with MIC values in the range of 86.25-172.5 μg/mL and showed potential as a new type of, e.g., medical path or ointment formulation.
Collapse
Affiliation(s)
- Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
| | - Anna Król-Górniak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 4 Wileńska Str., 87-100 Torun, Poland; (A.K.-G.); (V.R.-P.); (B.B.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 7 Gagarina Str., 87-100 Torun, Poland
| |
Collapse
|
31
|
Mohd Yusof H, Mohamad R, Zaidan UH, Rahman NA. Sustainable microbial cell nanofactory for zinc oxide nanoparticles production by zinc-tolerant probiotic Lactobacillus plantarum strain TA4. Microb Cell Fact 2020; 19:10. [PMID: 31941498 PMCID: PMC6964013 DOI: 10.1186/s12934-020-1279-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/03/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The use of microorganisms in the biosynthesis of zinc oxide nanoparticles (ZnO NPs) has recently emerged as an alternative to chemical and physical methods due to its low-cost and eco-friendly method. Several lactic acid bacteria (LAB) have developed mechanisms in tolerating Zn2+ through prevention against their toxicity and the production of ZnO NPs. The LAB's main resistance mechanism to Zn2+ is highly depended on the microorganisms' ability to interact with Zn2+ either through biosorption or bioaccumulation processes. Besides the inadequate studies conducted on biosynthesis with the use of zinc-tolerant probiotics, the understanding regarding the mechanism involved in this process is not clear. Therefore, this study determines the features of probiotic LAB strain TA4 related to its resistance to Zn2+. It also attempts to illustrate its potential in creating a sustainable microbial cell nanofactory of ZnO NPs. RESULTS A zinc-tolerant probiotic strain TA4, which was isolated from local fermented food, was selected based on the principal component analysis (PCA) with the highest score of probiotic attributes. Based on the 16S rRNA gene analysis, this strain was identified as Lactobacillus plantarum strain TA4, indicating its high resistance to Zn2+ at a maximum tolerable concentration (MTC) value of 500 mM and its capability of producing ZnO NPs. The UV-visible spectroscopy analysis proved the formations of ZnO NPs through the notable absorption peak at 380 nm. It was also found from the dynamic light scattering (DLS) analysis that the Z-average particle size amounted to 124.2 nm with monodisperse ZnO NPs. Studies on scanning electron microscope (SEM), energy-dispersive X-ray (EDX) spectroscopy, and Fourier-transform infrared spectroscopy (FT-IR) revealed that the main mechanisms in ZnO NPs biosynthesis were facilitated by the Zn2+ biosorption ability through the functional groups present on the cell surface of strain TA4. CONCLUSIONS The strong ability of zinc-tolerant probiotic of L. plantarum strain TA4 to tolerate high Zn2+ concentration and to produce ZnO NPs highlights the unique properties of these bacteria as a natural microbial cell nanofactory for a more sustainable and eco-friendly practice of ZnO NPs biosynthesis.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Nor'Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia. .,Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
32
|
Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. J Anim Sci Biotechnol 2019; 10:57. [PMID: 31321032 PMCID: PMC6615095 DOI: 10.1186/s40104-019-0368-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
In recent years, zinc oxide nanoparticles (ZnO NPs) have gained tremendous attention attributed to their unique properties. Notably, evidence has shown that zinc is an important nutrient in living organisms. As such, both prokaryotes and eukaryotes including bacteria, fungi and yeast are exploited for the synthesis of ZnO NPs by using microbial cells or enzyme, protein and other biomolecules compounds in either an intracellular or extracellular route. ZnO NPs exhibit antimicrobial properties, however, the properties of nanoparticles (NPs) are depended upon on their size and shape, which make them specific for various applications. Nevertheless, the desired size and shape of NPs can be obtained through the optimization process of microbes mediated synthesis by manipulating their reaction conditions. It should be noted that ZnO NPs are synthesized by various chemical and physical methods. Nonetheless, these methods are expensive and not environmentally friendly. On that account, the microbes mediated synthesis of ZnO NPs have rapidly evolved recently where the microbes are cleaner, eco-friendly, non-toxic and biocompatible as the alternatives to chemical and physical practices. Moreover, zinc in the form of NPs is more effective than their bulk counterparts and thus, they have been explored for many potential applications including in animals industry. Notably, with the advent of multi-drug resistant strains, ZnO NPs have emerged as the potential antimicrobial agents. This is mainly due to their superior properties in combating a broad spectrum of pathogens. Moreover, zinc is known as an essential trace element for most of the biological function in the animal's body. As such, the applications of ZnO NPs have been reported to significantly enhance the health and production of the farm animals. Thus, this paper reviews the biological synthesis of ZnO NPs by the microbes, the mechanisms of the biological synthesis, parameters for the optimization process and their potential application as an antimicrobial agent and feed supplement in the animal industry as well as their toxicological hazards on animals.
Collapse
Affiliation(s)
- Hidayat Mohd Yusof
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Uswatun Hasanah Zaidan
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| | - Nor’ Aini Abdul Rahman
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
- Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor Malaysia
| |
Collapse
|
33
|
|