1
|
Boddepalli R, Gurugubelli TR, S V N P, Netheti VSB, Yusub S, Tamtam MR, Koutavarapu R, Pidaparthy LS. Efficiency and mechanistic insights of photocatalytic decomposition of tetracycline and rhodamine B utilizing Z-scheme g-C 3N 4/SnWO 4 heterostructures under visible light irradiation. ENVIRONMENTAL RESEARCH 2024; 254:119163. [PMID: 38759770 DOI: 10.1016/j.envres.2024.119163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
The hydrothermal approach was used in the design and construction of the SnWO4 (SW) nanoplates anchored g-C3N4 (gCN) nanosheet heterostructures. Morphology, optical characteristics, and phase identification were investigated. The heterostructure architect construction and successful interface interaction were validated by the physicochemical characteristics. The test materials were used as a photocatalyst in the presence of visible light to break down the antibiotic tetracycline (TC) and the organic Rhodamine B (RhB). The best photocatalytic degradation efficiency of TC (97%) and RhB (98%) pollutants was demonstrated by the optimized 15 mg of gCNSW-7.5 in 72 and 48 min, respectively, at higher rate constants of 0.0409 and 0.0772 min-1. The interface contact between gCN and SW, which successfully enhanced charge transfer and restricted recombination rate in the photocatalyst, is responsible for the enhanced performance of the gCNSW heterostructure photocatalyst. In addition, the gCNSW heterostructure photocatalyst demonstrated exceptional stability and reusability over the course of four successive testing cycles, highlighting its durable and dependable function. Superoxide radicals and holes were shown to be key players in the degradation of contaminants through scavenger studies. The charge transfer mechanism in the heterostructure is identified as Z-scheme mode with the help of UV-vis DRS analysis. Attributed to its unique structural features, and effective separation of charge carriers, the Z-scheme gCNSW-7.5 heterostructure photocatalyst exhibits significant promise as an exceptionally efficient catalyst for the degradation of pollutants. This positions it as a prospective material with considerable potential across various environmental applications.
Collapse
Affiliation(s)
- Ramu Boddepalli
- Department of Physics, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India
| | | | - Pammi S V N
- Department of Physics, School of Sciences, SR University, Warangal, 506 371, Telangana, India
| | - V S Bhagavan Netheti
- Department of Physics, Dr. VS Krishna Govt. Degree College (Autonomous), Visakhapatnam, 530 013, Andhra Pradesh, India
| | - S Yusub
- Freshman Engineering Department, Lakireddy Bali Reddy College of Engineering (Autonomous), Mylavaram, 521 230, Andhra Pradesh, India
| | - Mohan Rao Tamtam
- Data Science Lab, Department of Information and Communication Engineering, College of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Ravindranadh Koutavarapu
- Physics Division, Department of Basic Sciences and Humanities, GMR Institute of Technology, Rajam, 532 127, Andhra Pradesh, India.
| | - Lalitha Saranya Pidaparthy
- Department of Physics, Andhra University, Visakhapatnam, 530 003, Andhra Pradesh, India; Department of Physics, Visakha Govt. Degree College (W), Visakhapatnam, 530 020, Andhra Pradesh, India.
| |
Collapse
|
2
|
Thi HP, Nguyen TA, Nguyen MV, Nguyen VN, Nguyen TBH. Oxidation of antibiotic micropollutants in various water resources through integration of Bi 2WO 6 and g-C 3N 4. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:266. [PMID: 38954124 DOI: 10.1007/s10653-024-02050-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 05/21/2024] [Indexed: 07/04/2024]
Abstract
Recently, the hazardous effects of antibiotic micropollutants on the environment and human health have become a major concern. To address this challenge, semiconductor-based photocatalysis has emerged as a promising solution for environmental remediation. Our study has developed Bi2WO6/g-C3N4 (BWCN) photocatalyst with unique characteristics such as reactive surface sites, enhanced charge transfer efficiency, and accelerated separation of photogenerated electron-hole pairs. BWCN was utilized for the oxidation of tetracycline antibiotic (TCA) in different water sources. It displayed remarkable TCA removal efficiencies in the following order: surface water (99.8%) > sewage water (88.2%) > hospital water (80.7%). Further, reusability tests demonstrated sustained performance of BWCN after three cycles with removal efficiencies of 87.3, 71.2 and 65.9% in surface water, sewage, and hospital water, respectively. A proposed photocatalytic mechanism was delineated, focusing on the interaction between reactive radicals and TCA molecules. Besides, the transformation products generated during the photodegradation of TCA were determined, along with the discussion on the potential risk assessment of antibiotic pollutants. This study introduces an approach for utilizing BWCN photocatalyst, with promising applications in the treatment of TCA from various wastewater sources.
Collapse
Affiliation(s)
- Huong Pham Thi
- Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Vietnam
- Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City, Vietnam
| | - Thuy-An Nguyen
- Institute of Fundamental and Applied Sciences, Duy Tan University, Ho Chi Minh City, 70000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, Da Nang City, 50000, Vietnam
| | - Minh Viet Nguyen
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam.
| | - Van Noi Nguyen
- VNU Key Laboratory of Advanced Material for Green Growth, Faculty of Chemistry, VNU University of Science, 334 Nguyen Trai Street, Thanh Xuan, Hanoi, Vietnam
| | - Tuan B H Nguyen
- VKTECH Research Center, Hi-tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
3
|
Liu J, Chang X, Cheng Y, Guo Z, Yan Q. Construction of novel Ag/AgI/Bi 4Ti 3O 12 plasmonic heterojunction: A study focusing on the performance and mechanism of photocatalytic removal of tetracycline. CHEMOSPHERE 2024; 352:141306. [PMID: 38286311 DOI: 10.1016/j.chemosphere.2024.141306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
As a result of the insufficient absorption of visible light, the application of Bi4Ti3O12 in the field of photocatalysis is limited. Ag/AgI was uniformly modified on the surface of the nanoflower bulb of Bi4Ti3O12 by simple precipitation method and photodeposition. The fabricated Ag/AgI/Bi4Ti3O12 obtained an ultra-high tetracycline (TC) removal rate under visible light irradiation. And the synergetic effects caused by the surface plasmon resonance (SPR) effect of Ag, the photosensitivity of AgI and the p-n heterojunction are the key to improving the photocatalytic performance of materials. Besides, four plausible photodegradation pathways of TC were proposed and its intermediates were evaluated for toxicity, showing a significant decrease in toxicity after photoreaction.
Collapse
Affiliation(s)
- Jiayu Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China
| | - Xinyue Chang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China
| | - Yanan Cheng
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China
| | - Zhiyuan Guo
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China
| | - Qishe Yan
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan, 450001, China.
| |
Collapse
|
4
|
Mondal S, Dilly Rajan K, Rathinam M, Neppolian B, Vattikondala G. Enhanced photocatalytic degradation of tetracycline using NiCo-BiVO 4 nanocomposite under visible light irradiation: A noble-metal-free approach for water remediation. CHEMOSPHERE 2024; 350:141012. [PMID: 38145845 DOI: 10.1016/j.chemosphere.2023.141012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/17/2023] [Accepted: 12/19/2023] [Indexed: 12/27/2023]
Abstract
The increasing pollution of water bodies with organic contaminants, including antibiotics, has become a significant environmental concern. In this study, a noble-metal-free alternative, NiCo bimetal cocatalyst, was synthesized and applied to enhance the photocatalytic degradation of the antibiotic tetracycline (TC) using BiVO4 as the photocatalyst under the visible spectrum. The NiCo-BiVO4 nanocomposite exhibited improved visible light absorption, reduced recombination rate of charge carriers, and enhanced electrochemical properties. The photocatalytic degradation of TC was significantly enhanced by the NiCo bimetal modification, with the 2 wt% NiCo-BiVO4 nanocomposite achieving an 87.2% degradation of TC and 82% Total Organic Carbon (TOC) removal within 120 min. The degradation kinetics of TC (target compound) followed a first-order reaction, with photogenerated electrons and holes identified as the primary active species responsible for the degradation process. The recyclability of the catalyst was also demonstrated for multiple runs, indicating its stability. Furthermore, the pathway of TC degradation by 2 wt% NiCo-BiVO4 nanocomposite was proposed based on the detected intermediate products using LC-MS analysis. This study provides a promising approach for developing efficient, noble-metal-free photocatalysts to remove organic contaminants from water sources.
Collapse
Affiliation(s)
- Sneha Mondal
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Karthik Dilly Rajan
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Maheswaran Rathinam
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Bernaurdshaw Neppolian
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Ganesh Vattikondala
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
5
|
Zhang Y, Yu H, Zhai R, Zhang J, Gao C, Qi K, Yang L, Ma Q. Recent Progress in Photocatalytic Degradation of Water Pollution by Bismuth Tungstate. Molecules 2023; 28:8011. [PMID: 38138501 PMCID: PMC10745909 DOI: 10.3390/molecules28248011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Photocatalysis has emerged as a highly promising, green, and efficient technology for degrading pollutants in wastewater. Among the various photocatalysts, Bismuth tungstate (Bi2WO6) has gained significant attention in the research community due to its potential in environmental remediation and photocatalytic energy conversion. However, the limited light absorption ability and rapid recombination of photogenerated carriers hinder the further improvement of Bi2WO6's photocatalytic performance. This review aims to present recent advancements in the development of Bi2WO6-based photocatalysts. It delves into the photocatalytic mechanism of Bi2WO6 and summarizes the achieved photocatalytic characteristics by controlling its morphology, employing metal and non-metal doping, constructing semiconductor heterojunctions, and implementing defective engineering. Additionally, this review explores the practical applications of these modified Bi2WO6 photocatalysts in wastewater purification. Furthermore, this review addresses existing challenges and suggests prospects for the development of efficient Bi2WO6 photocatalysts. It is hoped that this comprehensive review will serve as a valuable reference and guide for researchers seeking to advance the field of Bi2WO6 photocatalysis.
Collapse
Affiliation(s)
- Yingjie Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
- Key Laboratory of Ecological Microbial Remediation Technology of Yunnan Higher Education Institutes, Dali University, Dali 671000, China
| | - Huijuan Yu
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Ruiqi Zhai
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Jing Zhang
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Cuiping Gao
- College of Agriculture and Biological Science, Dali University, Dali 671000, China; (Y.Z.); (H.Y.); (R.Z.); (J.Z.); (C.G.)
| | - Kezhen Qi
- College of Pharmacy, Dali University, Dali 671000, China
| | - Li Yang
- College of International Education, Dali University, Dali 671000, China;
| | - Qiang Ma
- School of Architecture and Civil Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
6
|
Wu H, Quan Y, Liu M, Tian X, Ren C, Wang Z. Synthesis of AgBr/Ti 3C 2@TiO 2 ternary composite for photocatalytic dehydrogenation of 1,4-dihydropyridine and photocatalytic degradation of tetracycline hydrochloride. RSC Adv 2023; 13:21754-21768. [PMID: 37476041 PMCID: PMC10354501 DOI: 10.1039/d3ra02164e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 07/10/2023] [Indexed: 07/22/2023] Open
Abstract
In this work, AgBr/Ti3C2@TiO2 ternary composite photocatalyst was prepared by a solvothermal and precipitation method with the aims of introducing Ti3C2 as a cocatalyst and TiO2 as a compositing semiconductor. The crystal structure, morphology, elemental state, functional groups and photoelectrochemical properties were studied by XRD, SEM, TEM, XPS, FI-IR and EIS. The photocatalytic performances of the composites were investigated by the photodehydrogenation of diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate (1,4-DHP) and the photodegradation of tetracycline hydrochloride (TCH) under visible light irradiation (λ > 400 nm). The AgBr/Ti3C2@TiO2 composite photocatalyst showed enhanced photocatalytic performance in both photocatalytic reactions. The photocatalytic activity of the composite photocatalyst is dependent on the proportional content of Ti3C2@TiO2. With optimized Ti3C2@TiO2 proportion, the photocatalytic ability of the AgBr/Ti3C2@TiO2 composite was 24.5 times as high as that of Ti3C2@TiO2 for photodehydrogenation of 1,4-DHP and 1.9 times as high as that of pure AgBr for photodegradation of TCH. The enhanced photocatalytic performance of the AgBr/Ti3C2@TiO2 composite should be due to the formation of a p-n heterojunction structure between AgBr and Ti3C2@TiO2 and the excellent electronic properties of Ti3C2, which enhanced the visible light absorption capacity, lowered the internal resistance, speeded up the charge transfer and reduced the recombination efficiency of photo-generated carriers. Mechanism studies showed that superoxide free radical (˙O2-) was the main active species. In addition, the composite photocatalyst also displayed good stability, indicating its reutilization in practical application.
Collapse
Affiliation(s)
- Hanliu Wu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Yan Quan
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Meiling Liu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Xuemei Tian
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| | - Chunguang Ren
- College of Life Sciences, Yantai University Yantai 264005 China
| | - Zhonghua Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University Nanchong 637002 Sichuan China +86 817-2568081 +86 817-2445233
| |
Collapse
|
7
|
Xing Z, Wang Z, Chen W, Zhang M, Fu X, Gao Y. Degradation of levofloxacin in wastewater by photoelectric and ultrasonic synergy with TiO 2/g-C 3N 4@AC combined electrode. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117168. [PMID: 36603258 DOI: 10.1016/j.jenvman.2022.117168] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
A novel particle combined electrode named TiO2/g-C3N4@AC (TGCN-AC) was prepared by loading TiO2 and g-C3N4 on activated carbon through gel method, which was used to degrade levofloxacin (LEF) in pharmaceutical wastewater by photoelectric process. The remarkable physicochemical features of particle electrodes were verified by using diverse characterization techniques including SEM-EDS, XRD, FT-IR, BET and pHZPC. EIS-CV and photocurrent showed excellent electrocatalysis and photoelectrocatalysis performance of particle electrodes. The photocatalytic characteristics and fluorescence properties of the particle electrode were proved by UV-vis DRS and PL spectra measurements. Combined with Tauc's plot and Mott-Schottky plots curves, the ECB and EVB of particle electrodes were determined. The experiments on different influence factors such as pH, ultrasonic, aeration, current density and the concentration of LEF were carried out in the photoelectric reactor. Under the conditions of pH values 3.0, 200 W ultrasonic, 8 L/min aeration, the mass ratio of g-C3N4 and TiO2 is 8%, after 4.0 h of photoelectric process, about 94.76% of LEF (20 mg/L) in water was degraded. TGCN-AC also has excellent reusability. The degradation rate of LEF can still reach 71.17% after repeated use for 6 times. Scavenger studies showed that h+ and O2- were the main active species. By observing the colony size of E. coli, it was proved that the LEF in the effluent had no antibacterial activity. The degradation pathways of LEF was analyzed and drawn by HPLC-MS spectra.
Collapse
Affiliation(s)
- Zihao Xing
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Zijing Wang
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Wenhui Chen
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Manying Zhang
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Xiaofei Fu
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China
| | - Yong Gao
- Jiangsu Key Laboratory of E-waste Recycling, School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, PR China.
| |
Collapse
|
8
|
Chen M, Cai X, Yang Q, Lu W, Huang Z, Gan T, Hu H, Zhang Y. Construction of a N−Mo−O bond bridged MoO2/Mo-doped g-C3N4 Schottky heterojunction composite with enhanced interfacial compatibility for efficient photocatalytic degradation of tetracycline. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
9
|
Simultaneous morphology control and defect regulation in g-C3N4 for peroxymonosulfate activation and bisphenol S degradation. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Advances in Bi 2WO 6-Based Photocatalysts for Degradation of Organic Pollutants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248698. [PMID: 36557830 PMCID: PMC9785842 DOI: 10.3390/molecules27248698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/05/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022]
Abstract
With the rapid development of modern industries, water pollution has become an urgent problem that endangers the health of human and wild animals. The photocatalysis technique is considered an environmentally friendly strategy for removing organic pollutants in wastewater. As an important member of Bi-series semiconductors, Bi2WO6 is widely used for fabricating high-performance photocatalysts. In this review, the recent advances of Bi2WO6-based photocatalysts are summarized. First, the controllable synthesis, surface modification and heteroatom doping of Bi2WO6 are introduced. In the respect of Bi2WO6-based composites, existing Bi2WO6-containing binary composites are classified into six types, including Bi2WO6/carbon or MOF composite, Bi2WO6/g-C3N4 composite, Bi2WO6/metal oxides composite, Bi2WO6/metal sulfides composite, Bi2WO6/Bi-series composite, and Bi2WO6/metal tungstates composite. Bi2WO6-based ternary composites are classified into four types, including Bi2WO6/g-C3N4/X, Bi2WO6/carbon/X, Bi2WO6/Au or Ag-based materials/X, and Bi2WO6/Bi-series semiconductors/X. The design, microstructure, and photocatalytic performance of Bi2WO6-based binary and ternary composites are highlighted. Finally, aimed at the existing problems in Bi2WO6-based photocatalysts, some solutions and promising research trends are proposed that would provide theoretical and practical guidelines for developing high-performance Bi2WO6-based photocatalysts.
Collapse
|
11
|
Ciğeroğlu Z, Sena Kazan-Kaya E, El Messaoudi N, Fernine Y, Heloisa Pinê Américo-Pinheiro J, Jada A. Remediation of tetracycline from aqueous solution through adsorption on g-C3N4-ZnO-BaTiO3 nanocomposite: optimization, modeling, and theoretical calculation. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|