1
|
Amiri Z, Halladj R, Shekarriz M, Rashidi A. Synthesis and application of recyclable magnetic cellulose nanocrystals for effective demulsification of water in crude oil emulsions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123042. [PMID: 38040188 DOI: 10.1016/j.envpol.2023.123042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 10/29/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
The development of eco-friendly, efficient, and economical demulsifiers for the demulsification of water in crude oil emulsion is one of the important issues in the petroleum industry. Demulsifiers with suitable performance in several demulsification methods are good choices for effective and economical demulsification. In this study, recyclable magnetic cellulose nanocrystals have been synthesized from cotton by a simple method and used in the demulsification of water in crude oil emulsions. Chemical and magnetic demulsification by magnetic cellulose nanocrystals has been investigated. In addition, the effects of time, temperature, and demulsifier concentration on the demulsification efficiency have been evaluated. According to the results, this demulsifier can be used as an effective demulsifier for both chemical and magnetic demulsification and displayed a demulsification efficiency of 100 % at 50 °C without a magnet and 90 % at 20 °C with a magnet. The chemical demulsification efficiency of Fe3O4 nanoparticles was investigated and it showed lower DE compared to magnetic cellulose nanocrystals. The recyclability tests of the demulsifier indicated that magnetic cellulose nanocrystals can be used up to 4 times. Finally, the demulsification mechanism and interfacial tension measurements revealed that this demulsifier reduced the interfacial tension between water and crude oil and increased the water droplet sizes.
Collapse
Affiliation(s)
- Zahra Amiri
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Rouein Halladj
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Marzieh Shekarriz
- Chemical, Polymeric, and Petrochemical Technology Research Division, Faculty of Research and Development in Downstream Petroleum Industry, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| |
Collapse
|
2
|
Silva BN, Teixeira JA, Cadavez V, Gonzales-Barron U. Mild Heat Treatment and Biopreservatives for Artisanal Raw Milk Cheeses: Reducing Microbial Spoilage and Extending Shelf-Life through Thermisation, Plant Extracts and Lactic Acid Bacteria. Foods 2023; 12:3206. [PMID: 37685139 PMCID: PMC10486694 DOI: 10.3390/foods12173206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
The microbial quality of raw milk artisanal cheeses is not always guaranteed due to the possible presence of pathogens in raw milk that can survive during manufacture and maturation. In this work, an overview of the existing information concerning lactic acid bacteria and plant extracts as antimicrobial agents is provided, as well as thermisation as a strategy to avoid pasteurisation and its negative impact on the sensory characteristics of artisanal cheeses. The mechanisms of antimicrobial action, advantages, limitations and, when applicable, relevant commercial applications are discussed. Plant extracts and lactic acid bacteria appear to be effective approaches to reduce microbial contamination in artisanal raw milk cheeses as a result of their constituents (for example, phenolic compounds in plant extracts), production of antimicrobial substances (such as organic acids and bacteriocins, in the case of lactic acid bacteria), or other mechanisms and their combinations. Thermisation was also confirmed as an effective heat inactivation strategy, causing the impairment of cellular structures and functions. This review also provides insight into the potential constraints of each of the approaches, hence pointing towards the direction of future research.
Collapse
Affiliation(s)
- Beatriz Nunes Silva
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.C.); (U.G.-B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
| | - José António Teixeira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory, 4710-057 Braga, Portugal
| | - Vasco Cadavez
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.C.); (U.G.-B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ursula Gonzales-Barron
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (V.C.); (U.G.-B.)
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
3
|
Ye F, Shen L, Liu S, Liu H, Zhang X, Zhang Z, Yang Y, Feng X, Tang Y, Xiang D, Mi Y, Yan X. Demulsification of amphiphilic gemini ionic liquids and its demulsification mechanism. CHEMOSPHERE 2022; 309:136650. [PMID: 36181854 DOI: 10.1016/j.chemosphere.2022.136650] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
This work aims to prepare two new amphiphilic and interfacial active gemini ionic liquids to treat crude oil and investigates its demulsification mechanism. Tetraethylene glycol was pretreated with thionyl chloride and used as a linker to connect succinimide or phthalimide, and then reacted with dodecyl benzene sulphonic acid to obtain the corresponding amphiphilic and interfacial active gemini ionic liquid STA or PTA, respectively. 1H nuclear magnetic resonance spectroscopy (1HNMR) and Fourier-transform infrared spectroscopy (FTIR) was used to determine the chemical structures. The demulsification tests showed the demulsification efficiency with 150 mg/L of STA or PTA at 60 °C for 30 min was 99.89% and 99.79%, respectively. Furthermore, the demulsification mechanism of STA and PTA were studied and the prominent demulsification ability of STA and PTA were attributed to the better interfacial activity and amphipathy which could destroy the asphaltenes interfacial film. These results showed that STA and PTA had excellent demulsification efficiency, which promised application in petroleum industry.
Collapse
Affiliation(s)
- Fan Ye
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China
| | - Shi Liu
- Chuanqing Drilling Engineering Co. Ltd., China National Petroleum Corporation, Chengdu, 610051, PR China
| | - Huanyu Liu
- The Shale Oil Development Department of Longdong Area, The 3rd Oil Production Plant, PetroChina Changqing Oilfield Company, Qingyang, 750000, PR China
| | - Xinyuan Zhang
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China
| | - Zejun Zhang
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China
| | - Yuqi Tang
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China
| | - Dong Xiang
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China.
| | - Xuemin Yan
- School of Chemistry & Environmental Engineering, Hubei Engineering Research Centers for Clean Production and Pollution Control of Oil and Gas Fields, Yangtze University, Jingzhou, 430023, China.
| |
Collapse
|
4
|
|
5
|
Synthesis and characterization of a novel reticulated multi-branched fluorinated polyether demulsifier for w/o emulsion demulsification. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03020-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Faisal W, Almomani F. A critical review of the development and demulsification processes applied for oil recovery from oil in water emulsions. CHEMOSPHERE 2022; 291:133099. [PMID: 34848221 DOI: 10.1016/j.chemosphere.2021.133099] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/19/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The formation of stable emulsions is a fundamental problem in oil industry that can result in a sequence of environmental and operational problems. Chemical demulsification is extensively applied for the recovery of oil from water as well as water from oil. This review introduces different chemical demulsifiers applied for the demulsification and recovery of oil from oil in water (O/W) emulsions. Main types of surfactants (anionic, cationic, nonionics and amphoteric) involved in the formation of emulsions and enhances their stability were discussed. Promising demulsifiers such as nanoparticle (NP), hyperbranched polymers, and ionic liquids (IL), which achieved high oil recovery rate, parameters influencing demulsification efficiency and demulsification mechanisms were explored. Lastly, improvements, challenges, and new changes being made to chemical demulsifiers were underlined. Functionalized magnetic nanoparticles and hyperbranched polymers were very effective in recovering oil from O/W emulsions with an efficiency >95%. Polymers with highly hydrophilic content and high molecular weight can achieve excellent oil recovery rates due to higher interfacial activity, higher dispersion, and presence of specific functional groups. Although ionic liquids could achieve oil recovery up to 90%, high cost limits their applications. NPs showed excellent oil recovery behavior at low concentrations and ambient temperature. Demulsification efficiency of NPs can be enhanced by functionalize with other components (e.g., polymers and surfactants), while service life can be extend by silica coating. Future challenges include scaling up the use of NPs in oil recovery process and highlighting contrasts between lab-scale and field-scale applications.
Collapse
Affiliation(s)
- Wamda Faisal
- College of Engineering, Department of Chemical Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar
| | - Fares Almomani
- College of Engineering, Department of Chemical Engineering, Qatar University, P.O. Box: 2713, Doha, Qatar.
| |
Collapse
|
7
|
Ye F, Zhang Z, Ao Y, Li B, Chen L, Shen L, Feng X, Yang Y, Yuan H, Mi Y. Demulsification of water-in-crude oil emulsion driven by a carbonaceous demulsifier from natural rice husks. CHEMOSPHERE 2022; 288:132656. [PMID: 34710449 DOI: 10.1016/j.chemosphere.2021.132656] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/02/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Removing emulsified water from a water-in-crude oil (W/O) emulsion is critically required prior to downstream processing in the petroleum industry. In this work, environmentally friendly and amphipathic rice husk carbon (RHC) demulsifier was prepared by a simple carbonization process in a muffle furnace using rice husks as starting materials. RHC was characterized by field-emission scanning electron microscope, energy dispersive spectrometer, Fourier transform infrared spectrometer, ultraviolet-visible spectrometer, powder X-ray diffraction, zeta potential and synchronal thermal analyzer. The factors such as dosage, temperature, settling time, pH value and salinity were systematically investigated. The results indicated that the dehydration efficiency (DE) reached as high as 96.99% with 600 mg/L of RHC for 80 min at 70 °C. RHC exhibited an optimal DE under neutral condition, but it was also effective under acidic and alkaline conditions. Also, it had an excellent salt tolerance. The possible demulsification mechanism was explored by interfacial properties, different treatment methods for RHC and microexamination. The demulsification of RHC is attributed to its high interfacial activity, oxygen-containing groups and content of silica. It indicates that RHC is an effective demulsifier for the treatment of the W/O emulsion.
Collapse
Affiliation(s)
- Fan Ye
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Zejun Zhang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yiling Ao
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Bin Li
- Xinjiang Tarim Oilfield Construction Engineering Co., Ltd., PetroChina Tarim Oilfield Company, Korla, 841000, PR China
| | - Lihan Chen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Huaikui Yuan
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, PR China.
| |
Collapse
|
8
|
Hu W, Ao Y, Xie F, Kuang J, Shen L, Feng X, Yang Y, Mi Y. Synthesis and demulsification performance of a hyperbranched polymer with melamine as central core. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2021.1984938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wenxiang Hu
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Yiling Ao
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Fangqin Xie
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Jiazhe Kuang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, P.R. China
| |
Collapse
|
9
|
Shen L, Hu W, Lei Z, Peng J, Zhu E, Zhang X, Yang M, Feng X, Yang Y, Mi Y. Nanoscale silica-coated graphene oxide and its demulsifying performance in water-in-oil and oil-in-water emulsions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55454-55464. [PMID: 34132965 DOI: 10.1007/s11356-021-14888-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
In current work, GO@SiO2 nanocomposite was prepared by coating nanoscale silica onto graphene oxide (GO). GO@SiO2 was characterized with scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (IF-IR). Additionally, the demulsifying performance of GO@SiO2 was investigated by bottle test. The results showed that GO@SiO2 had a good demulsifying performance in both oil-in-water (O/W) and water-in-oil (W/O) emulsions. When the concentration of GO@SiO2 was 200 ppm in the O/W emulsion, the optimal light transmittance of aqueous phase (LTA) and corresponding oil removal rate (ORR) at room temperature could reach 86.9% and 99.48%, respectively. Also, GO@SiO2 had an excellent salt tolerance under acidic condition. Furthermore, GO@SiO2 also could demulsify the W/O emulsion, and the efficiency at 70 °C could reach 80.5% when the concentration was 400 ppm.
Collapse
Affiliation(s)
- Liwei Shen
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Wenxiang Hu
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Zhiyun Lei
- Boda Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Jianguo Peng
- Boda Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Enxiong Zhu
- Boda Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Xuanwei Zhang
- Boda Oil and Gas Development Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Ming Yang
- Oil and Gas Budget Management Department, PetroChina Tarim Oilfield Company, Korla, 841000, People's Republic of China
| | - Xuening Feng
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Ying Yang
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China
| | - Yuanzhu Mi
- School of Chemistry & Environmental Engineering, Yangtze University, Jingzhou, 434023, People's Republic of China.
| |
Collapse
|
10
|
Yu Z, Tian R, Liu D, Zhang Y, Li H. Aggregation kinetics of binary systems containing kaolinite and Pseudomonas putida induced by different 1:1 electrolytes: specific ion effects. PEERJ PHYSICAL CHEMISTRY 2020. [DOI: 10.7717/peerj-pchem.12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background
The interactions between colloidal particles in the binary systems or mixture colloids containing clay minerals and bacteria have important influences on formations and stabilities of soil aggregates, transportations of soil water, as well as biological activities of microorganisms. How the interfacial reaction of metal ions affects their interaction therefore becomes an important scientific issue.
Methods
Dynamic light scattering studies on the aggregation kinetics of mixture colloids containing kaolinite and Pseudomonas putida (P. putida) were conducted in this study.
Results
Aggregation could be observed between kaolinite and kaolinite, between kaolinite and P. putida when P. putida content was less than 33.3%. Additionally, aggregation rates decreased with increasing P. putida content. The critical coagulation concentrations and activation energies indicated that there were strong specific ion effects on the aggregation of mixture colloids. Most importantly, the activation energy increased sharply with increasing P. putida content, which might result from the lower Hamaker constant of P. putida compared with that of kaolinite.
Contributions
(1) Strong specific ion effects on mixture colloids aggregation of kaolinite-P. putida were observed; (2) the aggregation behavior of mixture colloids was determined by the average effects of mixture colloids, rather than the specific component. This finding provides an important methodological guide for further studies on the colloidal aggregation behavior of mixture systems with organic and inorganic materials.
Collapse
Affiliation(s)
- Zhaoxuan Yu
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Rui Tian
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Dian Liu
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Yekun Zhang
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| | - Hang Li
- Key Laboratory of Soil Multi-Scale Interfacial Process, College of Resource and Environment, Southwest University, Chongqing, China
| |
Collapse
|
11
|
Carbon nanotubes grafted with β-cyclodextrin by an ultrasonication method and its demulsification performance in oily wastewater. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Ye F, Wang Z, Mi Y, Kuang J, Jiang X, Huang Z, Luo Y, Shen L, Yuan H, Zhang Z. Preparation of reduced graphene oxide/titanium dioxide composite materials and its application in the treatment of oily wastewater. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2019.124251] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Preparation of oxidized carbon black grafted with nanoscale silica and its demulsification performance in water-in-oil emulsion. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123878] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Verheyen D, Xu XM, Govaert M, Baka M, Skåra T, Van Impe JF. Food Microstructure and Fat Content Affect Growth Morphology, Growth Kinetics, and Preferred Phase for Cell Growth of Listeria monocytogenes in Fish-Based Model Systems. Appl Environ Microbiol 2019; 85:e00707-19. [PMID: 31175191 PMCID: PMC6677851 DOI: 10.1128/aem.00707-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/30/2019] [Indexed: 11/20/2022] Open
Abstract
Food microstructure significantly affects microbial growth dynamics, but knowledge concerning the exact influencing mechanisms at a microscopic scale is limited. The food microstructural influence on Listeria monocytogenes (green fluorescent protein strain) growth at 10°C in fish-based food model systems was investigated by confocal laser scanning microscopy. The model systems had different microstructures, i.e., liquid, xanthan (high-viscosity liquid), aqueous gel, and emulsion and gelled emulsion systems varying in fat content. Bacteria grew as single cells, small aggregates, and microcolonies of different sizes (based on colony radii [size I, 1.5 to 5.0 μm; size II, 5.0 to 10.0 μm; size III, 10.0 to 15.0 μm; and size IV, ≥15 μm]). In the liquid, small aggregates and size I microcolonies were predominantly present, while size II and III microcolonies were predominant in the xanthan and aqueous gel. Cells in the emulsions and gelled emulsions grew in the aqueous phase and on the fat-water interface. A microbial adhesion to solvent assay demonstrated limited bacterial nonpolar solvent affinities, implying that this behavior was probably not caused by cell surface hydrophobicity. In systems containing 1 and 5% fat, the largest cell volume was mainly represented by size I and II microcolonies, while at 10 and 20% fat a few size IV microcolonies comprised nearly the total cell volume. Microscopic results (concerning, e.g., growth morphology, microcolony size, intercolony distances, and the preferred phase for growth) were related to previously obtained macroscopic growth dynamics in the model systems for an L. monocytogenes strain cocktail, leading to more substantiated explanations for the influence of food microstructural aspects on lag phase duration and growth rate.IMPORTANCEListeria monocytogenes is one of the most hazardous foodborne pathogens due to the high fatality rate of the disease (i.e., listeriosis). In this study, the growth behavior of L. monocytogenes was investigated at a microscopic scale in food model systems that mimic processed fish products (e.g., fish paté and fish soup), and the results were related to macroscopic growth parameters. Many studies have previously focused on the food microstructural influence on microbial growth. The novelty of this work lies in (i) the microscopic investigation of products with a complex composition and/or structure using confocal laser scanning microscopy and (ii) the direct link to the macroscopic level. Growth behavior (i.e., concerning bacterial growth morphology and preferred phase for growth) was more complex than assumed in common macroscopic studies. Consequently, the effectiveness of industrial antimicrobial food preservation technologies (e.g., thermal processing) might be overestimated for certain products, which may have critical food safety implications.
Collapse
Affiliation(s)
- Davy Verheyen
- BioTeC+, Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- OPTEC, Optimization in Engineering Center of Excellence, KU Leuven, Ghent, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, KU Leuven, Ghent, Belgium
| | - Xiang Ming Xu
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway
| | - Marlies Govaert
- BioTeC+, Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- OPTEC, Optimization in Engineering Center of Excellence, KU Leuven, Ghent, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, KU Leuven, Ghent, Belgium
| | - Maria Baka
- BioTeC+, Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- OPTEC, Optimization in Engineering Center of Excellence, KU Leuven, Ghent, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, KU Leuven, Ghent, Belgium
| | | | - Jan F Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, KU Leuven, Ghent, Belgium
- OPTEC, Optimization in Engineering Center of Excellence, KU Leuven, Ghent, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, KU Leuven, Ghent, Belgium
| |
Collapse
|
15
|
An insight into the solar demulsification of highly emulsified water produced from oilfields by monitoring the viscosity, zeta potential, particle size and rheology. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|