1
|
Hua Z, Zhao Y, Zhang M, Wang Y, Feng H, Wei X, Wu X, Chen W, Xue Y. Research progress on intervertebral disc repair strategies and mechanisms based on hydrogel. J Biomater Appl 2025; 39:1121-1142. [PMID: 39929142 DOI: 10.1177/08853282251320227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Intervertebral disc degeneration (IDD) arises from a complex interplay of genetic, environmental, and age-related factors, culminating in a spectrum of low back pain (LBP) disorders that exert significant societal and economic impact. The present therapeutic landscape for IDD poses formidable clinical hurdles, necessitating the exploration of innovative treatment modalities. The hydrogel, as a biomaterial, exhibits superior biocompatibility compared to other biomaterials such as bioceramics and bio-metal materials. It also demonstrates mechanical properties closer to those of natural intervertebral discs (IVDs) and favorable biodegradability conducive to IVD regeneration. Therefore, it has emerged as a promising candidate material in the field of regenerative medicine and tissue engineering for treating IDD. Hydrogels have made significant strides in the field of IDD treatment. Particularly, injectable hydrogels not only provide mechanical support but also enable controlled release of bioactive molecules, playing a crucial role in mitigating inflammation and promoting extracellular matrix (ECM) regeneration. Furthermore, the ability of injectable hydrogels to achieve minimally invasive implantation helps minimize tissue damage. This article initially provides a concise exposition of the structure and function of IVD, the progression of IDD, and delineates extant clinical interventions for IDD. Subsequently, it categorizes hydrogels, encapsulates recent advancements in biomaterials and cellular therapies, and delves into the mechanisms through which hydrogels foster disc regeneration. Ultimately, the article deliberates on the prospects and challenges attendant to hydrogel therapy for IDD.
Collapse
Affiliation(s)
- Zekun Hua
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yinuo Zhao
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Meng Zhang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanqin Wang
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Haoyu Feng
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiaogang Wu
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, Department of Orthopaedics, The Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Weiyi Chen
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
| | - Yanru Xue
- College of Artificial Intelligence, Taiyuan University of Technology, Taiyuan, China
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Wang Y, Pang F, Lai S, Cai R, Lai C, Yu Z, Zhu Y, Wu M, Zhang H, Kong C. Numerical Analysis of the Cell Droplet Loading Process in Cell Printing. MICROMACHINES 2024; 15:1335. [PMID: 39597146 PMCID: PMC11596778 DOI: 10.3390/mi15111335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/27/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Cell printing is a promising technology in tissue engineering, with which the complex three-dimensional tissue constructs can be formed by sequentially printing the cells layer by layer. Though some cell printing experiments with commercial inkjet printers show the possibility of this idea, there are some problems, such as cell damage due the mechanical impact during cell direct writing, which include two processes of cell ejection and cell landing. Cell damage observed during the bioprinting process is often simply attributed to interactions between cells and substrate. However, in reality, cell damage can also arise from complex mechanical effects caused by collisions between cell droplets during continuous printing processes. The objective of this research is to numerically simulate the collision effects between continuously printed cell droplets within the bioprinting process, with a particular focus on analyzing the consequent cell droplet deformation and stress distribution. The influence of gravity force was ignored, cell droplet landing was divided into four phases, the first phase is cell droplet free falling at a certain velocity; the second phase is the collision between the descending cell droplet and the pre-existing cell droplets that have been previously printed onto the substrate. This collision results in significant deformation of the cell membranes of both cell droplets in contact; the third phase is the cell droplet hitting a rigid body substrate; the fourth phase is the cell droplet being bounced. We conducted a qualitative analysis of the stress and strain of cell droplets during the cell printing process to evaluate the influence of different parameters on the printing effect. The results indicate that an increase in jet velocity leads to an increase in stress on cell droplets, thereby increasing the probability of cell damage. Adding cell droplet layers on the substrate can effectively reduce the impact force caused by collisions. Smaller droplets are more susceptible to rupture at higher velocities. These findings provide a scientific basis for optimizing cell printing parameters.
Collapse
Affiliation(s)
- Yankun Wang
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (Y.W.); (F.P.); (S.L.); (Y.Z.); (M.W.); (H.Z.)
| | - Fagui Pang
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (Y.W.); (F.P.); (S.L.); (Y.Z.); (M.W.); (H.Z.)
| | - Shushan Lai
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (Y.W.); (F.P.); (S.L.); (Y.Z.); (M.W.); (H.Z.)
| | - Renye Cai
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (Y.W.); (F.P.); (S.L.); (Y.Z.); (M.W.); (H.Z.)
| | - Chenxiang Lai
- Guangzhou Metro Design & Research Institute Co., Ltd., Guangzhou 510010, China
| | - Zexin Yu
- Institute for Manufacturing Technologies of Ceramic Components and Composites (IMTCCC), University of Stuttgart, Allmandring 7b, 70569 Stuttgart, Germany;
| | - Yiwei Zhu
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (Y.W.); (F.P.); (S.L.); (Y.Z.); (M.W.); (H.Z.)
| | - Min Wu
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (Y.W.); (F.P.); (S.L.); (Y.Z.); (M.W.); (H.Z.)
| | - Heng Zhang
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (Y.W.); (F.P.); (S.L.); (Y.Z.); (M.W.); (H.Z.)
| | - Chunyu Kong
- School of Automobile and Transportation Engineering, Guangdong Polytechnic Normal University, Guangzhou 510665, China; (Y.W.); (F.P.); (S.L.); (Y.Z.); (M.W.); (H.Z.)
| |
Collapse
|
3
|
Baniasadi H, Abidnejad R, Fazeli M, Lipponen J, Niskanen J, Kontturi E, Seppälä J, Rojas OJ. Innovations in hydrogel-based manufacturing: A comprehensive review of direct ink writing technique for biomedical applications. Adv Colloid Interface Sci 2024; 324:103095. [PMID: 38301316 DOI: 10.1016/j.cis.2024.103095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
Direct ink writing (DIW) stands as a pioneering additive manufacturing technique that holds transformative potential in the field of hydrogel fabrication. This innovative approach allows for the precise deposition of hydrogel inks layer by layer, creating complex three-dimensional structures with tailored shapes, sizes, and functionalities. By harnessing the versatility of hydrogels, DIW opens up possibilities for applications spanning from tissue engineering to soft robotics and wearable devices. This comprehensive review investigates DIW as applied to hydrogels and its multifaceted applications. The paper introduces a diverse range of printing techniques while providing a thorough exploration of DIW for hydrogel-based printing. The investigation aims to explain the progress made, challenges faced, and potential trajectories that lie ahead for DIW in hydrogel-based manufacturing. The fundamental principles underlying DIW are carefully examined, specifically focusing on rheological attributes and printing parameters, prompting a comprehensive survey of the wide variety of hydrogel materials. These encompass both natural and synthetic variations, all of which can be effectively harnessed for this purpose. Furthermore, the review explores the latest applications of DIW for hydrogels in biomedical areas, with a primary focus on tissue engineering, wound dressing, and drug delivery systems. The document not only consolidates the existing state of DIW within the context of hydrogel-based manufacturing but also charts potential avenues for further research and innovative breakthroughs.
Collapse
Affiliation(s)
- Hossein Baniasadi
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland.
| | - Roozbeh Abidnejad
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Mahyar Fazeli
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Juha Lipponen
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Jukka Niskanen
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Eero Kontturi
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland
| | - Jukka Seppälä
- Polymer Technology, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto FI-00076, Finland; Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry, Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
4
|
Yan Y, Shi Y, Liu C, Shao J, Sun N, Ma B, Li Y, Huang J, Ge S. Cartilage-Inspired Inhomogeneous Salt-Hydrogel for Hydrated Drag-Reducing and Strain Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:48632-48644. [PMID: 37788004 DOI: 10.1021/acsami.3c10271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Articular cartilages exhibit load-bearing capacity and durability due to their inhomogeneous structure. Inspired by this unique structure, a tough and inhomogeneous salt-hydrogel was developed by trapping sodium acetate (NaAc) crystals in polyacrylamide (PAM) polymer networks and then partially redissolving the NaAc crystals. The compressive and tensile stresses of the salt-hydrogel increase significantly by more than 20 times when oversaturated Ac- and Na+ are introduced into the gel network. Such an enhancement in mechanical strength is primarily attributed to the formation of NaAc crystals within the gel network. Further investigations reveal that the mechanical strength of the salt-hydrogel is temperature-dependent as the NaAc crystals gradually redissolve in the gel network with increasing temperature. Furthermore, redissolving NaAc crystals in an aqueous solution can yield an inhomogeneous salt-hydrogel. The topmost soft surface of the salt-hydrogel offers hydration lubrication, while the inhomogeneous network confers load-bearing capacity and durability. Compared to regular hydrogels, the inhomogeneous salt-hydrogel surface can realize drag reduction and remain smooth without damage after the friction tests. Moreover, a salt-hydrogel coating is also fabricated to visually demonstrate its drag-reducing property. In addition, this salt-hydrogel possesses conductivity and can be utilized in the development of inhomogeneous salt-hydrogel fibers (diameter = 438 ± 7 μm) for strain detection. The produced salt-hydrogel fiber exhibits excellent durability and reproducibility as a strain sensor, capable of detecting both small strains (e.g., 1%) and large strains (e.g., 40%). This work provides fundamental insights into developing hydrogels with an inhomogeneous network and explores their potential applications (e.g., hydrated drag-reducing, strain sensing).
Collapse
Affiliation(s)
- Yonggan Yan
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Yanping Shi
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan 250101, China
| | - Chenghu Liu
- Shandong Institute of Medical Device and Pharmaceutical Packaging Inspection, NMPA Key Laboratory for Safety Evaluation of Biomaterials and Medical Devices, Jinan 250101, China
| | - Jinlong Shao
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Nengzhe Sun
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Baojin Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| | - Yuan Li
- Sinopec Research Institute of Petroleum Engineering, Fracturing & Acidizing and Natural Gas Production Research Institute, Dongying 257000, China
| | - Jun Huang
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture of Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
| | - Shaohua Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Shandong University, Jinan 250012, China
| |
Collapse
|
5
|
Saeidi M, Chenani H, Orouji M, Adel Rastkhiz M, Bolghanabadi N, Vakili S, Mohamadnia Z, Hatamie A, Simchi A(A. Electrochemical Wearable Biosensors and Bioelectronic Devices Based on Hydrogels: Mechanical Properties and Electrochemical Behavior. BIOSENSORS 2023; 13:823. [PMID: 37622909 PMCID: PMC10452289 DOI: 10.3390/bios13080823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023]
Abstract
Hydrogel-based wearable electrochemical biosensors (HWEBs) are emerging biomedical devices that have recently received immense interest. The exceptional properties of HWEBs include excellent biocompatibility with hydrophilic nature, high porosity, tailorable permeability, the capability of reliable and accurate detection of disease biomarkers, suitable device-human interface, facile adjustability, and stimuli responsive to the nanofiller materials. Although the biomimetic three-dimensional hydrogels can immobilize bioreceptors, such as enzymes and aptamers, without any loss in their activities. However, most HWEBs suffer from low mechanical strength and electrical conductivity. Many studies have been performed on emerging electroactive nanofillers, including biomacromolecules, carbon-based materials, and inorganic and organic nanomaterials, to tackle these issues. Non-conductive hydrogels and even conductive hydrogels may be modified by nanofillers, as well as redox species. All these modifications have led to the design and development of efficient nanocomposites as electrochemical biosensors. In this review, both conductive-based and non-conductive-based hydrogels derived from natural and synthetic polymers are systematically reviewed. The main synthesis methods and characterization techniques are addressed. The mechanical properties and electrochemical behavior of HWEBs are discussed in detail. Finally, the prospects and potential applications of HWEBs in biosensing, healthcare monitoring, and clinical diagnostics are highlighted.
Collapse
Affiliation(s)
- Mohsen Saeidi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Hossein Chenani
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Mina Orouji
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - MahsaSadat Adel Rastkhiz
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Nafiseh Bolghanabadi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
| | - Shaghayegh Vakili
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Iran;
| | - Zahra Mohamadnia
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
| | - Amir Hatamie
- Department of Chemistry, Institute for Advanced Studies in Basic Science (IASBS), Gava Zang, Zanjan 45137-66731, Iran;
- Department of Chemistry and Molecular Biology, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Abdolreza (Arash) Simchi
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran 14588-89694, Iran; (H.C.); (M.O.); (M.A.R.); (N.B.)
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran 14588-89694, Iran
| |
Collapse
|
6
|
Dong Q, Su X, Li X, Zhou H, Jian H, Bai S, Yin J, You Q. In vitro construction of lung cancer organoids by 3D bioprinting for drug evaluation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
7
|
Jin W, Liu H, Li Z, Nie P, Zhao G, Cheng X, Zheng G, Yang X. Effect of Hydrogel Contact Angle on Wall Thickness of Artificial Blood Vessel. Int J Mol Sci 2022; 23:11114. [PMID: 36232417 PMCID: PMC9570380 DOI: 10.3390/ijms231911114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022] Open
Abstract
Vascular replacement is one of the most effective tools to solve cardiovascular diseases, but due to the limitations of autologous transplantation, size mismatch, etc., the blood vessels for replacement are often in short supply. The emergence of artificial blood vessels with 3D bioprinting has been expected to solve this problem. Blood vessel prosthesis plays an important role in the field of cardiovascular medical materials. However, a small-diameter blood vessel prosthesis (diameter < 6 mm) is still unable to achieve wide clinical application. In this paper, a response surface analysis was firstly utilized to obtain the relationship between the contact angle and the gelatin/sodium alginate mixed hydrogel solution at different temperatures and mass percentages. Then, the self-developed 3D bioprinter was used to obtain the optimal printing spacing under different conditions through row spacing, printing, and verifying the relationship between the contact angle and the printing thickness. Finally, the relationship between the blood vessel wall thickness and the contact angle was obtained by biofabrication with 3D bioprinting, which can also confirm the controllability of the vascular membrane thickness molding. It lays a foundation for the following study of the small caliber blood vessel printing molding experiment.
Collapse
Affiliation(s)
- Wenyu Jin
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Huanbao Liu
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Zihan Li
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Ping Nie
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
| | - Guangxi Zhao
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Xiang Cheng
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Guangming Zheng
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| | - Xianhai Yang
- College of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China
- Shandong Provincial Key Laboratory of Precision Manufacturing and Non-Traditional Machining, Zibo 255000, China
| |
Collapse
|