1
|
Morato LFDC, Ruiz GCM, Lessa CJA, Olivier DDS, Amaral MSD, Gomes OP, Pazin WM, Batagin-Neto A, Oliveira ON, Constantino CJL. Combined impact of pesticides on mono- and bilayer lipid membranes. Chem Phys Lipids 2025; 268:105474. [PMID: 39909297 DOI: 10.1016/j.chemphyslip.2025.105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
The increased use of agrochemicals in crop production raises concerns about the risk of combined pesticide exposure through water and food, potentially leading to a 'cocktail effect' with synergistic impacts on human health. To investigate such effects, we used the pesticides acephate and diuron interacting with a mimetic system of the cell membrane, composed of lipid monolayers. These mimetic systems were composed by a mixture of POPC, cholesterol and sphingomyelin (70/20/10 mol%), respectively, close to the composition found in mammalian membranes. Results from Langmuir monolayers, including surface pressure-area isotherms, polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS), and Brewster angle microscopy (BAM), showed that the pesticides interact predominantly with the polar head region of the lipids, a finding supported by density functional theory (DFT) calculations and molecular dynamics simulations. The cocktail had a similar effect in π-A isotherms; however, PM-IRRAS data suggests a stronger effect of the cocktail on the ternary monolayer at the molecular level, once the pesticide mixture changed the conformation and orientation of the headgroup and disturbed the hydrocarbon chain. These results evidence the impact of the 'cocktail effect' on lipid membranes, highlighting potential health risks associated with pesticide mixtures.
Collapse
Affiliation(s)
| | - Gilia Cristine Marques Ruiz
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, Brazil
| | - Carlos Junior Amorim Lessa
- São Paulo State University (UNESP), School of Technology and Applied Sciences, Presidente Prudente, SP, Brazil
| | - Danilo da Silva Olivier
- Integrated Sciences Center, Campus Cimba, Federal University of North of Tocantins, Araguaína, TO, Brazil
| | | | - Orisson Ponce Gomes
- São Paulo State University (UNESP), School of Sciences, Campus Bauru, SP, Brazil
| | | | - Augusto Batagin-Neto
- São Paulo State University (UNESP), Institute of Sciences and Engineering, Campus Itapeva, SP, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo (USP), Sao Carlos, SP, Brazil
| | | |
Collapse
|
2
|
Nath H, Kundu S. Protein (Lysozyme) Concentration-Dependent Structure, Morphology, and Hysteresis Behavior of a Three-Component (Lysozyme-DMPA-Cholesterol) Protein-Lipid Langmuir Monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:3865-3876. [PMID: 39904633 DOI: 10.1021/acs.langmuir.4c04000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Protein (lysozyme)-lipid (DMPA and cholesterol) three-component mixed films (LDC) with varied lysozyme concentration (i.e., LDC_Lx) are investigated at the air-water interface. Elastic modulus-surface pressure (Cs-1-Π) curves derived from Π-A isotherms show that mechanical behavior is strongly dependent on the monolayer composition, and for the same reason, the hysteresis behavior modifies. It is evidenced that the LDC_L0.3 monolayer (lysozyme: 0.3 mg/mL) has significant hysteresis, which is reversible in nature, while the other mixed monolayers do not show such hysteresis behavior. Morphology at the air-water interface via Brewster angle microscopy (BAM) and at the air-solid interface via atomic force microscopy (AFM) shows that the presence of protein in the LDC_Lx monolayer modifies the lateral distribution of molecules, thereby forming a stripe-like pattern at the air-water interface (in optical length scale) with barrier compression or root-like structure on the solid surface at higher Π (in micron length scale), which is not observed in the case of lipid films. Moreover, lysozyme-added LDC_Lx films show an increase in thickness with compression, which is not observed for lipid films, as evidenced from the electron density profiles (EDPs). The morphology modification and thickness variation of LDC_Lx films with compression are most probably due to the reorientation of lysozyme molecules. This structural modification in LDC_Lx films with Π, however, seems to be reversible under expansion, as can be evidenced from the similar in situ morphology observation and similar thickness of the films deposited during both first and second compression. A variation in the strength of interaction forces among film-forming molecules depending on the monolayer composition basically affects the lateral distribution and organizational orientation with surface pressure, thus ultimately influencing macroscopically the monolayer properties such as elastic, hysteresis, morphological, and structural on water and solid surfaces.
Collapse
Affiliation(s)
- Himadri Nath
- Soft Nano Laboratory (SNL), Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarathi Kundu
- Soft Nano Laboratory (SNL), Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Vigyan Path, Paschim Boragaon, Garchuk, Guwahati, Assam 781035, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
3
|
Wrobel EC, de Lara LS, de Fátima Â, Oliveira ON. Nanoarchitectonics and Simulation on the Molecular-Level Interactions between p-Sulfonic Acid Calix[4]arene and Langmuir Monolayers Representing Healthy and Cancerous Cell Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27010-27027. [PMID: 39663612 DOI: 10.1021/acs.langmuir.4c03948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The design of chemotherapeutic drug carriers requires precise information on their interaction with the plasma membrane since the carriers should be internalized by cells without disrupting or compromising the overall integrity of the membrane. In this study, we employ Langmuir monolayers mimicking the outer leaflet of plasma membranes of healthy and cancerous cells to determine the molecular-level interactions with a water-soluble calixarene derivative, p-sulfonic acid calix[4]arene (SCX4), which is promising as drug carrier. The cancer membrane models comprised either 40% 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) or 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 30% cholesterol (Chol), 20% 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), and 10% 1,2-dipalmitoyl-sn-glycero-3-phospho-l-serine (DPPS). The healthy membrane models were composed of 60% DPPC or DOPC, 30% Chol, and 10% DPPE. SCX4 expanded the surface pressure isotherms and decreased compressional moduli in all membrane models, altering their morphologies as seen in Brewster angle microscopy images. A combination of polarization-modulated infrared reflection absorption spectroscopy and molecular dynamics simulations revealed that SCX4 interacts preferentially with lipid headgroups in cancer membrane models through electrostatic interactions with the amine groups of DPPS and DPPE. In healthy membrane models, SCX4 interacts mostly with cholesterol through van der Waals forces. Using a multidimensional projection technique to compare data from the distinct membrane models, we observed that SCX4 effects depend on membrane composition with no preference for cancer or healthy membrane models, which is consistent with its biocompatibility. Furthermore, the interactions and close location of SCX4 to the headgroups indicate that it does not compromise membrane integrity, confirming that SCX4 may be a suitable drug carrier.
Collapse
Affiliation(s)
- Ellen C Wrobel
- Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Lucas Stori de Lara
- Department of Physics, State University of Ponta Grossa, 84030-900 Ponta Grossa, PR, Brazil
| | - Ângelo de Fátima
- Department of Chemistry, Institute of Exact Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, MG, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| |
Collapse
|
4
|
Santamaria A, Batchu KC, Fragneto G, Laux V, Haertlein M, Darwish TA, Russell RA, Zaccai NR, Guzmán E, Maestro A. Investigation on the relationship between lipid composition and structure in model membranes composed of extracted natural phospholipids. J Colloid Interface Sci 2023; 637:55-66. [PMID: 36682118 DOI: 10.1016/j.jcis.2023.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/09/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
HYPOTHESIS Unravelling the structural diversity of cellular membranes is a paramount challenge in life sciences. In particular, lipid composition affects the membrane collective behaviour, and its interactions with other biological molecules. EXPERIMENTS Here, the relationship between membrane composition and resultant structural features was investigated by surface pressure-area isotherms, Brewster angle microscopy and neutron reflectometry on in vitro membrane models of the mammalian plasma and endoplasmic-reticulum-Golgi intermediate compartment membranes in the form of Langmuir monolayers. Natural extracted yeast lipids were used because, unlike synthetic lipids, the acyl chain saturation pattern of yeast and mammalian lipids are similar. FINDINGS The structure of the model membranes, orthogonal to the plane of the membrane, as well as their lateral packing, were found to depend strongly on their specific composition, with cholesterol having a major influence on the in-plane morphology, yielding a coexistence of liquid-order and liquid-disorder phases.
Collapse
Affiliation(s)
- Andreas Santamaria
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain
| | - Krishna C Batchu
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Giovanna Fragneto
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France; École doctorale de Physique, Université Grenoble Alpes, 38400 Saint-Martin-d'Héres, France
| | - Valérie Laux
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Michael Haertlein
- Institut Laue-Langevin, 71 Avenue des Martyrs, 38042 Grenoble, Cedex 9, France
| | - Tamim A Darwish
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Robert A Russell
- National Deuteration Facility, Australian Nuclear Science and Technology Organisation, Lucas Heights 2232, NSW, Australia
| | - Nathan R Zaccai
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB22 7QQ, United Kingdom
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, 28040 Madrid, Spain
| | - Armando Maestro
- Centro de Fı́sica de Materiales (CSIC, UPV/EHU) - Materials Physics Center MPC, Paseo Manuel de Lardizabal 5, E-20018 San Sebastián, Spain; IKERBASQUE-Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain.
| |
Collapse
|
5
|
Reorganization of the outer layer of a model of the plasma membrane induced by a neuroprotective aminosterol. Colloids Surf B Biointerfaces 2023; 222:113115. [PMID: 36603410 DOI: 10.1016/j.colsurfb.2022.113115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Trodusquemine is an amphipathic aminosterol that has recently shown therapeutic benefit in neurodegenerative diseases altering the binding of misfolded proteins to the cell membrane. To unravel the underlying mechanism, we studied the interactions between Trodusquemine (TRO) and lipid monolayers simulating the outer layer of the plasma membrane. We selected two different compositions of dioleoylphosphatidylcholine (DOPC), sphingomyelin (SM), cholesterol (Chol) and monosialotetrahexosylganglioside (GM1) lipid mixture mimicking either a lipid-raft containing membrane (Ld+So phases) or a single-phase disordered membrane (Ld phase). Surface pressure-area isotherms and surface compressional modulus-area combined with Brewster Angle Microscopy (BAM) provided the thermodynamic and morphological information on the lipid monolayer in the presence of increasing amounts of TRO in the monolayer. Experiments revealed that TRO forms stable spreading monolayers at the buffer-air interface where it undergoes multiple reversible phase transitions to bi- and tri-layers at the interface. When TRO was spread at the interface with the lipid mixtures, we found that it distributes in the lipid monolayer for both the selected lipid compositions, but a maximum TRO uptake in the rafts-containing monolayer was observed for a Lipid/TRO molar ratio equal to 3:2. Statistical analysis of BAM images revealed that TRO induces a decrease in the size of the condensed domains, an increase in their number and in the thickness mismatch between the Ld and So phase. Experiments and MD simulations converge to indicate that TRO adsorbs preferentially at the border of the So domains. Removal of GM1 from the lipid Ld+So mixture resulted in an even greater TRO-mediated reduction of the size of the So domains suggesting that the presence of GM1 hinders the localization of TRO at the So domains boundaries. Taken together these observations suggest that Trodusquemine influences the organization of lipid rafts within the neuronal membrane in a dose-dependent manner whereas it evenly distributes in disordered expanded phases of the membrane model.
Collapse
|
6
|
Dopierała K, Weiss M, Krajewska M, Błońska J. Towards understanding the binding affinity of lipid drug carriers to serum albumin. Chem Phys Lipids 2023; 250:105271. [PMID: 36509110 DOI: 10.1016/j.chemphyslip.2022.105271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/07/2022] [Accepted: 12/04/2022] [Indexed: 12/14/2022]
Abstract
In the past several years there has been a rapid rise in the use of lipid-based drug formulations. In the case of intravenous drug administration the interaction of lipid carrier with serum albumin is crucial for the distribution of the bioactive molecules in the bloodstream and reaching the target tissue. In this work, we have explored the interaction of serum albumin with three-component lipid monolayer build of palmitoyloleoylphosphatidylcholine (POPC), sphingomyelin (SM), and cholesterol (Chol). Using wide range of lipid compositions and various concentrations of serum albumin we identified the factors governing the lipid-protein binding. Our study revealed that albumin can penetrate selectively the monolayers of POPC/SM/Chol depending on the lipid composition in the mixture. Moreover, the interaction of albumin with monolayer can be controlled by the molecular density of the film and the concentration of protein. The adsorbed albumin exists in the film on the top of lipid monolayer. This behavior may lead to the increase of the size and charge of the lipid carrier and affect the drug transport throughout the bloodstream. The results of this work provide essential physicochemical data that can be used for predicting the pharmacokinetic profile of lipid-based formulations.
Collapse
Affiliation(s)
- Katarzyna Dopierała
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland.
| | - Marek Weiss
- Institute of Physics, Faculty of Materials Engineering and Technical Physics, Poznan University of Technology, Piotrowo 3, 60-965 Poznań, Poland
| | - Martyna Krajewska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| | - Justyna Błońska
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznań, Poland
| |
Collapse
|
7
|
Schiaffarino O, Valdivieso González D, García-Pérez IM, Peñalva DA, Almendro-Vedia VG, Natale P, López-Montero I. Mitochondrial membrane models built from native lipid extracts: Interfacial and transport properties. Front Mol Biosci 2022; 9:910936. [PMID: 36213125 PMCID: PMC9538489 DOI: 10.3389/fmolb.2022.910936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/02/2022] [Indexed: 12/03/2022] Open
Abstract
The mitochondrion is an essential organelle enclosed by two membranes whose functionalities depend on their very specific protein and lipid compositions. Proteins from the outer mitochondrial membrane (OMM) are specialized in mitochondrial dynamics and mitophagy, whereas proteins of the inner mitochondrial membrane (IMM) have dedicated functions in cellular respiration and apoptosis. As for lipids, the OMM is enriched in glycerophosphatidyl choline but cardiolipin is exclusively found within the IMM. Though the lipid topology and distribution of the OMM and IMM are known since more than four decades, little is known about the interfacial and dynamic properties of the IMM and OMM lipid extracts. Here we build monolayers, supported bilayers and giant unilamellar vesicles (GUVs) of native OMM and IMM lipids extracts from porcine heart. Additionally, we perform a comparative analysis on the interfacial, phase immiscibility and mechanical properties of both types of extract. Our results show that IMM lipids form more expanded and softer membranes than OMM lipids, allowing a better understanding of the physicochemical and biophysical properties of mitochondrial membranes.
Collapse
Affiliation(s)
- Olivia Schiaffarino
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
| | - David Valdivieso González
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
| | | | - Daniel A. Peñalva
- Instituto de Investigaciones Bioquímicas de Bahía Blanca (INIBIBB), ConsejoNacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Víctor G. Almendro-Vedia
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Departamento de Farmacia Galénica y Tecnología Alimentaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Paolo Natale
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- *Correspondence: Iván López-Montero, ; Paolo Natale,
| | - Iván López-Montero
- Departamento Química Física, Universidad Complutense de Madrid, Madrid, Spain
- Instituto de Investigación Biomédica Hospital Doce de Octubre (imas12), Madrid, Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid, Madrid, Spain
- *Correspondence: Iván López-Montero, ; Paolo Natale,
| |
Collapse
|
8
|
Li Y, Feng R, Liu M, Guo Y, Zhang Z. Mechanism by Which Cholesterol Induces Sphingomyelin Conformational Changes at an Air/Water Interface. J Phys Chem B 2022; 126:5481-5489. [PMID: 35839485 DOI: 10.1021/acs.jpcb.2c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This work investigates the interactions in cholesterol and sphingomyelin monolayers at the molecular level by high-resolution broadband sum frequency generation vibrational spectroscopy (HR-BB-SFG-VS). The SFG spectra of natural egg sphingomyelin (ESM) as a function of cholesterol concentration are obtained at an air/water interface under different polarization combinations. The analysis of the spectra shows that cholesterol can induce sphingomyelin conformational changes at an air/water interface. The mechanism is proposed. When cholesterol is inserted into the ESM monolayer, the inherent intramolecular hydrogen bonds between the phosphate moiety and 3OH in the sphingosine backbones are destroyed. During this process, the sphingosine backbones become more ordered, while the conformation of the N-linked long acid chain remains unaltered. The OH of the cholesterol head group can bind to the -PO-2 of the ESM molecule, and the orientation of the -PO-2 in the head groups changes to be more parallel to the interface.
Collapse
Affiliation(s)
- Yiyi Li
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongjuan Feng
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Guo
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhang
- Beijing National Laboratory for Molecular Sciences, Laboratory of Molecular Reaction Dynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Cholesterol modulates the interaction between paclitaxel and Langmuir monolayers simulating cell membranes. Colloids Surf B Biointerfaces 2021; 205:111889. [PMID: 34098365 DOI: 10.1016/j.colsurfb.2021.111889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/19/2021] [Accepted: 05/28/2021] [Indexed: 11/21/2022]
Abstract
The composition of Langmuir monolayers used as cell membrane models is an essential factor for the interaction with biologically-relevant molecules, including pharmaceutical drugs. In this paper, we report the modulation of effects from the antineoplastic drug paclitaxel by the relative concentration of cholesterol in the Langmuir monolayers of ternary mixtures of dipalmitoylphosphatidylcholine, sphingomyelin, and cholesterol. Since the dependence on cholesterol concentration for these monolayers simulating lipid rafts is non-monotonic, we analyzed the surface pressure and compressibility modulus data with the multidimensional projection technique referred to as interactive document mapping (IDMAP). The maximum expansion induced by paclitaxel in surface pressure isotherms was observed for 27% cholesterol, while the compressibility modulus decreased most strongly for the monolayer with 48% cholesterol. Therefore, the physiological action of paclitaxel may vary depending on whether it is associated with penetration in the membrane or with changes in the membrane elasticity.
Collapse
|
10
|
Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. COLLOIDS AND INTERFACES 2021. [DOI: 10.3390/colloids5020030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Langmuir monolayers containing different amounts of cholesterol and cholesteryl stearate were studied at two different temperatures (24 °C and 35 °C). The main goal was to contribute towards the understanding of how the variations in the chemical composition may affect the physico-chemical properties of these specific lipid monolayers. The model mixture was chosen considering that cholesteryl esters are present in cell membranes and some other biological systems, including human tear lipids. Therefore, an investigation into the effect of the lipid monolayer composition on their interfacial properties may elucidate some of the fundamental reasons for the deficiencies in cell membranes and tear film functioning in vivo. The experimental results have shown that the molar ratio of the mixture plays a crucial role in the modulation of the Langmuir film properties. The condensing effects of the cholesterol and the interactions between the lipids in the monolayer were the main factors altering the monolayer response to dilatational deformation. The modification of the mixture compositions leads to significant changes in the Langmuir films and the mechanical performance, altering the ability of the monolayer to reduce the surface tension and the viscoelastic properties of the monolayers. This suggests that subtle modifications of the biomembrane composition may significantly alter its physiological function.
Collapse
|
11
|
Laszuk P, Petelska AD. Interactions between Phosphatidylcholine and Kaempferol or Myristicin: Langmuir Monolayers and Microelectrophoretic Studies. Int J Mol Sci 2021; 22:ijms22094729. [PMID: 33946951 PMCID: PMC8125135 DOI: 10.3390/ijms22094729] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/24/2022] Open
Abstract
Flavonoid compounds are known for their antibacterial, anti-inflammatory, and anticancer properties. Therefore, they can influence membrane properties that interest us, modifying both their structure and functions. We used kaempferol (K) and myricetin (M) as representatives of this group. We investigated the influence of the abovementioned compounds on model cell membranes' properties (i.e., Langmuir monolayers and liposomes). The basic research methods used in these studies were the Langmuir method with Brewster angle microscopy and microelectrophoresis. The π-A isotherms were registered for the pure components and mixtures of these compounds with phosphatidylcholine (PC) in appropriate volume ratios. Using mathematical equations, we established that kaempferol, myricetin, and the lipids formed complexes at 1:1 ratios. We derived the parameters characterizing the formed complexes, i.e., the surfaces occupied by the complexes and the stability constants of the formed complexes. Using the microelectrophoretic method, we determined the dependence of the lipid membranes' surface charge density as a function of the pH (in the range of 2 to 10) of the electrolyte solution. The presented results indicate that the PC membrane's modification with kaempferol or myricetin affected changes in the surface charge density and isoelectric point values.
Collapse
|
12
|
Videv P, Mladenov N, Andreeva T, Mladenova K, Moskova-Doumanova V, Nikolaev G, Petrova SD, Doumanov JA. Condensing Effect of Cholesterol on hBest1/POPC and hBest1/SM Langmuir Monolayers. MEMBRANES 2021; 11:membranes11010052. [PMID: 33451008 PMCID: PMC7828479 DOI: 10.3390/membranes11010052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/10/2021] [Accepted: 01/12/2021] [Indexed: 11/22/2022]
Abstract
Human bestrophin-1 protein (hBest1) is a transmembrane channel associated with the calcium-dependent transport of chloride ions in the retinal pigment epithelium as well as with the transport of glutamate and GABA in nerve cells. Interactions between hBest1, sphingomyelins, phosphatidylcholines and cholesterol are crucial for hBest1 association with cell membrane domains and its biological functions. As cholesterol plays a key role in the formation of lipid rafts, motional ordering of lipids and modeling/remodeling of the lateral membrane structure, we examined the effect of different cholesterol concentrations on the surface tension of hBest1/POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and hBest1/SM Langmuir monolayers in the presence/absence of Ca2+ ions using surface pressure measurements and Brewster angle microscopy studies. Here, we report that cholesterol: (1) has negligible condensing effect on pure hBest1 monolayers detected mainly in the presence of Ca2+ ions, and; (2) induces a condensing effect on composite hBest1/POPC and hBest1/SM monolayers. These results offer evidence for the significance of intermolecular protein–lipid interactions for the conformational dynamics of hBest1 and its biological functions as multimeric ion channel.
Collapse
Affiliation(s)
- Pavel Videv
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Nikola Mladenov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
- Faculty of Medicine, Medical University-Sofia, 1 Sv. Georgi Sofiiski Str., 1431 Sofia, Bulgaria
| | - Tonya Andreeva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria;
- Faculty of Applied Chemistry, Reutlingen University, Alteburgstraße 150, 72762 Reutlingen, Germany
| | - Kirilka Mladenova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Veselina Moskova-Doumanova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Georgi Nikolaev
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Svetla D. Petrova
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
| | - Jordan A. Doumanov
- Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tzankov Blvd., 1164 Sofia, Bulgaria; (P.V.); (N.M.); (K.M.); (V.M.-D.); (G.N.); (S.D.P.)
- Correspondence: ; Tel.: +359-2-8167262
| |
Collapse
|
13
|
Materon EM, Nascimento GF, Shimizu FM, Câmara AS, Sandrino B, Faria RC, Oliveira ON. Role of sphingomyelin on the interaction of the anticancer drug gemcitabine hydrochloride with cell membrane models. Colloids Surf B Biointerfaces 2020; 196:111357. [DOI: 10.1016/j.colsurfb.2020.111357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 12/17/2022]
|
14
|
Pereira AR, Fiamingo A, de O. Pedro R, Campana-Filho SP, Miranda PB, Oliveira ON. Enhanced chitosan effects on cell membrane models made with lipid raft monolayers. Colloids Surf B Biointerfaces 2020; 193:111017. [DOI: 10.1016/j.colsurfb.2020.111017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 12/12/2022]
|
15
|
Xie B, Hao C, Zhang Z, Sun R. Studies on the interfacial behavior of DPPC/DPPG mixed monolayers in the presence of fluoxetine. J Mol Model 2020; 26:167. [PMID: 32514762 DOI: 10.1007/s00894-020-04433-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/27/2020] [Indexed: 02/05/2023]
Abstract
In this study, the interfacial behavior of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine/1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPC/DPPG) mixed monolayers with fluoxetine (FLX) in the subphase was investigated by a combination of the Langmuir-Blodgett technique and atomic force microscopy (AFM). It was found that DPPC/DPPG mixed monolayers showed different interfacial behaviors before and after addition of FLX in the subphase. The electrostatic interaction between FLX and lipids molecules destroys the homogeneity of the mixed monolayers and changes the arrangement of lipids molecules at the interface after addition of FLX in the subphase, thereby leading to an increase of compressibility and miscibility and a decrease in the stability of the mixed monolayers. The surface morphology of the mixed monolayers observed by AFM was different between without and with FLX in the subphase, indicating the penetration of FLX into the mixed monolayers. The present study has provided detailed information for further understanding the interactions of drugs with membrane lipids in other lipid monolayers.
Collapse
Affiliation(s)
- Bin Xie
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China.
| | - Changchun Hao
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Ziyi Zhang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| | - Runguang Sun
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710062, People's Republic of China
| |
Collapse
|
16
|
Zhang Z, Hao C, Liu H, Zhang X, Sun R. Cholesterol mediates spontaneous insertion of Lycium barbarum polysaccharides in biomembrane model. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Perczyk P, Wójcik A, Wydro P, Broniatowski M. The role of phospholipid composition and ergosterol presence in the adaptation of fungal membranes to harsh environmental conditions-membrane modeling study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1862:183136. [PMID: 31751523 DOI: 10.1016/j.bbamem.2019.183136] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/30/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023]
Abstract
Soil fungi play an important role in the environment decomposing dead organic matter and degrading persistent organic pollutants (POP). The presence of hydrophobic POP in the soil and membrane-lytic substances excreted by competing microorganism to the soil solution is the constant threat to these organisms. To survive in the harsh environment and counteract these hazards the fungal cells have to strictly control the composition of the lipids in their cellular membranes. However, in the case of fungal membranes the correlation between their composition and physical properties is not fully understood. In our studies we applied Langmuir monolayers formed by phospholipids typical to fungal membranes and ergosterol as versatile model membranes. These membranes were characterized by the Langmuir technique, Brewster Angle Microscopy and Grazing Incidence X-ray Diffraction, as well as were exposed to the action of phospholipase A2 treated as a model membrane-lytic protein. We started our studies from the equimolar mixture of phosphatidylethanolamine with phosphatidylcholine and doped this matrix with phosphatidylserine (PS) or phosphatidylinositol (PI). It turned out that the membranes with PS were much more condensed at the mesoscale and periodically organized at the molecular level. Starting from these models we derived two families of model fungal membranes adding to these phospholipid matrices ergosterol. It turned out that the level of ergosterol content is of crucial importance for the model membrane structure and its durability. Changing the ergosterol mole ratio from 0 to 0.5 we defined and described in detail four different 2D crystalline phases.
Collapse
Affiliation(s)
- Paulina Perczyk
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Aneta Wójcik
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Paweł Wydro
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Marcin Broniatowski
- Department of Environmental Chemistry, Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
18
|
Abstract
The condensing effect and the ability of cholesterol (CHOL) to induce ordering in lipid films is a question of relevance in biological membranes such as the milk fat globule membrane (MFGM) in which the amount of CHOL influences the phase separation and mechanical resistance to rupture of coexisting phases relevant to emulsified food systems. Here, we study the effect of different salts (NaCl, CaCl2, MgCl2, LaCl3) on monolayers made of a model mixture of lipids (DPPC:DPPS 4:1) and CHOL. To this end, we apply Langmuir Film Balance to report a combined analysis of surface pressure-area (π-A) and surface potential-area (ΔV–A) isotherms along with Micro-Brewster Angle Microscopy (Micro-BAM) images of the monolayers in the presence of the different electrolytes. We show that the condensation of lipid by CHOL depends strongly on the nature of the ions by altering the shape and features of the π-A isotherms. ΔV–A isotherms provide further detail on the ion specific interactions with CHOL. Our results show that the condensation of lipids in the presence of CHOL depends on the combined action of ions and CHOL, which can alter the physical state of the monolayer.
Collapse
|
19
|
The influence of 2-hydroxyoleic acid – an anticancer drug – on model membranes of different fluidity modulated by the cholesterol content. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.143] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
20
|
Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Interaction of natural compounds with biomembrane models: A biophysical approach for the Alzheimer's disease therapy. Colloids Surf B Biointerfaces 2019; 180:83-92. [PMID: 31030024 DOI: 10.1016/j.colsurfb.2019.04.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 11/29/2022]
Abstract
Natural compounds such as caffeine (CA), gallic acid (GA) and tannic acid (TA) have been reported to be useful for Alzheimer's disease (AD) therapy. It was proved that some natural compounds inhibit the formation of senil plaques composed by beta-amyloid peptide (Aβ), a hallmark of AD. Evidences suggest that the therapeutic activity of compounds depends of their interaction with biological membranes. To understand why these compounds fail in vivo and in clinical trials, it is important to evaluate their pharmacokinetics properties. Thus, a biophysical approach to study drug-membrane interactions is essential to understand the mechanisms by which the drugs interact with the cellular membranes and affect the Aβ production, aggregation and clearance pathways. 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol (chol) were used to mimic the biophysical properties of cell membranes and study their interactions with these compounds. The partition coefficient, influence on membrane fluidity and location within the bilayer of the drugs were studied by derivative spectrophotometry, dynamic light scattering and fluorescence quenching, respectively. The results suggest that TA exhibited a significant higher partition than CA and GA and a preferential location near to the polar head of bilayer. The obtained results may explain the therapeutic mechanisms reported for these natural compounds.
Collapse
Affiliation(s)
- Stephanie Andrade
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria J Ramalho
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Joana A Loureiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Maria Carmo Pereira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
21
|
Influence of 7α-hydroxycholesterol on sphingomyelin and sphingomyelin/phosphatidylcholine films - The Langmuir monolayer study complemented with theoretical calculations. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:861-870. [DOI: 10.1016/j.bbamem.2019.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/30/2019] [Accepted: 01/31/2019] [Indexed: 12/29/2022]
|
22
|
Dopierała K, Skrzypiec M. Morphology, compressibility and viscoelasticity of the mixed lipid monolayers in the presence of β-carotene. Chem Phys Lipids 2018; 213:88-95. [PMID: 29626417 DOI: 10.1016/j.chemphyslip.2018.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/15/2018] [Accepted: 04/03/2018] [Indexed: 11/27/2022]
Abstract
The aim of the present study was to investigate the interfacial behaviour of model biomembranes in the presence of β-carotene (βC). The Langmuir monolayer technique was used to form the mixed lipid film at the air/water interface. Using the surface pressure-area isotherms, the surface potential-area curves and the Brewster angle microscopy the nature of interactions between carotenoid and lipid components of the monolayers was investigated. The results were obtained for complex models of the lipid bilayer composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and cholesterol (CHOL). It was found that β-carotene affected the membrane stability, fluidity and rigidity, however this influence varied with the DPPC/CHOL ratio. The membrane permeability which is significant for biological functions was found to be affected by the presence of β-carotene in the membrane. The morphology of mixed films visualized by Brewster angle microscopy was similar for DPPC/CHOL and DPPC/CHOL/βC films indicating incorporation of carotenoid into the film. In contrary to previous reports for individual lipids, we did not observed the aggregation of βC in the mixed lipid monolayer. Moreover, from dilatational rheology experiment we concluded about the significant role of β-carotene in modulation of the elastic behaviour of the membrane, especially in physiologically significant surface pressure, i.e. at π = 30 mN/m.
Collapse
Affiliation(s)
- Katarzyna Dopierała
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, -60-695 Poznań, Poland.
| | - Marta Skrzypiec
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, -60-695 Poznań, Poland
| |
Collapse
|
23
|
Li Y, Feng R, Lin L, Liu M, Guo Y, Zhang Z. Ordering effects of cholesterol on sphingomyelin monolayers investigated by high-resolution broadband sum-frequency generation vibrational spectroscopy. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2017.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
24
|
Alves AC, Nunes C, Lima J, Reis S. Daunorubicin and doxorubicin molecular interplay with 2D membrane models. Colloids Surf B Biointerfaces 2017; 160:610-618. [DOI: 10.1016/j.colsurfb.2017.09.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 10/18/2022]
|
25
|
Influence of doxorubicin on model cell membrane properties: insights from in vitro and in silico studies. Sci Rep 2017; 7:6343. [PMID: 28740256 PMCID: PMC5524714 DOI: 10.1038/s41598-017-06445-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/13/2017] [Indexed: 01/31/2023] Open
Abstract
Despite doxorubicin being commonly used in chemotherapy there still remain significant holes in our knowledge regarding its delivery efficacy and an observed resistance mechanism that is postulated to involve the cell membrane. One possible mechanism is the efflux by protein P-gp, which is found predominantly in cholesterol enriched domains. Thereby, a hypothesis for the vulnerability of doxorubicin to efflux through P-gp is its enhanced affinity for the ordered cholesterol rich regions of the plasma membrane. Thus, we have studied doxorubicin’s interaction with model membranes in a cholesterol rich, ordered environment and in liquid-disordered cholesterol poor environment. We have combined three separate experimental protocols: UV-Vis spectrophotometry, fluorescence quenching and steady-state anisotropy and computational molecular dynamics modeling. Our results show that the presence of cholesterol induces a change in membrane structure and doesn’t impair doxorubicin’s membrane partitioning, but reduces drug’s influence on membrane fluidity without directly interacting with it. It is thus possible that the resistance mechanism that lowers the efficacy of doxorubicin, results from an increased density in membrane regions where the efflux proteins are present. This work represents a successful approach, combining experimental and computational studies of membrane based systems to unveil the behavior of drugs and candidate drug molecules.
Collapse
|
26
|
Applications of Brewster angle microscopy from biological materials to biological systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2017; 1859:1749-1766. [PMID: 28655618 DOI: 10.1016/j.bbamem.2017.06.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 12/22/2022]
Abstract
Brewster angle microscopy (BAM) is a powerful technique that allows for real-time visualization of Langmuir monolayers. The lateral organization of these films can be investigated, including phase separation and the formation of domains, which may be of different sizes and shapes depending on the properties of the monolayer. Different molecules or small changes within a molecule such as the molecule's length or presence of a double bond can alter the monolayer's lateral organization that is usually undetected using surface pressure-area isotherms. The effect of such changes can be clearly observed using BAM in real-time, under full hydration, which is an experimental advantage in many cases. While previous BAM reviews focused more on selected compounds or compared the impact of structural variations on the lateral domain formation, this review provided a broader overview of BAM application using biological materials and systems including the visualization of amphiphilic molecules, proteins, drugs, extracts, DNA, and nanoparticles at the air-water interface.
Collapse
|
27
|
Wang E, Klauda JB. Examination of Mixtures Containing Sphingomyelin and Cholesterol by Molecular Dynamics Simulations. J Phys Chem B 2017; 121:4833-4844. [DOI: 10.1021/acs.jpcb.7b01832] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Eric Wang
- Department
of Chemical and Biomolecular Engineering and ‡Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| | - Jeffery B. Klauda
- Department
of Chemical and Biomolecular Engineering and ‡Biophysics Graduate Program, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
28
|
Bunker A, Magarkar A, Viitala T. Rational design of liposomal drug delivery systems, a review: Combined experimental and computational studies of lipid membranes, liposomes and their PEGylation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:2334-2352. [DOI: 10.1016/j.bbamem.2016.02.025] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/09/2016] [Accepted: 02/10/2016] [Indexed: 01/22/2023]
|
29
|
Effects of Leucin-Enkephalins on Surface Characteristics and Morphology of Model Membranes Composed of Raft-Forming Lipids. J Membr Biol 2015; 249:229-38. [DOI: 10.1007/s00232-015-9862-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 11/28/2015] [Indexed: 12/21/2022]
|
30
|
Neves AR, Nunes C, Reis S. Resveratrol induces ordered domains formation in biomembranes: Implication for its pleiotropic action. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:12-8. [PMID: 26456556 DOI: 10.1016/j.bbamem.2015.10.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 12/17/2022]
Abstract
Resveratrol is a polyphenol compound with great value in cancer therapy, cardiovascular protection, and neurodegenerative disorders. The mechanism by which resveratrol exerts such pleiotropic effects is not yet clear and there is a huge need to understand the influence of this compound on the regulation of lipid domains formation on membrane structure. The aim of the present study was to reveal potential molecular interactions between resveratrol and lipid rafts found in cell membranes by means of Förster resonance energy transfer, DPH fluorescence quenching, and triton X-100 detergent resistance assay. Liposomes composed of egg phosphatidylcholine, cholesterol, and sphingomyelin were used as model membranes. The results revealed that resveratrol induces phase separation and formation of liquid-ordered domains in bilayer structures. The formation of such tightly packed lipid rafts is important for different signal transduction pathways, through the regulation of membrane-associating proteins, that can justify several pharmacological activities of this compound.
Collapse
Affiliation(s)
- Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| |
Collapse
|
31
|
Adsorbed film of n-tetradecylphosphocholine at the tetradecane/water interface studied by interfacial tensiometry and X-ray reflection. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.06.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Matyszewska D, Brzezińska K, Juhaniewicz J, Bilewicz R. pH dependence of daunorubicin interactions with model DMPC:Cholesterol membranes. Colloids Surf B Biointerfaces 2015. [DOI: 10.1016/j.colsurfb.2015.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Miyoshi T, Kato S. Detailed Analysis of the Surface Area and Elasticity in the Saturated 1,2-Diacylphosphatidylcholine/Cholesterol Binary Monolayer System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:9086-9096. [PMID: 26255826 DOI: 10.1021/acs.langmuir.5b01775] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The surface pressure-area (π-A) isotherms of DMPC, DPPC, and DSPC/cholesterol binary monolayers were systematically measured with great care to gain insight into the lateral molecular packing in these binary monolayer systems. The average molecular area A and the area elastic modulus C(s)⁻¹ at a given surface pressure were calculated as a function of cholesterol mole fraction x(chol). As a result, data reliable enough for the analysis of detailed phase behavior were obtained. We identified several characteristic phase regions and assigned the phase state in each region on the basis of the deviation of A(x(chol)) and C(s)⁻¹(x(chol)) from ideal additivity. We also estimated the partial molecular areas of DMPC, DPPC, DSPC, and cholesterol in the single-phase regions, where C(s)⁻¹(x(chol)) values fell on an ideal additivity curve. We found that the addition of cholesterol induces the formation of a highly condensed phase where the diacylphosphatidylcholine (diacyl PC) molecule has a surface area even smaller than that in the solid phase, irrespective of the surface pressure and the chain length of diacyl PC. Here, we call the cholesterol-induced condensed phase the CC phase. Furthermore, we demonstrated that the basic features of A(x(chol)) and C(s)⁻¹(x(chol)) profiles can be explained semiquantitatively by assuming the state of vicinity lipids surrounding sparsely distributed cholesterol molecules in the low x(chol) region as a third state of the diacyl PC molecule in addition to the states in the pure diacyl PC monolayer and in the CC phase.
Collapse
Affiliation(s)
- Tsubasa Miyoshi
- Department of Physics, Graduate School of Science and Technology, Kwansei Gakuin University , 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Satoru Kato
- Department of Physics, Graduate School of Science and Technology, Kwansei Gakuin University , 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
34
|
Neves AR, Nunes C, Reis S. New Insights on the Biophysical Interaction of Resveratrol with Biomembrane Models: Relevance for Its Biological Effects. J Phys Chem B 2015; 119:11664-72. [PMID: 26237152 DOI: 10.1021/acs.jpcb.5b05419] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Resveratrol has been widely studied because of its pleiotropic effects in cancer therapy, neuroprotection, and cardioprotection. It is believed that the interaction of resveratrol with biological membranes may play a key role in its therapeutic activity. The capacity of resveratrol to partition into lipid bilayers, its possible location within the membrane, and the influence of this compound on the membrane fluidity were investigated using membrane mimetic systems composed of egg l-α-phosphatidylcholine (EPC), cholesterol (CHOL), and sphingomyelin (SM). The results showed that resveratrol has greater affinity for the EPC bilayers than for EPC:CHOL [4:1] and EPC:CHOL:SM [1:1:1] membrane models. The increased difficulty in penetrating tight packed membranes is also demonstrated by fluorescence quenching of probes and by fluorescence anisotropy measurements. Resveratrol may be involved in the regulation of cell membrane fluidity, thereby contributing for cell homeostasis.
Collapse
Affiliation(s)
- Ana Rute Neves
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Cláudia Nunes
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Salette Reis
- UCIBIO, REQUIMTE, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| |
Collapse
|
35
|
Hąc-Wydro K, Węder K, Mach M, Flasiński M, Wydro P. The influence of cholesterol precursor – desmosterol – on artificial lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1639-45. [DOI: 10.1016/j.bbamem.2015.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/26/2015] [Accepted: 04/30/2015] [Indexed: 10/23/2022]
|
36
|
Jurak M, Golabek M, Holysz L, Chibowski E. Properties of Langmuir and solid supported lipid films with sphingomyelin. Adv Colloid Interface Sci 2015; 222:385-97. [PMID: 24725646 DOI: 10.1016/j.cis.2014.03.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/11/2022]
Abstract
Biological cell membranes play a crucial role in various biological processes and their functionality to some extent is determined by the hydrophilic/hydrophobic balance. A significant progress in understanding the membrane structure was the discovery of laterally segregated lipid domains, called the lipid rafts. These raft domains are of ordered lamellar liquid-crystalline phase, while rest of the membrane exists in a relatively disordered lamellar liquid-crystalline phase. Moreover, the chemical constitution of the lipid rafts consists of a higher content (up to 50%) of cholesterol (Chol) and sphingomyelin (SM). Sphingomyelin also plays a significant role in the red cells of blood and nerves, in some diseases, as a precursor to ceramides, and other sphingolipid metabolites. In this paper properties of Langmuir and solid supported mixed lipid films of DPPC/SM, DOPC/SM, and Chol/SM are described. Special attention has been paid to wetting properties (hydrophobic/hydrophilic balance) of these films transferred onto a hydrophilic glass surface. To our knowledge such results have not yet been published in the literature. The properties were determined via contact angle measurements and then calculation of the films' apparent surface free energy. The films' wettability and their apparent surface free energy strongly depend on their composition. The energy is affected by both the structure of hydrocarbon chains of glycerophospholipids (DPPC and DOPC) and their interactions with SM. Properties of mixed Chol/SM monolayer depend also on the film stoichiometry. At a low Chol content (XChol=0.25) the interactions between SM and Chol are strong and hence the formation of binary complex is possible. This is accompanied by a decrease in the film surface free energy in comparison to that of pure SM monolayer, contrary to a higher Chol content where the monolayer energy increases. This suggests that cholesterol is excluded from the membrane thus increasing the film hydrophilicity. These results are consistent with the literature data and somehow confirm the hypothesis of lipid raft formation. The roughness of the investigated monolayer surfaces was also determined using optical profilometry. The roughness parameters of the DPPC, SM, and mixed DPPC/SM generally correlate with the changes of their apparent surface free energy, i.e. with the decreasing roughness the apparent surface free energy also decreases. However, this is not the case for mixed DOPC/SM monolayers. Although the roughness increases with SM content the apparent surface free energy decreases. Therefore some other factors, like the presence of unsaturated bonds in the DOPC molecule, influence the film phase state and the energy too. More experiments are needed to explain this hypothesis.
Collapse
|
37
|
Cyclosporin A in Membrane Lipids Environment: Implications for Antimalarial Activity of the Drug--The Langmuir Monolayer Studies. J Membr Biol 2015; 248:1021-32. [PMID: 26077844 PMCID: PMC4611017 DOI: 10.1007/s00232-015-9814-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/06/2015] [Indexed: 01/08/2023]
Abstract
Cyclosporin A (CsA), a hydrophobic cyclic peptide produced by the fungus Tolypocladium inflatum, is well known for its high efficiency as an immunosuppressor for transplanted organs and anti-inflammatory properties; however, it is also active as antiparasitic (antimalarial) drug. Antimalarial mechanism of CsA action lacks a detailed understanding at molecular level. Due to a high lipophilicity of CsA, it is able to interact with lipids of cellular membrane; however, molecular targets of this drug are still unknown. To get a deeper insight into the mode of antimalarial activity of CsA, it is of utmost importance to examine its interactions with membrane components. To reach this goal, the Langmuir monolayer technique, which serves as a very useful, easy to handle and controllable model of biomembranes, has been employed. In this work, the interactions between CsA and main membrane lipids, i.e., cholesterol (Chol), 2-oleoyl-1-palmitoyl-3-phosphocholine (POPC), and sphingomyelin (SM), have been investigated. Attractive interactions are observed only for CsA mixtures with SM, while repulsive forces occur in systems containing remaining membrane lipids. Taking into consideration mutual interactions between membrane lipids (Chol-SM; Chol-POPC and SM-POPC), the behavior of CsA in model erythrocyte membrane of normal and infected cells has been analyzed. Our results prove strong affinity of CsA to SM in membrane environment. Since normal and parasitized erythrocytes differ significantly in the level of SM, this phospholipid may be considered as a molecular target for antimalarial activity of CsA.
Collapse
|
38
|
Matsunaga S, Yamada T, Kobayashi T, Kawai M. Scanning tunneling microscope observation of the phosphatidylserine domains in the phosphatidylcholine monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5449-5455. [PMID: 25913903 DOI: 10.1021/acs.langmuir.5b00859] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
A mixed monolayer of 1,2-dihexanoyl-sn-glycero-3-phospho-l-serine (DHPS) and 1,2-dihexanoyl-sn-glycero-3-phosphocholine (DHPC) on an 1-octanethiol-modified gold substrate was visualized on the nanometer scale using in situ scanning tunneling microscopy (STM) in aqueous solution. DHPS clusters were evident as spotty domains. STM enabled us to distinguish DHPS molecules from DHPC molecules depending on their electronic structures. The signal of the DHPS domains was abolished by neutralization with Ca(2+). The addition of the PS + Ca(2+)-binding protein of annexin V to the Ca(2+)-treated monolayer gave a number of spots corresponding to a single annexin V molecule.
Collapse
Affiliation(s)
- Soichiro Matsunaga
- †Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Taro Yamada
- ‡Lipid Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Toshihide Kobayashi
- ‡Lipid Biology Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Maki Kawai
- †Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
39
|
The comparison of zymosterol vs cholesterol membrane properties –The effect of zymosterol on lipid monolayers. Colloids Surf B Biointerfaces 2014; 123:524-32. [DOI: 10.1016/j.colsurfb.2014.09.054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/14/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022]
|
40
|
Maté SM, Vázquez RF, Herlax VS, Daza Millone MA, Fanani ML, Maggio B, Vela ME, Bakás LS. Boundary region between coexisting lipid phases as initial binding sites for Escherichia coli alpha-hemolysin: A real-time study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:1832-41. [DOI: 10.1016/j.bbamem.2014.02.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 02/24/2014] [Accepted: 02/27/2014] [Indexed: 11/29/2022]
|
41
|
Effect of tetracaine on DMPC and DMPC+cholesterol biomembrane models: Liposomes and monolayers. Colloids Surf B Biointerfaces 2014; 116:63-71. [DOI: 10.1016/j.colsurfb.2013.12.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 12/17/2013] [Accepted: 12/18/2013] [Indexed: 11/21/2022]
|
42
|
Tsanova A, Jordanova A, Dzimbova T, Pajpanova T, Golovinsky E, Lalchev Z. Interaction of methionine-enkephalins with raft-forming lipids: monolayers and BAM experiments. Amino Acids 2013; 46:1159-68. [PMID: 24357114 DOI: 10.1007/s00726-013-1647-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 12/11/2013] [Indexed: 12/27/2022]
Abstract
Enkephalins (Tyr-Gly-Gly-Phe-Met/Leu) are opioid peptides with proven antinociceptive action in organism. They interact with opioid receptors belonging to G-protein coupled receptor superfamily. It is known that these receptors are located preferably in membrane rafts composed mainly of sphingomyelin (Sm), cholesterol (Cho), and phosphatidylcholine. In the present work, using Langmuir's monolayer technique in combination with Wilhelmy's method for measuring the surface pressure, the interaction of synthetic methionine-enkephalin and its amidated derivative with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), Sm, and Cho, as well as with their double and triple mixtures, was studied. From the pressure/area isotherms measured, the compressional moduli of the lipids and lipid-peptide monolayers were determined. Our results showed that the addition of the synthetic enkephalins to the monolayers studied led to change in the lipid monolayers characteristics, which was more evident in enkephalinamide case. In addition, using Brewster angle microscopy (BAM), the surface morphology of the lipid monolayers, before and after the injection of both enkephalins, was determined. The BAM images showed an increase in surface density of the mixed surface lipids/enkephalins films, especially with double and triple component lipid mixtures. This effect was more pronounced for the enkephalinamide as well. These observations showed that there was an interaction between the peptides and the raft-forming lipids, which was stronger for the amidated peptide, suggesting a difference in folding of both enkephalins. Our research demonstrates the potential of lipid monolayers for elegant and simple membrane models to study lipid-peptide interactions at the plane of biomembranes.
Collapse
Affiliation(s)
- A Tsanova
- Faculty of Medicine, St. Kliment Ohridski University of Sofia, 1 Kozyak Str., 1407, Sofia, Bulgaria,
| | | | | | | | | | | |
Collapse
|
43
|
Hao C, Sun R, Zhang J. Mixed monolayers of DOPC and palmitic acid at the liquid–air interface. Colloids Surf B Biointerfaces 2013; 112:441-5. [DOI: 10.1016/j.colsurfb.2013.07.062] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/16/2013] [Accepted: 07/30/2013] [Indexed: 01/07/2023]
|
44
|
Pinheiro M, Pereira-Leite C, Arêde M, Nunes C, Caio JM, Moiteiro C, Giner-Casares JJ, Lúcio M, Brezesinski G, Camacho L, Reis S. Evaluation of the structure-activity relationship of rifabutin and analogs: a drug-membrane study. Chemphyschem 2013; 14:2808-2816. [PMID: 23821530 DOI: 10.1002/cphc.201300262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Indexed: 01/15/2023]
Abstract
This work focuses on the influence of rifabutin and two novel analogs, namely, N'-acetyl-rifabutin and N'-butanoyl-rifabutin, on the biophysical properties of lipid membranes. Monolayers and multilamellar vesicles composed of egg L-α-phosphatidylcholine:cholesterol in a molar ratio of 4:1 are chosen to mimic biological membranes. Several accurate biophysical techniques are used to establish a putative relationship between the chemical structure of the antimycobacterial compounds and their activity on the membranes. A combination of in situ experimental techniques, such as Langmuir isotherms, Brewster angle microscopy, polarization-modulated infrared reflection-absorption spectroscopy, and small-angle X-ray scattering, is used to assess the drug-membrane interaction. A relationship between the effect of a drug on the organization of the membranes and their chemical structure is found and may be useful in the development of new drugs with higher efficacy and fewer toxic effects.
Collapse
Affiliation(s)
- Marina Pinheiro
- REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n.° 228, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Le Guillou J, Ropers MH, Gaillard C, David-Briand E, Desherces S, Schmitt E, Bencharif D, Amirat-Briand L, Tainturier D, Anton M. Organization of lipids in the artificial outer membrane of bull spermatozoa reconstructed at the air–water interface. Colloids Surf B Biointerfaces 2013; 108:246-54. [DOI: 10.1016/j.colsurfb.2013.02.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/15/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
46
|
Wydro P. The influence of cholesterol on multicomponent Langmuir monolayers imitating outer and inner leaflet of human erythrocyte membrane. Colloids Surf B Biointerfaces 2013. [DOI: 10.1016/j.colsurfb.2012.10.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Hąc-Wydro K, Lenartowicz R, Dynarowicz-Łątka P. The influence of plant stanol (β-sitostanol) on inner leaflet of human erythrocytes membrane modeled with the Langmuir monolayer technique. Colloids Surf B Biointerfaces 2013; 102:178-88. [DOI: 10.1016/j.colsurfb.2012.07.048] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 06/27/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|