1
|
Qin Z, Fang W, Jiang Q, Li J, Zhang H. The urchin-like gold nanoparticles/poly(ε-caprolactone)/chitosan electrospun nanofibers for antibacterial active packaging. Int J Biol Macromol 2024; 274:133287. [PMID: 38909730 DOI: 10.1016/j.ijbiomac.2024.133287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/01/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Inspired by the natural antimicrobial effect of the topographical features of insect wings, this study prepared urchin-like gold nanoparticles (UGNPs) and deposited them on poly(ε-caprolactone) (PCL)/chitosan (P/C) electrospun nanofiber film to strengthen antibacterial activities of this active packaging. Results showed that L-Dopa was a suitable reducing agent to prepare UGNPs, and the spine length of UGNPs increased from 21.23 to 35.83 nm as the molar ratio of L-Dopa:HAuCl4 increased from 1 to 3. As the nanofiber film was immersed in the nanoparticle solution for a longer time, the UGNP content in P/C nanofibers increased. As the spine length of UGNPs and depositing UGNP content increased, the inhibition rate against S. aureus and E. coli. of P/C nanofiber film increased. In addition, P/C nanofiber film deposited with UGNPs also exhibited good thermal stability, hydrophilicity, mechanical strength, and water vapor permeability, exhibiting its potential as an antibacterial active packaging.
Collapse
Affiliation(s)
- Zeyu Qin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Wangyang Fang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qinbo Jiang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiawen Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Gao Q, He X, He L, Lin J, Wang L, Xie Y, Wu A, Li J. Hollow Cu 2-xSe-based nanocatalysts for combined photothermal and chemodynamic therapy in the second near-infrared window. NANOSCALE 2023; 15:17987-17995. [PMID: 37906209 DOI: 10.1039/d3nr03260d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Chemodynamic therapy (CDT) and photothermal therapy (PTT) have gained popularity due to their non-invasive characteristics and satisfying therapeutic expectations. A Cu-based nanomaterial serving as a Fenton-like nanocatalyst for CDT together with a photothermal agent for simultaneous PTT seems to be a powerful strategy. In this work, the morphological effect of Cu2-xSe nanoparticles on CDT and PTT was systematically investigated. In particular, the hollow octahedral Cu2-xSe nanoparticles exhibited higher photothermal and chemodynamic performance than that of spherical or cubic Cu2-xSe nanoparticles in the second near-infrared (NIR-II) window. In addition, the octahedral Cu2-xSe nanoparticles were further loaded with the autophagy inhibitor chloroquine (CQ) and connected with the targeting neuropeptide Y ligand, and shown to work as a novel therapeutic platform (Cu2-xSe@CQ@NPY), holding an immense potential to achieve synergetic enhancement of CDT/PTT with a positive therapeutic outcome for breast cancer.
Collapse
Affiliation(s)
- Qianqian Gao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuelu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Lulu He
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Jie Lin
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Le Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Yujiao Xie
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Cixi Institute of Biomedical Engineering, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, 516000, China
| |
Collapse
|
3
|
Lee SJ, Jang H, Lee DN. Recent advances in nanoflowers: compositional and structural diversification for potential applications. NANOSCALE ADVANCES 2023; 5:5165-5213. [PMID: 37767032 PMCID: PMC10521310 DOI: 10.1039/d3na00163f] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023]
Abstract
In recent years, nanoscience and nanotechnology have emerged as promising fields in materials science. Spectroscopic techniques like scanning tunneling microscopy and atomic force microscopy have revolutionized the characterization, manipulation, and size control of nanomaterials, enabling the creation of diverse materials such as fullerenes, graphene, nanotubes, nanofibers, nanorods, nanowires, nanoparticles, nanocones, and nanosheets. Among these nanomaterials, there has been considerable interest in flower-shaped hierarchical 3D nanostructures, known as nanoflowers. These structures offer advantages like a higher surface-to-volume ratio compared to spherical nanoparticles, cost-effectiveness, and environmentally friendly preparation methods. Researchers have explored various applications of 3D nanostructures with unique morphologies derived from different nanoflowers. The nanoflowers are classified as organic, inorganic and hybrid, and the hybrids are a combination thereof, and most research studies of the nanoflowers have been focused on biomedical applications. Intriguingly, among them, inorganic nanoflowers have been studied extensively in various areas, such as electro, photo, and chemical catalysis, sensors, supercapacitors, and batteries, owing to their high catalytic efficiency and optical characteristics, which arise from their composition, crystal structure, and local surface plasmon resonance (LSPR). Despite the significant interest in inorganic nanoflowers, comprehensive reviews on this topic have been scarce until now. This is the first review focusing on inorganic nanoflowers for applications in electro, photo, and chemical catalysts, sensors, supercapacitors, and batteries. Since the early 2000s, more than 350 papers have been published on this topic with many ongoing research projects. This review categorizes the reported inorganic nanoflowers into four groups based on their composition and structure: metal, metal oxide, alloy, and other nanoflowers, including silica, metal-metal oxide, core-shell, doped, coated, nitride, sulfide, phosphide, selenide, and telluride nanoflowers. The review thoroughly discusses the preparation methods, conditions for morphology and size control, mechanisms, characteristics, and potential applications of these nanoflowers, aiming to facilitate future research and promote highly effective and synergistic applications in various fields.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University Seoul 01897 Korea
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University Seoul 01897 Korea
| |
Collapse
|
4
|
Yang R, Zhang Z, Miao N, Fang W, Xiao Z, Shen X, Xin W. High-Yield Gold Nanohydrangeas on Three-Dimensional Carbon Nanotube Foams for Surface-Enhanced Raman Scattering Sensors. ACS OMEGA 2023; 8:26973-26981. [PMID: 37546592 PMCID: PMC10399187 DOI: 10.1021/acsomega.3c01802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023]
Abstract
Recently, carbon nanomaterial-supported plasmonic nanocrystals used as high-performance surface-enhanced Raman scattering (SERS) substrates have attracted increasing attention due to their ultra-high sensitivity of detection. However, most of the work focuses on the design of 2-D planar substrates with traditional plasmonic structures, such as nanoparticles, nanorods, nanowires, and so forth. Here, we report a novel strategy for the preparation of high-yield Au nanohydrangeas on three-dimensional porous polydopamine (PDA)/polyvinyl alcohol (PVA)/carbon nanotube (CNT) foams. The structures and growth mechanisms of these specific Au nanocrystals are systematically investigated. PDA plays the role of both a reducing agent as well as an anchoring site for Au nanohydrangeas' growth. We also show that the ratio of surfactant KBr to the gold precursor (HAuCl4) is key to obtain these structures in a manner of high production. Moreover, the substrate of the CNT foam-Au nanohydrangea hybrid can be employed as SERS sensors and can detect the analytes down to 10-9 M.
Collapse
Affiliation(s)
- Rong Yang
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| | - Zhen Zhang
- Shandong
Institute of Hydrogen Energy Technology, 25F, Hydrogen Building, No. 3189 Qilu Avenue, Huaiyin District, Jinan, Shandong 250000, China
- China
EV100 Hydrogen Center, Intelligent Manufacturing
Workshop, No. 27 Jiancaicheng
Zhong Road, Haidian District, Beijing 100096, China
| | - Naiqian Miao
- Shandong
Institute of Hydrogen Energy Technology, 25F, Hydrogen Building, No. 3189 Qilu Avenue, Huaiyin District, Jinan, Shandong 250000, China
- China
EV100 Hydrogen Center, Intelligent Manufacturing
Workshop, No. 27 Jiancaicheng
Zhong Road, Haidian District, Beijing 100096, China
| | - Weichen Fang
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| | - Zuo Xiao
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| | - Xiaodong Shen
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| | - Wenbo Xin
- College
of Materials Science and Engineering, Nanjing
Tech University, No. 30 Puzhu South Road, Jiangbei New Area, Nanjing, Jiangsu 211816, China
| |
Collapse
|
5
|
Chen X, Qi Y, He B, Liang Y, Lei Y, Sun J. Fabrication of Adjustable Au/Carbon Hybrid Nanozymes with Photothermally Enhanced Peroxidase Activity and Ultra-sensitivity for Glutathione Detection. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20788-20799. [PMID: 37071845 DOI: 10.1021/acsami.3c02420] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Au nanozymes are extensively researched for their photothermal effect and catalytic performance, but overcoming the inherent defects of poor dispersibility and thermal stability through complementary materials will expand their prospects for biological applications. Herein, several novel CAu nanozymes were fabricated by in situ reduction of chloroauric acid on hollow carbon nanospheres (HCNs). Through regulating the number of reductions, sesame ball-shaped CAu (sCAu) with highly dispersed Au nanoparticles and diversity-shaped CAu (dCAu) were obtained. The number and morphology of loaded Au nanoparticles, absorption spectra, and hydrophilicity of CAu nanozymes were systematically characterized to demonstrate the flexibility of this novel method. The high-efficiency peroxidase-like sCAu0.3 nanozyme with hyperthermia-activated property was then screened for later bio-application. It is worth mentioning that its photothermal-promoted peroxidase-like activity could be achieved under near-infrared laser irradiation. Moreover, sCAu0.3 could specifically achieve glutathione detection in human blood samples. This method will provide a protocol for the regulation of CAu nanozymes to adapt to bio-detection applications.
Collapse
Affiliation(s)
- Xinyan Chen
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Qi
- China Meat Research Center, Beijing 100068, PR China
| | - Bin He
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Liang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Yu Lei
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jian Sun
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, PR China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
6
|
Zhong S, Hang L, Wen L, Zhang T, Cao A, Zeng P, Zhang H, Liu D, Cai W, Li Y. Rapid controllable synthesis of branched Au superparticles: formation mechanism of toggling the growth mode and their applications in optical broadband absorption. NANOSCALE ADVANCES 2023; 5:1776-1783. [PMID: 36926572 PMCID: PMC10012854 DOI: 10.1039/d3na00008g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
We develop a tunable, ultrafast (5 seconds), and mass-producible seed-mediated synthesis method to prepare branched Au superparticles consisting of multiple small Au island-like nanoparticles by a wet chemical route. We reveal and confirm the toggling formation mechanism of Au superparticles between the Frank-van der Merwe (FM) growth mode and the Volmer-Weber (VW) growth mode. The key factor of this special structure is the frequent toggling between the FM (layer by layer) growth mode and the VW (island) growth mode induced by 3-aminophenol, which is continuously absorbed on the surface of newborn Au nanoparticles, leading to a relatively high surface energy during the overall synthesis process, thus achieving an island on island growth. Such Au superparticles demonstrate broadband absorption from visible to near-infrared regions due to their multiple plasmonic coupling and hence they have important applications in sensors, photothermal conversion and therapy, etc. We also exhibit the excellent properties of Au superparticles with different morphologies, such as NIR-II photothermal conversion and therapy and SERS detection. The photothermal conversion efficiency under 1064 nm laser irradiation was calculated to be as high as 62.6% and they exhibit robust photothermal therapy efficiency. This work provides insight into the growth mechanism of plasmonic superparticles and develops a broadband absorption material for highly efficient optical applications.
Collapse
Affiliation(s)
- Shichuan Zhong
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Lifeng Hang
- The Department of Medical Imaging, Guangdong Second Provincial General Hospital Guangzhou 518037 P. R. China
| | - Lulu Wen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Tao Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
- School of Physical and Mathematical Sciences, Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - An Cao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Pan Zeng
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Hanlin Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Dilong Liu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| | - Yue Li
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences Hefei 230031 Anhui P. R. China
| |
Collapse
|
7
|
Tada H, Naya SI, Sugime H. Near Infrared Light-to-Heat Conversion for Liquid-Phase Oxidation Reactions by Antimony-Doped Tin Oxide Nanocrystals. Chemphyschem 2022; 24:e202200696. [PMID: 36535899 DOI: 10.1002/cphc.202200696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Effective utilization of the sunlight for chemical reactions is pivotal for dealing with the growing energy and environmental issues. So far, much effort has been focused on the development of semiconductor photocatalysts responsive to UV and visible light. However, the near infrared and infrared (NIR-IR) light occupying ∼50 % of the solar energy has usually been wasted because of the low photon energy insufficient for the band gap excitation. Antimony doping into SnO2 (ATO) induces strong absorption due to the conduction band electrons in the NIR region. The absorbed light energy is eventually converted to heat via the interaction between hot electrons and phonons. This Concept highlights the photothermal effect of ATO nanocrystals (NCs) on liquid-phase oxidation reactions through the NIR light-to-heat conversion. Under NIR illumination even at an intensity of ∼0.5 sun, the reaction field temperature on the catalyst surface is raised 20-30 K above the bulk solution temperature, while the latter is maintained near the ambient temperature. In some reactions, this photothermal local heating engenders the enhancement of not only the catalytic activity and selectivity but also the regeneration of catalytically active sites. Further, the photocatalytic activity of semiconductors can be promoted. Finally, the conclusions and possible subjects in the future are summarized.
Collapse
Affiliation(s)
- Hiroaki Tada
- Department of Applied Chemistry Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.,Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Shin-Ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hisashi Sugime
- Department of Applied Chemistry Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| |
Collapse
|
8
|
Zhou T, Huang J, Zhao W, Guo R, Cui S, Li Y, Zhang X, Liu Y, Zhang Q. Multifunctional Plasmon-Tunable Au Nanostars and Their Applications in Highly Efficient Photothermal Inactivation and Ultra-Sensitive SERS Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4232. [PMID: 36500854 PMCID: PMC9738658 DOI: 10.3390/nano12234232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
The development and application in different fields of multifunctional plasmonic nanoparticles (NPs) have always been research hotspots. Herein, multi-tip Au nanostars (NSs) with an anisotropic structure were fabricated for the photothermal therapy (PTT) of bacteria and surface-enhanced Raman scattering (SERS) detection of pollutants. The size and localized surface plasmon resonance (LSPR) characteristics of Au NSs were adjusted by varying Au seed additions. In addition, photothermal conversion performance of Au NSs with various Au seed additions was evaluated. Photothermal conversion efficiency of Au NSs with optimal Au seed additions (50 μL) was as high as 28.75% under 808 nm laser irradiation, and the heat generated was sufficient to kill Staphylococcus aureus (S. aureus). Importantly, Au NSs also exhibited excellent SERS activity for the 4-mercaptobenzoic acid (4-MBA) probe molecule, and the local electromagnetic field distribution of Au NSs was explored through finite-difference time-domain (FDTD) simulation. As verified by experiments, Au NSs' SERS substrate could achieve a highly sensitive detection of a low concentration of potentially toxic pollutants such as methylene blue (MB) and bilirubin (BR). This work demonstrates a promising multifunctional nanoplatform with great potential for efficient photothermal inactivation and ultra-sensitive SERS detection.
Collapse
Affiliation(s)
- Tianxiang Zhou
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Jie Huang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Wenshi Zhao
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Guo
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Sicheng Cui
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yuqing Li
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Xiaolong Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Yang Liu
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| | - Qi Zhang
- Key Laboratory of Functional Materials Physics and Chemistry (Ministry of Education), College of Physics, Jilin Normal University, Changchun 130103, China
| |
Collapse
|
9
|
Lee SJ, Jang H, Lee DN. Inorganic Nanoflowers—Synthetic Strategies and Physicochemical Properties for Biomedical Applications: A Review. Pharmaceutics 2022; 14:pharmaceutics14091887. [PMID: 36145635 PMCID: PMC9505446 DOI: 10.3390/pharmaceutics14091887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Nanoflowers, which are flower-shaped nanomaterials, have attracted significant attention from scientists due to their unique morphologies, facile synthetic methods, and physicochemical properties such as a high surface-to-volume ratio, enhanced charge transfer and carrier immobility, and an increased surface reaction efficiency. Nanoflowers can be synthesized using inorganic or organic materials, or a combination of both (called a hybrid), and are mainly used for biomedical applications. Thus far, researchers have focused on hybrid nanoflowers and only a few studies on inorganic nanoflowers have been reported. For the first time in the literature, we have consolidated all the reports on the biomedical applications of inorganic nanoflowers in this review. Herein, we review some important inorganic nanoflowers, which have applications in antibacterial treatment, wound healing, combinatorial cancer therapy, drug delivery, and biosensors to detect diseased conditions such as diabetes, amyloidosis, and hydrogen peroxide poisoning. In addition, we discuss the recent advances in their biomedical applications and preparation methods. Finally, we provide a perspective on the current trends and potential future directions in nanoflower research. The development of inorganic nanoflowers for biomedical applications has been limited to date. Therefore, a diverse range of nanoflowers comprising inorganic elements and materials with composite structures must be synthesized using ecofriendly synthetic strategies.
Collapse
Affiliation(s)
- Su Jung Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
| | - Hongje Jang
- Department of Chemistry, Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| | - Do Nam Lee
- Ingenium College of Liberal Arts (Chemistry), Kwangwoon University, Seoul 01897, Korea
- Correspondence: (H.J.); (D.N.L.)
| |
Collapse
|
10
|
Inoue H, Naya S, Akita A, Sugime H, Tada H. Photothermal Oxidation of Cinnamyl Alcohol with Hydrogen Peroxide Catalyzed by Gold Nanoparticle/Antimony‐Doped Tin Oxide Nanocrystals. Chemistry 2022; 28:e202201653. [DOI: 10.1002/chem.202201653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Haruki Inoue
- Graduate School of Science and Engineering Kindai University 3-4-1, Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Shin‐ichi Naya
- Environmental Research Laboratory Kindai University 3-4-1, Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Atsunobu Akita
- Graduate School of Science and Engineering Kindai University 3-4-1, Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Hisashi Sugime
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1, Kowakae Higashi-Osaka Osaka 577-8502 Japan
| | - Hiroaki Tada
- Graduate School of Science and Engineering Kindai University 3-4-1, Kowakae Higashi-Osaka Osaka 577-8502 Japan
- Department of Applied Chemistry Faculty of Science and Engineering Kindai University 3-4-1, Kowakae Higashi-Osaka Osaka 577-8502 Japan
| |
Collapse
|
11
|
Sun M, Guo W, Tian J, Chen X, Zhang Q. Fast tailoring of gold nanoflowers by an interface-modified reverse microdroplet strategy. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Zheng Y, Zhang G, Ma Y, Kong Y, Liu F, Liu M. Kinetics-Controlled Synthesis of Gold-Silver Nanosheets with Abundant in-Plane Cracking and Their Trimetallic Derivatives for Plasmon-Enhanced Catalysis. CrystEngComm 2022. [DOI: 10.1039/d1ce01505b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Controlled synthesis of two-dimensional noble metal nanomaterials with in-plane branching morphology has been of great research interest recently, which yet achieves limited success for AuAg-based nanocrystals. Herein, we report the...
Collapse
|
13
|
Ba J, Han Y, Zhang X, Zhang L, Hui S, Huang Z, Yang W. Au Nanoflowers for Catalyzing and In Situ Surface-Enhanced Raman Spectroscopy Monitoring of the Dimerization of p-Aminothiophenol. ACS OMEGA 2021; 6:25720-25728. [PMID: 34632228 PMCID: PMC8495860 DOI: 10.1021/acsomega.1c03933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/08/2021] [Indexed: 06/12/2023]
Abstract
In this work, we demonstrated a facile approach for fabrication of Au nanoflowers (Au NFs) using an amino-containing organosilane, 3-aminopropyltriethoxysilane (APTES), as a shape-directing agent. In this approach, the morphology of the Au particles evolved from sphere-like to flower-like with increasing the concentration of APTES, accompanied by a red shift in the localized surface plasmon resonance peak from 520 to 685 nm. It was identified that the addition of APTES is profitable to direct the preferential growth of the (111) plane of face-centered cubic gold and promote the formation of anisotropic Au NFs. The as-prepared Au NFs, with APTES on their surface, presented effective catalytic and surface-enhanced Raman scattering (SERS) performances, as evidenced by their applications in catalyzing the dimerization of p-aminothiophenol and monitoring the reaction process via in situ SERS analysis.
Collapse
Affiliation(s)
- Jingwen Ba
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Yandong Han
- Institute
of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Zhang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Lijuan Zhang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Shuhan Hui
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenzhen Huang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| | - Wensheng Yang
- State
Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College
of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
14
|
Kolokithas-Ntoukas A, Bakandritsos A, Belza J, Kesa P, Herynek V, Pankrac J, Angelopoulou A, Malina O, Avgoustakis K, Georgakilas V, Polakova K, Zboril R. Condensed Clustered Iron Oxides for Ultrahigh Photothermal Conversion and In Vivo Multimodal Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29247-29256. [PMID: 33942606 DOI: 10.1021/acsami.1c00908] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Magnetic iron oxide nanocrystals (MIONs) are established as potent theranostic nanoplatforms due to their biocompatibility and the multifunctionality of their spin-active atomic framework. Recent insights have also unveiled their attractive near-infrared photothermal properties, which are, however, limited by their low near-infrared absorbance, resulting in noncompetitive photothermal conversion efficiencies (PCEs). Herein, we report on the dramatically improved photothermal conversion of condensed clustered MIONs, reaching an ultrahigh PCE of 71% at 808 nm, surpassing the so-far MION-based photothermal agents and even benchmark near-infrared photothermal nanomaterials. Moreover, their surface passivation is achieved through a simple self-assembly process, securing high colloidal stability and structural integrity in complex biological media. The bifunctional polymeric canopy simultaneously provided binding sites for anchoring additional cargo, such as a strong near-infrared-absorbing and fluorescent dye, enabling in vivo optical and photoacoustic imaging in deep tissues, while the iron oxide core ensures detection by magnetic resonance imaging. In vitro studies also highlighted a synergy-amplified photothermal effect that significantly reduces the viability of A549 cancer cells upon 808 nm laser irradiation. Integration of such-previously elusive-photophysical properties with simple and cost-effective nanoengineering through self-assembly represents a significant step toward sophisticated nanotheranostics, with great potential in the field of nanomedicine.
Collapse
Affiliation(s)
- Argiris Kolokithas-Ntoukas
- Department of Materials Science, University of Patras, 26504 Rio, Greece
- Department of Pharmacy, University of Patras, 26504 Rio, Greece
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
| | - Jan Belza
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
- Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 77146 Olomouc, Czech Republic
| | - Peter Kesa
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Vit Herynek
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | - Jan Pankrac
- Center for Advanced Preclinical Imaging, First Faculty of Medicine, Charles University, 120 00 Prague, Czech Republic
| | | | - Ondrej Malina
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
| | | | | | - Katerina Polakova
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
| | - Radek Zboril
- Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, Poruba, 708 00 Ostrava, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University, 77900 Olomouc, Czech Republic
| |
Collapse
|