1
|
Ferraz MP. An Overview on the Big Players in Bone Tissue Engineering: Biomaterials, Scaffolds and Cells. Int J Mol Sci 2024; 25:3836. [PMID: 38612646 PMCID: PMC11012232 DOI: 10.3390/ijms25073836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Presently, millions worldwide suffer from degenerative and inflammatory bone and joint issues, comprising roughly half of chronic ailments in those over 50, leading to prolonged discomfort and physical limitations. These conditions become more prevalent with age and lifestyle factors, escalating due to the growing elderly populace. Addressing these challenges often entails surgical interventions utilizing implants or bone grafts, though these treatments may entail complications such as pain and tissue death at donor sites for grafts, along with immune rejection. To surmount these challenges, tissue engineering has emerged as a promising avenue for bone injury repair and reconstruction. It involves the use of different biomaterials and the development of three-dimensional porous matrices and scaffolds, alongside osteoprogenitor cells and growth factors to stimulate natural tissue regeneration. This review compiles methodologies that can be used to develop biomaterials that are important in bone tissue replacement and regeneration. Biomaterials for orthopedic implants, several scaffold types and production methods, as well as techniques to assess biomaterials' suitability for human use-both in laboratory settings and within living organisms-are discussed. Even though researchers have had some success, there is still room for improvements in their processing techniques, especially the ones that make scaffolds mechanically stronger without weakening their biological characteristics. Bone tissue engineering is therefore a promising area due to the rise in bone-related injuries.
Collapse
Affiliation(s)
- Maria Pia Ferraz
- Departamento de Engenharia Metalúrgica e de Materiais, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal;
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4099-002 Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, 4099-002 Porto, Portugal
| |
Collapse
|
2
|
Patlataya NN, Bolshakov IN, Khorzhevskii VA, Levenets AA, Medvedeva NN, Cherkashina MA, Nikolaenko MM, Ryaboshapko EI, Dmitrienko AE. Morphological Reconstruction of a Critical-Sized Bone Defect in the Maxillofacial Region Using Modified Chitosan in Rats with Sub-Compensated Type I Diabetes Mellitus. Polymers (Basel) 2023; 15:4337. [PMID: 37960017 PMCID: PMC10647318 DOI: 10.3390/polym15214337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
It is known that complexes based on natural polysaccharides are able to eliminate bone defects. Prolonged hyperglycemia leads to low bone regeneration and a chronic inflammatory response. The purpose of this study was to increase the efficiency of early bone formation in a cavity of critical size in diabetes mellitus in the experiment. The polyelectrolyte complex contains high-molecular ascorbate of chitosan, chondroitin sulfate, sodium hyaluronate, heparin, adgelon serum growth factor, sodium alginate and amorphous nanohydroxyapatite (CH-SA-HA). Studies were conducted on five groups of white female Wistar rats: group 1-regeneration of a bone defect in healthy animals under a blood clot; group 2-regeneration of a bone defect under a blood clot in animals with diabetes mellitus; group 3-bone regeneration in animals with diabetes mellitus after filling the bone cavity with a collagen sponge; group 4-filling of a bone defect with a CH-SA-HA construct in healthy animals; group 5-filling of a bone defect with a CH-SA-HA construct in animals with diabetes mellitus. Implantation of the CH-SA-HA construct into bone cavities in type I diabetic rats can accelerate the rate of bone tissue repair. The inclusion of modifying polysaccharides and apatite agents in the construction may be a prospect for further improvement of the properties of implants.
Collapse
Affiliation(s)
- Nadezhda N. Patlataya
- Department of Fundamental Medical Disciplines, Institute of Medicine and Biology, Faculty of Medicine, State Educational Institution of Higher Education, Moscow State Regional University, Moscow 105005, Russia;
| | - Igor N. Bolshakov
- Department Operative Surgery and Topographic Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia
| | - Vladimir A. Khorzhevskii
- Department Pathological Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Pathological and Anatomical Department Krasnoyarsk Clinical Regional Hospital, Krasnoyarsk 660022, Russia;
| | - Anatoli A. Levenets
- Department Surgical Dentistry and Maxillofacial Surgery, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
| | - Nadezhda N. Medvedeva
- Department of Human Anatomy, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia;
| | - Mariya A. Cherkashina
- Pediatric Faculty, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (M.A.C.); (E.I.R.); (A.E.D.)
| | - Matvey M. Nikolaenko
- Department of Maxillofacial and Plastic Surgery, Moscow State University of Medicine and Dentistry, Moscow 127473, Russia;
| | - Ekaterina I. Ryaboshapko
- Pediatric Faculty, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (M.A.C.); (E.I.R.); (A.E.D.)
| | - Anna E. Dmitrienko
- Pediatric Faculty, Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk 660022, Russia; (M.A.C.); (E.I.R.); (A.E.D.)
| |
Collapse
|
3
|
Pickering Emulsions Based in Inorganic Solid Particles: From Product Development to Food Applications. Molecules 2023; 28:molecules28062504. [PMID: 36985475 PMCID: PMC10054141 DOI: 10.3390/molecules28062504] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Pickering emulsions (PEs) have attracted attention in different fields, such as food, pharmaceuticals and cosmetics, mainly due to their good physical stability. PEs are a promising strategy to develop functional products since the particles’ oil and water phases can act as carriers of active compounds, providing multiple combinations potentiating synergistic effects. Moreover, they can answer the sustainable and green chemistry issues arising from using conventional emulsifier-based systems. In this context, this review focuses on the applicability of safe inorganic solid particles as emulsion stabilisers, discussing the main stabilisation mechanisms of oil–water interfaces. In particular, it provides evidence for hydroxyapatite (HAp) particles as Pickering stabilisers, discussing the latest advances. The main technologies used to produce PEs are also presented. From an industrial perspective, an effort was made to list new productive technologies at the laboratory scale and discuss their feasibility for scale-up. Finally, the advantages and potential applications of PEs in the food industry are also described. Overall, this review gathers recent developments in the formulation, production and properties of food-grade PEs based on safe inorganic solid particles.
Collapse
|
4
|
Sizing down and functionalizing polylactide (PLA) resin for synthesis of PLA-based polyurethanes for use in biomedical applications. Sci Rep 2023; 13:2284. [PMID: 36759697 PMCID: PMC9911729 DOI: 10.1038/s41598-023-29496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Alcoholysis is a promising approach for upcycling postconsumer polylactide (PLA) products into valuable constituents. In addition, an alcohol-acidolysis of PLA by multifunctional 2,2-bis(hydroxymethyl)propionic acid (DMPA) produces lactate oligomers with hydroxyl and carboxylic acid terminals. In this work, a process for sizing down commercial PLA resin to optimum medium-sized lactate oligomers is developed at a lower cost than a bottom-up synthesis from its monomer. The microwave-assisted reaction is conveniently conducted at 220-240 °C and pressure lower than 100 psi. The PLA resin was completely converted via alcohol-acidolysis reaction, with a product purification yield as high as 93%. The resulting products are characterized by FTIR, 2D-NMR, 1H-NMR, GPC, DSC, and XRD spectroscopy. The effects of PLA: DMPA feed ratios and the incorporation of 1,4-butanediol (BDO) on the structures, properties, and particle formability of the alcohol-acidolyzed products are examined. The products from a ratio of 12:1, which possessed optimum size and structures, are used to synthesize PLA-based polyurethane (PUD) by reacting with 1,6-diisocyanatohexane (HDI). The resulting PUD is employed in encapsulating lavender essential oil (LO). Without using any surfactant, stable LO-loaded nanoparticles are prepared due to the copolymer's self-stabilizability from its carboxylate groups. The effect of the polymer: LO feed ratio (1.25-3.75: 1) on the physicochemical properties of the resulting nanoparticles, e.g., colloidal stability (zeta potential > -60 mV), hydrodynamic size (300-500 nm), encapsulation efficiency (80-88%), and in vitro release, are investigated. The LO-loaded nanoparticles show non-toxicity to fibroblast cells, with an IC50 value higher than 2000 µg/mL. The products from this process have high potential as drug encapsulation templates in biomedical applications.
Collapse
|
5
|
Zhang M, Li X, Zhou L, Chen W, Marchioni E. Protein-Based High Internal Phase Pickering Emulsions: A Review of Their Fabrication, Composition and Future Perspectives in the Food Industry. Foods 2023; 12:482. [PMID: 36766011 PMCID: PMC9914728 DOI: 10.3390/foods12030482] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Protein-based high internal phase Pickering emulsions (HIPEs) are emulsions using protein particles as a stabilizer in which the volume fraction of the dispersed phase exceeds 74%. Stabilizers are irreversibly adsorbed at the interface of the oil phase and water phase to maintain the droplet structure. Protein-based HIPEs have shown great potential for a variety of fields, including foods, due to the wide range of materials, simple preparation, and good biocompatibility. This review introduces the preparation routes of protein-based HIPEs and summarizes and classifies the preparation methods of protein stabilizers according to their formation mechanism. Further outlined are the types and properties of protein stabilizers used in the present studies, the composition of the oil phase, the encapsulating substances, and the properties of the constituted protein-based HIPEs. Finally, future development of protein-based HIPEs was explored, such as the development of protein-based stabilizers, the improvement of emulsification technology, and the quality control of stabilizers and protein-based HIPEs.
Collapse
Affiliation(s)
- Minghao Zhang
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Xiang Li
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Li Zhou
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Weilin Chen
- National Demonstration Center for Experimental Ethnopharmacology Education, School of Pharmaceutical Sciences, South-Central MinZu University, Wuhan 430074, China
| | - Eric Marchioni
- Inst Pluridisciplinaire Hubert Curien, CNRS, Equipe Chim Analyt Mol Bioact & Pharmacognoise, UMR 7178, UDS, F-67400 Illkirch Graffenstaden, France
| |
Collapse
|
6
|
Tang Z, Yu M, Mondal AK, Lin X. Porous Scaffolds Based on Polydopamine/Chondroitin Sulfate/Polyvinyl Alcohol Composite Hydrogels. Polymers (Basel) 2023; 15:polym15020271. [PMID: 36679152 PMCID: PMC9863020 DOI: 10.3390/polym15020271] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
In this paper, porous scaffolds based on composite hydrogels were fabricated using polydopamine (PDA), chondroitin sulfate (CS), and polyvinyl alcohol (PVA) via the freezing/thawing method. Different characteristics of the prepared composite hydrogels, including the pore sizes, compression strength, lap shear strength, mass loss, and cytocompatibility were investigated. Scanning electron microscope images (SEM) displayed the hydrogel pore sizes, ranging from 20 to 100 μm. The composite hydrogel exhibited excellent porosity of 95.1%, compression strength of 5.2 MPa, lap shear strength of 21 kPa on porcine skin, and mass loss of 16.0%. In addition, the composite hydrogel possessed good relative cell activity of 97%. The PDA/CS/PVA hydrogel is cytocompatible as a starting point, and it can be further investigated in tissue engineering.
Collapse
Affiliation(s)
- Zuwu Tang
- School of Materials and Environmental Engineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuzhou 350300, China
| | - Meiqiong Yu
- School of Materials and Environmental Engineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuzhou 350300, China
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou 350108, China
| | - Ajoy Kanti Mondal
- Leather Research Institute, Bangladesh Council of Scientific and Industrial Research, Dhaka 1350, Bangladesh
| | - Xinxing Lin
- School of Materials and Environmental Engineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuzhou 350300, China
- Correspondence: ; Tel.: +86-15705983353; Fax: +86-591-85254164
| |
Collapse
|
7
|
Venkatesan J, Murugan SS, Ad P, Dgv Y, Seong GH. Alginate-based Composites Microspheres: Preparations and Applications for Bone Tissue Engineering. Curr Pharm Des 2022; 28:1067-1081. [PMID: 35593346 DOI: 10.2174/1381612828666220518142911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/19/2022] [Indexed: 11/22/2022]
Abstract
Alginate-based biomaterials have been extensively studied for bone tissue engineering. Scaffolds, microspheres, and hydrogels can be developed using alginate, which is biocompatible, biodegradable, and able to deliver growth factors and drugs. Alginate microspheres can be produced using crosslinking, microfluidic, three-dimensional printing, extrusion, and emulsion methods. The sizes of the alginate microspheres range from 10 µm to 4 mm. This review describes the chemical characterization and mechanical assessment of alginate-based microspheres. Combinations of alginate with hydroxyapatite, chitosan, collagen, polylactic acid, polycaprolactone, and bioglass were discussed for bone tissue repair and regeneration. In addition, alginate combinations with bone morphogenetic proteins, vascular endothelial growth factor, transforming growth factor beta-3, other growth factors, cells, proteins, drugs, and osteoinductive drugs were analyzed for tissue engineering applications. Furthermore, the biocompatibility of developed alginate microspheres was discussed for different cell lines. Finally, alginate microsphere-based composites with stem cell interaction for bone tissue regeneration were presented. In the present review, we have assessed the preclinical research on in vivo models of alginate-based microspheres for bone tissue repair and regeneration. Overall, alginate-based microspheres are potential candidates for graft substitutes and the treatment of various bone-related diseases.
Collapse
Affiliation(s)
- Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea.,Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| | - Sesha Subramanian Murugan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Pandurang Ad
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Yashaswini Dgv
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, ERICA, Ansan 426-791, South Korea
| | - Gi Hun Seong
- Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangaluru, 575018, India
| |
Collapse
|
8
|
Sikkema R, Keohan B, Zhitomirsky I. Alginic Acid Polymer-Hydroxyapatite Composites for Bone Tissue Engineering. Polymers (Basel) 2021; 13:polym13183070. [PMID: 34577971 PMCID: PMC8471633 DOI: 10.3390/polym13183070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/05/2021] [Accepted: 09/07/2021] [Indexed: 12/28/2022] Open
Abstract
Natural bone is a composite organic-inorganic material, containing hydroxyapatite (HAP) as an inorganic phase. In this review, applications of natural alginic acid (ALGH) polymer for the fabrication of composites containing HAP are described. ALGH is used as a biocompatible structure directing, capping and dispersing agent for the synthesis of HAP. Many advanced techniques for the fabrication of ALGH-HAP composites are attributed to the ability of ALGH to promote biomineralization. Gel-forming and film-forming properties of ALGH are key factors for the development of colloidal manufacturing techniques. Electrochemical fabrication techniques are based on strong ALGH adsorption on HAP, pH-dependent charge and solubility of ALGH. Functional properties of advanced composite ALGH-HAP films and coatings, scaffolds, biocements, gels and beads are described. The composites are loaded with other functional materials, such as antimicrobial agents, drugs, proteins and enzymes. Moreover, the composites provided a platform for their loading with cells for the fabrication of composites with enhanced properties for various biomedical applications. This review summarizes manufacturing strategies, mechanisms and outlines future trends in the development of functional biocomposites.
Collapse
|
9
|
Xie J, Wang W, Zhao R, Lu W, Chen L, Su W, Zeng M, Hu Y. Fabrication and characterization of microstructure-controllable COL-HA-PVA hydrogels for cartilage repair. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:100. [PMID: 34406511 PMCID: PMC8373762 DOI: 10.1007/s10856-021-06577-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 06/14/2021] [Indexed: 05/11/2023]
Abstract
Polyvinyl alcohol (PVA) hydrogel has gained interest in cartilage repair because of its highly swollen, porosity, and viscoelastic properties. However, PVA has some deficiencies, such as its poor biocompatibility and microstructure. This research aimed to design novel hydroxyapatite (HA)-collagen (COL)-PVA hydrogels. COL was added to improve cell biocompatibility, and the microstructure of the hydrogels was controlled by fused deposition modeling (FDM). The feasibility of the COL-HA-PVA hydrogels in cartilage repair was evaluated by in vitro and in vivo experiments. The scanning electron microscopy results showed that the hybrid hydrogels had interconnected macropore structures that contained a COL reticular scaffold. The diameter of the macropore was 1.08-1.85 mm, which corresponds to the diameter of the denatured PVA column. The chondrocytes were then seeded in hydrogels to assess the cell viability and formation of the cartilage matrix. The in vitro results revealed excellent cellular biocompatibility. Osteochondral defects (8 mm in diameter and 8 mm in depth) were created in the femoral trochlear of goats, and the defects were implanted with cell-seeded hydrogels, cell-free hydrogels, or a blank control. The in vivo results showed that the COL-HA-PVA hydrogels effectively repaired cartilage defects, especially the conditions inoculated with chondrocyte in advance. This research suggests that the COL-HA-PVA hydrogels have promising application in cartilage repair.
Collapse
Affiliation(s)
- Jie Xie
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wu Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruibo Zhao
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wei Lu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liang Chen
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Weiping Su
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Yihe Hu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
10
|
Influence of O/W emulsion interfacial ionic membranes on the encapsulation efficiency and storage stability of powder microencapsulated astaxanthin. FOOD AND BIOPRODUCTS PROCESSING 2021. [DOI: 10.1016/j.fbp.2020.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Liu F, Li W, Liu H, Yuan T, Yang Y, Zhou W, Hu Y, Yang Z. Preparation of 3D Printed Chitosan/Polyvinyl Alcohol Double Network Hydrogel Scaffolds. Macromol Biosci 2021; 21:e2000398. [PMID: 33624936 DOI: 10.1002/mabi.202000398] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/16/2021] [Indexed: 12/13/2022]
Abstract
In this work, a 3D printed double-network (DN) hydrogel scaffold is designed with chitosan (CS) and polyvinyl alcohol (PVA) as the framework matrix. The addition of PVA into the CS-based hydrogel clearly enhances the mechanical properties and lowers the swelling behaviors of the hydrogels. The crosslinking of CS with genipin can perform the pre-crosslinking to improve the viscosity and 3D printability of the hydrogel precursor, while increasing the PVA content results in lowering the viscosity and 3D printability of the pre-crosslinked hydrogel. The antibacterial property results of the DN hydrogel display that the hydrogel have favorable long-lasting antibacterial ability. The appropriate pre-crosslinked hydrogel with the CS/PVA mass ratio of 3:10 and pre-crosslinking time of 7 h is used for 3D printing to prepare the 3D printed porous DN hydrogels. Moreover, the anti-tumor drug doxorubicin (DOX) is loaded into the 3D printed porous DN hydrogels and the in vitro release study displays the sustainable drug release behavior. And the DOX release from hydrogel scaffold can be adjusted by the pH value of release environment. All of the results indicate that the porous DN CS/PVA hydrogel scaffolds have great application potential for tissue regeneration.
Collapse
Affiliation(s)
- Fei Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wenyu Li
- Wuhan Engineering Science and Technology Institute, Wuhan, 430019, China
| | - Hongting Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Teng Yuan
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Yu Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Wen Zhou
- Department of Neurosurgery, The Second Affiliated Hospital, Medical College of Shantou University, Shantou, 515041, China
| | - Yang Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, 510642, China.,Key laboratory of Bio-Pesticide Innovation and Application of Guangdong Province, Guangzhou, 510640, China
| |
Collapse
|
12
|
Effect of Interfacial Ionic Layers on the Food-Grade O/W Emulsion Physical Stability and Astaxanthin Retention during Spray-Drying. Foods 2021; 10:foods10020312. [PMID: 33546371 PMCID: PMC7913560 DOI: 10.3390/foods10020312] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Abstract
The utilization of astaxanthin in food processing is considered to be narrow because of its substandard solubility in aqueous matrices and the instability of chemical compounds during the processing of food and the instability of chemical compounds during the processing of food. The investigation sought to evaluate multilayer emulsions stabilized by ionic interfacial layers of lupin protein isolate (LPI), ι-carrageenan (CA), and chitosan (CHI) on the physical stability of the emulsion as well as the retention of astaxanthin during the spray drying process. Primary emulsion (Pr-E) was prepared by adding LPI on oil droplet surfaces containing astaxanthin. The homogenization pressure and cycles to obtain the Pr-E were investigated. The secondary emulsion (Se-E) and tertiary emulsion (Te-E) were elaborated by mixing CA/Pr-E and CHI/Se-E, respectively. Emulsion stability was assessed under different environmental stresses (pH and NaCl). Astaxanthin retention of emulsions was determined immediately after finishing the spray-drying process. The results showed that Pr-E was stabilized with 1.0% (w/v) of LPI at 50 MPa and three cycles. Se-E and Te-E were obtained with CA/Pr-E and Se-E/CHI of 70/30 and 50/50% (w/w), respectively. The Se-E was the most stable compared to the Pr-E and Te-E when subjected to different pHs; nevertheless, once the NaCl concentration rose, no variations in the ζ-potential of all emulsions studied or destabilization were observed. The Se-E and Te-E derived provided higher astaxanthin retention (>95%) during the spray-drying process compared to Pr-E (around 88%). The results indicated that these astaxanthin multilayer emulsions show considerable potential as a functional ingredient in food products.
Collapse
|
13
|
Mendiratta S, Ali AAA, Hejazi SH, Gates I. Dual Stimuli-Responsive Pickering Emulsions from Novel Magnetic Hydroxyapatite Nanoparticles and Their Characterization Using a Microfluidic Platform. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:1353-1364. [PMID: 33482065 DOI: 10.1021/acs.langmuir.0c02408] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Stimuli-responsive emulsifiers have emerged as a class of smart agents that can permit regulated stabilization and destabilization of emulsions, which is essential for food, cosmetic, pharmaceutical, and petroleum industries. Here, we report the synthesis of novel "smart" hydroxyapatite (HaP) magnetic nanoparticles and their corresponding stimuli-responsive Pickering emulsions and explore their movement under confined spaces using a microfluidic platform. Pickering emulsions prepared with our magnetic stearic acid-functionalized Fe2O3@HaP nanoparticles exhibited pronounced pH-responsive behavior. We observed that the diameter of emulsion droplets decreases with an increase in pH. Swift demulsification was achieved by lowering the pH, whereas the reformation of emulsions was achieved by increasing the pH; this emulsification-demulsification cycling was successful for at least ten cycles. We used a microfluidic platform to test the stability of the emulsions under flowing conditions and their response to a magnetic field. We observed that the emulsion stability was diminished and droplet coalescence was enhanced by the application of the magnetic field. The smart nanoparticles we developed and their HaP-based emulsions present promising materials for pharmaceutical and petroleum industries, where responsive emulsions with controlled stabilities are required.
Collapse
Affiliation(s)
- Shruti Mendiratta
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Ahmed Atef Ahmed Ali
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Seyed Hossein Hejazi
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Ian Gates
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| |
Collapse
|
14
|
Liu S, Huang D, Hu Y, Zhang J, Chen B, Zhang H, Dong X, Tong R, Li Y, Zhou W. Sodium alginate/collagen composite multiscale porous scaffolds containing poly(ε-caprolactone) microspheres fabricated based on additive manufacturing technology. RSC Adv 2020; 10:39241-39250. [PMID: 35518419 PMCID: PMC9057369 DOI: 10.1039/d0ra04581k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/20/2020] [Indexed: 12/18/2022] Open
Abstract
Biocompatible porous scaffolds with adjustable pore structures, appropriate mechanical properties and drug loading properties are important components of bone tissue engineering. In this work, biocompatible sodium alginate (SA)/collagen (Col) multiscale porous scaffolds containing poly(ε-caprolactone) microspheres (Ms-PCL) have been facilely fabricated based on 3D extrusion printing of the pre-crosslinked composite hydrogels. The prepared composite hydrogels can be 3D extrusion printed into porous scaffolds with different designed shapes and adjustable pore structures. The hydroxyapatite (HAP) nanoparticles have been added into the SA/Col hydrogels to achieve stress dispersion and form double crosslinking networks. SA-Ca2+ crosslinking networks and Col–genipin (GP) crosslinking networks have been constructed to improve the mechanical properties of the scaffolds (about 2557 kPa of compressive stress at 70% strain), and reduce the swelling rate and degradation rate of SA/Col scaffolds. Moreover, the SA/Col hydrogels contain hydrophobic antibacterial drug enrofloxacin loaded Ms-PCL, and in vitro drug release research shows a sustained-release function of porous scaffolds, indicating the potential application of SA/Col porous scaffolds as drug carriers. In addition, the antibacterial experiments show that the composite scaffolds display a distinguished and long-term antibacterial activity against Escherichia coli and Staphylococcus aureus. Furthermore, mouse bone mesenchymal stem cells (mBMSCs) are seeded on the SA/Col composite scaffolds, and an in vitro biocompatibility experiment shows that the mBMSCs can adhere well on the composite scaffolds, which indicate that the fabricated composite scaffolds are biocompatible. In short, all of the above results suggest that the biocompatible SA/Col composite porous scaffolds have enormous application and potential in bone tissue engineering. Biocompatible porous scaffolds with adjustable pore structures, appropriate mechanical properties and drug loading properties are important components of bone tissue engineering.![]()
Collapse
Affiliation(s)
- Shuifeng Liu
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Da Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University 1023# Shatai South Road Guangzhou 510515 China
| | - Yang Hu
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Jiancheng Zhang
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Bairui Chen
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Hongwu Zhang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University 1023# Shatai South Road Guangzhou 510515 China
| | - Xianming Dong
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| | - Rongbiao Tong
- Department of Chemistry, The Hong Kong University of Science and Technology Clear Water Bay Kowloon Hong Kong China
| | - Yiheng Li
- Guangzhou Trauer Biotechnology Co., Ltd. 4F, A Building, U-Best Industrial Park, No. 17 Xiangshan Road, Science Town Guangzhou China 510663
| | - Wuyi Zhou
- Biomass 3D Printing Materials Research Center, College of Materials and Energy, South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
15
|
Aldemir Dikici B, Claeyssens F. Basic Principles of Emulsion Templating and Its Use as an Emerging Manufacturing Method of Tissue Engineering Scaffolds. Front Bioeng Biotechnol 2020; 8:875. [PMID: 32903473 PMCID: PMC7435020 DOI: 10.3389/fbioe.2020.00875] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/08/2020] [Indexed: 12/20/2022] Open
Abstract
Tissue engineering (TE) aims to regenerate critical size defects, which cannot heal naturally, by using highly porous matrices called TE scaffolds made of biocompatible and biodegradable materials. There are various manufacturing techniques commonly used to fabricate TE scaffolds. However, in most cases, they do not provide materials with a highly interconnected pore design. Thus, emulsion templating is a promising and convenient route for the fabrication of matrices with up to 99% porosity and high interconnectivity. These matrices have been used for various application areas for decades. Although this polymer structuring technique is older than TE itself, the use of polymerised internal phase emulsions (PolyHIPEs) in TE is relatively new compared to other scaffold manufacturing techniques. It is likely because it requires a multidisciplinary background including materials science, chemistry and TE although producing emulsion templated scaffolds is practically simple. To date, a number of excellent reviews on emulsion templating have been published by the pioneers in this field in order to explain the chemistry behind this technique and potential areas of use of the emulsion templated structures. This particular review focusses on the key points of how emulsion templated scaffolds can be fabricated for different TE applications. Accordingly, we first explain the basics of emulsion templating and characteristics of PolyHIPE scaffolds. Then, we discuss the role of each ingredient in the emulsion and the impact of the compositional changes and process conditions on the characteristics of PolyHIPEs. Afterward, current fabrication methods of biocompatible PolyHIPE scaffolds and polymerisation routes are detailed, and the functionalisation strategies that can be used to improve the biological activity of PolyHIPE scaffolds are discussed. Finally, the applications of PolyHIPEs on soft and hard TE as well as in vitro models and drug delivery in the literature are summarised.
Collapse
Affiliation(s)
- Betül Aldemir Dikici
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| | - Frederik Claeyssens
- Department of Materials Science and Engineering, Kroto Research Institute, The University of Sheffield, Sheffield, United Kingdom
- Department of Materials Science and Engineering, INSIGNEO Institute for In Silico Medicine, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Food-grade Pickering emulsion as a novel astaxanthin encapsulation system for making powder-based products: Evaluation of astaxanthin stability during processing, storage, and its bioaccessibility. Food Res Int 2020; 134:109244. [PMID: 32517928 DOI: 10.1016/j.foodres.2020.109244] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/31/2020] [Accepted: 04/13/2020] [Indexed: 12/16/2022]
Abstract
The use of astaxanthin as a food ingredient is limited due to its poor water solubility in aqueous matrices and highly susceptibility to oxidation; hence microencapsulation of this carotenoid is an appropriate technique to increase its stability and functionally. In this study, astaxanthin oleoresin was encapsulated using a food-grade Pickering emulsion to enhance its stability during spray-drying and storage and its bioaccessibility. The oil-in-water (O/W) emulsions were stabilized by protein-based aggregates obtained from a lupin protein-rich cultivar (AluProt-CGNA). The emulsions containing the astaxanthin microencapsulated in its oil phase (core material) were submitted to a spray-drying process at 160 °C and 140 °C. For this, blends of these protein-based aggregates (LP-APs) and maltodextrin (at different ratios) were used as wall material. The emulsion stability, microstructure, powder characteristics, oxidative stability and concentration of astaxanthin, encapsulation efficiency and bioaccessibility after spray-drying were investigated. The results showed that LP-APs exhibit a great potential to perform as stabilizers for Pickering emulsions. The formed O/W emulsions were highly stable against creaming at high concentrations of LP-APs. The results also indicated that spray-drying can be applied to prepare stable astaxanthin emulsions into powders with good oxidative stability. The astaxanthin content in dry emulsions under storage conditions (25 and 45 °C for 4 weeks) was higher in powders containing a higher LP-APs concentration. The encapsulation efficiency was higher than 90% with the emulsion stabilized with 6% of LP-APs. The bioaccessebility of reconstituted astaxanthin powder (with 6% LP-APs) was around 80%.
Collapse
|
17
|
Elkasabgy NA, Mahmoud AA. Fabrication Strategies of Scaffolds for Delivering Active Ingredients for Tissue Engineering. AAPS PharmSciTech 2019; 20:256. [PMID: 31332631 DOI: 10.1208/s12249-019-1470-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/08/2019] [Indexed: 01/28/2023] Open
Abstract
Designing scaffolds with optimum properties is an essential factor for tissue engineering success. They can be seeded with isolated cells or loaded with drugs to stimulate the body ability to repair or regenerate the injured tissues by acting as centers for new tissue formation. Recently, scaffolds gained a significant interest as principal candidates for tissue engineering due to overcoming the autograft or allograft's associated problems. The advancement of the tissue engineering field relies mainly on the introduction of new biomaterials for scaffolds' fabrication. This review presents and criticizes different scaffolds' fabrication techniques with particular emphasis on the fibrous, injectable in situ forming, foam, 3D freeze-dried, 3D printed, and 4D scaffolds. This article highlights on scaffolds' composition which would be beneficial for developing scaffolds that could potentially help to meet the demand for both drug delivery and tissue regeneration.
Collapse
|
18
|
Shi D, Shen J, Zhang Z, Shi C, Chen M, Gu Y, Liu Y. Preparation and properties of dopamine-modified alginate/chitosan-hydroxyapatite scaffolds with gradient structure for bone tissue engineering. J Biomed Mater Res A 2019; 107:1615-1627. [PMID: 30920134 DOI: 10.1002/jbm.a.36678] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 02/22/2019] [Accepted: 03/22/2019] [Indexed: 12/17/2022]
Abstract
Three-dimensional (3D) homogenous scaffolds composed of natural biopolymers have been reported as superior candidates for bone tissue engineering. There are still remaining challenges in fabricating the functional scaffolds with gradient structures to similar with natural bone tissues, as well as high mechanical properties and excellent affinity to surround tissues. Herein, inspired by the natural bone structure, a gradient-structural scaffold composed of functional biopolymers was designed to provide an optimized 3D environment for promoting cell growth. To increase the interactions among the scaffolds, dopamine (DA) was employed to modify alginate (Alg) and needle-like nano-hydroxyapatite (HA) was prepared with quaternized chitosan as template. The obtained dopamine-modified alginate (Alg-DA) and quaternized chitosan-templated hydroxyapatite (QCHA) were then used to fabricate the porous gradient scaffold by "iterative layering" freeze-drying technique with further crosslinking by calcium ions (Ca2+ ). The as-prepared Alg-DA/QCHA gradient scaffolds were possessed seamlessly integrated layer structures and high levels of porosity at around 77.5%. Moreover, the scaffolds showed higher compression modules (1.7 MPa) than many other biopolyermic scaffolds. The gradient scaffolds showed appropriate degradation rate to satisfy with the time of the bone regeneration. Both human chondrocytes and fibroblasts could adhesive and growth well on the scaffolds in vitro. Furthermore, an excellent osteogenetic activity of the gradient scaffold can effectively promote the regeneration of the bone tissue and accelerate the repair of the bone defects in vivo, compared with that of the scaffold with the homogenous structure. The novel multilayered scaffold with gradient structure provided an interesting option for bone tissue engineering. © 2019 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1615-1627, 2019.
Collapse
Affiliation(s)
- Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Jiali Shen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Zhuying Zhang
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Chang Shi
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Yanglin Gu
- The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Chong'an District, Jiangsu, China
| | - Yang Liu
- The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Chong'an District, Jiangsu, China
| |
Collapse
|
19
|
Release Behavior of Folic Acid Grafted Hollow Hydroxyapatite as Drug Carrier. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/9562437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Based on the formation of carbodiimide compounds between carboxyl and primary amines, hollow microspheres arising from the folic acid (folate-FA) grafted onto the surface of the modified hydroxyapatite were successfully prepared. The hollow morphology and composition of the FA-grafted hydroxyapatite microspheres were confirmed by scanning electron microscopy (SEM) and other characterizations. Brunauer-Emmett-Teller (BET) assay revealed the specific surface area and average pore size of the microspheres were 34.58m2/g and 17.80 nm, respectively. As a drug carrier, the kinetic investigation of doxorubicin (DOX) loaded shows that the adsorbed behavior of drug on the adsorbent is more suitable to be described with pseudo-first-order model. Furthermore, the release rate can reach 83% at pH 5.7, which is greater than the release of 39% at pH 7.4, indicating an excellent performance of controlled drug release for response pH. The release mechanism of DOX coincides with Fickian diffusion as a result of Korsmeyer-Peppas model analysis and the release phenomena can be well explained by Fickian diffusion second law.
Collapse
|
20
|
Shen J, Shi D, Dong L, Zhang Z, Li X, Chen M. Fabrication of polydopamine nanoparticles knotted alginate scaffolds and their properties. J Biomed Mater Res A 2018; 106:3255-3266. [DOI: 10.1002/jbm.a.36524] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/29/2018] [Accepted: 08/09/2018] [Indexed: 11/07/2022]
Affiliation(s)
- Jiali Shen
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Dongjian Shi
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Liangliang Dong
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Zhuying Zhang
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Xiaojie Li
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| | - Mingqing Chen
- Key Laboratory of Synthetic and Biological Colloids; Ministry of Education, School of Chemical and Material Engineering, Jiangnan University; Wuxi 214122 China
| |
Collapse
|
21
|
Ghorbani F, Zamanian A, Behnamghader A, Daliri Joupari M. A novel pathway for in situ
synthesis of modified gelatin microspheres by silane coupling agents as a bioactive platform. J Appl Polym Sci 2018. [DOI: 10.1002/app.46739] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Farnaz Ghorbani
- Department of Biomedical Engineering, Science and Research Branch; Islamic Azad University; P.O. Box 4515-775 Tehran Iran
| | - Ali Zamanian
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; P.O. Box 14155-4777 Karaj Iran
| | - Aliasghar Behnamghader
- Department of Nanotechnology and Advanced Materials; Materials and Energy Research Center; P.O. Box 14155-4777 Karaj Iran
| | - Morteza Daliri Joupari
- Department of Animal, Avian and Marine Biotechnology; National Institute of Genetic Engineering and Biotechnology; P.O. Box 14965-161 Tehran Iran
| |
Collapse
|
22
|
Setti C, Suarato G, Perotto G, Athanassiou A, Bayer IS. Investigation of in vitro hydrophilic and hydrophobic dual drug release from polymeric films produced by sodium alginate-MaterBi® drying emulsions. Eur J Pharm Biopharm 2018; 130:71-82. [PMID: 29928979 DOI: 10.1016/j.ejpb.2018.06.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 06/15/2018] [Accepted: 06/17/2018] [Indexed: 02/02/2023]
Abstract
Emulsions are known to be effective carriers of hydrophobic drugs, and particularly injectable emulsions have been successfully implemented for in vivo controlled drug release. Recently, high internal phase emulsions have also been used to produce porous polymeric templates for pharmaceutical applications. However, emulsions containing dissolved biopolymers both in the oil and water phases are very scarce. In this study, we demonstrate such an emulsion, in which the oil phase contains a hydrophobic biodegradable polymer, MaterBi®, and the water phase is aqueous sodium alginate dispersion. The two phases were emulsified simply by ultrasonic processing without any surfactants. The emulsions were stable for several days and were dried into composite solid films with varying MaterBi®/alginate fractions. The films were loaded with two model drugs, a hydrophilic eosin-based cutaneous antiseptic and the hydrophobic curcumin. Drug release capacity of the films was investigated in detail, and controlled release of each model drug was achieved either by tuning the polymer fraction in the films during emulsification or by crosslinking sodium alginate fraction of the films by calcium salt solution immersion. The emulsions can be formulated to carry either a single model drug or both drugs depending on the desired application. Films demonstrate excellent cell biocompatibility against human dermal fibroblast, adult cells.
Collapse
Affiliation(s)
- Chiara Setti
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Dipartimento di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All'Opera Pia 13, 16145 Genova, Italy
| | - Giulia Suarato
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy; Drug Discovery and Development, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Giovanni Perotto
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | | | - Ilker S Bayer
- Smart Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
23
|
Piezoelectric materials as stimulatory biomedical materials and scaffolds for bone repair. Acta Biomater 2018; 73:1-20. [PMID: 29673838 DOI: 10.1016/j.actbio.2018.04.026] [Citation(s) in RCA: 161] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/19/2018] [Accepted: 04/15/2018] [Indexed: 12/14/2022]
Abstract
The process of bone repair and regeneration requires multiple physiological cues including biochemical, electrical and mechanical - that act together to ensure functional recovery. Myriad materials have been explored as bioactive scaffolds to deliver these cues locally to the damage site, amongst these piezoelectric materials have demonstrated significant potential for tissue engineering and regeneration, especially for bone repair. Piezoelectric materials have been widely explored for power generation and harvesting, structural health monitoring, and use in biomedical devices. They have the ability to deform with physiological movements and consequently deliver electrical stimulation to cells or damaged tissue without the need of an external power source. Bone itself is piezoelectric and the charges/potentials it generates in response to mechanical activity are capable of enhancing bone growth. Piezoelectric materials are capable of stimulating the physiological electrical microenvironment, and can play a vital role to stimulate regeneration and repair. This review gives an overview of the association of piezoelectric effect with bone repair, and focuses on state-of-the-art piezoelectric materials (polymers, ceramics and their composites), the fabrication routes to produce piezoelectric scaffolds, and their application in bone repair. Important characteristics of these materials from the perspective of bone tissue engineering are highlighted. Promising upcoming strategies and new piezoelectric materials for this application are presented. STATEMENT OF SIGNIFICANCE Electrical stimulation/electrical microenvironment are known effect the process of bone regeneration by altering the cellular response and are crucial in maintaining tissue functionality. Piezoelectric materials, owing to their capability of generating charges/potentials in response to mechanical deformations, have displayed great potential for fabricating smart stimulatory scaffolds for bone tissue engineering. The growing interest of the scientific community and compelling results of the published research articles has been the motivation of this review article. This article summarizes the significant progress in the field with a focus on the fabrication aspects of piezoelectric materials. The review of both material and cellular aspects on this topic ensures that this paper appeals to both material scientists and tissue engineers.
Collapse
|
24
|
Yang Y, Luo Z, Zhao Y. Osteostimulation scaffolds of stem cells: BMP-7-derived peptide-decorated alginate porous scaffolds promote the aggregation and osteo-differentiation of human mesenchymal stem cells. Biopolymers 2018; 109:e23223. [PMID: 29732529 DOI: 10.1002/bip.23223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 11/11/2022]
Abstract
The scaffolds for stem cell-based bone tissue engineering should hold the ability to guide stem cells osteo-differentiating. Otherwise, stem cells will differentiate into unwanted cell types or will form tumors in vivo. Alginate, a natural polysaccharide with great biocompatibility, was widely used in biomedical applications. However, the limited bioactivity and poor osteogenesis capability of pristine alginate hampered its further application in tissue engineering. In this work, a bone forming peptide-1 (BFP-1), derived from bone morphogenetic protein-7, was grafted to alginate polymer chains to prepare peptide-decorated alginate porous scaffolds (pep-APS) for promoting osteo-differentiation of human mesenchymal stem cells (hMSCs). SEM images of pep-APS exhibited porous structure with about 90% porosity (pore size 100-300 μm), which was appropriate for hMSCs ingrowth. The adhesion, proliferation and aggregation of hMSCs grown on pep-APS were enhanced in vitro. Moreover, pep-APS promoted the alkaline phosphatase (ALP) activity of hMSCs, and the osteo-related genes expression was obviously up-regulated. The immunochemical staining and western blot analysis results showed high expression level of OCN and Col1a1 in the hMSCs grown on pep-APS. This work provided a facile and valid strategy to endow the alginate polymers themselves with specific bioactivity and prepare osteopromoting scaffold with enhanced osteogenesis ability, possessing potential applications in stem cell therapy and regenerative medicine.
Collapse
Affiliation(s)
- Yue Yang
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zuyuan Luo
- Laboratory for Biomaterials and Regenerative Medicine, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Ying Zhao
- Department of Stomatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| |
Collapse
|
25
|
Fouconnier B, Terrazas-Rodríguez JE, López-Serrano F. Monitoring styrene Pickering SiO2-supported emulsion polymerization kinetics by Raman spectroscopy: Elucidating mechanisms interpreting the silanol/phenyl π-interactions. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1320758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- B. Fouconnier
- Facultad de Ciencias Químicas, Universidad Veracruzana, Veracruz, México
| | | | - F. López-Serrano
- Departamento de Ingeniería Química, Facultad de Química, Universidad Nacional Autónoma de México, Mexico City, México
| |
Collapse
|
26
|
Yang Y, Fang Z, Chen X, Zhang W, Xie Y, Chen Y, Liu Z, Yuan W. An Overview of Pickering Emulsions: Solid-Particle Materials, Classification, Morphology, and Applications. Front Pharmacol 2017; 8:287. [PMID: 28588490 PMCID: PMC5440583 DOI: 10.3389/fphar.2017.00287] [Citation(s) in RCA: 371] [Impact Index Per Article: 46.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/05/2017] [Indexed: 01/22/2023] Open
Abstract
Pickering emulsion, a kind of emulsion stabilized only by solid particles locating at oil-water interface, has been discovered a century ago, while being extensively studied in recent decades. Substituting solid particles for traditional surfactants, Pickering emulsions are more stable against coalescence and can obtain many useful properties. Besides, they are more biocompatible when solid particles employed are relatively safe in vivo. Pickering emulsions can be applied in a wide range of fields, such as biomedicine, food, fine chemical synthesis, cosmetics, and so on, by properly tuning types and properties of solid emulsifiers. In this article, we give an overview of Pickering emulsions, focusing on some kinds of solid particles commonly serving as emulsifiers, three main types of products from Pickering emulsions, morphology of solid particles and as-prepared materials, as well as applications in different fields.
Collapse
Affiliation(s)
- Yunqi Yang
- Department of Neurology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, China
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
- Zhiyuan College, Shanghai Jiao Tong UniversityShanghai, China
| | - Zhiwei Fang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Xuan Chen
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Weiwang Zhang
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| | - Yangmei Xie
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China
| | - Yinghui Chen
- Department of Neurology, Jinshan Hospital, Fudan UniversityShanghai, China
| | - Zhenguo Liu
- Department of Neurology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai, China
| | - Weien Yuan
- School of Pharmacy, Shanghai Jiao Tong UniversityShanghai, China
| |
Collapse
|
27
|
Li J, Qiao Y, Wu Z. Nanosystem trends in drug delivery using quality-by-design concept. J Control Release 2017; 256:9-18. [PMID: 28414149 DOI: 10.1016/j.jconrel.2017.04.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/11/2017] [Accepted: 04/11/2017] [Indexed: 01/13/2023]
Abstract
Quality by design (QbD) has become an inevitable trend because of its benefits for product quality and process understanding. Trials have been conducted using QbD in nanosystems' optimization. This paper reviews the application of QbD for processing nanosystems and summarizes the application procedure. It provides prospective guidelines for future investigations that apply QbD to nanosystem manufacturing processes. Employing the QbD concept in this way is a novel area in nanosystem quality.
Collapse
Affiliation(s)
- Jing Li
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China
| | - Zhisheng Wu
- Beijing University of Chinese Medicine, 100102, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, 100102, China; Key Laboratory of TCM-information Engineering of State Administration of TCM, Beijing 100102, China.
| |
Collapse
|
28
|
Transdermal delivery of insulin with bioceramic composite microneedles fabricated by gelatin and hydroxyapatite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 73:425-428. [DOI: 10.1016/j.msec.2016.12.111] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Revised: 11/26/2016] [Accepted: 12/20/2016] [Indexed: 11/20/2022]
|
29
|
Li H, Liao H, Bao C, Xiao Y, Wang Q. Preparation and Evaluations of Mangiferin-Loaded PLGA Scaffolds for Alveolar Bone Repair Treatment Under the Diabetic Condition. AAPS PharmSciTech 2017; 18:529-538. [PMID: 27126006 DOI: 10.1208/s12249-016-0536-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/18/2016] [Indexed: 02/05/2023] Open
Abstract
The aim of the present study was to prepare and evaluate a sustained-release mangiferin scaffold for improving alveolar bone defect repair in diabetes. Mangiferin-loaded poly(D,L-lactide-co-glycolide) (PLGA) scaffolds were prepared using a freeze-drying technique with ice particles as the porogen material. The produced scaffolds were examined using a scanning electron microscope (SEM). Drug content and drug release were detected using a spectrophotometer. Degradation behaviors were monitored as a measure of weight loss and examined using SEM. Then, the scaffolds were incubated with rat bone marrow stromal cells under the diabetic condition in vitro, and cell viability was assessed using an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Afterward, the scaffolds were implanted into alveolar bone defects of diabetic rats, and bone repair was examined using hematoxylin and eosin staining. The fabricated scaffolds showed porous structures, with average pore size range from 111.35 to 169.45 μm. A higher PLGA concentration led to decreased average pore size. A lower PLGA concentration or a higher mangiferin concentration resulted in increased drug content. The prepared scaffolds released mangiferin in a sustained manner with relatively low initial burst during 10 weeks. Their degradation ratios gradually increased as degradation proceeded. The mangiferin-loaded scaffolds attenuated cell viability decrease under the diabetic condition in vitro. Moreover, they increased histological scorings of bone regeneration and improved delayed alveolar bone defect healing in diabetic rats. These results suggest that the produced mangiferin-loaded scaffolds may provide a potential approach in the treatment of impaired alveolar bone healing in diabetes.
Collapse
|
30
|
Yin D, Guan Y, Li B, Zhang B. Antagonistic effect of particles and surfactant on pore structure of macroporous materials based on high internal phase emulsion. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.06.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
31
|
Zhu Y, Zheng Y, Wang F, Wang A. Fabrication of magnetic porous microspheres via (O 1 /W)/O 2 double emulsion for fast removal of Cu 2+ and Pb 2+. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.08.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Xiao G, Yin H, Xu W, Lu Y. Modification and cytocompatibility of biocomposited porous PLLA/HA-microspheres scaffolds. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1462-75. [DOI: 10.1080/09205063.2016.1211000] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Guiyong Xiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan, PR China
- School of Materials Science and Engineering, Shandong University, Ji’nan, PR China
- Suzhou Institute of Shandong University, Shandong University, Suzhou, PR China
| | - Han Yin
- Department of Orthopaedics, The People’s Hospital of Liaocheng, Liaocheng, PR China
| | - Wenhua Xu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan, PR China
- School of Materials Science and Engineering, Shandong University, Ji’nan, PR China
- Suzhou Institute of Shandong University, Shandong University, Suzhou, PR China
| | - Yupeng Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Ji’nan, PR China
- School of Materials Science and Engineering, Shandong University, Ji’nan, PR China
- Suzhou Institute of Shandong University, Shandong University, Suzhou, PR China
| |
Collapse
|
33
|
Zhang G, Wang C. Pickering Emulsion-Based Marbles for Cellular Capsules. MATERIALS (BASEL, SWITZERLAND) 2016; 9:E572. [PMID: 28773693 PMCID: PMC5456839 DOI: 10.3390/ma9070572] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 12/11/2022]
Abstract
The biodegradable cellular capsule, being prepared from simple vaporization of liquid marbles, is an ideal vehicle for the potential application of drug encapsulation and release. This paper reports the fabrication of cellular capsules via facile vaporization of Pickering emulsion marbles in an ambient atmosphere. Stable Pickering emulsion (water in oil) was prepared while utilizing dichloromethane (containing poly(l-lactic acid)) and partially hydrophobic silica particles as oil phase and stabilizing agents respectively. Then, the Pickering emulsion marbles were formed by dropping emulsion into a petri dish containing silica particles with a syringe followed by rolling. The cellular capsules were finally obtained after the complete vaporization of both oil and water phases. The technique of scanning electron microscope (SEM) was employed to research the microstructure and surface morphology of the prepared capsules and the results showed the cellular structure as expected. An in vitro drug release test was implemented which showed a sustained release property of the prepared cellular capsules. In addition, the use of biodegradable poly(l-lactic acid) and the biocompatible silica particles also made the fabricated cellular capsules of great potential in the application of sustained drug release.
Collapse
Affiliation(s)
- Guangzhao Zhang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China.
| | - Chaoyang Wang
- Research Institute of Materials Science, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|