1
|
Ryabukhina E, Kobanenko M, Tretiakova D, Shchegravina E, Khaidukov S, Alekseeva A, Boldyrev I, Zgoda V, Tikhonova O, Fedorov AY, Onishchenko N, Vodovozova E. Plasma protein corona of liposomes loaded with a phospholipid-allocolchicinoid conjugate enhances their anti-inflammatory potential. Colloids Surf B Biointerfaces 2025; 253:114746. [PMID: 40319730 DOI: 10.1016/j.colsurfb.2025.114746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 04/15/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
Today colchicine is considered as a possible new treatment for cardiovascular diseases. Its physiological effects have been shown to be primarily due to the intra-leukocyte concentrations. Nanoparticulate formulations could help accumulation of colchicine in phagocytic cells. Previously we formulated liposomes loaded with a colchicine analog in the form of an enzyme-responsive conjugate with phosphatidylcholine (aC-PC) and showed acceptable stability of the formulation in human plasma. Here, we investigated how protein coronas formed on a series of aC-PC-bearing liposomes in human plasma affected their interactions with leukocytes and endothelial cells. Liposome-protein complexes were analyzed by shotgun proteomics. Liposomes 25C with the highest load of aC-PC (25 %) were distinguished by a three times more massive protein corona and specific profile of proteins, including enrichment with ApoD and galectin-3-binding protein, which may affect the inflammation-associated signaling. Differences in the protein coronas did not noticeably affect liposome uptake by cultured monocytes and endotheliocytes, although the level of uptake decreased in the presence of plasma proteins. Nor did the composition of liposomes affect the course of phagocytosis by leukocytes in the blood ex vivo. The effects of protein coronas were manifested in the suppression of the production of inflammatory chemokine MCP-1 (and to a much lesser extent IL-8) by stimulated peripheral blood monocytes about 1.5 times compared with naked liposomes. In the case of liposomes 25C the inhibition was complete. These liposomes are considered the most promising for further preclinical studies.
Collapse
Affiliation(s)
- Ekaterina Ryabukhina
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Maria Kobanenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Daria Tretiakova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ekaterina Shchegravina
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Sergey Khaidukov
- Laboratory of Carbohydrates, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Anna Alekseeva
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Ivan Boldyrev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow 119071, Russia
| | - Viktor Zgoda
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Olga Tikhonova
- Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Alexey Yu Fedorov
- Department of Chemistry, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod 603950, Russia
| | - Natalia Onishchenko
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Center for Algorithmic and Robotized Synthesis, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Elena Vodovozova
- Laboratory of Lipid Chemistry, Department of Chemical Biology of Glycans and Lipids, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| |
Collapse
|
2
|
Suriyaamporn P, Pornpitchanarong C, Charoenying T, Dechsri K, Ngawhirunpat T, Opanasopit P, Pamornpathomkul B. Artificial intelligence-driven hydrogel microneedle patches integrating 5-fluorouracil inclusion complex-loaded flexible pegylated liposomes for enhanced non-melanoma skin cancer treatment. Int J Pharm 2025; 669:125072. [PMID: 39675535 DOI: 10.1016/j.ijpharm.2024.125072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/17/2024]
Abstract
The current study focused on the development of crosslinked hydrogel microneedle patches (cHMNs) incorporating 5-FU-hydroxypropyl beta-cyclodextrin inclusion complex-loaded flexible PEGylated liposomes (5-FU-HPβCD-loaded FP-LPs) to enhance treatment efficacy and reduce drug toxicity. The research utilized artificial intelligence (AI) algorithms to design, optimize, and evaluate the cHMNs. Various AI models were assessed for accuracy, with metrics such as root mean square error and coefficient of determination guiding the selection of the most effective formulation. The physicochemical and mechanical properties, swelling behavior, in vitro skin permeation, and safety of the chosen cHMNs were tested. The results demonstrated that the 5-FU-HPβCD-loaded FP-LPs, stabilized with limonene, had an optimal particle size of 36.23 ± 2.42 nm, narrow size distribution, and zeta potential of -10.24 ± 0.37 mV, with high encapsulation efficiency. The cHMNs exhibited a conical needle shape with sufficient mechanical strength to penetrate the stratum corneum up to approximately 467.87 ± 65.12 μm. The system provided a high skin permeation rate of 41.78 ± 4.26 % and significant drug accumulation in the skin. Additionally, the formulation was proven safe in cell culture while effectively inhibiting cancer growth and promoting apoptosis. This study highlights the potential of AI-enhanced cHMNs for delivering 5-FU-HPβCD-loaded FP-LPs transdermally, offering a promising new treatment avenue for non-melanoma skin cancers.
Collapse
Affiliation(s)
- Phuvamin Suriyaamporn
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Thapakorn Charoenying
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Koranat Dechsri
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Boonnada Pamornpathomkul
- Pharmaceutical Development of Green Innovations Group (PDGIG), Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom, Thailand; Research and Innovation Center for Advanced Therapy Medicinal Products, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
3
|
Jin M, Wu H, Jin W, Zeng B, Liu Y, Wang N, Wang S, Chen L, Gao Z, Huang W. Transferrin Protein Corona-Targeted Codelivery of Tirapazamine and IR820 Facilitates Efficient PDT-Induced Hypoxic Chemotherapy on 4T1 Breast Cancer. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1892-1910. [PMID: 39699197 DOI: 10.1021/acsami.4c15045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Protein corona (PC) formation confers novel biological properties to the original nanomaterial, impeding its uptake and targeting efficacy in cells and tissues. Although many studies discussing PC formation have focused on inert proteins that may inhibit the function of nanomaterials, some functional plasma proteins with intrinsic targeting capabilities can also be adsorbed to the surface of nanomaterials, with active ligand properties to improve the targeting ability. In this approach, nanomaterials are surface-engineered to promote the adsorption of specific functional plasma proteins that are directly targeted to transport nanomaterials to the target site. In this study, T10 peptide-modified liposomes were employed to construct an in situ transferrin (Tf) PC-mediated liposome carrying a hypoxia-sensitive chemotherapy drug (tirapazamine, TPZ) and a photosensitizer (indocyanine green, IR820). The water-soluble drug TPZ was encapsulated in mesoporous silica nanoparticles (MSNs) and coated with IR820 (IR)-loaded liposome. Lipid-coated MSNs can inhibit aggregation in the body and significantly reduce the rapid release of water-soluble drugs, resulting in improved system stability and sustained release. Upon entering the in vivo circulation, T10 bound specifically to Tf in plasma to form an in situ Tf liposome-PC complex with enhanced targeting efficacy compared to traditional ligand-modified active-targeting strategies. However, large-sized PC particles faced challenges in penetrating deep into tumor tissues. IR could kill tumors through photodynamic therapy (PDT) and elicit complementary antitumor effects with the hypoxia-sensitive drug TPZ. This study demonstrates the novel design of in situ PC-mediated multifunctional liposomes for hypoxia-activated chemotherapy combined with PDT, a promising approach to cancer therapy.
Collapse
Affiliation(s)
- Mingji Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Hao Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Pharmacy, Jilin Medical University, Jilin 132013, China
| | - Wenyu Jin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Department of Dermatology, Yanbian University Hospital, Yanji 133000, China
| | - Bowen Zeng
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yanhong Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nuoya Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shuangqing Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Liqing Chen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhonggao Gao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Wei Huang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulations, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
4
|
Riet K, Adegoke A, Mashele S, Sekhoacha M. Effective Use of Euphorbia milii DCM Root Extract Encapsulated by Thermosensitive Immunoliposomes for Targeted Drug Delivery in Prostate Cancer Cells. Curr Issues Mol Biol 2024; 46:12037-12060. [PMID: 39590308 PMCID: PMC11593239 DOI: 10.3390/cimb46110714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/17/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
The delivery of anticancer drugs using nanotechnology is a promising approach aimed at improving the therapeutic efficacy and reducing the toxicity of chemotherapeutic agents. Liposomes were prepared using HSPC: DSPE-PEG-2000: DSPE-PEG2000-maleimide in the ratio of 4:1:0.2 and conjugated with a PSA antibody. Euphorbia milii extract (EME), doxorubicin (Dox), and docetaxel (Doc) encapsulated in temperature-sensitive immunoliposomes were investigated for their activities against the prostate cancer LNCap and DU145 cell lines. Organic extracts of EME leaves, roots, and stems were screened against both cell lines, inhibiting more than 50% of cell culture at concentrations of 10 μg/mL. The immunoliposomes incorporating the EME and docetaxel were active against the LNCap cells when exposed to heat at 39-40 °C. The liposomes not exposed to heat were inactive against the LNCap cells. The developed heat-sensitive immunoliposomes used for the delivery of both the EME and chemotherapeutic agents was able to successfully release the entrapped contents upon heat exposure above the phase transition temperature of the liposome membrane. The heat-sensitive immunoliposomes conjugated with a PSA antibody encapsulated the extract successfully and showed better cell antiproliferation efficacy against the prostate cancer cell lines in the presence of heat.
Collapse
Affiliation(s)
- Keamogetswe Riet
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa; (K.R.); (S.M.)
| | - Ayodeji Adegoke
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa;
- Cancer Research and Molecular Biology Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria
| | - Samson Mashele
- Department of Health Sciences, Central University of Technology, Bloemfontein 9300, South Africa; (K.R.); (S.M.)
| | - Mamello Sekhoacha
- Department of Pharmacology, University of the Free State, Bloemfontein 9300, South Africa;
| |
Collapse
|
5
|
d'Avanzo N, Paolino D, Barone A, Ciriolo L, Mancuso A, Christiano MC, Tolomeo AM, Celia C, Deng X, Fresta M. OX26-cojugated gangliosilated liposomes to improve the post-ischemic therapeutic effect of CDP-choline. Drug Deliv Transl Res 2024; 14:2771-2787. [PMID: 38478324 PMCID: PMC11384645 DOI: 10.1007/s13346-024-01556-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2024] [Indexed: 09/10/2024]
Abstract
Cerebrovascular impairment represents one of the main causes of death worldwide with a mortality rate of 5.5 million per year. The disability of 50% of surviving patients has high social impacts and costs in long period treatment for national healthcare systems. For these reasons, the efficacious clinical treatment of patients, with brain ischemic stroke, remains a medical need. To this aim, a liposome nanomedicine, with monosialic ganglioside type 1 (GM1), OX26 (an anti-transferrin receptor antibody), and CDP-choline (a neurotrophic drug) (CDP-choline/OX26Lip) was prepared. CDP-choline/OX26Lip were prepared by a freeze and thaw method and then extruded through polycarbonate filters, to have narrow size distributed liposomes of ~80 nm. CDP-choline/OX26Lip were stable in human serum, they had suitable pharmacokinetic properties, and 30.0 ± 4.2% of the injected drug was still present in the blood stream 12 h after its systemic injection. The post-ischemic therapeutic effect of CDP-choline/OX26Lip is higher than CDP-choline/Lip, thus showing a significantly high survival rate of the re-perfused post-ischemic rats, i.e. 96% and 78% after 8 days. The treatment with CDP-choline/OX26Lip significantly decreased the peroxidation rate of ~5-times compared to CDP-choline/Lip; and the resulting conjugated dienes, that was 13.9 ± 1.1 mmol/mg proteins for CDP-choline/Lip and 3.1 ± 0.8 for CDP-choline/OX26Lip. OX26 increased the accumulation of GM1-liposomes in the brain tissues and thus the efficacious of CDP-choline. Therefore, this nanomedicine may represent a strategy for the reassessment of CDP-choline to treat post-ischemic events caused by brain stroke, and respond to a significant clinical need.
Collapse
Affiliation(s)
- Nicola d'Avanzo
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonella Barone
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Luigi Ciriolo
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Antonia Mancuso
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Christiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Anna Maria Tolomeo
- Department of Cardiac, Thoracic and Vascular Science and Public Health, University of Padova, 35128, Padua, Italy
- Perdiatric Research Institute "Città della Speranza", Corso Stati Uniti, 4, 35127, Padua, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, 66100, Chieti, Italy.
- Lithuanian University of Health Sciences, Laboratory of Drug Targets Histopathology, Institute of Cardiology, A. Mickeviciaus g. 9, LT-44307, Kaunas, Lithuania.
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Xiaoyong Deng
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy.
| |
Collapse
|
6
|
Triantafyllopoulou E, Perinelli DR, Forys A, Pantelis P, Gorgoulis VG, Lagopati N, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Unveiling the Performance of Co-Assembled Hybrid Nanocarriers: Moving towards the Formation of a Multifunctional Lipid/Random Copolymer Nanoplatform. Pharmaceutics 2024; 16:1204. [PMID: 39339240 PMCID: PMC11434724 DOI: 10.3390/pharmaceutics16091204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/26/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Despite the appealing properties of random copolymers, the use of these biomaterials in association with phospholipids is still limited, as several aspects of their performance have not been investigated. The aim of this work is the formulation of lipid/random copolymer platforms and the comprehensive study of their features by multiple advanced characterization techniques. Both biomaterials are amphiphilic, including two phospholipids (1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)) and a statistical copolymer of oligo (ethylene glycol) methyl ether methacrylate (OEGMA) and 2-(diisopropylamino) ethyl methacrylate (DIPAEMA). We examined the design parameters, including the lipid composition, the % comonomer ratio, and the lipid-to-polymer ratio that could be critical for their behavior. The structures were also probed in different conditions. To the best of the authors' knowledge, this is the first time that P(OEGMA-co-DIPAEMA)/lipid hybrid colloidal dispersions have been investigated from a membrane mechanics, biophysical, and morphological perspective. Among other parameters, the copolymer architecture and the hydrophilic to hydrophobic balance are deemed fundamental parameters for the biomaterial co-assembly, having an impact on the membrane's fluidity, morphology, and thermodynamics. Exploiting their unique characteristics, the most promising candidates were utilized for methotrexate (MTX) loading to explore their encapsulation capability and potential antitumor efficacy in vitro in various cell lines.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Diego Romano Perinelli
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Aleksander Forys
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Pavlos Pantelis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Vassilis G Gorgoulis
- Molecular Carcinogenesis Group, Department of Histology and Embryology, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
- Faculty Institute for Cancer Sciences, Manchester Academic Health Sciences Centre, University of Manchester, Manchester M20 4GJ, UK
- Faculty of Health and Medical Sciences, University of Surrey, Surrey GU2 7YH, UK
| | - Nefeli Lagopati
- Biomedical Research Foundation, Academy of Athens, 11527 Athens, Greece
- Laboratory of Biology, Department of Basic Medical Sciences, Medical School, National and Kapodistrian University of Athens (NKUA), 11527 Athens, Greece
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy
| | - Georgia Valsami
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens (NKUA), Panepistimioupolis Zografou, 15771 Athens, Greece
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece
| |
Collapse
|
7
|
Baudo G, Flinn H, Holcomb M, Tiwari A, Soriano S, Taraballi F, Godin B, Zinger A, Villapol S. Sex-dependent improvement in traumatic brain injury outcomes after liposomal delivery of dexamethasone in mice. Bioeng Transl Med 2024; 9:e10647. [PMID: 39036088 PMCID: PMC11256133 DOI: 10.1002/btm2.10647] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/02/2023] [Accepted: 01/11/2024] [Indexed: 07/23/2024] Open
Abstract
Traumatic brain injury (TBI) can have long-lasting physical, emotional, and cognitive consequences due to the neurodegeneration caused by its robust inflammatory response. Despite advances in rehabilitation care, effective neuroprotective treatments for TBI patients are lacking. Furthermore, current drug delivery methods for TBI treatment are inefficient in targeting inflamed brain areas. To address this issue, we have developed a liposomal nanocarrier (Lipo) encapsulating dexamethasone (Dex), an agonist for the glucocorticoid receptor utilized to alleviate inflammation and swelling in various conditions. In vitro studies show that Lipo-Dex were well tolerated in human and murine neural cells. Lipo-Dex showed significant suppression of inflammatory cytokines, IL-6 and TNF-α, release after induction of neural inflammation with lipopolysaccharide. Further, the Lipo-Dex were administered to young adult male and female C57BL/6 mice immediately after controlled cortical impact injury (a TBI model). Our findings demonstrate that Lipo-Dex can selectively target the injured brain, thereby reducing lesion volume, cell death, astrogliosis, the release of pro-inflammatory cytokines, and microglial activation compared to Lipo-treated mice in a sex-dependent manner, showing a major impact only in male mice. This highlights the importance of considering sex as a crucial variable in developing and evaluating new nano-therapies for brain injury. These results suggest that Lipo-Dex administration may effectively treat acute TBI.
Collapse
Affiliation(s)
- Gherardo Baudo
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Hannah Flinn
- Department of Neurosurgery and Center for NeuroregenerationHouston Methodist Research InstituteHoustonTexasUSA
| | - Morgan Holcomb
- Department of Neurosurgery and Center for NeuroregenerationHouston Methodist Research InstituteHoustonTexasUSA
| | - Anjana Tiwari
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
| | - Sirena Soriano
- Department of Neurosurgery and Center for NeuroregenerationHouston Methodist Research InstituteHoustonTexasUSA
| | - Francesca Taraballi
- Department of Orthopedics and Sports Medicine and Center for Musculoskeletal RegenerationHouston Methodist HospitalHoustonTexasUSA
| | - Biana Godin
- Department of NanomedicineHouston Methodist Research InstituteHoustonTexasUSA
- Department of Obstetrics and GynecologyHouston Methodist Research InstituteHoustonTexasUSA
- Department of Obstetrics and GynecologyWeill Cornell Medicine College (WCMC)New YorkNew YorkUSA
- Department of Biomedical EngineeringTexas A&M UniversityCollege StationTexasUSA
| | - Assaf Zinger
- Department of Cardiovascular SciencesHouston Methodist Research InstituteHoustonTexasUSA
- Department of Chemical EngineeringTechnion−Israel Institute of TechnologyHaifaIsrael
| | - Sonia Villapol
- Department of Neurosurgery and Center for NeuroregenerationHouston Methodist Research InstituteHoustonTexasUSA
- Department of Neuroscience in Neurological SurgeryWeill Cornell Medicine College (WCMC)New YorkNew YorkUSA
| |
Collapse
|
8
|
Triantafyllopoulou E, Forys A, Perinelli DR, Balafouti A, Karayianni M, Trzebicka B, Bonacucina G, Valsami G, Pippa N, Pispas S. Deciphering the Lipid-Random Copolymer Interactions and Encoding Their Properties to Design a Hybrid System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11936-11946. [PMID: 38797979 PMCID: PMC11190979 DOI: 10.1021/acs.langmuir.4c00278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 04/10/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024]
Abstract
Lipid/copolymer colloidal systems are deemed hybrid materials with unique properties and functionalities. Their hybrid nature leads to complex interfacial phenomena, which have not been fully encoded yet, navigating their properties. Moving toward in-depth knowledge of such systems, a comprehensive investigation of them is imperative. In the present study, hybrid lipid/copolymer structures were fabricated and examined by a gamut of techniques, including dynamic light scattering, fluorescence spectroscopy, cryogenic transmission electron microscopy, microcalorimetry, and high-resolution ultrasound spectroscopy. The biomaterials that were mixed for this purpose at different ratios were 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine and four different linear, statistical (random) amphiphilic copolymers, consisting of oligo(ethylene glycol) methyl ether methacrylate as the hydrophilic comonomer and lauryl methacrylate as the hydrophobic one. The colloidal dispersions were studied for lipid/copolymer interactions regarding their physicochemical, morphological, and biophysical behavior. Their membrane properties and interactions with serum proteins were also studied. The aforementioned techniques confirmed the hybrid nature of the systems and the location of the copolymer in the structure. More importantly, the random architecture of the copolymers, the hydrophobic-to-hydrophilic balance of the nanoplatforms, and the lipid-to-polymer ratio are highlighted as the main design-influencing factors. Elucidating the lipid/copolymer interactions would contribute to the translation of hybrid nanoparticle performance and, thus, their rational design for multiple applications, including drug delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Aleksander Forys
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Diego Romano Perinelli
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Anastasia Balafouti
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Maria Karayianni
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| | - Barbara Trzebicka
- Centre
of Polymer and Carbon Materials, Polish
Academy of Sciences, Zabrze 41-819, Poland
| | - Giulia Bonacucina
- School
of Pharmacy, University of Camerino, Via Gentile III da Varano, Camerino 62032, Italy
| | - Georgia Valsami
- Section
of Pharmaceutical Technology, Department of Pharmacy, School of Health
Sciences, National and Kapodistrian University
of Athens, Panepistimioupolis
Zografou, Athens 15771, Greece
| | - Natassa Pippa
- Department
of Pharmaceutical Technology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Panepistimioupolis Zografou 15771, Athens 157 72, Greece
| | - Stergios Pispas
- Theoretical
and Physical Chemistry Institute, National
Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, Athens 11635, Greece
| |
Collapse
|
9
|
Miatmoko A, Octavia RT, Araki T, Annoura T, Sari R. Advancing liposome technology for innovative strategies against malaria. Saudi Pharm J 2024; 32:102085. [PMID: 38690211 PMCID: PMC11059525 DOI: 10.1016/j.jsps.2024.102085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
This review discusses the potential of liposomes as drug delivery systems for antimalarial therapies. Malaria continues to be a significant cause of mortality and morbidity, particularly among children and pregnant women. Drug resistance due to patient non-compliance and troublesome side effects remains a significant challenge in antimalarial treatment. Liposomes, as targeted and efficient drug carriers, have garnered attention owing to their ability to address these issues. Liposomes encapsulate hydrophilic and/or hydrophobic drugs, thus providing comprehensive and suitable therapeutic drug delivery. Moreover, the potential of passive and active drug delivery enables drug concentration in specific target tissues while reducing adverse effects. However, successful liposome formulation is influenced by various factors, including drug physicochemical characteristics and physiological barriers encountered during drug delivery. To overcome these challenges, researchers have explored modifications in liposome nanocarriers to achieve efficient drug loading, controlled release, and system stability. Computational approaches have also been adopted to predict liposome system stability, membrane integrity, and drug-liposome interactions, improving formulation development efficiency. By leveraging computational methods, optimizing liposomal drug delivery systems holds promise for enhancing treatment efficacy and minimizing side effects in malaria therapy. This review consolidates the current understanding and highlights the potential of liposome strategies against malaria.
Collapse
Affiliation(s)
- Andang Miatmoko
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Stem Cell Research and Development Center, Universitas Airlangga, 2 Floor Institute of Tropical Disease Building, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
- Nanotechnology and Drug Delivery System Research Group, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Rifda Tarimi Octavia
- Master Program of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| | - Tamasa Araki
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Takeshi Annoura
- Department of Parasitology, National Institute of Infectious Diseases (NIID), 1-23-1 Toyama, Shinju-ku, Tokyo 162-8640, Japan
| | - Retno Sari
- Department of Pharmaceutical Science, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia
| |
Collapse
|
10
|
Baldino L, Riccardi D, Reverchon E. Production of PEGylated Vancomycin-Loaded Niosomes by a Continuous Supercritical CO 2 Assisted Process. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:846. [PMID: 38786802 PMCID: PMC11124014 DOI: 10.3390/nano14100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
Niosomes are arousing significant interest thanks to their low cost, high biocompatibility, and negligible toxicity. In this work, a supercritical CO2-assisted process was performed at 100 bar and 40 °C to produce niosomes at different Span 80/Tween 80 weight ratios. The formulation of cholesterol and 80:20 Span 80/Tween 80 was selected to encapsulate vancomycin, used as a model active compound, to perform a drug release rate comparison between PEGylated and non-PEGylated niosomes. In both cases, nanometric vesicles were obtained, i.e., 214 ± 59 nm and 254 ± 73 nm for non-PEGylated and PEGylated niosomes, respectively, that were characterized by a high drug encapsulation efficiency (95% for non-PEGylated and 98% for PEGylated niosomes). However, only PEGylated niosomes were able to prolong the vancomycin release time up to 20-fold with respect to untreated drug powder, resulting in a powerful strategy to control the drug release rate.
Collapse
Affiliation(s)
- Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, SA, Italy; (D.R.); (E.R.)
| | | | | |
Collapse
|
11
|
Alotaibi SH. Tretinoin (2,4-difluoro-phenyl) triazole activates proapoptotic protein expression and targets NRP2 protein to inhibit esophageal carcinoma cell growth. ENVIRONMENTAL TOXICOLOGY 2024; 39:942-951. [PMID: 37972228 DOI: 10.1002/tox.24030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
The present study investigated the effect of tretinoin (2,4-difluoro-phenyl) triazole (TDFPT) on the growth and proliferation of Kyse-270 and EC9706 esophageal carcinoma cells and explored the underlying mechanism. The results demonstrated that TDFPT treatment of Kyse-270 and EC9706 cells led to a dose-dependent reduction in cell proliferation. Colony formation was significantly (p < .05) reduced in Kyse-270 and EC9706 cells on treatment with various concentrations of TDFPT. In TDFPT-treated Kyse-270 and EC9706 cells, the expression of Bcl-2 protein showed a remarkable decrease, whereas the level of Bax protein was found to be higher compared with the control cells. Cell invasion showed a prominent decrease in Kyse-270 and EC9706 cells on treatment with TDFPT. Treatment with TDFPT led to a prominent suppression in the expression of MMP-9 and NRP2 in Kyse-270 and EC9706 cells. In silico studies using the AutoDock Vina and discovery studio software revealed that various confirmations of TDFPT bind to NRP2 protein with the affinity ranging from -8.6 to -6.1 kcal/mol. It was found that the TDFPT interacts with NRP2 protein by binding to alanine (ALA A:295), proline (PRO A:306), glutamine (GLN A:307), and isoleucine (ILE A:293) amino acid residues. In summary, TDFPT exposure suppresses esophageal carcinoma cell proliferation, inhibits colony formation ability, and activates apoptotic pathway. Thus, TDFPT acts as an effective antiproliferative agent for esophageal carcinoma cells and needs to be investigated further as chemotherapeutic molecule.
Collapse
Affiliation(s)
- Saad H Alotaibi
- Department of Chemistry, Turabah University College, Taif University, Taif, Saudi Arabia
| |
Collapse
|
12
|
Digiacomo L, Renzi S, Quagliarini E, Pozzi D, Amenitsch H, Ferri G, Pesce L, De Lorenzi V, Matteoli G, Cardarelli F, Caracciolo G. Investigating the mechanism of action of DNA-loaded PEGylated lipid nanoparticles. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 53:102697. [PMID: 37507061 DOI: 10.1016/j.nano.2023.102697] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/26/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.
Collapse
Affiliation(s)
- Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Serena Renzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Gianmarco Ferri
- Laboratorio NEST, Scuola Normale Superiore, 56127 Pisa, Italy
| | - Luca Pesce
- Laboratorio NEST, Scuola Normale Superiore, 56127 Pisa, Italy
| | | | - Giulia Matteoli
- Laboratorio NEST, Scuola Normale Superiore, 56127 Pisa, Italy
| | | | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy.
| |
Collapse
|
13
|
Piacenza E, Sule K, Presentato A, Wells F, Turner RJ, Prenner EJ. Impact of Biogenic and Chemogenic Selenium Nanoparticles on Model Eukaryotic Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:10406-10419. [PMID: 37462214 PMCID: PMC10399287 DOI: 10.1021/acs.langmuir.3c00718] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Microbial nanotechnology is an expanding research area devoted to producing biogenic metal and metalloid nanomaterials (NMs) using microorganisms. Often, biogenic NMs are explored as antimicrobial, anticancer, or antioxidant agents. Yet, most studies focus on their applications rather than the underlying mechanism of action or toxicity. Here, we evaluate the toxicity of our well-characterized biogenic selenium nanoparticles (bSeNPs) produced by the Stenotrophomonas maltophilia strain SeITE02 against the model yeast Saccharomyces cerevisiae comparing it with chemogenic SeNPs (cSeNPs). Knowing from previous studies that the biogenic extract contained bSeNPs in an organic material (OM) and supported here by Fourier transform infrared spectroscopy, we removed and incubated it with cSeNPs (cSeNPs_OM) to assess its influence on the toxicity of these formulations. Specifically, we focused on the first stages of the eukaryotic cell exposure to these samples─i.e., their interaction with the cell lipid membrane, which was mimicked by preparing vesicles from yeast polar lipid extract or phosphatidylcholine lipids. Fluidity changes derived from biogenic and chemogenic samples revealed that the bSeNP extract mediated the overall rigidification of lipid vesicles, while cSeNPs showed negligible effects. The OM and cSeNPs_OM induced similar modifications to the bSeNP extract, reiterating the need to consider the OM influence on the physical-chemical and biological properties of bSeNP extracts.
Collapse
Affiliation(s)
- Elena Piacenza
- Department of Biological, Chemical and Pharmaceutical Science and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Kevin Sule
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Alberta, Calgary T2N 1N4, Canada
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Science and Technologies, University of Palermo, Viale delle Scienze, Ed. 16, 90128 Palermo, Italy
| | - Frieda Wells
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Alberta, Calgary T2N 1N4, Canada
| | - Raymond J Turner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Alberta, Calgary T2N 1N4, Canada
| | - Elmar J Prenner
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Alberta, Calgary T2N 1N4, Canada
| |
Collapse
|
14
|
Fathi HA, Yousry C, Elsabahy M, El-Badry M, El Gazayerly ON. Effective loading of incompatible drugs into nanosized vesicles: a strategy to allow concurrent administration of furosemide and midazolam in simulated clinical settings. Int J Pharm 2023; 636:122852. [PMID: 36934884 DOI: 10.1016/j.ijpharm.2023.122852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/25/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023]
Abstract
The current study aims to assess the use of nanocarriers to limit drug incompatibilities in clinical settings, and thus eliminating serious clinical consequences (e.g., catheter obstruction and embolism), and enhancing in vivo bioavailability and efficacy. As a proof-of-concept, the impact of loading well-documented physically incompatible drugs (i.e., furosemide and midazolam) into nanosized vesicles on in vitro stability and in vivo bioavailability of the two drugs was investigated. Furosemide and midazolam were loaded into nanosized spherical vesicles at high entrapment efficiency (ca. 62-69%). The drug-loaded vesicles demonstrated a sustained drug release patterns, high physical stability and negligible hemolytic activity. Physical incompatibility was assessed by exploiting microscopic technique coupled with image processing and analysis, dynamic light scattering and laser Doppler anemometry. Incorporation of drugs separately inside the nanosized vesicles dramatically decreased size and number of the precipitated particles. In vivo, the niosomal drug mixture demonstrated a significant improvement in pharmacokinetic profiles of furosemide and midazolam compared to the mixed free drug solutions, as evidenced by their longer circulation half-lives and higher area under the plasma-concentration time curves of both drugs. Nanocarriers could provide an auspicious strategy for circumventing drug incompatibilities, thus reducing adverse reactions, hospitalization period and improving therapeutic outcomes.
Collapse
Affiliation(s)
- Heba A Fathi
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Mahmoud Elsabahy
- School of Biotechnology and BUC Research Center, Badr University in Cairo, Badr City, Cairo 11829, Egypt; Department of Chemistry, Texas A&M University, College Station, TX 77842, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt.
| | - Mahmoud El-Badry
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Omaima N El Gazayerly
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| |
Collapse
|
15
|
Jeong JY, Joung H, Jang GJ, Han SY. Probing emergence of biomolecular coronas around drug‐loaded liposomal nanoparticles in the solution by using nanoparticle tracking analysis. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Affiliation(s)
- Ji Yeon Jeong
- Department of Chemistry Gachon University Seongnam Gyeonggi South Korea
| | - Heeju Joung
- Department of Chemistry Gachon University Seongnam Gyeonggi South Korea
| | - Gwi Ju Jang
- Department of Chemistry Gachon University Seongnam Gyeonggi South Korea
| | - Sang Yun Han
- Department of Chemistry Gachon University Seongnam Gyeonggi South Korea
| |
Collapse
|
16
|
Kheirkhah S, Abedi M, Zare F, Salmanpour M, Abolmaali SS, Tamaddon AM. Surface engineered palmitoyl-mesoporous silica nanoparticles with supported lipid bilayer coatings for high-capacity loading and prolonged release of dexamethasone: A factorial design approach. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Triantafyllopoulou E, Pippa N, Demetzos C. Protein-liposome interactions: the impact of surface charge and fluidisation effect on protein binding. J Liposome Res 2022; 33:77-88. [PMID: 35730463 DOI: 10.1080/08982104.2022.2071296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
At the dawn of a new nanotechnological era in the pharmaceutical field, it is very important to examine and understand all the aspects that influence in vivo behaviour of nanoparticles. In this point of view, the interactions between serum proteins and liposomes with incorporated anionic, cationic, and/or PEGylated lipids were investigated to elucidate the role of surface charge and bilayer fluidity in protein corona's formation. 1,2-dipalmitoyl-sn-glycero-3- phosphocholine (DPPC), hydrogenated soybean phosphatidylcholine (HSPC), and 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine (DSPC) liposomes with the presence or absence of 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG), 1,2-di-(9Z-octadecenoyl)-3-trimethylammonium-propane (chloride salt) (DOTAP), and/or 1,2-dipalmitoylsn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-5000] (DPPE-PEG 5000) lipids were prepared by the thin-film hydration method. The evaluation of their biophysical characteristics was enabled by differential scanning calorimetry and dynamic and electrophoretic light scattering. The physicochemical characteristics of mixed liposomes were compared before and after exposure to foetal bovine serum (FBS) and were correlated to calorimetric data. Our results indicate protein binding to all liposomal formulations. However, it is highlighted the importance of surface charge and fluidisation effect to the extent of protein adsorption. Additionally, considering the extensive use of cationic lipids for innovative delivery platforms, we deem PEGylation a key parameter, because even in a small proportion can reduce protein binding, and thus fast clearance and extreme toxicity without affecting positive charge. This study is a continuation of our previous work about protein-liposome interactions and fraction of stealthiness (Fs) parameter, and hopefully a design road map for drug and gene delivery.
Collapse
Affiliation(s)
- Efstathia Triantafyllopoulou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Curcumin-Induced Stabilization of Protein-Based Nano-Delivery Vehicles Reduces Disruption of Zwitterionic Giant Unilamellar Vesicles. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27061941. [PMID: 35335305 PMCID: PMC8956123 DOI: 10.3390/molecules27061941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022]
Abstract
Curcumin-loaded native and succinylated pea protein nanoparticles, as well as zwitterionic giant unilamellar vesicles were used in this study as model bioactive compound loaded-nanoparticles and biomembranes, respectively, to assess bio-nano interactions. Curcumin-loaded native protein-chitosan and succinylated protein-chitosan complexes, as well as native protein-chitosan and succinylated protein-chitosan hollow, induced leakage of the calcein encapsulated in the giant unilamellar vesicles. The leakage was more pronounced with hollow protein-chitosan complexes. However, curcumin-loaded native protein and curcumin-loaded succinylated protein nanoparticles induced calcein fluorescence quenching. Dynamic light scattering measurements showed that the interaction of curcumin-loaded native protein, curcumin-loaded succinylated protein, native protein-chitosan, and succinylated protein-chitosan complexes with the giant unilamellar vesicles caused a major reduction in the size of the lipid vesicles. Confocal and widefield fluorescence microscopy showed rupturing of the unilamellar vesicles after treatment with native pea protein-chitosan and succinylated pea protein-chitosan complexes. The nature of interaction between the curcumin-loaded protein nanoparticles and the biomembranes, at the bio-nano interface, is influenced by the encapsulated curcumin. Findings from this study showed that, as the protein plays a crucial role in stabilizing the bioactive compound from chemical and photodegradation, the encapsulated nutraceutical stabilizes the protein nanoparticle to reduce its interaction with biomembranes.
Collapse
|
19
|
Berger S, Berger M, Bantz C, Maskos M, Wagner E. Performance of nanoparticles for biomedical applications: The in vitro/ in vivo discrepancy. BIOPHYSICS REVIEWS 2022; 3:011303. [PMID: 38505225 PMCID: PMC10903387 DOI: 10.1063/5.0073494] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/04/2022] [Indexed: 03/21/2024]
Abstract
Nanomedicine has a great potential to revolutionize the therapeutic landscape. However, up-to-date results obtained from in vitro experiments predict the in vivo performance of nanoparticles weakly or not at all. There is a need for in vitro experiments that better resemble the in vivo reality. As a result, animal experiments can be reduced, and potent in vivo candidates will not be missed. It is important to gain a deeper knowledge about nanoparticle characteristics in physiological environment. In this context, the protein corona plays a crucial role. Its formation process including driving forces, kinetics, and influencing factors has to be explored in more detail. There exist different methods for the investigation of the protein corona and its impact on physico-chemical and biological properties of nanoparticles, which are compiled and critically reflected in this review article. The obtained information about the protein corona can be exploited to optimize nanoparticles for in vivo application. Still the translation from in vitro to in vivo remains challenging. Functional in vitro screening under physiological conditions such as in full serum, in 3D multicellular spheroids/organoids, or under flow conditions is recommended. Innovative in vivo screening using barcoded nanoparticles can simultaneously test more than hundred samples regarding biodistribution and functional delivery within a single mouse.
Collapse
Affiliation(s)
- Simone Berger
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| | - Martin Berger
- Department of Chemistry, Johannes Gutenberg-Universität Mainz, Duesbergweg 10-14, D-55128 Mainz, Germany
| | - Christoph Bantz
- Fraunhofer Institute for Microengineering and Microsystems IMM, Carl-Zeiss-Str. 18-20, D-55129 Mainz, Germany
| | | | - Ernst Wagner
- Pharmaceutical Biotechnology, Department of Pharmacy, Ludwig–Maximilians-Universität (LMU) Munich, Butenandtstr. 5-13, D-81377 Munich, Germany
| |
Collapse
|
20
|
Meewan J, Somani S, Laskar P, Irving C, Mullin M, Woods S, Roberts CW, Alzahrani AR, Ferro VA, McGill S, Weidt S, Burchmore R, Dufès C. Limited Impact of the Protein Corona on the Cellular Uptake of PEGylated Zein Micelles by Melanoma Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14020439. [PMID: 35214171 PMCID: PMC8877401 DOI: 10.3390/pharmaceutics14020439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 12/17/2022] Open
Abstract
The formation of a protein layer “corona” on the nanoparticle surface upon entry into a biological environment was shown to strongly influence the interactions with cells, especially affecting the uptake of nanomedicines. In this work, we present the impact of the protein corona on the uptake of PEGylated zein micelles by cancer cells, macrophages, and dendritic cells. Zein was successfully conjugated with poly(ethylene glycol) (PEG) of varying chain lengths (5K and 10K) and assembled into micelles. Our results demonstrate that PEGylation conferred stealth effects to the zein micelles. The presence of human plasma did not impact the uptake levels of the micelles by melanoma cancer cells, regardless of the PEG chain length used. In contrast, it decreased the uptake by macrophages and dendritic cells. These results therefore make PEGylated zein micelles promising as potential drug delivery systems for cancer therapy.
Collapse
Affiliation(s)
- Jitkasem Meewan
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Sukrut Somani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Partha Laskar
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
- Department of Immunology and Microbiology, University of Texas Health Rio Grande Valley, 5300 North L Street 881 Madison, McAllen, TX 78504, USA
| | - Craig Irving
- Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow G1 1XL, UK;
| | - Margaret Mullin
- Glasgow Imaging Facility, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK;
| | - Stuart Woods
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Craig W. Roberts
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Abdullah R. Alzahrani
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
- Department of Pharmacology & Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Valerie A. Ferro
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
| | - Suzanne McGill
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (S.M.); (S.W.); (R.B.)
| | - Stefan Weidt
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (S.M.); (S.W.); (R.B.)
| | - Richard Burchmore
- Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, Garscube Campus, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK; (S.M.); (S.W.); (R.B.)
| | - Christine Dufès
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow G4 0RE, UK; (J.M.); (S.S.); (P.L.); (S.W.); (C.W.R.); (A.R.A.); (V.A.F.)
- Correspondence: ; Tel.: +44-141-548-3796
| |
Collapse
|
21
|
Onishchenko N, Tretiakova D, Vodovozova E. Spotlight on the protein corona of liposomes. Acta Biomater 2021; 134:57-78. [PMID: 34364016 DOI: 10.1016/j.actbio.2021.07.074] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/19/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022]
Abstract
Although an established drug delivery platform, liposomes have not fulfilled their true potential. In the body, interactions of liposomes are mediated by the layer of plasma proteins adsorbed on the surface, the protein corona. The review aims to collect the data of the last decade on liposome protein corona, tracing the path from interactions of individual proteins to the effects mediated by the protein corona in vivo. It offers a classification of the approaches to exploitation of the protein corona-rather than elimination thereof-based on the bilayer composition-corona composition-molecular interactions-biological performance framework. The multitude of factors that affect each level of this relationship urge to the widest implementation of bioinformatics tools to predict the most effective liposome compositions relying on the data on protein corona. Supplementing the picture with new pieces of accurately reported experimental data will contribute to the accuracy and efficiency of the predictions. STATEMENT OF SIGNIFICANCE: The review focuses on liposomes as an established nanomedicine platform and analyzes the available data on how the protein corona formed on liposome surface in biological fluids affects performance of the liposomes. The review offers a rigorous account of existing literature and critical analysis of methodology currently applied to the assessment of liposome-plasma protein interactions. It introduces a classification of the approaches to exploitation of the protein corona and tailoring liposome carriers to advance the field of nanoparticulate drug delivery systems for the benefit of patients.
Collapse
|
22
|
Preparation and characterization of gadolinium-based thermosensitive liposomes: A potential nanosystem for selective drug delivery to cancer cells. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102686] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
23
|
Silva VL, Ruiz A, Ali A, Pereira S, Seitsonen J, Ruokolainen J, Furlong F, Coulter J, Al-Jamal WT. Hypoxia-targeted cupric-tirapazamine liposomes potentiate radiotherapy in prostate cancer spheroids. Int J Pharm 2021; 607:121018. [PMID: 34416329 DOI: 10.1016/j.ijpharm.2021.121018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 12/16/2022]
Abstract
In this study, novel cupric-tirapazamine [Cu(TPZ)2]-liposomes were developed as an effective hypoxia-targeted therapeutic, which potentiated radiotherapy in a three dimensional (3D) prostate cancer (PCa) model. To overcome the low water solubility of the Cu(TPZ)2, a remote loading method was developed to efficiently load the lipophilic complex into different liposomal formulations. The effect of pH, temperature, PEGylation, lipid composition, liposome size, lipid: complex ratio on the liposome properties, and drug loading was evaluated. The highest loading efficiency was obtained at neutral pH, which was independent of lipid composition and incubation time. In addition, enhanced drug loading was achieved upon decreasing the lipid:complex molar ratio with minimal effects on liposomes' morphology. Interestingly, the in vitro potency of the developed liposomes was easily manipulated by changing the lipid composition. The hydrophilic nature of our liposomal formulations improved the complex's solubility, leading to enhanced cellular uptake and toxicity, both in PCa monolayers and tumour spheroids. Moreover, Cu(TPZ)2-loaded liposomes combined with radiation, showed a significant reduction in PCa spheroids growth rate, compared to the free complex or radiation alone, which could potentiate radiotherapy in patients with localised advanced PCa.
Collapse
Affiliation(s)
- Vera L Silva
- School of Pharmacy - University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Amalia Ruiz
- School of Pharmacy - Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Ahlam Ali
- School of Pharmacy - Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Sara Pereira
- School of Pharmacy - Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Jani Seitsonen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Janne Ruokolainen
- Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
| | - Fiona Furlong
- School of Pharmacy - Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Jonathan Coulter
- School of Pharmacy - Queen's University Belfast, Belfast BT9 7BL, United Kingdom
| | - Wafa' T Al-Jamal
- School of Pharmacy - University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom; School of Pharmacy - Queen's University Belfast, Belfast BT9 7BL, United Kingdom.
| |
Collapse
|
24
|
Umar AK, Sriwidodo S, Maksum IP, Wathoni N. Film-Forming Spray of Water-Soluble Chitosan Containing Liposome-Coated Human Epidermal Growth Factor for Wound Healing. Molecules 2021; 26:5326. [PMID: 34500760 PMCID: PMC8433946 DOI: 10.3390/molecules26175326] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/31/2021] [Accepted: 08/31/2021] [Indexed: 11/16/2022] Open
Abstract
Human epidermal growth factor (hEGF) has been known to have excellent wound-healing activity. However, direct application to the wound area can lead to low hEGF bioavailability due to protease enzymes or endocytosis. The use of liposomes as coatings and carriers can protect hEGF from degradation by enzymes, chemical reactions, and immune reactions. Sustained release using a matrix polymer can also keep the levels of hEGF in line with the treatment. Therefore, this study aimed to develop a film-forming spray of water-soluble chitosan (FFSWSC) containing hEGF-liposomes as a potential wound dressing. The hEGF-liposomes were prepared using the hydration film method, and the preparation of the FFSWSC was achieved by the ionic gelation method. The hydration film method produced hEGF-liposomes that were round and spread with a Z-average of 219.3 nm and encapsulation efficiency of 99.87%, whereas the film-forming solution, which provided good sprayability, had a formula containing 2% WSC and 3% propylene glycol with a viscosity, spray angle, droplet size, spray weight, and occlusion factor of 21.94 ± 0.05 mPa.s, 73.03 ± 1.28°, 54.25 ± 13.33 µm, 0.14 ± 0.00 g, and 14.57 ± 3.41%, respectively. The pH, viscosity, and particle size of the FFSWSC containing hEGF-liposomes were stable during storage for a month in a climatic chamber (40 ± 2 °C, RH 75 ± 5%). A wound healing activity test on mice revealed that hEGF-liposomes in FFSWSC accelerated wound closure significantly, with a complete wound closure on day 6. Based on the findings, we concluded that FFSWSC containing hEGF-liposomes has the potential to be used as a wound dressing.
Collapse
Affiliation(s)
- Abd. Kakhar Umar
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Sriwidodo Sriwidodo
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Iman Permana Maksum
- Biochemistry Laboratory, Department of Chemistry, Faculty of Mathematics and Natural Science, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang 45363, Indonesia;
| |
Collapse
|
25
|
Cheraga N, Ouahab A, Shen Y, Huang NP. Characterization and Pharmacokinetic Evaluation of Oxaliplatin Long-Circulating Liposomes. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5949804. [PMID: 33987441 PMCID: PMC8079196 DOI: 10.1155/2021/5949804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 03/20/2021] [Accepted: 04/07/2021] [Indexed: 11/18/2022]
Abstract
The clinical efficacy of Oxaliplatin (L-OHP) is potentially limited by dose-dependent neurotoxicity and high partitioning to erythrocytes in vivo. Long-circulating liposomes could improve the pharmacokinetic profile of L-OHP and thus enhance its therapeutic efficacy and reduce its toxicity. The purpose of this study was to prepare L-OHP long-circulating liposomes (L-OHP PEG lip) by reverse-phase evaporation method (REV) and investigate their pharmacokinetic behavior based on total platinum in rat plasma using atomic absorption spectrometry (AAS). A simple and a sensitive AAS method was developed and validated to determine the total platinum originated from L-OHP liposomes in plasma. Furthermore, long-circulating liposomes were fully characterized in vitro and showed great stability when stored at 4°C for one month. The results showed that the total platinum in plasma of L-OHP long-circulating liposomes displayed a biexponential pharmacokinetic profile with five folds higher bioavailability and longer distribution half-life compared to L-OHP solution. Thus, long-circulating liposomes prolonged L-OHP circulation time and may present a potential candidate for its tumor delivery. Conclusively, the developed AAS method could serve as a reference to investigate the pharmacokinetic behavior of total platinum in biological matrices for other L-OHP delivery systems.
Collapse
Affiliation(s)
- Nihad Cheraga
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ammar Ouahab
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Shen
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ning-Ping Huang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
26
|
Imperlini E, Celia C, Cevenini A, Mandola A, Raia M, Fresta M, Orrù S, Di Marzio L, Salvatore F. Nano-bio interface between human plasma and niosomes with different formulations indicates protein corona patterns for nanoparticle cell targeting and uptake. NANOSCALE 2021; 13:5251-5269. [PMID: 33666624 DOI: 10.1039/d0nr07229j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Unraveling the proteins interacting with nanoparticles (NPs) in biological fluids, such as blood, is pivotal to rationally design NPs for drug delivery. The protein corona (PrC), formed on the NP surface, represents an interface between biological components and NPs, dictating their pharmacokinetics and biodistribution. PrC composition depends on biological environments around NPs and on their intrinsic physicochemical properties. We generated different formulations of non-ionic surfactant/non-phospholipid vesicles, called niosomes (NIOs), using polysorbates which are biologically safe, cheap, non-toxic and scarcely immunogenic. PrC composition and relative protein abundance for all designed NIOs were evaluated ex vivo in human plasma (HP) by quantitative label-free proteomics. We studied the correlation of the relative protein abundance in the corona with cellular uptake of the PrC-NIOs in healthy and cancer human cell lines. Our results highlight the effects of polysorbates on nano-bio interactions to identify a protein pattern most properly aimed to drive the NIO targeting in vivo, and assess the best conditions of PrC-NIO NP uptake into the cells. This study dissected the biological identity in HP of polysorbate-NIOs, thus contributing to shorten their passage from preclinical to clinical studies and to lay the foundations for a personalized PrC.
Collapse
Affiliation(s)
| | - Christian Celia
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Chieti, Italy.
| | - Armando Cevenini
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy. and CEINGE-Biotecnologie Avanzate S.c.a r.l., Napoli, Italy.
| | - Annalisa Mandola
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Napoli, Italy. and Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Napoli, Italy
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Napoli, Italy.
| | - Massimo Fresta
- Dipartimento di Scienze della Salute, Università "Magna Graecia" di Catanzaro, Campus Universitario "S. Venuta", Catanzaro, Italy
| | - Stefania Orrù
- CEINGE-Biotecnologie Avanzate S.c.a r.l., Napoli, Italy. and Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Napoli, Italy
| | - Luisa Di Marzio
- Dipartimento di Farmacia, Università di Chieti-Pescara "G. d'Annunzio", Chieti, Italy.
| | - Francesco Salvatore
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", Napoli, Italy. and CEINGE-Biotecnologie Avanzate S.c.a r.l., Napoli, Italy.
| |
Collapse
|
27
|
d'Avanzo N, Torrieri G, Figueiredo P, Celia C, Paolino D, Correia A, Moslova K, Teesalu T, Fresta M, Santos HA. LinTT1 peptide-functionalized liposomes for targeted breast cancer therapy. Int J Pharm 2021; 597:120346. [DOI: 10.1016/j.ijpharm.2021.120346] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
|
28
|
Ali S, Amin MU, Tariq I, Sohail MF, Ali MY, Preis E, Ambreen G, Pinnapireddy SR, Jedelská J, Schäfer J, Bakowsky U. Lipoparticles for Synergistic Chemo-Photodynamic Therapy to Ovarian Carcinoma Cells: In vitro and in vivo Assessments. Int J Nanomedicine 2021; 16:951-976. [PMID: 33603362 PMCID: PMC7884954 DOI: 10.2147/ijn.s285950] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/17/2020] [Indexed: 02/04/2023] Open
Abstract
PURPOSE Lipoparticles are the core-shell type lipid-polymer hybrid systems comprising polymeric nanoparticle core enveloped by single or multiple pegylated lipid layers (shell), thereby melding the biomimetic properties of long-circulating vesicles as well as the mechanical advantages of the nanoparticles. The present study was aimed at the development of such an integrated system, combining the photodynamic and chemotherapeutic approaches for the treatment of multidrug-resistant cancers. METHODS For this rationale, two different sized Pirarubicin (THP) loaded poly lactic-co-glycolic acid (PLGA) nanoparticles were prepared by emulsion solvent evaporation technique, whereas liposomes containing Temoporfin (mTHPC) were prepared by lipid film hydration method. Physicochemical and morphological characterizations were done using dynamic light scattering, laser doppler anemometry, atomic force microscopy, and transmission electron microscopy. The quantitative assessment of cell damage was determined using MTT and reactive oxygen species (ROS) assay. The biocompatibility of the nanoformulations was evaluated with serum stability testing, haemocompatibility as well as acute in vivo toxicity using female albino (BALB/c) mice. RESULTS AND CONCLUSION The mean hydrodynamic diameter of the formulations was found between 108.80 ± 2.10 to 405.70 ± 10.00 nm with the zeta (ζ) potential ranging from -12.70 ± 1.20 to 5.90 ± 1.10 mV. Based on the physicochemical evaluations, the selected THP nanoparticles were coated with mTHPC liposomes to produce lipid-coated nanoparticles (LCNPs). A significant (p< 0.001) cytotoxicity synergism was evident in LCNPs when irradiated at 652 nm, using an LED device. No incidence of genotoxicity was observed as seen with the comet assay. The LCNPs decreased the generalized in vivo toxicity as compared to the free drugs and was evident from the serum biochemical profile, visceral body index, liver function tests as well as renal function tests. The histopathological examinations of the vital organs revealed no significant evidence of toxicity suggesting the safety and efficacy of our lipid-polymer hybrid system.
Collapse
Affiliation(s)
- Sajid Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Muhammad Umair Amin
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
- Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Imran Tariq
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
- Punjab University College of Pharmacy, University of the Punjab, Allama Iqbal Campus, Lahore, Pakistan
| | - Muhammad Farhan Sohail
- Riphah Institute of Pharmaceutical Sciences (RIPS), Riphah International University, Lahore, Pakistan
- Department of Pharmacy, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
| | - Muhammad Yasir Ali
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
- Faculty of Pharmaceutical Sciences, GC University Faisalabad, Faisalabad, Pakistan
| | - Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Ghazala Ambreen
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | | | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Marburg, Germany
| |
Collapse
|
29
|
Di Francesco M, Celia C, Cristiano MC, d’Avanzo N, Ruozi B, Mircioiu C, Cosco D, Di Marzio L, Fresta M. Doxorubicin Hydrochloride-Loaded Nonionic Surfactant Vesicles to Treat Metastatic and Non-Metastatic Breast Cancer. ACS OMEGA 2021; 6:2973-2989. [PMID: 33553916 PMCID: PMC7860091 DOI: 10.1021/acsomega.0c05350] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 05/06/2023]
Abstract
Doxorubicin hydrochloride (DOX) is currently used to treat orthotropic and metastatic breast cancer. Because of its side effects, the use of DOX in cancer patients is sometimes limited; for this reason, several scientists tried designing drug delivery systems which can improve drug therapeutic efficacy and decrease its side effects. In this study, we designed, prepared, and physiochemically characterized nonionic surfactant vesicles (NSVs) which are obtained by self-assembling different combinations of hydrophilic (Tween 20) and hydrophobic (Span 20) surfactants, with cholesterol. DOX was loaded in NSVs using a passive and pH gradient remote loading procedure, which increased drug loading from ∼1 to ∼45%. NSVs were analyzed in terms of size, shape, size distribution, zeta potential, long-term stability, entrapment efficiency, and release kinetics, and nanocarriers having the best physiochemical parameters were selected for further in vitro tests. NSVs with and without DOX were stable and showed a sustained drug release up to 72 h. In vitro studies, with MCF-7 and MDA MB 468 cells, demonstrated that NSVs, containing Span 20, were better internalized in MCF-7 and MDA MB 468 cells than NSVs with Tween 20. NSVs increased the anticancer effect of DOX in MCF-7 and MDA MB 468 cells, and this effect is time and dose dependent. In vitro studies using metastatic and nonmetastatic breast cancer cells also demonstrated that NSVs, containing Span 20, had higher cytotoxicity than NSVs with Tween 20. The resulting data suggested that DOX-loaded NSVs could be a promising nanocarrier for the potential treatment of metastatic breast cancer.
Collapse
Affiliation(s)
- Martina Di Francesco
- Department
of Health Sciences, University of Catanzaro
“Magna Graecia”, Campus Universitario “S. Venuta” s.n.c., 88100 Catanzaro, Italy
- Laboratory
of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy
| | - Christian Celia
- Department
of Pharmacy, University of Chieti−Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Maria Chiara Cristiano
- Department
of Clinical and Experimental Medicine, University
of Catanzaro “Magna Graecia”, Campus Universitario “S. Venuta”
s.n.c., 88100 Catanzaro, Italy
| | - Nicola d’Avanzo
- Department
of Health Sciences, University of Catanzaro
“Magna Graecia”, Campus Universitario “S. Venuta” s.n.c., 88100 Catanzaro, Italy
- Department
of Pharmacy, University of Chieti−Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Barbara Ruozi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi
183, I-41100 Modena, Italy
| | - Constantin Mircioiu
- Department
of Applied Mathematics and Biostatistics, Faculty of Pharmacy, “Carol Davila” University of Medicine
and Pharmacy, 020956 Bucharest, Romania
| | - Donato Cosco
- Department
of Health Sciences, University of Catanzaro
“Magna Graecia”, Campus Universitario “S. Venuta” s.n.c., 88100 Catanzaro, Italy
| | - Luisa Di Marzio
- Department
of Pharmacy, University of Chieti−Pescara
“G. d’Annunzio”, Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department
of Health Sciences, University of Catanzaro
“Magna Graecia”, Campus Universitario “S. Venuta” s.n.c., 88100 Catanzaro, Italy
| |
Collapse
|
30
|
Mishra RK, Ahmad A, Vyawahare A, Alam P, Khan TH, Khan R. Biological effects of formation of protein corona onto nanoparticles. Int J Biol Macromol 2021; 175:1-18. [PMID: 33508360 DOI: 10.1016/j.ijbiomac.2021.01.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022]
Abstract
Administration of nanomaterials based medicinal and drug carrier systems into systemic circulation brings about interaction of blood components e.g. albumin and globulin proteins with these nanosystems. These blood or serum proteins either get loosely attached over these nanocarriers and form soft protein corona or are tightly adsorbed over nanoparticles and hard protein corona formation occurs. Formation of protein corona has significant implications over a wide array of physicochemical and medicinal attributes. Almost all pharmacological, toxicological and carrier characteristics of nanoparticles get prominently touched by the protein corona formation. It is this interaction of nanoparticle protein corona that decides and influences fate of nanomaterials-based systems. In this article, authors reviewed several diverse aspects of protein corona formation and its implications on various possible outcomes in vivo and in vitro. A brief description regarding formation and types of protein corona has been included along with mechanisms and pharmacokinetic, pharmacological behavior and toxicological profiles of nanoparticles has been described. Finally, significance of protein corona in context of its in vivo and in vitro behavior, involvement of biomolecules at nanoparticle plasma interface and other interfaces and effects of protein corona on biocompatibility characteristics have also been touched upon.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, PO box 173, Alkharj, 11942, Saudi Arabia
| | | | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|
31
|
Elhasany KA, Khattab SN, Bekhit AA, Ragab DM, Abdulkader MA, Zaky A, Helmy MW, Ashour HMA, Teleb M, Haiba NS, Elzoghby AO. Combination of magnetic targeting with synergistic inhibition of NF-κB and glutathione via micellar drug nanomedicine enhances its anti-tumor efficacy. Eur J Pharm Biopharm 2020; 155:162-176. [PMID: 32818610 DOI: 10.1016/j.ejpb.2020.08.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/11/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer is not only one of the most prevalent types of cancer, but also it is a prime cause of death in women aged between 20 and 59. Although chemotherapy is the most common therapy approach, multiple side effects can result from lack of specificity and the use of overdose as safe doses may not completely cure cancer. Therefore, we aimed in this study is to combine the merits of NF-κB inhibiting potential of celastrol (CST) with glutathione inhibitory effect of sulfasalazine (SFZ) which prevents CST inactivation and thus enhances its anti-tumor activity. Inspired by the CD44-mediated tumor targeting effect of the hydrophilic polysaccharide chondroitin sulphate (ChS), we chemically synthesized amphiphilic zein-ChS micelles. While the water insoluble SFZ was chemically coupled to zein, CST was physically entrapped within the hydrophobic zein/SFZ micellar core. Moreover, physical encapsulation of oleic acid-capped SPIONs in the hydrophobic core of micelles enabled both magnetic tumor targeting as well as MRI theranostic capacity. Combining magnetic targeting to with the active targeting effect of ChS resulted in enhanced cellular internalization of the micelles in MCF-7 cancer cells and hence higher cytotoxic effect against MCF-7 and MDA-MB-231 breast cancer cells. In the in vivo experiments, magnetically-targeted micelles (154.4 nm) succeeded in achieving the lowest percentage increase in the tumor volume in tumor bearing mice, the highest percentage of tumor necrosis associated with significant reduction in the levels of TNF-α, Ki-67, NF-κB, VEGF, COX-2 markers compared to non-magnetically targeted micelles-, free drug-treated and positive control groups. Collectively, the developed magnetically targeted micelles pave the way for design of cancer nano-theranostic drug combinations.
Collapse
Affiliation(s)
- Kholod A Elhasany
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Sherine N Khattab
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Adnan A Bekhit
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, P.O. Box 32038, Bahrain.
| | - Doaa M Ragab
- Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohammad A Abdulkader
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Amira Zaky
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Maged W Helmy
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Damanhur University, Damanhur, Egypt
| | - Hayam M A Ashour
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Teleb
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Ahmed O Elzoghby
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Department of Industrial Pharmacy, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Center for Engineered Therapeutics (CET), Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Harvard-MIT Division of Health Sciences and Technology (HST), Cambridge, MA 02139, USA.
| |
Collapse
|
32
|
Wavelength dependent photo-cytotoxicity to ovarian carcinoma cells using temoporfin loaded tetraether liposomes as efficient drug delivery system. Eur J Pharm Biopharm 2020; 150:50-65. [DOI: 10.1016/j.ejpb.2020.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023]
|
33
|
Saraf S, Jain A, Tiwari A, Verma A, Panda PK, Jain SK. Advances in liposomal drug delivery to cancer: An overview. J Drug Deliv Sci Technol 2020; 56:101549. [DOI: 10.1016/j.jddst.2020.101549] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Unveiling the pitfalls of the protein corona of polymeric drug nanocarriers. Drug Deliv Transl Res 2020; 10:730-750. [DOI: 10.1007/s13346-020-00745-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Kari OK, Ndika J, Parkkila P, Louna A, Lajunen T, Puustinen A, Viitala T, Alenius H, Urtti A. In situ analysis of liposome hard and soft protein corona structure and composition in a single label-free workflow. NANOSCALE 2020; 12:1728-1741. [PMID: 31894806 DOI: 10.1039/c9nr08186k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Methodological constraints have limited our ability to study protein corona formation, slowing nanomedicine development and their successful translation into the clinic. We determined hard and soft corona structural properties along with the corresponding proteomic compositions on liposomes in a label-free workflow: surface plasmon resonance and a custom biosensor for in situ structure determination on liposomes and corona separation, and proteomics using sensitive nanoliquid chromatography tandem mass spectrometry with open-source bioinformatics platforms. Undiluted human plasma under dynamic flow conditions was used for in vivo relevance. Proof-of-concept is presented with a regular liposome formulation and two light-triggered indocyanine green (ICG) liposome formulations in preclinical development. We observed formulation-dependent differences in corona structure (thickness, protein-to-lipid ratio, and surface mass density) and protein enrichment. Liposomal lipids induced the enrichment of stealth-mediating apolipoproteins in the hard coronas regardless of pegylation, and their preferential enrichment in the soft corona of the pegylated liposome formulation with ICG was observed. This suggests that the soft corona of loosely interacting proteins contributes to the stealth properties as a component of the biological identity modulated by nanomaterial surface properties. The workflow addresses significant methodological gaps in biocorona research by providing truly complementary hard and soft corona compositions with corresponding in situ structural parameters for the first time. It has been designed into a convenient and easily reproducible single-experiment format suited for preclinical development of lipid nanomedicines.
Collapse
Affiliation(s)
- Otto K Kari
- Drug Delivery, Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, FI-00014, Finland.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Derakhshankhah H, Sajadimajd S, Jafari S, Izadi Z, Sarvari S, Sharifi M, Falahati M, Moakedi F, Muganda WCA, Müller M, Raoufi M, Presley JF. Novel therapeutic strategies for Alzheimer's disease: Implications from cell-based therapy and nanotherapy. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 24:102149. [PMID: 31927133 DOI: 10.1016/j.nano.2020.102149] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/23/2019] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a multifactorial neurodegenerative disease which leads to progressive dysfunction of cognition, memory and learning in elderly people. Common therapeutic agents are not only inadequate to suppress the progression of AD pathogenesis but also produce deleterious side effects; hence, development of alternative therapies is required to specifically suppress complications of AD. The current review provides a commentary on conventional as well as novel therapeutic approaches with an emphasis on stem cell and nano-based therapies for improvement and management of AD pathogenesis. According to our overview of the current literature, AD is a multi-factorial disorder with various pathogenic trajectories; hence, a multifunctional strategy to create effective neuroprotective agents is required to treat this disorder.
Collapse
Affiliation(s)
- Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Samira Jafari
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Sajad Sarvari
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Majid Sharifi
- Department of Nanotechnology, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mojtaba Falahati
- Department of Nanotechnology, Faculty of Advance Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Faezeh Moakedi
- Health Science Center, West Virginia University, Morgantown, USA
| | | | - Mareike Müller
- Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany
| | - Mohammad Raoufi
- Physical Chemistry I and Research Center of Micro and Nanochemistry (Cμ), University of Siegen, Siegen, Germany; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, Montreal, Canada.
| |
Collapse
|
37
|
Clogston JD, Hackley VA, Prina-Mello A, Puri S, Sonzini S, Soo PL. Sizing up the Next Generation of Nanomedicines. Pharm Res 2019; 37:6. [PMID: 31828540 DOI: 10.1007/s11095-019-2736-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 01/30/2023]
Abstract
During the past two decades the nanomedicine field has experienced significant progress. To date, over sixty nanoparticle (NP) formulations have been approved in the US and EU while many others are in clinical or preclinical development, indicating a concerted effort to translate promising bench research to commercially viable pharmaceutical products. The use of NPs as novel drug delivery systems, for example, can improve drug safety and efficacy profiles and enable access to intracellular domains of diseased cells, thus paving the way to previously intractable biological targets. However, the measurement of their physicochemical properties presents substantial challenges relative to conventional injectable formulations. In this perspective, we focus exclusively on particle size, a core property and critical quality attribute of nanomedicines. We present an overview of relevant state-of-the-art technologies for particle sizing, highlighting the main parameters that can influence the selection of techniques suitable for a specific size range or material. We consider the increasing need, and associated challenge, to measure size in physiologically relevant media. We detail the importance of standards, key to validate any measurement, and the need for suitable reference materials for processes used to characterize novel and complex NPs. This perspective highlights issues critical to achieve compliance with regulatory guidelines and to support research and manufacturing quality control.
Collapse
Affiliation(s)
- Jeffrey D Clogston
- Nanotechnology Characterization Laboratory (NCL), Leidos Biomedical Research, Inc., Frederick, Maryland, USA.
| | - Vincent A Hackley
- National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, USA
| | | | | | | | - Patrick Lim Soo
- Pfizer Inc., Novel Delivery Technologies- PhRD, 68 Lowell Junction Road, Andover, Massachusetts, USA.
| |
Collapse
|
38
|
Molinaro R, Martinez JO, Zinger A, De Vita A, Storci G, Arrighetti N, De Rosa E, Hartman KA, Basu N, Taghipour N, Corbo C, Tasciotti E. Leukocyte-mimicking nanovesicles for effective doxorubicin delivery to treat breast cancer and melanoma. Biomater Sci 2019; 8:333-341. [PMID: 31714542 DOI: 10.1039/c9bm01766f] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the last decades, several approaches were developed to design drug delivery systems to address the multiple biological barriers encountered after administration while safely delivering a payload. In this scenario, bio-inspired and bio-mimetic approaches have emerged as promising solutions to evade the mononuclear phagocytic system while simultaneously negotiating the sequential transport across the various biological barriers. Leukocytes freely circulate in the bloodstream and selectively target the inflamed vasculature in response to injury, infection, and cancer. Recently we have shown the use of biomimetic nanovesicles, called leukosomes, which combine both the physical and biological properties of liposomes and leukocytes, respectively, to selectively deliver drugs to the inflamed vasculature. Here we report the use of leukosomes to target and deliver doxorubicin, a model chemotherapeutic, to tumors in syngeneic murine models of breast cancer and melanoma. Exploiting the inflammatory pathway responsible for recruiting immune cells to the site of injury, leukosomes exhibited increased targeting of cancer vasculature and stroma. Furthermore, delivery of doxorubicin with leukosomes enabled significant tumor growth inhibition compared with free doxorubicin in both breast and melanoma tumors. This study demonstrates the promise of using biomimetic nanovesicles for effective cancer management in solid tumors.
Collapse
Affiliation(s)
- Roberto Molinaro
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and School of Pharmacy, Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Jonathan O Martinez
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Assaf Zinger
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Alessandro De Vita
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Gianluca Storci
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Departmentof Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Noemi Arrighetti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Enrica De Rosa
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Kelly A Hartman
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Nupur Basu
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Nima Taghipour
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA
| | - Claudia Corbo
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and School of Medicine and Surgery, Nanomedicine Center NANOMIB, University of Milano-Bicocca, Milano, Italy.
| | - Ennio Tasciotti
- Regenerative Medicine Program, Houston Methodist Research Institute, Houston, TX, USA and Houston Methodist Orthopedics and Sports Medicine, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
39
|
Zhao M, Li J, Chen D, Hu H. A Valid Bisphosphonate Modified Calcium Phosphate-Based Gene Delivery System: Increased Stability and Enhanced Transfection Efficiency In Vitro and In Vivo. Pharmaceutics 2019; 11:pharmaceutics11090468. [PMID: 31514452 PMCID: PMC6781291 DOI: 10.3390/pharmaceutics11090468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/28/2022] Open
Abstract
Calcium phosphate (CaP) nanoparticles, as a promising vehicle for gene delivery, have been widely used owing to their biocompatibility, biodegradability and adsorptive capacity for nucleic acids. Unfortunately, their utility in vivo has been profoundly restricted due to numerous technical barriers such as the lack of tissue specificity and limited transfection efficiency, as well as uncontrollable aggregation over time. To address these issues, an effective conjugate folate-polyethylene glycol-pamidronate (shortened as FA-PEG-Pam) was designed and coated on the surface of CaP/NLS/pDNA (CaP/NDs), forming a versatile gene carrier FA-PEG-Pam/CaP/NDs. Inclusion of FA-PEG-Pam significantly reduced the size of CaP nanoparticles, thus inhibiting the aggregation of CaP nanoparticles. FA-PEG-Pam/CaP/NDs showed better cellular uptake than mPEG-Pam/CaP/NDs, which could be attributed to the high-affinity interactions between FA and highly expressed FR. Meanwhile, FA-PEG-Pam/CaP/NDs had low cytotoxicity and desired effect on inducing apoptosis (71.1%). Furthermore, FA-PEG-Pam/CaP/NDs showed admirable transfection efficiency (63.5%) due to the presence of NLS peptides. What’s more, in vivo studies revealed that the hybrid nanoparticles had supreme antitumor activity (IR% = 58.7%) among the whole preparations. Altogether, FA-PEG-Pam/CaP/NDs was expected to be a hopeful strategy for gene delivery.
Collapse
Affiliation(s)
- Ming Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Ji Li
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Dawei Chen
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| | - Haiyang Hu
- School of Pharmacy, Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
40
|
Duse L, Agel MR, Pinnapireddy SR, Schäfer J, Selo MA, Ehrhardt C, Bakowsky U. Photodynamic Therapy of Ovarian Carcinoma Cells with Curcumin-Loaded Biodegradable Polymeric Nanoparticles. Pharmaceutics 2019; 11:pharmaceutics11060282. [PMID: 31208085 PMCID: PMC6630253 DOI: 10.3390/pharmaceutics11060282] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 01/10/2023] Open
Abstract
Accumulation of photosensitisers in photodynamic therapy in healthy tissues is often the cause of unwanted side effects. Using nanoparticles, improved bioavailability and site-specific drug uptake can be achieved. In this study, curcumin, a natural product with anticancer properties, albeit with poor aqueous solubility, was encapsulated in biodegradable polymeric poly(lactic-co-glycolic acid) (PLGA) nanoparticles (CUR-NP). Dynamic light scattering, laser Doppler anemometry and atomic force microscopy were used to characterise the formulations. Using haemolysis, serum stability and activated partial thromboplastin time tests, the biocompatibility of CUR-NP was assessed. Particle uptake and accumulation were determined by confocal laser scanning microscopy. Therapeutic efficacy of the formulation was tested in SK-OV-3 human ovarian adenocarcinoma cells post low level LED irradiation by determining the generation of reactive oxygen species and cytotoxicity. Pharmacologic inhibitors of cellular uptake pathways were used to identify the particle uptake mechanism. CUR-NP exhibited better physicochemical properties such as stability in the presence of light and improved serum stability compared to free curcumin. In addition, the novel nanoformulation facilitated the use of higher amounts of curcumin and showed strong apoptotic effects on tumour cells.
Collapse
Affiliation(s)
- Lili Duse
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Michael Rene Agel
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Jens Schäfer
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| | - Mohammed A Selo
- School of Pharmacy and Pharmaceutical Sciences and Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
- Faculty of Pharmacy, University of Kufa, 31001 Kufa, Iraq.
| | - Carsten Ehrhardt
- School of Pharmacy and Pharmaceutical Sciences and Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
41
|
Foteini P, Pippa N, Naziris N, Demetzos C. Physicochemical study of the protein–liposome interactions: influence of liposome composition and concentration on protein binding. J Liposome Res 2019; 29:313-321. [DOI: 10.1080/08982104.2018.1468774] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Papageorgiou Foteini
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, Laboratory of Pharmaceutical Nanotechnology, National and Kapodistrian University of Athens, Athens, Greece
| | - Natassa Pippa
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, Laboratory of Pharmaceutical Nanotechnology, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Naziris
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, Laboratory of Pharmaceutical Nanotechnology, National and Kapodistrian University of Athens, Athens, Greece
| | - Costas Demetzos
- Department of Pharmacy, School of Health Sciences, Section of Pharmaceutical Technology, Laboratory of Pharmaceutical Nanotechnology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
42
|
Abstract
Most clinically approved drugs (primarily small molecules or antibodies) are rapidly cleared from circulation and distribute throughout the body. As a consequence, only a small portion of the dose accumulates at the target site, leading to low efficacy and adverse side effects. Therefore, new delivery strategies are necessary to increase organ and tissue-specific delivery of therapeutic agents. Nanoparticles provide a promising approach for prolonging the circulation time and improving the biodistribution of drugs. However, nanoparticles display several limitations, such as clearance by the immune systems and impaired diffusion in the tissue microenvironment. To overcome common nanoparticle limitations various functionalization and targeting strategies have been proposed. This review will discuss synthetic nanoparticle and extracellular vesicle delivery strategies that exploit organ-specific features to enhance drug accumulation at the target site.
Collapse
|
43
|
Abstract
Although a plethora of nanoparticle configurations have been proposed over the past 10 years, the uniform and deep penetration of systemically injected nanomedicines into the diseased tissue stays as a major biological barrier. Here, a 'Tissue Chamber' chip is designed and fabricated to study the extravascular transport of small molecules and nanoparticles. The chamber comprises a collagen slab, deposited within a PDMS mold, and an 800 μm channel for the injection of the working solution. Through fluorescent microscopy, the dynamics of molecules and nanoparticles was estimated within the gel, under different operating conditions. Diffusion coefficients were derived from the analysis of the particle mean square displacements (MSD). For validating the experimental apparatus and the protocol for data analysis, the diffusion D of FITC-Dextran molecules of 4, 40 and 250 kDa was first quantified. As expected, D reduces with the molecular weight of the dextran molecules. The MSD-derived diffusion coefficients were in good agreement with values derived via fluorescence recovery after photobleaching (FRAP), an alternative technique that solely applies to small molecules. Then, the transport of six nanoparticles with similar hydrodynamic diameters (~ 200 nm) and different surface chemistries was quantified. Surface PEGylation was confirmed to favor the diffusion of nanoparticles within the collagen slab, whereas the surface decoration with hyaluronic acid (HA) chains reduced nanoparticle mobility in a way proportional to the HA molecular weight. To assess further the generality of the proposed approach, the diffusion of the six nanoparticles was also tested in freshly excised brain tissue slices. In these ex vivo experiments, the diffusion coefficients were 5-orders of magnitude smaller than for the Tissue Chamber chip. This was mostly ascribed to the lack of a cellular component in the chip. However, the trends documented for PEGylated and HA-coated nanoparticles in vitro were also confirmed ex vivo. This work demonstrates that the Tissue Chamber chip can be employed to effectively and efficiently test the extravascular transport of nanomedicines while minimizing the use of animals.
Collapse
|
44
|
Rezaei G, Daghighi SM, Haririan I, Yousefi I, Raoufi M, Rezaee F, Dinarvand R. Protein corona variation in nanoparticles revisited: A dynamic grouping strategy. Colloids Surf B Biointerfaces 2019; 179:505-516. [PMID: 31009853 DOI: 10.1016/j.colsurfb.2019.04.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 03/31/2019] [Accepted: 04/02/2019] [Indexed: 12/27/2022]
Abstract
Bio-nano interface investigation models are mainly based on the type of proteins present on corona, bio-nano interaction responses and the evaluation of final outcomes. Due to the extensive diversity in correlative models for investigation of nanoparticles biological responses, a comprehensive model considering different aspects of bio-nano interface from nanoparticles properties to protein corona fingerprints appeared to be essential and cannot be ignored. In order to minimize divergence in studies in the era of bio-nano interface and protein corona with following therapeutic implications, a useful investigation model on the basis of RADAR concept is suggested. The contents of RADAR concept consist of five modules: 1- Reshape of our strategy for synthesis of nanoparticles (NPs), 2- Application of NPs selected based on human fluid, 3- Delivery strategy of NPs selected based on target tissue, 4- Analysis of proteins present on corona using correct procedures and 5- Risk assessment and risk reduction upon the collection and analysis of results to increase drug delivery efficiency and drug efficacy. RADAR grouping strategy for revisiting protein corona phenomenon as a key of success will be discussed with respect to the current state of knowledge.
Collapse
Affiliation(s)
- Ghassem Rezaei
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Seyed Mojtaba Daghighi
- The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Ismael Haririan
- Department of Pharmaceutical Biomaterials, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Medical Biomaterials Research Center (MBRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Iman Yousefi
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, Canada
| | - Mohammad Raoufi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Farhad Rezaee
- Department of Gastroenterology-Hepatology, Erasmus Medical Center, Rotterdam, the Netherlands; Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran; Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
45
|
Hadjidemetriou M, McAdam S, Garner G, Thackeray C, Knight D, Smith D, Al-Ahmady Z, Mazza M, Rogan J, Clamp A, Kostarelos K. The Human In Vivo Biomolecule Corona onto PEGylated Liposomes: A Proof-of-Concept Clinical Study. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803335. [PMID: 30488990 DOI: 10.1002/adma.201803335] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/28/2018] [Indexed: 05/20/2023]
Abstract
The self-assembled layered adsorption of proteins onto nanoparticle (NP) surfaces, once in contact with biological fluids, is termed the "protein corona" and it is gradually seen as a determinant factor for the overall biological behavior of NPs. Here, the previously unreported in vivo protein corona formed in human systemic circulation is described. The human-derived protein corona formed onto PEGylated doxorubicin-encapsulated liposomes (Caelyx) is thoroughly characterized following the recovery of liposomes from the blood circulation of ovarian carcinoma patients. In agreement with previous investigations in mice, the in vivo corona is found to be molecularly richer in comparison to its counterpart ex vivo corona. The intravenously infused liposomes are able to scavenge the blood pool and surface-capture low-molecular-weight, low-abundance plasma proteins that cannot be detected by conventional plasma proteomic analysis. This study describes the previously elusive or postulated formation of protein corona around nanoparticles in vivo in humans and illustrates that it can potentially be used as a novel tool to analyze the blood circulation proteome.
Collapse
Affiliation(s)
- Marilena Hadjidemetriou
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Sarah McAdam
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, CRUK Manchester Institute, Manchester, M20 4BX, UK
| | - Grace Garner
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, CRUK Manchester Institute, Manchester, M20 4BX, UK
| | - Chelsey Thackeray
- Institute of Cancer Sciences and The Christie NHS Foundation Trust, Manchester Cancer Research Centre (MCRC), University of Manchester, Manchester, M20 4GJ, UK
| | - David Knight
- Bio-MS Facility, The University of Manchester, Michael Smith Building, Manchester, M13 9PT, UK
| | - Duncan Smith
- CRUK Manchester Institute, The University of Manchester, Manchester, SK10 4TG, UK
| | - Zahraa Al-Ahmady
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Mariarosa Mazza
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| | - Jane Rogan
- Manchester Cancer Research Centre Biobank, The Christie NHS Foundation Trust, CRUK Manchester Institute, Manchester, M20 4BX, UK
| | - Andrew Clamp
- Institute of Cancer Sciences and The Christie NHS Foundation Trust, Manchester Cancer Research Centre (MCRC), University of Manchester, Manchester, M20 4GJ, UK
| | - Kostas Kostarelos
- Nanomedicine Lab, Faculty of Biology, Medicine and Health, The University of Manchester, AV Hill Building, Manchester, M13 9PT, UK
| |
Collapse
|
46
|
Amin M, Bagheri M, Mansourian M, Jaafari MR, Ten Hagen TL. Regulation of in vivo behavior of TAT-modified liposome by associated protein corona and avidity to tumor cells. Int J Nanomedicine 2018; 13:7441-7455. [PMID: 30532532 PMCID: PMC6241867 DOI: 10.2147/ijn.s170274] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Introduction PEGylated liposomes are widely used and studied as carriers for chemotherapeutics. While pharmacokinetics of the encapsulated drug is drastically altered resulting in favorable circulation time, improved tumor accumulation, and better manageable or reduced side effects, therapeutic efficacy has been disappointing. Major drawbacks are a failure to reach the tumor cell, limited penetration depth, and impaired uptake by tumor cells. Materials and methods Here, we study the implication of HIV-1 transactivator of transcription (TAT)-derived peptides inserted on PEGylated liposomal doxorubicin (PLD) and followed in vitro and in vivo fate. PLDs were installed with 25–400 TAT peptides per liposome without an effect on PLD stability. Results While TAT peptides facilitate active endocytosis of the carriers, we observed that these peptides did not promote endosomal escape or enhanced intracellular availability of doxorubicin. Interestingly, incorporation of TAT peptides did not change pharmacokinetics or biodistribution, which we found to result from a dysopsonization of the TAT-modified liposomes by serum proteins. A protein corona (PC) on TAT peptide-modified PLDs shields the active moieties and effectively reduces clearance of the TAT peptide containing nanoparticles. However, intratumoral activity was influenced by the number of TAT peptides present. The best antitumor efficacy was observed with a TAT peptide density of 100, while lower amounts showed results comparable to unmodified PLDs. At 200 TAT peptides, the preparation appeared to be least effective, which likely results from augmented interaction with tumor cells directly upon extravasation. Conclusion We conclude that by optimizing TAT-modified PLDs, the occurring PC balances pharmacokinetics and tumor penetration through interference with avidity.
Collapse
Affiliation(s)
- Mohamadreza Amin
- Laboratory of Experimental Surgical Oncology, Section of Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, the Netherlands, .,Cellular and Molecular Research Center, Faculty of Medicine, Sabzevar University of Medical Sciences, Sabzevar, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Mahsa Bagheri
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Mercedeh Mansourian
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Mahmoud Reza Jaafari
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran,
| | - Timo Lm Ten Hagen
- Laboratory of Experimental Surgical Oncology, Section of Surgical Oncology, Department of Surgery, Erasmus Medical Center, Rotterdam, the Netherlands,
| |
Collapse
|
47
|
Anwar DM, Khattab SN, Helmy MW, Kamal MK, Bekhit AA, Elkhodairy KA, Elzoghby AO. Lactobionic/Folate Dual-Targeted Amphiphilic Maltodextrin-Based Micelles for Targeted Codelivery of Sulfasalazine and Resveratrol to Hepatocellular Carcinoma. Bioconjug Chem 2018; 29:3026-3041. [PMID: 30110148 DOI: 10.1021/acs.bioconjchem.8b00428] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, promising approaches of dual-targeted micelles and drug-polymer conjugation were combined to enable injection of poorly soluble anticancer drugs together with site-specific drug release. Ursodeoxycholic acid (UDCA) as a hepatoprotective agent was grafted to maltodextrin (MD) via carbodiimide coupling to develop amphiphilic maltodextrin-ursodeoxycholic acid (MDCA)-based micelles. Sulfasalazine (SSZ), as a novel anticancer agent, was conjugated via a tumor-cleavable ester bond to MD backbone to obtain tumor-specific release, whereas resveratrol (RSV) was physically entrapped within the hydrophobic micellar core. For maximal tumor-targeting, both folic acid (FA) and lactobionic acid (LA) were coupled to the surface of micelles to obtain dual-targeted micelles. The decrease of critical micelle concentration (CMC) from 0.012 to 0.006 mg/mL declares the significance of a dual hydrophobicized core of micelles by both UDCA and SSZ. The dual-targeted micelles showed a great hemocompatibility, as well as enhanced cytotoxicity and internalization into HepG-2 liver cancer cells via binding to overexpressed folate and asialoglycoprotein receptors. In vivo, the micelles demonstrated superior antitumor effects revealed as reduction in the liver/body weight ratio, inhibition of angiogenesis, and enhanced apoptosis. Overall, combined strategies of dual active targeted micelles with bioresponsive drug conjugation could be utilized as a promising approach for tumor-targeted drug delivery.
Collapse
Affiliation(s)
| | - Sherine N Khattab
- Department of Chemistry and #Department of Oceanography , Faculty of Science, Alexandria University , Alexandria 21321 , Egypt
| | - Maged W Helmy
- Department of Pharmacology and Toxicology , Faculty of Pharmacy, Damanhour University , Damanhour 22516 , Egypt
| | - Mohamed K Kamal
- Department of Toxicology , Central Laboratories of Alexandria, Health Affairs Directorate , Alexandria 21518 , Egypt
| | - Adnan A Bekhit
- Pharmacy Program, Allied Health Department, College of Health Sciences , University of Bahrain , P.O. Box 32038, Zallaq , Kingdom of Bahrain
| | | | - Ahmed O Elzoghby
- Division of Engineering in Medicine, Department of Medicine , Brigham and Women's Hospital, Harvard Medical School , Boston , Massachusetts 02115.,Harvard-MIT Division of Health Sciences and Technology, Cambridge , Massachusetts 02139
| |
Collapse
|
48
|
Tai K, Liu F, He X, Ma P, Mao L, Gao Y, Yuan F. The effect of sterol derivatives on properties of soybean and egg yolk lecithin liposomes: Stability, structure and membrane characteristics. Food Res Int 2018; 109:24-34. [PMID: 29803447 DOI: 10.1016/j.foodres.2018.04.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 04/04/2018] [Accepted: 04/12/2018] [Indexed: 12/27/2022]
Abstract
The effects of three kinds of sterols (cholesterol, β-sitosterol and ergosterol) on the stability, microstructure and membrane properties of soybean and egg yolk lecithin liposomes were investigated by light scattering, transmission electron microscope (TEM), atomic force microscope (AFM), fluorescence and Fourier transform infrared spectroscopy (FTIR). The vesicle size of cholesterol or β-sitosterol incorporated liposomes was higher than that of the control and ergosterol incorporated ones, while the zeta-potential was similar when the same lecithin was used. Due to the excellent emulsifying capacity, Tween-80 was introduced into the system and which could obviously maintain the liposomal vesicle size in fetal bovine serum. According to TEM and AFM, the phenomena of membrane fusion and deformation were observed respectively in ergosterol-incorporated liposomes. Results of fluorescence probe spectra revealed the most compact membrane structure was found in cholesterol-incorporated liposomes, which was in accordance with the strongest intermolecular interaction in bilayers obtained by FTIR results. Conversely, the membrane of ergosterol-incorporated liposomes was the most fragile and fluid, which was also identified with the lowest physical stability obtained by Turbiscan. These results systematically illustrated the relationship between the structure of sterols and the liposomal membrane stability, and provided some meaningful information on the choice of sterols and lecithin in preparation of liposomes for different purposes.
Collapse
Affiliation(s)
- Kedong Tai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A & F University, Shaanxi 712100, China
| | - Xiaoye He
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peihua Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Like Mao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fang Yuan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Laboratory for Food Quality and Safety, Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
49
|
Zhang J, Du Z, Pan S, Shi M, Li J, Yang C, Hu H, Qiao M, Chen D, Zhao X. Overcoming Multidrug Resistance by Codelivery of MDR1-Targeting siRNA and Doxorubicin Using EphA10-Mediated pH-Sensitive Lipoplexes: In Vitro and In Vivo Evaluation. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21590-21600. [PMID: 29798663 DOI: 10.1021/acsami.8b01806] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The therapeutic efficacy of chemotherapy is dramatically hindered by multidrug resistance (MDR), which is induced by the overexpression of P-glycoprotein (P-gp). The codelivery of an antitumor drug and siRNA is an effective strategy recently applied in overcoming P-gp-related MDR. In this study, a multifunctional drug delivery system with both pH-sensitive feature and active targetability was designed, in which MDR1-siRNA and DOX were successfully loaded. The resulting carrier EphA10 antibody-conjugated pH-sensitive doxorubicin (DOX), MDR1-siRNA coloading lipoplexes (shortened as DOX + siRNA/ePL) with high serum stability had favorable physicochemical properties. DOX + siRNA/ePL exhibited an incremental cellular uptake, enhanced P-gp downregulation efficacy, as well as a better cell cytotoxicity in human breast cancer cell line/adriamycin drug-resistant (MCF-7/ADR) cells. The results of the intracellular colocalization study indicated that DOX + siRNA/ePL possessed the ability for pH-responsive rapid endosomal escape in a time-dependent characteristic. Meanwhile, the in vivo antitumor activities suggested that DOX + siRNA/ePL could prolong the circulation time as well as specifically accumulate in the tumor cells via receptor-mediated endocytosis after intravenous administration into the blood system. The histological study further demonstrated that DOX + siRNA/ePL could inhibit the proliferation, induce apoptosis effect, and downregulate the P-gp expression in vivo. Altogether, DOX + siRNA/ePL was expected to be a suitable codelivery system for overcoming the MDR effect.
Collapse
Affiliation(s)
- Jiulong Zhang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Zhouqi Du
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Shuang Pan
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Menghao Shi
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Jie Li
- Mudanjiang Medical University , Tongxiang Street No. 3 , Mudanjiang , Heilongjiang 157011 , PR China
| | - Chunrong Yang
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Haiyang Hu
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Mingxi Qiao
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Dawei Chen
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| | - Xiuli Zhao
- School of Pharmacy , Shenyang Pharmaceutical University , 103 Wenhua Road , Shenyang , Liaoning 110016 , PR China
| |
Collapse
|
50
|
Pelt J, Busatto S, Ferrari M, Thompson EA, Mody K, Wolfram J. Chloroquine and nanoparticle drug delivery: A promising combination. Pharmacol Ther 2018; 191:43-49. [PMID: 29932886 DOI: 10.1016/j.pharmthera.2018.06.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Clinically approved cancer therapies include small molecules, antibodies, and nanoparticles. There has been major progress in the treatment of several cancer types over recent decades. However, many challenges remain for optimal use of conventional and nanoparticle-based therapies in oncology including poor drug delivery, rapid clearance, and drug resistance. The antimalarial agent chloroquine has been found to mitigate some of these challenges by modulating cancer cells and the tissue microenvironment. Particularly, chloroquine was recently found to reduce immunological clearance of nanoparticles by resident macrophages in the liver, leading to increased tumor accumulation of nanodrugs. Additionally, chloroquine has been shown to improve drug delivery and efficacy through normalization of tumor vasculature and suppression of several oncogenic and stress-tolerance pathways, such as autophagy, that protect cancer cells from cytotoxic agents. This review will discuss the use of chloroquine as combination therapy to improve cancer treatment.
Collapse
Affiliation(s)
- Joe Pelt
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Florida State University, Tallahassee, FL 32306, USA
| | - Sara Busatto
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Molecular and Translational Medicine, University of Brescia, Brescia 25133, Italy.
| | - Mauro Ferrari
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| | - E Aubrey Thompson
- Department of Cancer Biology, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kabir Mody
- Division of Hematology/Oncology, Mayo Clinic Cancer Center, Mayo Clinic Florida, Jacksonville, FL 32224, USA.
| | - Joy Wolfram
- Department of Transplantation, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|