1
|
Kim K, Lee KH, Yang E, Lee G, Lee T, Kim M, Jeon HB, Byun EH, Han JM, Yoo HY, Park C. Novel enzymatic synthesis of 3-Hydroxybutyryl Naringin and its molecular identification and bioactive characterization. Food Chem 2025; 477:143590. [PMID: 40023035 DOI: 10.1016/j.foodchem.2025.143590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/13/2025] [Accepted: 02/22/2025] [Indexed: 03/04/2025]
Abstract
In this study, we synthesized 6''-O-((±)-3-hydroxybutyryl)naringin (3HBN) for the first time through enzymatic esterification of naringin with 3-hydroxybutyric acid (3HB), achieving a high conversion of 80.19 % under optimized conditions within 8 h. Structural analysis via FT-IR and 1H NMR confirmed esterification at the C-6'' hydroxyl position on the glucose moiety of naringin. Although the antioxidant capacity of 3HBN was slightly reduced compared to naringin, its enhanced lipophilicity (log P = -0.05) indicates improved bioavailability and potential for cellular absorption. Bioactivity evaluations confirmed that 3HBN exhibited stronger anti-inflammatory effects than naringin by reducing TNF-α and increasing IL-10 in LPS-stimulated immune cells. These findings suggest that 3HBN is a promising bioactive compound with potential applications across the food, cosmetic, and pharmaceutical industries, offering both enhanced stability and effective bioactivity for targeted health benefits.
Collapse
Affiliation(s)
- Kyeonga Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Kang Hyun Lee
- Department of Bio-Convergence Engineering, Dongyang Mirae University, Seoul 08221, Republic of Korea
| | - Eunjeong Yang
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Giwon Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Minji Kim
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Heung Bae Jeon
- Department of Chemistry, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan 32439, Republic of Korea
| | - Jeong Moo Han
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Hah Young Yoo
- Department of Biotechnology, Sangmyung University, Seoul 03016, Republic of Korea.
| | - Chulhwan Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea.
| |
Collapse
|
2
|
Islam MZ, Krajewska M, Prochaska K, Saha SC. In vitro and in silico studies of the interaction between glucocorticoid drug mometasone furoate and model lung surfactant monolayer. RSC Adv 2025; 15:5951-5964. [PMID: 40013062 PMCID: PMC11862883 DOI: 10.1039/d5ra00004a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 02/17/2025] [Indexed: 02/28/2025] Open
Abstract
In an effort to treat preterm neonates who are already suffering or are at high risk for chronic pulmonary illness, the comprehensive investigation has recently been focused on the intratracheal administration of corticosteroid drugs employing an innate lung surfactant as a drug carrier. A novel approach to utilize exogenous surfactant preparation as a drug delivery vehicle for corticosteroids, which are the inflammation-reducing agents for lung diseases has not been comprehensively investigated. The direct corticosteroid drugs administered through pulmonary surfactants would impair their surface activity and exacerbate normal breathing cycles. This study was conducted to characterize the physiological interaction between frequently used inhaled corticosteroid, mometasone furoate, and relevant composition of lung surfactants by using the in vitro and in silico methods. The major objective of this work is to elucidate the effects of glucocorticoids on the structural and dynamical characteristics of the lung surfactant as well as the effects of the drug on the ability of the surfactant monolayer to reduce surface tension during mechanical breathing. Our results from the Langmuir experiment and atomic force microscopy imply that mometasone furoate concentrations less than 4.18% w/w might not strongly influence the physicochemical characteristics of the surfactant molecules representing the feasible concentration for pulmonary drug delivery. Beyond this range, mometasone furoate concentrations cause intensified film fluidization that leads the surfactant film to collapse at lower surface pressure, which is also verified by the in silico study. The failure of the drug to permeate into the lipid bilayer is most likely what causes this collapse. On the other hand, for inhalation breathing, the monolayer forms pores induced by the high drug concentrations. Our investigation also reveals that mometasone furoate exhibits different spreading behaviors because of their affinities to the surfactant molecules. This work may have implications for the use of inhaled steroids in the treatment of asthma in addition to its translational significance in the management of chronic lung disease.
Collapse
Affiliation(s)
- Md Zohurul Islam
- Department of Mathematics, Faculty of Science, Jashore University of Science and Technology Jashore-7408 Bangladesh
- High Performance Computing (HPC) Laboratory, Department of Mathematics, Jashore University of Science and Technology Jashore-7408 Bangladesh
| | - Martyna Krajewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology Berdychowo 4 60-965 Poznań Poland
| | - Krystyna Prochaska
- Institute of Chemical Technology and Engineering, Poznan University of Technology Berdychowo 4 60-965 Poznań Poland
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo NSW 2007 Australia
| |
Collapse
|
3
|
Siddiqui R, Khatoon B, Kawish M, Sajeev S, Faizi S, Shah MR, Alharbi AM, Khan NA. The potential of nanocomposites (patuletin-conjugated with gallic acid-coated zinc oxide) against free-living amoebae pathogens. Int Microbiol 2024:10.1007/s10123-024-00584-w. [PMID: 39276173 DOI: 10.1007/s10123-024-00584-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/16/2024]
Abstract
Free-living amoebae infections are on the rise while the prognosis remains poor. Current therapies are ineffective, and there is a need for novel effective drugs which can target Naegleria, Balamuthia, and Acanthamoeba species. In this study, we determined the effects of a nano-formulation based on flavonoid patuletin-loaded gallic acid functionalized zinc oxide nanoparticles (PA-GA-ZnO) against Acanthamoeba, Balamuthia, and Naegleria trophozoites. Characterization of the nano-formulation was accomplished utilizing analytical tools, namely Fourier-transform infrared spectroscopy, drug entrapment efficiency, polydispersity index, dimensions, and surface morphologies. Anti-amoebic effects were investigated using amoebicidal assay, cytopathogenicity assay, and cytotoxicity of the nano-formulation on human cells. The findings revealed that nano-formulation (PA-GA-ZnO) displayed significant anti-amoebic properties and augmented effects of patuletin alone against all three brain-eating amoebae. When tested alone, patuletin nano-formulations showed minimal toxicity effects against human cells. In summary, the nano-formulations evaluated herein depicts efficacy versus Acanthamoeba, Balamuthia, and Naegleria. Nonetheless, future studies are needed to comprehend the molecular mechanisms of patuletin nano-formulations versus free-living amoebae pathogens, in addition to animal studies to determine their potential value for clinical applications.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- Institute of Biological Chemistry, Biophysics and Bioengineering, Heriot-Watt University, Edinburgh, EH14 4AS, UK
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey
| | - Bushra Khatoon
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Kawish
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Sreedevi Sajeev
- Research Institute of Medical and Health Sciences, University of Sharjah, 27272, Sharjah, United Arab Emirates
| | - Shaheen Faizi
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Ahmad M Alharbi
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Naveed Ahmed Khan
- Microbiota Research Center, Istinye University, Istanbul, 34010, Turkey.
- School of Science, College of Science and Engineering, University of Derby, Derby, DE22 1GB, UK.
| |
Collapse
|
4
|
Wang J, Sheng Q, Feng S, Wang Z. Regulation of calcium ions on the interaction between amphotericin B and cholesterol-rich phospholipid monolayer in LE phase and LC phase. Biophys Chem 2023; 297:107012. [PMID: 37019051 DOI: 10.1016/j.bpc.2023.107012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/04/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Amphotericin B, as a "gold standard", is used to treat invasive fungal infections. The AmB molecule can bind easily to cholesterol and damage cell membranes, so it produces the toxicity on cell membrane, which limits its clinical dose. However, the interaction between AmB and cholesterol-rich membrane is unclear now. The phase state of the membrane and the metal cation outside cell membrane may affect the interaction between AmB and the membrane. In this work, the effects of amphotericin B on the mean molecular area, elastic modulus and stability of mammalian cell membrane rich in cholesterol in the presence of Ca2+ ions were studied using DPPC/Chol mixed Langmuir monolayer as a model. The Langmuir-Blodgett method and AFM test were used to study the effects of this drug on the morphology and height of cholesterol-rich phospholipid membrane in the presence of Ca2+ ions. The influence of calcium ions on the mean molecular area and the limiting molecular area was similar in LE phase and in LC phase. The calcium ions made the monolayer more condensed. However, calcium ions can weaken the shortening effect of AmB on the relaxation time of the DPPC/Chol mixed monolayer in LE phase but enhance it in LC phase. Interestingly, calcium ions caused a LE-LC coexistence phase to occur in the DPPC/Chol/AmB mixed monolayers at 35mN/m, which was confirmed by atomic force microscopy. The results can help to understand the interaction between amphotericin B and cell membrane rich in cholesterol in the calcium ions environment.
Collapse
|
5
|
Costa RKM, Souza LMP, Silva RS, Souza FR, Pimentel AS. The reconciliation between the experimental and calculated octanol-water partition coefficient of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine using atomistic molecular dynamics: an open question. J Biomol Struct Dyn 2023; 41:11510-11517. [PMID: 36715129 DOI: 10.1080/07391102.2023.2173298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/26/2022] [Indexed: 01/31/2023]
Abstract
The octanol-water partition coefficient of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) was investigated using atomistic molecular dynamics simulations via thermodynamic integration and multistate Bennett acceptance ratio methods. The GAFF and CHARMM36 force fields were used with six water models widely used in molecular dynamics simulations. The OPC4 water model provided the best agreement with the experimental octanol-water partition coefficient of DPPC using the two force fields. However, there is still plenty of room for improvement in water models with correct estimation of surface tension that uses better and suitable non-bonded interaction parameters between water-water and water-DPPC. The Gibbs free energy of transferring DPPC from octanol to water phase was calculated to be 19.8 ± 0.3 and 20.2 ± 0.3 kcal mol-1, giving a partition coefficient of 14.5 ± 0.4 and 14.8 ± 0.3 for the GAFF and CHARMM36 force fields, respectively. This study reinforces the importance of developing new water models that reproduce experimental surface tensions to reconcile the water-water and water-DPPC non-bonded interactions and the existing discrepancy between experimental measurements of amphiphilic molecules that are important in many areas of scientific applications and industry such as biophysics, surfactant, colloids, membranes, medicine, nanotechnology, and food and pharmaceutical industries, and so on. It raises two important open questions: Is the experimental octanol-water partition coefficient of DPPC reliable? Or is its calculation accurate using the OPC4 water model? With respect to the experimental measurements, there may be non-treated aspects such as the formation of aggregates in aqueous phase and limit of detection of the applied method. And, in the calculation, some effects are not possible to be considered in a correct way or viable time such as calculating quantum effects, sampling all conformations, considering phase transitions, and correctly evaluating the intermolecular forces to estimate an accurate surface tension.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Rudielson Santos Silva
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Felipe Rodrigues Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Islam MZ, Hossain SI, Deplazes E, Luo Z, Saha SC. The concentration-dependent effect of hydrocortisone on the structure of model lung surfactant monolayer by using an in silico approach. RSC Adv 2022; 12:33313-33328. [PMID: 36506480 PMCID: PMC9680622 DOI: 10.1039/d2ra05268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Understanding the adsorption mechanism of corticosteroids in the lung surfactant requires the knowledge of corticosteroid molecular interactions with lung surfactant monolayer (LSM). We employed coarse-grained molecular dynamics simulation to explore the action of hydrocortisone on an LSM comprised of a phospholipid, cholesterol and surfactant protein. The structural and dynamical morphology of the lung surfactant monolayer at different surface tensions were investigated to assess the monolayer compressibility. The simulations were also conducted at the two extreme ends of breathing cycles: exhalation (0 mN m-1 surface tension) and inhalation (20 mN m-1 surface tension). The impact of surface tension and hydrocortisone concentration on the monolayer compressibility and stability are significant, resulting the monolayer expansion at higher surface tension. However, at low surface tension, the highly compressed monolayer induces monolayer instability in the presence of the drug due to the accumulation of surfactant protein and drug. The constant area per lipid simulation results demonstrate that the surface pressure-area isotherms show a decrease in area-per-lipid with increased drug concentration. The drug-induced expansion causes considerable instability in the monolayer after a specific drug concentration is attained at inhalation breathing condition, whereas, for exhalation breathing, the monolayer gets more compressed, causing the LSM to collapse. The monolayer collapse occurs for inhalation due to the higher drug concentration, whereas for exhalation due to the accumulation of surfactant proteins and drugs. The findings from this study will aid in enhancing the knowledge of molecular interactions of corticosteroid drugs with lung surfactants to treat respiratory diseases.
Collapse
Affiliation(s)
- Mohammad Zohurul Islam
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - Sheikh I Hossain
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - E Deplazes
- School of Life Sciences, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - Zhen Luo
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| | - Suvash C Saha
- School of Mechanical and Mechatronic Engineering, University of Technology Sydney 15 Broadway Ultimo 2007 NSW Australia
| |
Collapse
|
7
|
Miguel Pereira Souza L, Camacho Lima M, Filipe Silva Bezerra L, Silva Pimentel A. Transposition of polymer-encapsulated small interfering RNA through lung surfactant models at the air-water interface. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
da Cruz Ramos Pires GH, Freire VT, Pereira RG, Amaral de Siqueira LJ, Umehara E, Lago JHG, Caseli L. Sakuranetin interacting with cell membranes models: Surface chemistry combined with molecular simulation. Colloids Surf B Biointerfaces 2022; 216:112546. [PMID: 35588685 DOI: 10.1016/j.colsurfb.2022.112546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 11/26/2022]
Abstract
Sakuranetin, a natural compound with activity in lipidic biointerfaces, was isolated from Baccharis retusa and studied with two models of lipid membranes: Langmuir monolayers and Molecular Simulation. For that, the mammalian lipid DPPC was chosen. Sakuranetin condensed the monolayers at high surface pressures, decreased the surface compressional modulus, reduced the molecular order of the acyl chains (diminution of all-trans/gauche conformers ratio), and increased the heterogeneity of the interface, forming aggregates. Molecular simulation data gave information on the bioactive compound's most favorable thermodynamic positions along the lipid monolayer, which was the lipid-air interface. These combined results lead to the conclusion that this lipophilic compound may interact with the lipidic layers, preferentially at the lipid-air interface, to minimize the free energy, and reaches this conformation disturbing the thermodynamic, structural, mechanical, rheological, and morphological properties of the well-packed DPPC monolayer.
Collapse
Affiliation(s)
| | - Vitor Torres Freire
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil
| | | | | | - Eric Umehara
- Federal University of ABC, Santo André, SP, Brazil
| | | | - Luciano Caseli
- Department of Chemistry, Federal University of São Paulo, Diadema, SP, Brazil.
| |
Collapse
|
9
|
Insights into molecular mechanism of action of citrus flavonoids hesperidin and naringin on lipid bilayers using spectroscopic, calorimetric, microscopic and theoretical studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Róg T, Girych M, Bunker A. Mechanistic Understanding from Molecular Dynamics in Pharmaceutical Research 2: Lipid Membrane in Drug Design. Pharmaceuticals (Basel) 2021; 14:1062. [PMID: 34681286 PMCID: PMC8537670 DOI: 10.3390/ph14101062] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
We review the use of molecular dynamics (MD) simulation as a drug design tool in the context of the role that the lipid membrane can play in drug action, i.e., the interaction between candidate drug molecules and lipid membranes. In the standard "lock and key" paradigm, only the interaction between the drug and a specific active site of a specific protein is considered; the environment in which the drug acts is, from a biophysical perspective, far more complex than this. The possible mechanisms though which a drug can be designed to tinker with physiological processes are significantly broader than merely fitting to a single active site of a single protein. In this paper, we focus on the role of the lipid membrane, arguably the most important element outside the proteins themselves, as a case study. We discuss work that has been carried out, using MD simulation, concerning the transfection of drugs through membranes that act as biological barriers in the path of the drugs, the behavior of drug molecules within membranes, how their collective behavior can affect the structure and properties of the membrane and, finally, the role lipid membranes, to which the vast majority of drug target proteins are associated, can play in mediating the interaction between drug and target protein. This review paper is the second in a two-part series covering MD simulation as a tool in pharmaceutical research; both are designed as pedagogical review papers aimed at both pharmaceutical scientists interested in exploring how the tool of MD simulation can be applied to their research and computational scientists interested in exploring the possibility of a pharmaceutical context for their research.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Mykhailo Girych
- Department of Physics, University of Helsinki, 00014 Helsinki, Finland;
| | - Alex Bunker
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, 00014 Helsinki, Finland;
| |
Collapse
|
11
|
Novel cytotoxic amphiphilic nitro-compounds derived from a synthetic route for paraconic acids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
12
|
Wang J, Zhu H. Interaction between polyene antifungal drug and saturated phospholipid monolayer regulated by calcium ions at the air-water interface. Colloids Surf B Biointerfaces 2021; 207:111998. [PMID: 34311196 DOI: 10.1016/j.colsurfb.2021.111998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 06/24/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
Amphotericin B (AmB) is a polyene antifungal drug, which could directly form pores on the sterol-free phospholipid monolayers. The interaction between AmB and phospholipid can be affected by calcium ions, but the mechanism is still unclear. DPPC is a saturated phospholipid with -PC group, which is often used to simulate the outer cell membrane leaflet. And DPPC is also the main constituent of pulmonary surfactants. In this work, the DPPC monolayer was used as a model membrane to study the effect of calcium ions on the interaction between AmB and phospholipid. The influence of different concentration of calcium ions on the elastic modulus, mean molecular area increment, excess Gibbs free energy and stability of the AmB/DPPC mixed monolayer has been researched at the surface pressure of 7.5 mN/m, 12.5 mN/m and 22.5 mN/m. The AmB/DPPC monolayers at the air-water interface have been observed in real-time by Brewster angle microscope and the microstructure of the Langmuir-Blodgett monolayer films transferred onto the mica have been researched by scanning electron microscope and atomic force microscope. The results showed that calcium ions had a significant influence on the elastic modulus, mean molecular area increment, excess Gibbs free energy, stability and microstructure of the AmB/DPPC monolayer. It has been indicated that the influence of calcium ions on the interaction between AmB and DPPC molecules mainly depended on the effect of calcium ions on the orientation of AmB molecules. The calcium ions could regulate the effect of AmB to the stability of the DPPC monolayer. This regulatory role changed with the different concentrations of calcium ions and the different phase states of the monolayer. This work provides useful information to further understand the influence mechanism of calcium ions on the interaction between AmB and saturated phospholipid with -PC group, which is helpful to find out the effect mechanism of calcium ion on the interaction between AmB and the outer layer of cell membrane or pulmonary surfactants in different phase states and to understand the toxicity mechanism of AmB on the cell membrane or lungs.
Collapse
Affiliation(s)
- Juan Wang
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an, 710123, China.
| | - Hao Zhu
- Shaanxi Engineering Research Center of Controllable Neutron Source, School of Science, Xijing University, Xi'an, 710123, China
| |
Collapse
|
13
|
Michels-Brito PH, Malfatti-Gasperini A, Mayr L, Puentes-Martinez X, Tenório RP, Wagner DR, Knudsen KD, Araki K, Oliveira RG, Breu J, Cavalcanti LP, Fossum JO. Unmodified Clay Nanosheets at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:160-170. [PMID: 33373239 PMCID: PMC8154875 DOI: 10.1021/acs.langmuir.0c02670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/16/2020] [Indexed: 05/31/2023]
Abstract
Quasi-two-dimensional (2D) nanolayers, such as graphene oxide or clay layers, adhere to gas-liquid or liquid-liquid interfaces. Particularly, clays are of wide general interest in this context because of their extensive and crucial use as Pickering emulsion stabilizers, as well as for their ability to provide colloidosome capsules. So far, clays could only be localized at oil-water or air-saline-water interfaces in aggregated states, while our results now show that clay nanosheets without any modification can be located at air-deionized-water interfaces. The clay mineral used in the present work is synthetic fluorohectorite with a very high aspect ratio and superior quality in homogeneity and charge distribution compared to other clay minerals. This clay mineral is more suitable for achieving unmodified clay anchoring to fluid interfaces compared to other clay minerals used in previous works. In this context, we studied clay nanosheet organization at the air-water interface by combining different experimental methods: Langmuir-Blodgett trough studies, scanning electron microscopy (SEM) studies of film deposits, grazing-incidence X-ray off-specular scattering (GIXOS), and Brewster angle microscopy (BAM). Clay films formed at the air-water interface could be transferred to solid substrates by the Langmuir-Schaefer method. The BAM results indicate a dynamic equilibrium between clay sheets on the interface and in the subphase. Because of this dynamic equilibrium, the Langmuir monolayer surface pressure does not change significantly when pure clay sheets are spread on the liquid surface. However, also, GIXOS results confirm that there are clay nanosheets at the air-water interface. In addition, we find that clay sheets modified by a branched polymer are much more likely to be confined to the interface.
Collapse
Affiliation(s)
- Paulo H. Michels-Brito
- Department
of Physics, Norwegian University of Science
and Technology, NTNU, 7491 Trondheim, Norway
| | - Antonio Malfatti-Gasperini
- Brazilian
Synchrotron Light Laboratory, LNLS, Brazilian
Center for Research in Energy and Materials, CNPEM, Campinas 13083-970, Brazil
| | - Lina Mayr
- Bavarian
Polymer Institute and Department of Chemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | | | - Rômulo P. Tenório
- Northeast
Regional Center of Nuclear Sciences, Recife 50740-545,Brazil
| | - Daniel R. Wagner
- Bavarian
Polymer Institute and Department of Chemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Kenneth D. Knudsen
- Department
of Physics, Norwegian University of Science
and Technology, NTNU, 7491 Trondheim, Norway
- Institute
for Energy Technology, IFE, Kjeller 2027, Norway
| | - Koiti Araki
- Department
of Fundamental Chemistry, Institute of Chemistry, University of São Paulo, USP, São Paulo 05513-970, Brazil
| | - Rafael G. Oliveira
- Centro
de Investigaciones en Química Biológica de Córdoba
(CIQUIBIC)-Departamento de Química Biológica Dr. Ranwel
Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba X5000HUA, Argentina
| | - Josef Breu
- Bavarian
Polymer Institute and Department of Chemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | | | - Jon Otto Fossum
- Department
of Physics, Norwegian University of Science
and Technology, NTNU, 7491 Trondheim, Norway
| |
Collapse
|
14
|
Souza LM, Souza FR, Reynaud F, Pimentel AS. Tuning the hydrophobicity of a coarse grained model of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine using the experimental octanol-water partition coefficient. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.114132] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
15
|
Souza F, Fornasier F, Carvalho A, Silva B, Lima M, Pimentel A. Polymer-coated gold nanoparticles and polymeric nanoparticles as nanocarrier of the BP100 antimicrobial peptide through a lung surfactant model. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113661] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Fornasier F, Souza LMP, Souza FR, Reynaud F, Pimentel AS. Lipophilicity of Coarse-Grained Cholesterol Models. J Chem Inf Model 2020; 60:569-577. [DOI: 10.1021/acs.jcim.9b00830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Franccesca Fornasier
- Departamento de Quı́mica, Pontifı́cia Universidade Católica do Rio de Janeiro Rio de Janeiro, RJ 22453-900, Brazil
| | - Lucas M. P. Souza
- Departamento de Quı́mica, Pontifı́cia Universidade Católica do Rio de Janeiro Rio de Janeiro, RJ 22453-900, Brazil
| | - Felipe R. Souza
- Departamento de Quı́mica, Pontifı́cia Universidade Católica do Rio de Janeiro Rio de Janeiro, RJ 22453-900, Brazil
| | - Franceline Reynaud
- Institut Galien Paris-Sud, CNRS 8612, Université Paris-Saclay, 92290 Châtenay, Malabry, France
- Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - Andre S. Pimentel
- Departamento de Quı́mica, Pontifı́cia Universidade Católica do Rio de Janeiro Rio de Janeiro, RJ 22453-900, Brazil
| |
Collapse
|