1
|
Osanlóo DT, Mahlin D, Bjerregaard S, Bergenståhl B, Millqvist-Fureby A. Exploring vacuum foam drying as an alternative to freeze-drying and spray drying for a human lipase. Int J Pharm 2024; 667:124883. [PMID: 39490556 DOI: 10.1016/j.ijpharm.2024.124883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/05/2024]
Abstract
This article compares and explores vacuum foam-drying as an alternative drying technology to freeze-drying and spray drying for a recombinant human lipase as the model protein. Materials characteristics such as structure, surface composition and the solid-state properties of the dry materials were compared and investigated. Moreover, the technical functionality in terms of reconstitution characteristics and the lipase stability were also investigated. The stability of the lipase was evaluated through activity measurements. Sucrose and dextran D40 (40 kDa) were used as matrix former and the surfactant α-dodecyl maltoside was used as surface active additive. The study demonstrated that the drying technique greatly influenced the material structure and composition which in turn affected the reconstitution characteristics. The lipase was overrepresented at the material surface in declining order spray-dried > vacuum foam-dried > freeze-dried. The lipase activity was retained up to 10 % lipase content in solids, but at 20 % lipase a loss of activity was observed for all drying techniques. Phase separation in the solid material may be an explanation. Vacuum foam-drying shows promise as an alternative drying technique for the lipase, and potentially other proteins.
Collapse
Affiliation(s)
- Daniel Tristan Osanlóo
- RISE Research Institutes of Sweden, Box 5604, SE-114 86 Stockholm, Sweden; Lund University, Division of Food and Pharma, Box 117, SE-221 00 Lund, Sweden.
| | - Denny Mahlin
- RISE Research Institutes of Sweden, Box 5604, SE-114 86 Stockholm, Sweden.
| | - Simon Bjerregaard
- Ferring Pharmaceuticals A/S, Amager Strandvej 405, 2770 Kastrup, Denmark.
| | - Björn Bergenståhl
- Lund University, Division of Food and Pharma, Box 117, SE-221 00 Lund, Sweden.
| | - Anna Millqvist-Fureby
- RISE Research Institutes of Sweden, Box 5604, SE-114 86 Stockholm, Sweden; Lund University, Division of Food and Pharma, Box 117, SE-221 00 Lund, Sweden.
| |
Collapse
|
2
|
Tristan Osanlóo D, Mahlin D, Bjerregaard S, Bergenståhl B, Millqvist-Fureby A. Formulation factors affecting foam properties during vacuum foam-drying. Int J Pharm 2024; 652:123803. [PMID: 38218506 DOI: 10.1016/j.ijpharm.2024.123803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
This paper explores how vacuum foam-drying of a protein is influenced by formulation parameters by investigating the foam structure, physical properties of the foam, and the stability of the protein. Recombinant human bile salt-stimulated lipase was used as a model of a protein drug. The stability of the lipase was evaluated through activity measurements. Two disaccharides (sucrose and trehalose), strongly tending to an amorphous form, were used as matrix formers, and the physical properties were assessed through residual water content, glass transition temperature, and crystalline state. Moreover, some formulations included surfactants with different sizes and structures of the head group. The alkyl chain length was kept constant to only investigate the impact of the surfactant head group, in the presence of the lipase, on the foamability and surface coverage of the lipase. The study demonstrated that the lipase allowed for a dry, solid foam with a foam overrun of up to 2600 %. The wall thickness of the dry, solid foam was estimated to be 20-50 µm. Clear differences between sucrose and trehalose as matrix former were identified. The lipase showed no tendency to lose activity because of the drying and rehydration, despite a proportion of the lipase covering the surfaces of the dry material.
Collapse
Affiliation(s)
- Daniel Tristan Osanlóo
- RISE Research Institutes of Sweden, Box 5604, Stockholm SE-114 86, Sweden; University of Lund, Department of Food Technology, Engineering, and Nutrition, Box 117, Lund SE-221 00, Sweden.
| | - Denny Mahlin
- RISE Research Institutes of Sweden, Box 5604, Stockholm SE-114 86, Sweden.
| | - Simon Bjerregaard
- Ferring Pharmaceuticals A/S, Amager Strandvej 405, Kastrup 2770, Denmark.
| | - Björn Bergenståhl
- University of Lund, Department of Food Technology, Engineering, and Nutrition, Box 117, Lund SE-221 00, Sweden.
| | - Anna Millqvist-Fureby
- RISE Research Institutes of Sweden, Box 5604, Stockholm SE-114 86, Sweden; University of Lund, Department of Food Technology, Engineering, and Nutrition, Box 117, Lund SE-221 00, Sweden.
| |
Collapse
|
3
|
Zhang Y, Pandiselvam R, Liu Y. Understanding the factors affecting the surface chemical composition of dairy powders: a systematic review. Crit Rev Food Sci Nutr 2022; 64:241-255. [PMID: 35916834 DOI: 10.1080/10408398.2022.2105803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Dairy powder, with abundant chemical components such as protein, fat, and lactose possessing diverse physical and chemical structures, can exhibit a surface composition distinct from its bulk content during the conversion of liquid milk into dry powder. Surface chemical composition is a significant parameter in the dairy industry, as it is directly associated with the techno-functional properties of dairy powder products. The current work provides an overview of the factors influencing the surface composition of dairy powders such as the bulk composition of raw milk (animal source and formulation), liquid dairy processing (homogenization, thermal treatment, and evaporation), the drying process (drying methods as well as operating conditions during the most commonly used spray drying), and storage conditions (temperature, relative humidity, and duration). The underlying mechanisms involved in the variations of particle surface composition include the mechanical properties of emulsion, milk fat globules redistribution caused by mechanical forces, adsorption competition and interactions of ingredients at the water/air interface, dehydration-induced alterations in particle structure, corresponding solid/solutes segregation differentiation during spray drying, and lactose crystallization-induced increase in surface fat during storage. Additionally, future research is suggested to explore the effects of emerging processing technologies on the surface composition modification of dairy powders.
Collapse
Affiliation(s)
- Yue Zhang
- College of Engineering, China Agricultural University, Beijing, China
| | - R Pandiselvam
- Division of Physiology, Biochemistry and Post-Harvest Technology, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
4
|
Hong L, Salentinig S. Functional food colloids: studying structure and interactions during digestion. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Wu S, Cronin K, Fitzpatrick J, Miao S. Updating insights into the rehydration of dairy-based powder and the achievement of functionality. Crit Rev Food Sci Nutr 2021; 62:6664-6681. [PMID: 33792423 DOI: 10.1080/10408398.2021.1904203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Dairy-based powder had considerable development in the recent decade. Meanwhile, the increased variety of dairy-based powder led to the complex difficulties of rehydrating dairy-based powder, which could be the poor wetting or dissolution of powder. To solve these various difficulties, previous studies investigated the rehydration of powder by mechanical and chemical methods on facilitating rehydration, while strategies were designed to improve the rate-limiting rehydration steps of different powder. In this review, special emphasis is paid to the surface and structure of the dairy-based powder, which was accountable for understanding rehydration and the rate-limiting step. Besides, the advantage and disadvantage of methods employed in rehydration were described and compared. The achievement of the powder functionality was finally discussed and correlated with the rehydration methods. It was found that the surface and structure of dairy-based powder were decided by the components and production of powder. Post-drying methods like agglomeration and coating can tailor the surface and structure of powder afterwards to obtain better rehydration. The merit of the mechanical method is that it can be applied to rehydrate dairy-based powder without any addition of chemicals. Regarding chemical methods, calcium chelation is proved to be an effective chemical in rehydration casein-based powder.
Collapse
Affiliation(s)
- Shaozong Wu
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland.,Process & Chemical Engineering, School of Engineering, University College Cork, Cork, Ireland
| | - Kevin Cronin
- Process & Chemical Engineering, School of Engineering, University College Cork, Cork, Ireland
| | - John Fitzpatrick
- Process & Chemical Engineering, School of Engineering, University College Cork, Cork, Ireland
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Co. Cork, Ireland
| |
Collapse
|
6
|
Particle morphology and rehydration properties of spray-dried microgels and fractal aggregates with varying fractions of native milk serum proteins. Int Dairy J 2021. [DOI: 10.1016/j.idairyj.2020.104862] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Andersson I, Bergenståhl B, Alexander M, Paulsson M, Glantz M. Effects of feed composition, protein denaturation and storage of milk serum protein/lactose powders on rehydration properties. Int Dairy J 2020. [DOI: 10.1016/j.idairyj.2020.104763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
8
|
Andersson I, Bergenståhl B, Alexander M, Paulsson M, Glantz M. Effects of feed composition, protein denaturation and storage of milk serum protein/lactose powders on lactosylation. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14663] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ida‐Marie Andersson
- Department of Food Technology, Engineering and Nutrition Lund University P.O. Box 124SE‐221 00Lund Sweden
| | - Björn Bergenståhl
- Department of Food Technology, Engineering and Nutrition Lund University P.O. Box 124SE‐221 00Lund Sweden
| | - Marcela Alexander
- Arla Foods Ingredients Group P/S Sønderupvej 26DK‐6920Videbæk Denmark
| | - Marie Paulsson
- Department of Food Technology, Engineering and Nutrition Lund University P.O. Box 124SE‐221 00Lund Sweden
| | - Maria Glantz
- Department of Food Technology, Engineering and Nutrition Lund University P.O. Box 124SE‐221 00Lund Sweden
| |
Collapse
|
9
|
Metilli L, Francis M, Povey M, Lazidis A, Marty-Terrade S, Ray J, Simone E. Latest advances in imaging techniques for characterizing soft, multiphasic food materials. Adv Colloid Interface Sci 2020; 279:102154. [PMID: 32330733 DOI: 10.1016/j.cis.2020.102154] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 04/03/2020] [Indexed: 01/29/2023]
Abstract
Over the last two decades, the development and production of innovative, customer-tailored food products with enhanced health benefits have seen major advances. However, the manufacture of edible materials with tuned physical and organoleptic properties requires a good knowledge of food microstructure and its relationship to the macroscopic properties of the final food product. Food products are complex materials, often consisting of multiple phases. Furthermore, each phase usually contains a variety of biological macromolecules, such as carbohydrates, proteins and lipids, as well as water droplets and gas bubbles. Micronutrients, such as vitamins and minerals, might also play an important role in determining and engineering food microstructure. Considering this complexity, highly advanced physio-chemical techniques are required for characterizing the microstructure of food systems prior to, during and after processing. Fast, in situ techniques are also essential for industrial applications. Due to the wide variety of instruments and methods, the scope of this paper is focused only on the latest advances of selected food characterization techniques, with emphasis on soft, multi-phasic food materials.
Collapse
|
10
|
Synergistic effects of whey protein isolate and amorphous sucrose on improving the viability and stability of powdered Lactobacillus salivarius NRRL B-30514. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|