1
|
Cabrera-Quiñones NC, López-Méndez LJ, Cruz-Hernández C, Guadarrama P. Click Chemistry as an Efficient Toolbox for Coupling Sterically Hindered Molecular Systems to Obtain Advanced Materials for Nanomedicine. Int J Mol Sci 2024; 26:36. [PMID: 39795895 PMCID: PMC11719597 DOI: 10.3390/ijms26010036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 01/13/2025] Open
Abstract
Since its conceptualization, click chemistry in all its variants has proven to be a superior synthesis protocol, compared to conventional methods, for forming new covalent bonds under mild conditions, orthogonally, and with high yields. If a term like reactive resilience could be established, click reactions would be good examples, as they perform better under increasingly challenging conditions. Particularly, highly hindered couplings that perform poorly with conventional chemistry protocols-such as those used to conjugate biomacromolecules (e.g., proteins and aptamers) or multiple drugs onto macromolecular platforms-can be more easily achieved using click chemistry principles, while also promoting high stereoselectivity in the products. In this review, three molecular platforms relevant in the field of nanomedicine are considered: polymers/copolymers, cyclodextrins, and fullerenes, whose functionalization poses a challenge due to steric hindrance, either from the intrinsic bulk behavior (as in polymers) or from the proximity of confined reactive sites, as seen in cyclodextrins and fullerenes. Their functionalization with biologically active groups (drugs or biomolecules), primarily through copper-catalyzed azide-alkyne cycloaddition (CuAAC), strain-promoted azide-alkyne cycloaddition (SPAAC), inverse electron-demand Diels-Alder (IEDDA) and thiol-ene click reactions, has led to the development of increasingly sophisticated systems with enhanced specificity, multifunctionality, bioavailability, delayed clearance, multi-targeting, selective cytotoxicity, and tracking capabilities-all essential in the field of nanomedicine.
Collapse
Affiliation(s)
| | - Luis José López-Méndez
- Biological Systems Deparment, Universidad Autónoma Metropolitana Unidad Xochimilco, Calzada del Hueso 1100, Villa Quietud, Mexico City 04960, Mexico;
| | - Carlos Cruz-Hernández
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Mexico City 05300, Mexico;
| | - Patricia Guadarrama
- Materials Research Institute, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
2
|
Liu C, Crini G, Wilson LD, Balasubramanian P, Li F. Removal of contaminants present in water and wastewater by cyclodextrin-based adsorbents: A bibliometric review from 1993 to 2022. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123815. [PMID: 38508365 DOI: 10.1016/j.envpol.2024.123815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/29/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Cyclodextrin (CD), a cyclic oligosaccharide from enzymatic starch breakdown, plays a crucial role in pharmaceuticals, food, agriculture, textiles, biotechnology, chemicals, and environmental applications, including water and wastewater treatment. In this study, a statistical analysis was performed using VOSviewer and Citespace to scrutinize 2038 articles published from 1993 to 2022. The investigation unveiled a notable upsurge in pertinent articles and citation counts, with China and USA contributing the highest publication volumes. The prevailing research focus predominantly revolves around the application of CD-based materials used as adsorbents to remove conventional contaminants such as dyes and metals. The CD chemistry allows the construction of materials with various architectures, including cross-linked, grafted, hybrid or supported systems. The main adsorbents are cross-linked CD polymers, including nanosponges, fibres and hybrid composites. Additionally, research efforts are actually concentrated on the synthesis of CD-based membranes, CD@graphene oxide, and CD@TiO2. These materials are proposed as adsorbents to remove emerging pollutants. By employing bibliometric analysis, this study delivers a comprehensive retrospective review and synthesis of research concerning CD-based adsorbents for the removal of contaminants from wastewater, thereby offering valuable insights for future large-scale application of CD-based adsorption materials.
Collapse
Affiliation(s)
- Chong Liu
- Department of Chemical & Materials Engineering, University of Auckland, 0926, New Zealand
| | - Grégorio Crini
- Chrono-environment, University of Franche-Comté, 25000 Besançon, France
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Room 165 Thorvaldson Bldg., Saskatoon, SK S7N 5C9, Canada
| | | | - Fayong Li
- College of Water Resources and Architectural Engineering, Tarim University, Xinjiang 843300, China.
| |
Collapse
|
3
|
Alavi M, Varma RS. Overview of novel strategies for the delivery of anthracyclines to cancer cells by liposomal and polymeric nanoformulations. Int J Biol Macromol 2020; 164:2197-2203. [PMID: 32763404 DOI: 10.1016/j.ijbiomac.2020.07.274] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/14/2020] [Accepted: 07/19/2020] [Indexed: 02/07/2023]
Abstract
Severe side effects and the rapid emergence of drug resistance in cancer cells are major problems in the chemotherapy utilizing anthracyclines, with a difference between cellular response at nano and micro scale levels. Understanding this situation is more complicated issue to attain efficient targeted formulations with low unexpected toxicity in patients. On nano-scale level, considering properties of nano-bio interaction in all relevant parts of the body may offer clue for suitable formulations. Four main strategies comprising PEGylation, surface charging, targeting, and stimuli responsiveness can be deployed to improve the liposomal and polymeric nanoformulations that can efficiently deliver common anthracyclines namely daunorubicin (DAU), doxorubicin (DOX), idarubicin (IDA), and epirubicin (EPI). Herein, the advances and challenges pertaining to the formulations of these anticancer drugs via liposomal and polymeric nanoformulations, are discussed.
Collapse
Affiliation(s)
- Mehran Alavi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran.
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
4
|
Gadade DD, Pekamwar SS. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Adv Pharm Bull 2020; 10:166-183. [PMID: 32373486 PMCID: PMC7191229 DOI: 10.34172/apb.2020.022] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/29/2019] [Accepted: 10/01/2019] [Indexed: 12/18/2022] Open
Abstract
Colloidal nanoparticulate technology has been described in the literature as a versatile drug delivery system. But it possesses some inherent lacunae in their formulation. Cyclodextrins (CDs) have been extensively reported for the solubility enhancement of poorly water-soluble drugs. The CDs can cause intervention in aspects related to nanoparticles (NPs) that include improving drug loading in nano-system, improving stability, site-specific/targeted drug delivery, improving solubility profile and absorption of the drug in nanosystem with consequent improvement in bioavailability, with the possibility of controlled release, safety and efficacy. They find application in for simultaneous diagnosis and therapeutics for better treatment procedures. The current communication is focused on the application of CDs to overcome troubles in nanoparticulate formulation and enhancement of their performance. It also envisages the theranostic aspects of CDs.
Collapse
Affiliation(s)
- Dipak Dilip Gadade
- Department of Pharmaceutics, Shri Bhagwan College of Pharmacy, CIDCO, N-6, Dr. Y.S. Khedkar Marg, Aurangabad-431001, India.,School of Pharmacy, SRTM University,Vishnupuri, Nanded- 431606, India
| | | |
Collapse
|
5
|
Li R, Li X, Zhang Y, Delawder AO, Colley ND, Whiting EA, Barnes JC. Diblock brush-arm star copolymers via a core-first/graft-from approach using γ-cyclodextrin and ROMP: a modular platform for drug delivery. Polym Chem 2020. [DOI: 10.1039/c9py01146c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water-soluble diblock brush-arm star copolymers using γ-CD-based core-first ring-opening metathesis polymerization, allowing for anticancer drug delivery via host–guest interaction.
Collapse
Affiliation(s)
- Ruihan Li
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Xuesong Li
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Yipei Zhang
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | | | - Nathan D. Colley
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Emma A. Whiting
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| | - Jonathan C. Barnes
- Department of Chemistry
- One Brookings Drive
- Washington University
- St Louis
- USA
| |
Collapse
|
6
|
Gao YE, Bai S, Ma X, Zhang X, Hou M, Shi X, Huang X, Chen J, Wen F, Xue P, Kang Y, Xu Z. Codelivery of doxorubicin and camptothecin by dual-responsive unimolecular micelle-based β-cyclodextrin for enhanced chemotherapy. Colloids Surf B Biointerfaces 2019; 183:110428. [PMID: 31415956 DOI: 10.1016/j.colsurfb.2019.110428] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/02/2019] [Accepted: 08/05/2019] [Indexed: 01/05/2023]
Abstract
Tumor microenvironment (TME)-induced drug delivery technology is a promising strategy for improving low drug accumulation efficiency, short blood circulation and weak therapeutic effect. In this work, a dual-responsive (reduction- and pH-responsive) polyprodrug nanoreactor based on β-cyclodextrin (β-CD) was constructed for combinational chemotherapy. Specifically, the dual-responsive star polymeric prodrug was synthesized by atom transfer radical polymerization (ATRP) based on a starburst initiator of β-CD-Br. The obtained polyprodrug contained a hydrophilic chain of poly-(ethylene glycol) methyl ether methacrylate (POEGMA) and a hydrophobic part of camptothecin (CPT) prodrug and poly[2-(diisopropylamino)ethyl methacrylate] (PDPA), denoted as β-CD-PDPA-POEGMA-PCPT (CCDO for short). The obtained CCDO could form stable unimolecular micelles, which could be efficiently internalized by cancer cells. To enhance the curative effect, the anticancer agent doxorubicin (DOX) could be encapsulated into the hydrophobic cavity of the CCDO by hydrophobic-hydrophobic interaction. In vitro drug release studies showed that the obtained CCDO/DOX micelles controlled the release of active CPT and DOX occurring in a reductive environment and at low pH. In vitro cytotoxicity results suggested that the anticancer efficacy of dual-responsive CCDO/DOX micelles was superior to that of CCDO micelles. In addition, in vivo results verified good blood compatibility of the unimolecular micelles. This integrated dual-responsive drug delivery system may solve the low drug loading and poor controlled release problems found in traditional polymer-based drug carriers, providing an innovative and promising route for cancer therapy.
Collapse
Affiliation(s)
- Yong-E Gao
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Shuang Bai
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaoqian Ma
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaoli Zhang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China
| | - Meili Hou
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaoxiao Shi
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Xiaohua Huang
- Guangan Changming Research Institute for Advanced Industrial Technology, Guangan 638500, PR China
| | - Jiucun Chen
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Feiqiu Wen
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, Guangdong 518038, PR China.
| | - Peng Xue
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Yuejun Kang
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China
| | - Zhigang Xu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing 400715, PR China; Guangan Changming Research Institute for Advanced Industrial Technology, Guangan 638500, PR China.
| |
Collapse
|
7
|
Menezes PDP, Andrade TDA, Frank LA, de Souza EPBSS, Trindade GDGG, Trindade IAS, Serafini MR, Guterres SS, Araújo AADS. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int J Pharm 2019; 559:312-328. [PMID: 30703500 DOI: 10.1016/j.ijpharm.2019.01.041] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/22/2019] [Accepted: 01/23/2019] [Indexed: 10/27/2022]
Abstract
For many years, researchers have worked with supramolecular structures involving inclusion complexes with cyclodextrins. These studies have resulted in new commercially available drugs which have been of great benefit. More recently, studies using nanoparticles, including nanosystems containing cyclodextrins, have become a focus of academic research due to the versatility of the systems and their remarkable therapeutic potential. This review focuses on studies published between 2002 and 2018 involving nanosystems containing cyclodextrins. We consider the type of nanosystems, their importance in a health context, the physicochemical techniques used to show the quality of these systems and their potential for the development of novel pharmaceutical formulations. These have been developed in recent studies which have mainly been focusing on basic science with no clinical trials as yet being performed. This is important to note because it means that the studies do not include any toxicity tests. Despite this limitation, the characterization assays performed suggest that these new formulations may have therapeutic potential. However, more research is required to assess the efficacy and safety of these nanosystems.
Collapse
Affiliation(s)
| | | | - Luiza Abrahão Frank
- College of Pharmacy, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | |
Collapse
|
8
|
Cova TF, Murtinho D, Pais AACC, Valente AJM. Combining Cellulose and Cyclodextrins: Fascinating Designs for Materials and Pharmaceutics. Front Chem 2018; 6:271. [PMID: 30027091 PMCID: PMC6041395 DOI: 10.3389/fchem.2018.00271] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Cellulose and cyclodextrins possess unique properties that can be tailored, combined, and used in a considerable number of applications, including textiles, coatings, sensors, and drug delivery systems. Successfully structuring and applying cellulose and cyclodextrins conjugates requires a deep understanding of the relation between structural, and soft matter behavior, materials, energy, and function. This review focuses on the key advances in developing materials based on these conjugates. Relevant aspects regarding structural variations, methods of synthesis, processing and functionalization, and corresponding supramolecular properties are presented. The use of cellulose/cyclodextrin conjugates as intelligent platforms for applications in materials science and pharmaceutical technology is also outlined, focusing on drug delivery, textiles, and sensors.
Collapse
Affiliation(s)
| | | | | | - Artur J. M. Valente
- Coimbra Cemistry Centre, CQC, Department of Chemistry, Faculty of Sciences and Technology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
9
|
Li X, Zhang Y, Xu J, Zheng Y. Efficient production of series sulfopropyl ether β-cyclodextrin derivatives using the eco-friendly microwave technique. J INCL PHENOM MACRO 2018. [DOI: 10.1007/s10847-018-0806-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Ho DK, Costa A, De Rossi C, de Souza Carvalho-Wodarz C, Loretz B, Lehr CM. Polysaccharide Submicrocarrier for Improved Pulmonary Delivery of Poorly Soluble Anti-infective Ciprofloxacin: Preparation, Characterization, and Influence of Size on Cellular Uptake. Mol Pharm 2018; 15:1081-1096. [PMID: 29425049 DOI: 10.1021/acs.molpharmaceut.7b00967] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The majority of the currently used and developed anti-infectives are poorly water-soluble molecules. The poor solubility might lead to limited bioavailability and pharmacological action of the drug. Novel pharmaceutical materials have thus been designed to solve those problems and improve drug delivery. In this study, we propose a facile method to produce submicrocarriers (sMCs) by electrostatic gelation of anionic ß-cyclodextrin (aß-CD) and chitosan. The average hydrodynamic size ranged from 400 to 900 nm by carefully adjusting polymer concentrations and N/C ratio. The distinct host-guest reaction of cyclodextrin derivative is considered as a good approach to enhance solubility, and prevent drug recrystallization, and thus was used to develop sMC to improve the controlled release profile of a poorly soluble and clinically relevant anti-infective ciprofloxacin. The optimal molar ratio of ciprofloxacin to aß-CD was found to be 1:1, which helped maximize encapsulation efficiency (∼90%) and loading capacity (∼9%) of ciprofloxacin loaded sMCs. Furthermore, to recommend the future application of the developed sMCs, the dependence of cell uptake on sMCs size (500, 700, and 900 nm) was investigated in vitro on dTHP-1 by both flow cytometry and confocal microscopy. The results demonstrate that, regardless of their size, an only comparatively small fraction of the sMCs were taken up by the macrophage-like cells, while most of the carriers were merely adsorbed to the cell surface after 2 h incubation. After continuing the incubation to reach 24 h, the majority of the sMCs were found intracellularly. However, the sMCs had been designed to release sufficient amount of drug within 24 h, and the subsequent phagocytosis of the carrier may be considered as an efficient pathway for its safe degradation and elimination. In summary, the developed sMC is a suitable system with promising perspectives recommended for pulmonary extracellular infection therapeutics.
Collapse
Affiliation(s)
- Duy-Khiet Ho
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany.,Department of Pharmacy , Saarland University , D-66123 Saarbrücken , Germany
| | - Ana Costa
- I3S, Instituto de Investigação e Inovação em Saúde Universidade do Porto , 4200-135 Porto , Portugal.,Instituto Nacional de Engenharia Biomédica (INEB), Universidade do Porto , 4200-135 Porto , Portugal.,Instituto Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto , 4050-313 Porto , Portugal
| | - Chiara De Rossi
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany
| | - Cristiane de Souza Carvalho-Wodarz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany
| | - Brigitta Loretz
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany
| | - Claus-Michael Lehr
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), Saarland University , D-66123 Saarbrücken , Germany.,Department of Pharmacy , Saarland University , D-66123 Saarbrücken , Germany
| |
Collapse
|
11
|
Zhang Y, Sun T, Jiang C. Biomacromolecules as carriers in drug delivery and tissue engineering. Acta Pharm Sin B 2018; 8:34-50. [PMID: 29872621 PMCID: PMC5985630 DOI: 10.1016/j.apsb.2017.11.005] [Citation(s) in RCA: 266] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 09/05/2017] [Accepted: 10/07/2017] [Indexed: 12/14/2022] Open
Abstract
Natural biomacromolecules have attracted increased attention as carriers in biomedicine in recent years because of their inherent biochemical and biophysical properties including renewability, nontoxicity, biocompatibility, biodegradability, long blood circulation time and targeting ability. Recent advances in our understanding of the biological functions of natural-origin biomacromolecules and the progress in the study of biological drug carriers indicate that such carriers may have advantages over synthetic material-based carriers in terms of half-life, stability, safety and ease of manufacture. In this review, we give a brief introduction to the biochemical properties of the widely used biomacromolecule-based carriers such as albumin, lipoproteins and polysaccharides. Then examples from the clinic and in recent laboratory development are summarized. Finally the current challenges and future prospects of present biological carriers are discussed.
Collapse
Key Words
- ABD, albumin binding domain
- ACM, aclacinomycin
- ACS, absorbable collagen sponge
- ADH, adipic dihydrazide
- ART, artemisinin
- ASF, Antheraea mylitta silk fibroin
- ATRA, all-trans retinoic acid
- ATS, artesunate
- BCEC, brain capillary endothelial cells
- BMP-2, bone morphogenetic protein-2
- BSA, bovine serum albumin
- BSF, Bombyx mori silk fibroin
- Biomacromolecule
- CC-HAM, core-crosslinked polymeric micelle based hyaluronic acid
- CD, cyclodextrin
- CD-NPs, amphiphilic MMA–tBA β-CD star copolymers that are capable of forming nanoparticles
- CD-g-CS, chitosan grafted with β-cyclodextrin
- CD/BP, cyclodextrin–bisphosphonate complexes
- CIA, collagen-induced arthritis
- CM, collagen matrices
- CMD-ChNP, carboxylmethyl dextran chitosan nanoparticle
- DHA, dihydroartesunate
- DOXO-EMCH, (6-maleimidocaproyl)hydrazone derivative of doxorubicin
- DOX–TRF, doxorubincin–transferrin conjugate
- DTX-HPLGA, HA coated PLGA nanoparticulate docetaxel
- Drug delivery
- ECM, extracellular matrix
- EMT, epithelial mesenchymal transition
- EPR, enhanced permeability and retention
- FcRn, neonatal Fc receptor
- GAG, glycosaminoglycan
- GC-DOX, glycol–chitosan–doxorubicin conjugate
- GDNF, glial-derived neurotrophic factor
- GO, grapheme oxide
- GSH, glutathione
- Gd, gadolinium
- HA, hyaluronic acid
- HA-CA, catechol-modified hyaluronic acid
- HCF, heparin-conjugated fibrin
- HDL, high density lipoprotein
- HEK, human embryonic kidney
- HSA, human serum albumin
- IDL, intermediate density lipoprotein
- INF, interferon
- LDL, low density lipoprotein
- LDLR, low density lipoprotein receptor
- LDV, leucine–aspartic acid–valine
- LMWH, low molecular weight heparin
- MSA, mouse serum albumin
- MTX–HSA, methotrexate–albumin conjugate
- NIR, near-infrared
- NSCLC, non-small cell lung cancer
- OP-Gel-NS, oxidized pectin-gelatin-nanosliver
- PEC, polyelectrolyte
- PTX, paclitaxel
- Polysaccharide
- Protein
- RES, reticuloendothelial system
- RGD, Arg–Gly–Asp peptide
- SF, silk fibroin
- SF-CSNP, silk fibroin modified chitosan nanoparticle
- SFNP, silk fibroin nanoparticle
- SPARC, secreted protein acidic and rich in cysteine
- TRAIL, tumor-necrosis factor-related apoptosis-inducing ligand
- Tf, transferrin
- TfR, transferrin receptor
- Tissue engineering
- VEGF, vascular endothelial growth factor
- VLDL, very low density lipoprotein
- pDNA, plasmid DNA
- rHDL, recombinant HDL
- rhEGF-2/HA, recombinant human fibroblast growth factor type 2 in a hyaluronic acid carrier
Collapse
Affiliation(s)
| | | | - Chen Jiang
- Key Laboratory of Smart Drug Delivery, Ministry of Education, State Key Laboratory of Medical Neurobiology, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai 200032, China
| |
Collapse
|
12
|
Le-Deygen IM, Skuredina AA, Kudryashova EV. Drug delivery systems for fluoroquinolones: New prospects in tuberculosis treatment. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162017050077] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Chmielarz P. Synthesis of multiarm star block copolymers via simplified electrochemically mediated ATRP. CHEMICAL PAPERS 2016. [DOI: 10.1007/s11696-016-0089-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Chmielarz P, Park S, Sobkowiak A, Matyjaszewski K. Synthesis of β-cyclodextrin-based star polymers via a simplified electrochemically mediated ATRP. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.02.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Kettel MJ, Schaefer K, Pich A, Moeller M. Functional PMMA nanogels by cross-linking with cyclodextrin methacrylate. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Alexander JF, Kozlovskaya V, Chen J, Kuncewicz T, Kharlampieva E, Godin B. Cubical Shape Enhances the Interaction of Layer-by-Layer Polymeric Particles with Breast Cancer Cells. Adv Healthc Mater 2015; 4:2657-2666. [PMID: 26424126 PMCID: PMC4715610 DOI: 10.1002/adhm.201500537] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 08/17/2015] [Indexed: 12/22/2022]
Abstract
Blood-borne objects display a nonspherical shape with in-flow dimensions much larger than the vascular endothelial fenestrations, yet, at the diseased state, are able to traverse through these fenestrations owing to their elasticity. The role of physical parameters including shape and elasticity in the behavior of objects found in the tumor microenvironment needs to be understood to ultimately enhance chemotherapy and minimize its side effects. In this study, sphere- and cube-shaped biocompatible elastic microparticles (EM) made via layer-by-layer assembly of hydrogen-bonded tannic acid/poly(N-vinylpyrrolidone) (TA/PVPON) as hollow polymer shells and their rigid core-shell precursors (RM) are explored. In contrast to rigid five-bilayer (TA/PVPON) core shells, hollow elastic shells are unrecognized by J774A.1 macrophages, yet interact with endothelial and breast cancer cells. Internalization of cubical shells is fivefold more efficient by HMVEC (human microvascular endothelial cells) and sixfold and 2.5-fold more efficient by MDA-MB-231 and by SUM159 (breast cancer cells), respectively, compared to spherical shells. The interaction of cubical (TA/PVPON)5 shells with endothelial cells is similar under 10 s(-1) (characteristic of tumor vasculature) and 100 s(-1) shear rate (normal vasculature) while it is decreased at 100 s(-1) shear rate for the spherical shells. Our data suggest that cubical geometry promotes interaction of particles with breast cancer cells, while elasticity prevents engulfment by phagocytic cells in the tumor microenvironment.
Collapse
Affiliation(s)
- Jenolyn F. Alexander
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Veronika Kozlovskaya
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Jun Chen
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Thomas Kuncewicz
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| | - Eugenia Kharlampieva
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
- Center for Nanoscale Materials and Biointegration, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | - Biana Godin
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, Texas 77030, USA
| |
Collapse
|
17
|
Correia A, Shahbazi MA, Mäkilä E, Almeida S, Salonen J, Hirvonen J, Santos HA. Cyclodextrin-Modified Porous Silicon Nanoparticles for Efficient Sustained Drug Delivery and Proliferation Inhibition of Breast Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23197-23204. [PMID: 26440739 DOI: 10.1021/acsami.5b07033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Over the past decade, the potential of polymeric structures has been investigated to overcome many limitations related to nanosized drug carriers by modulating their toxicity, cellular interactions, stability, and drug-release kinetics. In this study, we have developed a successful nanocomposite consisting of undecylenic acid modified thermally hydrocarbonized porous silicon nanoparticles (UnTHCPSi NPs) loaded with an anticancer drug, sorafenib, and surface-conjugated with heptakis(6-amino-6-deoxy)-β-cyclodextrin (HABCD) to show the impact of the surface polymeric functionalization on the physical and biological properties of the drug-loaded nanoparticles. Cytocompatibility studies showed that the UnTHCPSi-HABCD NPs were not toxic to breast cancer cells. HABCD also enhanced the suspensibility and both the colloidal and plasma stabilities of the UnTHCPSi NPs. UnTHCPSi-HABCD NPs showed a significantly increased interaction with breast cancer cells compared to bare NPs and also sustained the drug release. Furthermore, the sorafenib-loaded UnTHCPSi-HABCD NPs efficiently inhibited cell proliferation of the breast cancer cells.
Collapse
Affiliation(s)
- Alexandra Correia
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Mohammad-Ali Shahbazi
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Ermei Mäkilä
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI20014 Turku, Finland
| | - Sérgio Almeida
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI20014 Turku, Finland
| | - Jouni Hirvonen
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| | - Hélder A Santos
- Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki , FI-00014 Helsinki, Finland
| |
Collapse
|