1
|
El-Tokhy FS, Helal DO, Abdel Mageed SS, Mahmoud AMA, El-Gogary RI, El-Ghany EA, Abdel-Mottaleb MMA. Re-purposing of linagliptin for enhanced wound healing and skin rejuvenation via chitosan- modified PLGA nanoplatforms. Int J Pharm 2025; 677:125664. [PMID: 40324605 DOI: 10.1016/j.ijpharm.2025.125664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/07/2025]
Abstract
Dipeptidyl peptidase IV (DPP IV) is a multifunctional glycoprotein implicated in the exacerbation of various inflammatory skin conditions, including wounds. Therefore, topical delivery of Linagliptin (LNG)-a DPP IV inhibitor- augmented with Lavender Oil (LO) could offer an excellent repurposed tool for the treatment of inflammatory skin diseases. LNG/ LO loaded chitosan (Cs) -modified Poly (Lactide co-Glycolic Acid) (PLGA) nanoparticles (LNG/LO-Cs/PLGA NPs) were prepared by solvent emulsification-evaporation technique. D-optimal design explored the impact of independent factors namely; ratio of LO: PLGA, percentage of surfactant, and type of PLGA on; particle size, zeta potential, and entrapment efficiency of NPs. The optimized formulation displayed positively charged, homogeneous small-sized particles (159.34 nm), with high entrapment efficiency (89.30 %w/w). The in vitro release profile of the optimized NPs showed an initial burst release (16.6 %) after one hour, followed by an extended-release pattern for three days. Transmission electron microscopy showed spherical matrix particles with a slightly denser coat. An ex-vivo skin permeation study revealed notable LNG deposition in rat skin (51 % w/w after 24 h). Confocal laser scanning microscopy confirmed the time-dependent enhanced penetration of nanocarriers into the skin. In-vivo study done on induced-wound model revealed accelerated wound healing in NPs-treated group with 86.49 % wound contraction. Biochemical analysis of the impacted skin showed lower oxidative stress, with a 2.5-fold rise in reduced glutathione, a 3.2-fold boost in total antioxidant capacity, a 3.3-fold drop in malondialdehyde, and a 4.5-fold decrease in TNF-α levels versus the positive control. Therefore,This nanosystem could stand as a novel gateway and repurposed tool for accelerated wound healing and tissue regeneration.
Collapse
Affiliation(s)
- Fatma Sa'eed El-Tokhy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Dina O Helal
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Leicester School of Pharmacy, Faculty of Health and Life Sciences, De Montfort University, Leicestershire, United Kingdom
| | - Sherif S Abdel Mageed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Abdulla M A Mahmoud
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Riham I El-Gogary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Elsayed A El-Ghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo 11829, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt; Université de Franche-Comté, EFS, INSERM, UMR 1098 RIGHT, F-25000 Besançon, France.
| |
Collapse
|
2
|
Dogheim GM, Shehat MG, Mahdy DM, Barakat HS, Abouelfetouh A, Ramadan AA. Antibacterial and anti-virulence activity of eco-friendly resveratrol-loaded lipid nanocapsules against methicillin-resistant staphylococcus aureus. Sci Rep 2025; 15:14677. [PMID: 40287445 PMCID: PMC12033371 DOI: 10.1038/s41598-025-95343-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/20/2025] [Indexed: 04/29/2025] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is challenging modern antimicrobial therapy due to its high antimicrobial resistance. Nutraceuticals have gained a lot of interest and their incorporation into nanoparticles further improves their efficacy. This study aimed to evaluate the antibacterial activity of linalool-based lipid nanocapsules loaded with resveratrol (LIN-LNC-RES) as a synergistic strategy against MRSA. LIN-LNC-RES were prepared by the phase inversion temperature method and characterized for their colloidal properties, in vitro release, and stability. The antibacterial and antibiofilm activity against S. aureus and different MRSA clinical isolates were investigated. Furthermore, scanning electron microscopy (SEM) imaging for visualization of biofilm formation and bacterial membrane integrity as well as mechanistic investigation using quantitative real-time polymerase chain reaction (qRT-PCR) analysis were performed. LIN-LNCs-RES demonstrated favorable properties with a size of 35.19 ± 0.72 nm, PDI of 0.09 ± 0.02 and a zeta potential of -2.53 ± 0.07 mV with RES 98% EE. They showed a controlled release of RES over 24 h and were stable at 4 °C for 3 months. Compared to free drug, LIN-LNC-RES showed a 4-fold decrease in MIC values and 10-fold decrease in half maximal biofilm inhibitory concentration value. Biofilm eradication assay showed superiority of LIN-LNC-RES over RES against all isolates with disrupted bacterial membranes as revealed by SEM. Mechanistically, qRT-PCR showed that LIN-LNC-RES significantly reduced RNAIII gene expression as well as the expression of SaeRS two component system, potentially affecting quorum sensing and virulence factors expression. RES-loaded LIN-based nanosystem offers a great potential for combating MRSA infections, neutralizing its virulence activity hence, overcoming antimicrobial resistance.
Collapse
Affiliation(s)
- Gaidaa M Dogheim
- Pharmaceutics department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt.
| | - Dina M Mahdy
- Pharmaceutics Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport (AASTMT), Alamein, Egypt
| | - Hebatallah S Barakat
- Pharmaceutics department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| | - Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
- Department of Microbiology and Immunology, Alamein International University, Alamein, Egypt
| | - Alyaa A Ramadan
- Pharmaceutics department, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
3
|
Gambaro R, Chain CY, Scioli-Montoto S, Moreno A, Huck-Iriart C, Ruiz ME, Cisneros JS, Lamas DG, Tau J, Gehring S, Islan GA, Rodenak-Kladniew B. Phytoactive-Loaded Lipid Nanocarriers for Simvastatin Delivery: A Drug Repositioning Strategy Against Lung Cancer. Pharmaceutics 2025; 17:255. [PMID: 40006622 PMCID: PMC11858925 DOI: 10.3390/pharmaceutics17020255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Drug repurposing explores new applications for approved medications, such as simvastatin (SV), a lipid-lowering drug that has shown anticancer potential but is limited by solubility and side effects. This study aims to enhance SV delivery and efficacy against lung cancer cells using bioactive lipid nanoparticles formulated with plant-derived monoterpenes as both nanostructuring agents and anticancer molecules. Methods: Lipid nanoparticles were produced by ultrasonication and characterized for morphology, size, zeta potential, and polydispersity index (PDI). Monoterpenes (linalool-LN-, limonene, 1,8-cineole) or Crodamol® were used as liquid lipids. Encapsulation efficiency (EE), release profiles, stability, biocompatibility, protein adsorption, cytotoxicity, and anticancer effects were evaluated. Results: The nanoparticles exhibited high stability, size: 94.2 ± 0.9-144.0 ± 2.6 nm, PDI < 0.3, and zeta potential: -4.5 ± 0.7 to -16.3 ± 0.8 mV. Encapsulation of SV in all formulations enhanced cytotoxicity against A549 lung cancer cells, with NLC/LN/SV showing the highest activity and being chosen for further investigation. Sustained SV release over 72 h and EE > 95% was observed for NLC/LN/SV. SAXS/WAXS analysis revealed that LN altered the crystallographic structure of nanoparticles. NLC/LN/SV demonstrated excellent biocompatibility and developed a thin serum protein corona in vitro. Cellular studies showed efficient uptake by A549 cells, G0/G1 arrest, mitochondrial hyperpolarization, reactive oxygen species production, and enhanced cell death compared to free SV. NLC/LN/SV more effectively inhibited cancer cell migration than free SV. Conclusions: NLC/LN/SV represents a promising nanocarrier for SV repurposing, combining enhanced anticancer activity, biocompatibility, and sustained stability for potential lung cancer therapy.
Collapse
Affiliation(s)
- Rocío Gambaro
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
| | - Cecilia Y. Chain
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), La Plata 1900, Buenos Aires, Argentina; (C.Y.C.); (J.S.C.)
| | - Sebastian Scioli-Montoto
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina; (S.S.-M.); (M.E.R.)
| | - Ailin Moreno
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| | - Cristián Huck-Iriart
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Universidad Nacional de San Martín (UNSAM)--Investigaciones Científicas y Tecnológicas (CONICET), Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, San Martín 1650, Buenos Aires, Argentina; (C.H.-I.); (D.G.L.)
- ALBA Synchrotron Light Source, Carrer de la Llum 2–26, Cerdanyola del Vallès, 08290 Barcelona, Spain
| | - María Esperanza Ruiz
- Laboratorio de Investigación y Desarrollo de Bioactivos (LIDeB), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Buenos Aires, Argentina; (S.S.-M.); (M.E.R.)
| | - José S. Cisneros
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), La Plata 1900, Buenos Aires, Argentina; (C.Y.C.); (J.S.C.)
| | - Diego G. Lamas
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Universidad Nacional de San Martín (UNSAM)--Investigaciones Científicas y Tecnológicas (CONICET), Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, San Martín 1650, Buenos Aires, Argentina; (C.H.-I.); (D.G.L.)
| | - Julia Tau
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| | - Stephan Gehring
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
| | - Germán A. Islan
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany; (R.G.); (S.G.)
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Boris Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Investigaciones Científicas y Tecnológicas (CONICET)-Universidad Nacional de La Plata (UNLP), CCT-La Plata, Facultad de Ciencias Médicas UNLP, La Plata 1900, Buenos Aires, Argentina; (A.M.); (J.T.)
| |
Collapse
|
4
|
Crivaro AN, Ceci R, Boztepe T, Cisneros JS, Chain CY, Huck-Iriart C, Lamas DG, Islan GA, Rozenfeld P. Effective encapsulation of therapeutic recombinant enzyme into polymeric nanoparticles as a potential vehicle for lysosomal disease treatment. Int J Biol Macromol 2024; 285:138248. [PMID: 39622379 DOI: 10.1016/j.ijbiomac.2024.138248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/19/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Gaucher Disease (GD) is a genetic disorder with defective activity of the lysosomal enzyme glucocerebrosidase. Velaglucerasa alfa is a recombinant glucocerebrosidase used for enzyme replacement therapy (ERT) of GD. Due to its limited stability and bioavailability, the use of nanosized systems carrying Velaglucerase alfa is proposed as a novel strategy to improve ERT for GD. Highly stable and low-dispersed Velaglucerase-loaded Eudragit nanoparticles (NPs) (NPs: Vela); 150-160 nm mean size, polydispersity index <0. 15, zeta potential around -32 mV, and 95 % Velaglucerase alfa encapsulation efficiency were obtained. Crystallographic structural analysis by Small Angle X-ray Scattering, confirmed that Velaglucerase alfa was incorporated into the nanoparticle matrix. In vitro studies revealed that NPs: Vela preferentially interact with immunoglobulins and fibrinogen, and a positive enzyme release from NPs:Vela was observed at acidic pH; while no release was observed in neutral conditions. A positive internalization of NPs:Vela in GD mesenchymal stem cells (MSC) was also verified, increasing enzyme cellular activity compared to non-treated cells. Confocal microscopy verified that NPs:Vela colocalized with lysosomes, but no effect of NPs: Vela in the mineralization of MSC was observed. Finally, the viability of GD cell lines is not affected by NPs: Vela, in comparison with Velaglucerase alone, that negatively affects the viability of the target cells. This nanocarrier system for Velaglucerase alfa delivery in lysosomes, initially proposed to improve ERT for GD, may also serve as a starting point to address pathophysiological mechanisms in GD and other lysosomal disorders.
Collapse
Affiliation(s)
- Andrea N Crivaro
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - Romina Ceci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina
| | - Tugce Boztepe
- CINDEFI-Centro de Investigación y Desarrollo en Fermentaciones Industriales, Laboratorio de Nanobiomateriales (UNLP-CONICET LA PLATA), Facultad de Ciencias Exactas UNLP, La Plata 1900, Argentina
| | - José Sebastián Cisneros
- INIFTA-Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (UNLP-CONICET LA PLATA), La Plata 1900, Argentina
| | - Cecilia Yamil Chain
- INIFTA-Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (UNLP-CONICET LA PLATA), La Plata 1900, Argentina
| | - Cristián Huck-Iriart
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, 1650 San Martín, Buenos Aires, Argentina; ALBA SYNCHROTRON LIGHT SOURCE, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Diego G Lamas
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), UNSAM-CONICET, Escuela de Ciencia y Tecnología (ECyT), Laboratorio de Cristalografía Aplicada (LCA), Campus Miguelete, 1650 San Martín, Buenos Aires, Argentina
| | - Germán A Islan
- CINDEFI-Centro de Investigación y Desarrollo en Fermentaciones Industriales, Laboratorio de Nanobiomateriales (UNLP-CONICET LA PLATA), Facultad de Ciencias Exactas UNLP, La Plata 1900, Argentina; Children's Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Paula Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), Universidad Nacional de La Plata, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, Bv. 120 N(o)1489 (1900), La Plata, Argentina.
| |
Collapse
|
5
|
Mokhtar HI, Khodeer DM, Alzahrani S, Qushawy M, Alshaman R, Elsherbiny NM, Ahmed ES, Abu El Wafa EG, El-Kherbetawy MK, Gardouh AR, Zaitone SA. Formulation and characterization of cholesterol-based nanoparticles of gabapentin protecting from retinal injury. Front Chem 2024; 12:1449380. [PMID: 39502139 PMCID: PMC11537204 DOI: 10.3389/fchem.2024.1449380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction This study aimed to prepare cholesterol and stearic acid-based solid lipid nanoparticles of gabapentin (GAB-SLNs) for protection against streptozotocin (STZ)-induced retinal injury in rats. Methods We prepared four preparations of GAB-SLNs using a hot high-shear homogenization ultrasonication process, and the best formulation was selected and tested for biological activity. The retinal injury was brought in male adult albino rats while gabapentin doses continued for 6 weeks. Six groups of rats were assigned as the vehicle, diabetic, diabetic + gabapentin (10-20 mg/kg), and diabetic + GAB-SLNs (10-20 mg/kg). GAB-SLN#2 was selected as the optimized formulation with high entrapment efficacy (EE%, 98.64% ± 1.97%), small particle size (185.65 ± 2.41 nm), high negative Zeta potential (-32.18 ± 0.98 mV), low polydispersity index (0.28 ± 0.02), and elevated drug release (99.27% ± 3.48%). The TEM image of GAB-SLN#2 revealed a smooth surface with a spherical shape. Results GAB-SLNs provided greater protection against retinal injury than free gabapentin as indicated by the histopathology data which demonstrated more organization of retinal layers and less degeneration in ganglion cell layer in rats treated with GAB-SLN#2. Further, GAB-SLN#2 reduced the inflammatory proteins (IL-6/JAK2/STAT3) and vascular endothelial growth factor (VEGF). Conclusion The preparation of GAB-SLNs enhanced the physical properties of gabapentin and improved its biological activity as a neuroprotectant. Further studies are warranted to validate this technique for the use of oral gabapentin in other neurological disorders.
Collapse
Affiliation(s)
- Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sharifa Alzahrani
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Esam Sayed Ahmed
- Department of Ophthalmology, Al-Azher Asyut Faculty of Medicine for Men, Asyut, Egypt
| | | | | | - Ahmed R. Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
6
|
Andreani T, Cheng R, Elbadri K, Ferro C, Menezes T, Dos Santos MR, Pereira CM, Santos HA. Natural compounds-based nanomedicines for cancer treatment: Future directions and challenges. Drug Deliv Transl Res 2024; 14:2845-2916. [PMID: 39003425 PMCID: PMC11385056 DOI: 10.1007/s13346-024-01649-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/05/2024] [Indexed: 07/15/2024]
Abstract
Several efforts have been extensively accomplished for the amelioration of the cancer treatments using different types of new drugs and less invasives therapies in comparison with the traditional therapeutic modalities, which are widely associated with numerous drawbacks, such as drug resistance, non-selectivity and high costs, restraining their clinical response. The application of natural compounds for the prevention and treatment of different cancer cells has attracted significant attention from the pharmaceuticals and scientific communities over the past decades. Although the use of nanotechnology in cancer therapy is still in the preliminary stages, the application of nanotherapeutics has demonstrated to decrease the various limitations related to the use of natural compounds, such as physical/chemical instability, poor aqueous solubility, and low bioavailability. Despite the nanotechnology has emerged as a promise to improve the bioavailability of the natural compounds, there are still limited clinical trials performed for their application with various challenges required for the pre-clinical and clinical trials, such as production at an industrial level, assurance of nanotherapeutics long-term stability, physiological barriers and safety and regulatory issues. This review highlights the most recent advances in the nanocarriers for natural compounds secreted from plants, bacteria, fungi, and marine organisms, as well as their role on cell signaling pathways for anticancer treatments. Additionally, the clinical status and the main challenges regarding the natural compounds loaded in nanocarriers for clinical applications were also discussed.
Collapse
Affiliation(s)
- Tatiana Andreani
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
- GreenUPorto-Sustainable Agrifood Production Research Centre & Inov4Agro, Department of Biology, Faculty of Sciences of University of Porto, Rua Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Ruoyu Cheng
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands
| | - Khalil Elbadri
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
| | - Claudio Ferro
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland
- Research Institute for Medicines, iMed.Ulisboa, Faculty of Pharmacy, Universidade de Lisboa, 1649-003, Lisbon, Portugal
| | - Thacilla Menezes
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Mayara R Dos Santos
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Carlos M Pereira
- Chemistry Research Centre (CIQUP) and Institute of Molecular Sciences (IMS), Department of Chemistry and Biochemistry, Faculty of Sciences of University of Porto, Rua Do Campo Alegre s/n, 4169-007, Porto, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, FI-00014, Helsinki, Finland.
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute Groningen (PRECISION), University Medical Center Groningen, University of Groningen, 9713 AV, Groningen, The Netherlands.
| |
Collapse
|
7
|
Heikal LA, El-Habashy SE, El-Kamel AH, Mehanna RA, Ashour AA. Bioactive baicalin rhamno-nanocapsules as phytotherapeutic platform for treatment of acute myeloid leukemia. Int J Pharm 2024; 661:124458. [PMID: 38996823 DOI: 10.1016/j.ijpharm.2024.124458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/27/2024] [Accepted: 07/09/2024] [Indexed: 07/14/2024]
Abstract
Leukemia, particularly acute myeloid leukemia (AML) is considered a serious health condition with high prevalence among adults. Accordingly, finding new therapeutic modalities for AML is urgently needed. This study aimed to develop a biocompatible nanoformulation for effective oral delivery of the phytomedicine; baicalin (BAC) for AML treatment. Lipid nanocapsules (LNCs) based on bioactive natural components; rhamnolipids (RL) as a biosurfactant and the essential oil linalool (LIN), were prepared using a simple phase-inversion method. The elaborated BAC-LNCs displayed 61.1 nm diameter and 0.2 PDI. Entrapment efficiency exceeded 98 % with slow drug release and high storage-stability over 3 months. Moreover, BAC-LNCs enhanced BAC oral bioavailability by 2.3-fold compared to BAC suspension in rats with higher half-life and mean residence-time. In vitro anticancer studies confirmed the prominent cytotoxicity of BAC-LNCs on the human leukemia monocytes (THP-1). BAC-LNCs exerted higher cellular association, apoptotic capability and antiproliferative activity with DNA synthesis-phase arrest. Finally, a mechanistic study performed through evaluation of various tumor biomarkers revealed that BAC-LNCs downregulated the angiogenic marker, vascular endothelial growth-factor (VEGF) and the anti-apoptotic marker (BCl-2) and upregulated the apoptotic markers (Caspase-3 and BAX). The improved efficacy of BAC bioactive-LNCs substantially recommends their pharmacotherapeutic potential as a promising nanoplatform for AML treatment.
Collapse
Affiliation(s)
- Lamia A Heikal
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma E El-Habashy
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Amal H El-Kamel
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.
| | - Radwa A Mehanna
- Department of Medical Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt; Center of Excellence for Research in Regenerative Medicine and Applications (CERRMA), Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Asmaa A Ashour
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Chen Z, Gao W, Feng X, Zhou G, Zhang M, Zeng L, Hu X, Liu Z, Song H. A comparative study on the preparation and evaluation of solubilizing systems for silymarin. Drug Deliv Transl Res 2024; 14:1616-1634. [PMID: 37964172 DOI: 10.1007/s13346-023-01476-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Silymarin (SM) exhibits clinical efficacy in treating liver injuries, cirrhosis, and chronic hepatitis. However, its limited water solubility and low bioavailability hinder its therapeutic potential. The primary objective of this study was to compare the in vitro and in vivo characteristics of the four distinct SM solubilization systems, namely SM solid dispersion (SM-SD), SM phospholipid complex (SM-PC), SM sulfobutyl ether-β-cyclodextrin inclusion complex (SM-SBE-β-CDIC) and SM self-microemulsifying drug delivery system (SM-SMEDDS) to provide further insights into their potential for enhancing the solubility and bioavailability of SM. The formation of SM-SD, SM-PC, and SM-SBE-β-CDIC was thoroughly characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and powder X-ray diffractometry (PXRD) techniques to analyze the changes in their microscopic structure, molecular structure, and crystalline state. The particle size and polydispersity index (PDI) of SM-SMEDDS were 71.6 ± 1.57 nm, and 0.13 ± 0.03, respectively. The self-emulsifying time of SM-SMEDDS was 3.0 ± 0.3 min. SM-SMEDDS exhibited an improved in vitro dissolution rate and demonstrated the highest relative bioavailability compared to pure SM, SM-SD, SM-PC, SM-SBE-β-CDIC, and Legalon®. Consequently, SMEDDS shows promise as a drug delivery system for orally administered SM, offering enhanced solubility and bioavailability.
Collapse
Affiliation(s)
- Zhenzhen Chen
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Wenhao Gao
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xianquan Feng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Guizhi Zhou
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
- School of Pharmacy, Fujian University of Chinese Traditional Medicine, Fuzhou, 350108, China
| | - Minxin Zhang
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Lingjun Zeng
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Xiaomu Hu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China
| | - Zhihong Liu
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| | - Hongtao Song
- Department of Pharmacy, Fuzong Clinical Medical College of Fujian Medical University (900 Hospital of the Joint Logistics Team), Fuzhou, 350025, PR China.
| |
Collapse
|
9
|
Moreira R, Nóbrega C, de Almeida LP, Mendonça L. Brain-targeted drug delivery - nanovesicles directed to specific brain cells by brain-targeting ligands. J Nanobiotechnology 2024; 22:260. [PMID: 38760847 PMCID: PMC11100082 DOI: 10.1186/s12951-024-02511-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/29/2024] [Indexed: 05/19/2024] Open
Abstract
Neurodegenerative diseases are characterized by extensive loss of function or death of brain cells, hampering the life quality of patients. Brain-targeted drug delivery is challenging, with a low success rate this far. Therefore, the application of targeting ligands in drug vehicles, such as lipid-based and polymeric nanoparticles, holds the promise to overcome the blood-brain barrier (BBB) and direct therapies to the brain, in addition to protect their cargo from degradation and metabolization. In this review, we discuss the barriers to brain delivery and the different types of brain-targeting ligands currently in use in brain-targeted nanoparticles, such as peptides, proteins, aptamers, small molecules, and antibodies. Moreover, we present a detailed review of the different targeting ligands used to direct nanoparticles to specific brain cells, like neurons (C4-3 aptamer, neurotensin, Tet-1, RVG, and IKRG peptides), astrocytes (Aquaporin-4, D4, and Bradykinin B2 antibodies), oligodendrocytes (NG-2 antibody and the biotinylated DNA aptamer conjugated to a streptavidin core Myaptavin-3064), microglia (CD11b antibody), neural stem cells (QTRFLLH, VPTQSSG, and NFL-TBS.40-63 peptides), and to endothelial cells of the BBB (transferrin and insulin proteins, and choline). Reports demonstrated enhanced brain-targeted delivery with improved transport to the specific cell type targeted with the conjugation of these ligands to nanoparticles. Hence, this strategy allows the implementation of high-precision medicine, with reduced side effects or unwanted therapy clearance from the body. Nevertheless, the accumulation of some of these nanoparticles in peripheral organs has been reported indicating that there are still factors to be improved to achieve higher levels of brain targeting. This review is a collection of studies exploring targeting ligands for the delivery of nanoparticles to the brain and we highlight the advantages and limitations of this type of approach in precision therapies.
Collapse
Grants
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
- under BrainHealth2020 projects (CENTRO-01-0145-FEDER-000008), through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization and Portuguese national funds via FCT - Fundação para a Ciência e a Tecnologia, under projects - UIDB/04539/2020 and UIDP/04539/2020, POCI-01-0145-FEDER-030737 (NeuroStemForMJD, PTDC/BTM-ORG/30737/2017), CEECIND/04242/2017, and PhD Scholarship European Regional Development Fund (ERDF) through the Centro 2020 Regional Operational Programme
Collapse
Affiliation(s)
- Ricardo Moreira
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
| | - Clévio Nóbrega
- Algarve Biomedical Center Research Institute (ABC-RI), University of Algarve, Faro, 8005-139, Portugal
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, 8005-139, Portugal
| | - Luís Pereira de Almeida
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal
- Faculty of Pharmacy, University of Coimbra, Coimbra, 3000-548, Portugal
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal
| | - Liliana Mendonça
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, polo 1, Coimbra, FMUC, 3004-504, Portugal.
- CIBB - Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, 3004-504, Portugal.
- Institute of Interdisciplinary Research, University of Coimbra, Coimbra, 3030-789, Portugal.
| |
Collapse
|
10
|
Gorain B, Karmakar V, Sarkar B, Dwivedi M, Leong JTL, Toh JH, Seah E, Ling KY, Chen KY, Choudhury H, Pandey M. Biomacromolecule-based nanocarrier strategies to deliver plant-derived bioactive components for cancer treatment: A recent review. Int J Biol Macromol 2023; 253:126623. [PMID: 37657573 DOI: 10.1016/j.ijbiomac.2023.126623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The quest for safe chemotherapy has attracted researchers to explore anticancer potential of herbal medicines. Owing to upsurging evidence of herbal drug's beneficial effects, hopes are restored for augmenting survival rates in cancer patients. However, phytoconstituents confronted severe limitations in terms of poor absorption, low-stability, and low bioavailability. Along with toxicity issues associated with phytoconstituents, quality control and limited regulatory guidance also hinder the prevalence of herbal medicines for cancer therapy. Attempts are underway to exploit nanocarriers to circumvent the limitations of existing and new herbal drugs, where biological macromolecules (e.g., chitosan, hyaluronic acid, etc.) are established highly effective in fabricating nanocarriers and cancer targeting. Among the discussed nanocarriers, liposomes and micelles possess properties to cargo hydro- and lipophilic herbal constituents with surface modification for targeted delivery. Majorly, PEG, transferrin and folate are utilized for surface modification to improve bioavailability, circulation time and targetability. The dendrimer and carbon nanotubes responded in high-loading efficiency of phytoconstituent; whereas, SLN and nanoemulsions are suited carriers for lipophilic extracts. This review emphasized unveiling the latent potential of herbal drugs along with discussing on extended benefits of nanocarriers-based delivery of phytoconstituents for safe cancer therapy owing to enhanced clinical and preclinical outcomes without compromising safety.
Collapse
Affiliation(s)
- Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India.
| | - Varnita Karmakar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Biswatrish Sarkar
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Monika Dwivedi
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, India
| | - Janelle Tsui Lyn Leong
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Jing Hen Toh
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Even Seah
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kang Yi Ling
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Kah Yee Chen
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Selangor, Malaysia
| | - Hira Choudhury
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Manisha Pandey
- Department of Pharmaceutical Sciences, Central University of Haryana, SSH 17, Jant, Haryana 123031, India.
| |
Collapse
|
11
|
Narváez-Narváez DA, Duarte-Ruiz M, Jiménez-Lozano S, Moreno-Castro C, Vargas R, Nardi-Ricart A, García-Montoya E, Pérez-Lozano P, Suñé-Negre JM, Hernández-Munain C, Suñé C, Suñé-Pou M. Comparative Analysis of the Physicochemical and Biological Characteristics of Freeze-Dried PEGylated Cationic Solid Lipid Nanoparticles. Pharmaceuticals (Basel) 2023; 16:1583. [PMID: 38004448 PMCID: PMC10675625 DOI: 10.3390/ph16111583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Cationic solid-lipid nanoparticles (cSLNs) have become a promising tool for gene and RNA therapies. PEGylation (PEG) is crucial in enhancing particle stability and protection. We evaluated the impact of PEG on the physicochemical and biological characteristics of cholesteryl-oleate cSLNs (CO-cSLNs). Several parameters were analyzed, including the particle size, polydispersity index, zeta potential, shape, stability, cytotoxicity, and loading efficiency. Five different formulations with specific PEGs were developed and compared in both suspended and freeze-dried states. Small, homogeneous, and cationic suspended nanoparticles were obtained, with the Gelucire 50/13 (PEG-32 hydrogenated palm glycerides; Gelucire) and DSPE-mPEG2000 (1,2-distearoyl-phosphatidylethanolamine-methyl-polyethyleneglycol conjungate-2000; DSPE) formulations exhibiting the smallest particle size (~170 nm). Monodisperse populations of freeze-dried nanoparticles were also achieved, with particle sizes ranging from 200 to 300 nm and Z potential values of 30-35 mV. Notably, Gelucire again produced the smallest particle size (211.1 ± 22.4), while the DSPE and Myrj S100 (polyoxyethylene (100) stearate; PEG-100 Stearate) formulations had similar particle sizes to CO-cSLNs (~235 nm). The obtained PEGylated nanoparticles showed suitable properties: they were nontoxic, had acceptable morphology, were capable of forming SLNplexes, and were stable in both suspended and lyophilized states. These PEG-cSLNs are a potential resource for in vivo assays and have the advantage of employing cost-effective PEGs. Optimizing the lyophilization process and standardizing parameters are also recommended to maintain nanoparticle integrity.
Collapse
Affiliation(s)
- David A. Narváez-Narváez
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (D.A.N.-N.); (R.V.); (A.N.-R.); (E.G.-M.); (P.P.-L.); (J.M.S.-N.); (M.S.-P.)
| | - María Duarte-Ruiz
- Department of Molecular Biology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), 18016 Granada, Spain; (M.D.-R.); (S.J.-L.); (C.M.-C.)
| | - Sandra Jiménez-Lozano
- Department of Molecular Biology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), 18016 Granada, Spain; (M.D.-R.); (S.J.-L.); (C.M.-C.)
| | - Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), 18016 Granada, Spain; (M.D.-R.); (S.J.-L.); (C.M.-C.)
- ULB Center for Diabetes Research, Faculty of Medicine, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - Ronny Vargas
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (D.A.N.-N.); (R.V.); (A.N.-R.); (E.G.-M.); (P.P.-L.); (J.M.S.-N.); (M.S.-P.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Costa Rica, San José 11801, Costa Rica
| | - Anna Nardi-Ricart
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (D.A.N.-N.); (R.V.); (A.N.-R.); (E.G.-M.); (P.P.-L.); (J.M.S.-N.); (M.S.-P.)
| | - Encarna García-Montoya
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (D.A.N.-N.); (R.V.); (A.N.-R.); (E.G.-M.); (P.P.-L.); (J.M.S.-N.); (M.S.-P.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Pilar Pérez-Lozano
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (D.A.N.-N.); (R.V.); (A.N.-R.); (E.G.-M.); (P.P.-L.); (J.M.S.-N.); (M.S.-P.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Josep Mª Suñé-Negre
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (D.A.N.-N.); (R.V.); (A.N.-R.); (E.G.-M.); (P.P.-L.); (J.M.S.-N.); (M.S.-P.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), 18016 Granada, Spain;
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine “López-Neyra” (IPBLN-CSIC), 18016 Granada, Spain; (M.D.-R.); (S.J.-L.); (C.M.-C.)
| | - Marc Suñé-Pou
- Department of Pharmacy and Pharmaceutical Technology, and Physical Chemistry, Faculty of Pharmacy, University of Barcelona, 08028 Barcelona, Spain; (D.A.N.-N.); (R.V.); (A.N.-R.); (E.G.-M.); (P.P.-L.); (J.M.S.-N.); (M.S.-P.)
- Pharmacotherapy, Pharmacogenetics and Pharmaceutical Technology Research Group, Bellvitge Biomedical Research Institute (IDIBELL), 08908 Barcelona, Spain
| |
Collapse
|
12
|
Jalili A, Bagherifar R, Nokhodchi A, Conway B, Javadzadeh Y. Current Advances in Nanotechnology-Mediated Delivery of Herbal and Plant-Derived Medicines. Adv Pharm Bull 2023; 13:712-722. [PMID: 38022806 PMCID: PMC10676547 DOI: 10.34172/apb.2023.087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/23/2023] [Accepted: 07/14/2023] [Indexed: 12/01/2023] Open
Abstract
Phytomedicine has been used by humans since ancient times to treat a variety of diseases. However, herbal medicines face significant challenges, including poor water and lipid solubility and instability, which lead to low bioavailability and insufficient therapeutic efficacy. Recently, it has been shown that nanotechnology-based drug delivery systems are appropriate to overcome the above-mentioned limitations. The present review study first discusses herbal medicines and the challenges involved in the formulation of these drugs. The different types of nano-based drug delivery systems used in herbal delivery and their potential to improve therapeutic efficacy are summarized, and common techniques for preparing nanocarriers used in herbal drug delivery are also discussed. Finally, a list of nanophyto medicines that have entered clinical trials since 2010, as well as those that the FDA has approved, is presented.
Collapse
Affiliation(s)
- Amir Jalili
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Rafieh Bagherifar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Arundel Building, Brighton BNI 9QJ, UK
- Lupin Research Center, Coral Springs, Florida, USA
| | - Barbara Conway
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield, UK
- Institute of Skin Integrity and Infection Prevention, University of Huddersfield, Huddersfield, UK
| | - Yousef Javadzadeh
- Biotechnology Research Center, and Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
13
|
Ashfaq R, Rasul A, Asghar S, Kovács A, Berkó S, Budai-Szűcs M. Lipid Nanoparticles: An Effective Tool to Improve the Bioavailability of Nutraceuticals. Int J Mol Sci 2023; 24:15764. [PMID: 37958750 PMCID: PMC10648376 DOI: 10.3390/ijms242115764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/26/2023] [Accepted: 10/28/2023] [Indexed: 11/15/2023] Open
Abstract
Nano-range bioactive colloidal carrier systems are envisaged to overcome the challenges associated with treatments of numerous diseases. Lipid nanoparticles (LNPs), one of the extensively investigated drug delivery systems, not only improve pharmacokinetic parameters, transportation, and chemical stability of encapsulated compounds but also provide efficient targeting and reduce the risk of toxicity. Over the last decades, nature-derived polyphenols, vitamins, antioxidants, dietary supplements, and herbs have received more attention due to their remarkable biological and pharmacological health and medical benefits. However, their poor aqueous solubility, compromised stability, insufficient absorption, and accelerated elimination impede research in the nutraceutical sector. Owing to the possibilities offered by various LNPs, their ability to accommodate both hydrophilic and hydrophobic molecules and the availability of various preparation methods suitable for sensitive molecules, loading natural fragile molecules into LNPs offers a promising solution. The primary objective of this work is to explore the synergy between nature and nanotechnology, encompassing a wide range of research aimed at encapsulating natural therapeutic molecules within LNPs.
Collapse
Affiliation(s)
- Rabia Ashfaq
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Akhtar Rasul
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Sajid Asghar
- Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan; (A.R.); (S.A.)
| | - Anita Kovács
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Szilvia Berkó
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| | - Mária Budai-Szűcs
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Eötvös u. 6, H-6720 Szeged, Hungary; (R.A.)
| |
Collapse
|
14
|
Rodenak-Kladniew B, Castro MA, Gambaro RC, Girotti J, Cisneros JS, Viña S, Padula G, Crespo R, Castro GR, Gehring S, Chain CY, Islan GA. Cytotoxic Screening and Enhanced Anticancer Activity of Lippia alba and Clinopodium nepeta Essential Oils-Loaded Biocompatible Lipid Nanoparticles against Lung and Colon Cancer Cells. Pharmaceutics 2023; 15:2045. [PMID: 37631258 PMCID: PMC10459614 DOI: 10.3390/pharmaceutics15082045] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Plant and herbal essential oils (EOs) offer a wide range of pharmacological actions that include anticancer effects. Here, we evaluated the cytotoxic activity of EO from Lippia alba (chemotype linalool), L. alba (chemotype dihydrocarvone, LaDEO), Clinopodium nepeta (L.) Kuntze (CnEO), Eucalyptus globulus, Origanum × paniculatum, Mentha × piperita, Mentha arvensis L., and Rosmarinus officinalis L. against human lung (A549) and colon (HCT-116) cancer cells. The cells were treated with increasing EO concentrations (0-500 µL/L) for 24 h, and cytotoxic activity was assessed. LaDEO and CnEO were the most potent EOs evaluated (IC50 range, 145-275 µL/L). The gas chromatography-mass spectrometry method was used to determine their composition. Considering EO limitations as therapeutic agents (poor water solubility, volatilization, and oxidation), we evaluated whether LaDEO and CnEO encapsulation into solid lipid nanoparticles (SLN/EO) enhanced their anticancer activity. Highly stable spherical SLN/LaDEO and SLN/CnEO SLN/EO were obtained, with a mean diameter of 140-150 nm, narrow size dispersion, and Z potential around -5mV. EO encapsulation strongly increased their anticancer activity, particularly in A549 cells exposed to SLN/CnEO (IC50 = 66 µL/L CnEO). The physicochemical characterization, biosafety, and anticancer mechanisms of SLN/CnEO were also evaluated in A549 cells. SLN/CnEO containing 97 ± 1% CnEO was highly stable for up to 6 months. An increased in vitro CnEO release from SLN at an acidic pH (endolysosomal compartment) was observed. SLN/CnEO proved to be safe against blood components and non-toxic for normal WI-38 cells at therapeutic concentrations. SLN/CnEO substantially enhanced A549 cell death and cell migration inhibition compared with free CnEO.
Collapse
Affiliation(s)
- Boris Rodenak-Kladniew
- INIBIOLP—Instituto de Investigaciones Bioquímicas de La Plata (UNLP-CONICET LA PLATA), Facultad de Ciencias Médicas UNLP, La Plata 1900, Argentina; (M.A.C.); (J.G.)
| | - María Agustina Castro
- INIBIOLP—Instituto de Investigaciones Bioquímicas de La Plata (UNLP-CONICET LA PLATA), Facultad de Ciencias Médicas UNLP, La Plata 1900, Argentina; (M.A.C.); (J.G.)
| | - Rocío Celeste Gambaro
- IGEVET—Instituto de Genética Veterinaria (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata 1900, Argentina; (R.C.G.); (G.P.)
| | - Juan Girotti
- INIBIOLP—Instituto de Investigaciones Bioquímicas de La Plata (UNLP-CONICET LA PLATA), Facultad de Ciencias Médicas UNLP, La Plata 1900, Argentina; (M.A.C.); (J.G.)
| | - José Sebastián Cisneros
- INIFTA—Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (UNLP-CONICET LA PLATA), La Plata 1900, Argentina; (J.S.C.); (C.Y.C.)
| | - Sonia Viña
- CIDCA—Centro de Investigación y Desarrollo en Criotecnología de Alimentos (UNLP-CONICET LA PLATA), Facultad de Ciencias Exactas UNLP, La Plata 1900, Argentina;
| | - Gisel Padula
- IGEVET—Instituto de Genética Veterinaria (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata 1900, Argentina; (R.C.G.); (G.P.)
| | - Rosana Crespo
- IFEC—Instituto de Farmacología Experimental de Córdoba (UNC-CONICET UNC), Facultad de Ciencias Químicas UNC, Córdoba 5000, Argentina;
| | - Guillermo Raúl Castro
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, Brazil;
| | - Stephan Gehring
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany;
| | - Cecilia Yamil Chain
- INIFTA—Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (UNLP-CONICET LA PLATA), La Plata 1900, Argentina; (J.S.C.); (C.Y.C.)
| | - Germán Abel Islan
- Children’s Hospital, University Medical Center of the Johannes, Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany;
- CINDEFI—Centro de Investigación y Desarrollo en Fermentaciones Industriales, Laboratorio de Nanobiomateriales (UNLP-CONICET LA PLATA), Facultad de Ciencias Exactas UNLP, La Plata 1900, Argentina
| |
Collapse
|
15
|
Giri PM, Banerjee A, Layek B. A Recent Review on Cancer Nanomedicine. Cancers (Basel) 2023; 15:cancers15082256. [PMID: 37190185 DOI: 10.3390/cancers15082256] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/07/2023] [Accepted: 04/08/2023] [Indexed: 05/17/2023] Open
Abstract
Cancer is one of the most prevalent diseases globally and is the second major cause of death in the United States. Despite the continuous efforts to understand tumor mechanisms and various approaches taken for treatment over decades, no significant improvements have been observed in cancer therapy. Lack of tumor specificity, dose-related toxicity, low bioavailability, and lack of stability of chemotherapeutics are major hindrances to cancer treatment. Nanomedicine has drawn the attention of many researchers due to its potential for tumor-specific delivery while minimizing unwanted side effects. The application of these nanoparticles is not limited to just therapeutic uses; some of them have shown to have extremely promising diagnostic potential. In this review, we describe and compare various types of nanoparticles and their role in advancing cancer treatment. We further highlight various nanoformulations currently approved for cancer therapy as well as under different phases of clinical trials. Finally, we discuss the prospect of nanomedicine in cancer management.
Collapse
Affiliation(s)
- Paras Mani Giri
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Anurag Banerjee
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| | - Buddhadev Layek
- Department of Pharmaceutical Sciences, School of Pharmacy, College of Health Professions, North Dakota State University, Fargo, ND 58105, USA
| |
Collapse
|
16
|
Sivadasan D, Ramakrishnan K, Mahendran J, Ranganathan H, Karuppaiah A, Rahman H. Solid Lipid Nanoparticles: Applications and Prospects in Cancer Treatment. Int J Mol Sci 2023; 24:6199. [PMID: 37047172 PMCID: PMC10094605 DOI: 10.3390/ijms24076199] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Recent advancements in drug delivery technologies paved a way for improving cancer therapeutics. Nanotechnology emerged as a potential tool in the field of drug delivery, overcoming the challenges of conventional drug delivery systems. In the field of nanotechnology, solid lipid nanoparticles (SLNs) play a vital role with a wide range of diverse applications, namely drug delivery, clinical medicine, and cancer therapeutics. SLNs establish a significant role owing to their ability to encapsulate hydrophilic and hydrophobic compounds, biocompatibility, ease of surface modification, scale-up feasibility, and possibilities of both active and passive targeting to various organs. In cancer therapy, SLNs have emerged as imminent nanocarriers for overcoming physiological barriers and multidrug resistance pathways. However, there is a need for special attention to be paid to further improving the conceptual understanding of the biological responses of SLNs in cancer therapeutics. Hence, further research exploration needs to be focused on the determination of the structure and strength of SLNs at the cellular level, both in vitro and in vivo, to develop potential therapeutics with reduced side effects. The present review addresses the various modalities of SLN development, SLN mechanisms in cancer therapeutics, and the scale-up potential and regulatory considerations of SLN technology. The review extensively focuses on the applications of SLNs in cancer treatment.
Collapse
Affiliation(s)
- Durgaramani Sivadasan
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia
| | | | - Janani Mahendran
- Department of Pharmaceutics, College of Pharmacy, Sri Ramakrishna Institute of Paramedical Sciences, Coimbatore 641002, TN, India
| | - Hariprasad Ranganathan
- Department of Pharmaceutical Analysis, PSG College of Pharmacy, Coimbatore 641004, TN, India
| | - Arjunan Karuppaiah
- Department of Pharmaceutics, Karpagam College of Pharmacy, Coimbatore 641032, TN, India
| | - Habibur Rahman
- Department of Pharmaceutics, PSG College of Pharmacy, Coimbatore 641004, TN, India
| |
Collapse
|
17
|
German-Cortés J, Vilar-Hernández M, Rafael D, Abasolo I, Andrade F. Solid Lipid Nanoparticles: Multitasking Nano-Carriers for Cancer Treatment. Pharmaceutics 2023; 15:pharmaceutics15030831. [PMID: 36986692 PMCID: PMC10056426 DOI: 10.3390/pharmaceutics15030831] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Despite all the advances seen in recent years, the severe adverse effects and low specificity of conventional chemotherapy are still challenging problems regarding cancer treatment. Nanotechnology has helped to address these questions, making important contributions in the oncological field. The use of nanoparticles has allowed the improvement of the therapeutic index of several conventional drugs and facilitates the tumoral accumulation and intracellular delivery of complex biomolecules, such as genetic material. Among the wide range of nanotechnology-based drug delivery systems (nanoDDS), solid lipid nanoparticles (SLNs) have emerged as promising systems for delivering different types of cargo. Their solid lipid core, at room and body temperature, provides SLNs with higher stability than other formulations. Moreover, SLNs offer other important features, namely the possibility to perform active targeting, sustained and controlled release, and multifunctional therapy. Furthermore, with the possibility to use biocompatible and physiologic materials and easy scale-up and low-cost production methods, SLNs meet the principal requirements of an ideal nanoDDS. The present work aims to summarize the main aspects related to SLNs, including composition, production methods, and administration routes, as well as to show the most recent studies about the use of SLNs for cancer treatment.
Collapse
Affiliation(s)
- Júlia German-Cortés
- Drug Delivery & Targeting Group, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Mireia Vilar-Hernández
- Drug Delivery & Targeting Group, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
| | - Diana Rafael
- Drug Delivery & Targeting Group, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), U20 ICTS Nanbiosis, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Correspondence: (D.R.); (I.A.); (F.A.)
| | - Ibane Abasolo
- Drug Delivery & Targeting Group, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Functional Validation & Preclinical Research (FVPR), U20 ICTS Nanbiosis, Vall d’Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Servei de Bioquímica, Hospital Universitari Vall d’Hebron, 08035 Barcelona, Spain
- Correspondence: (D.R.); (I.A.); (F.A.)
| | - Fernanda Andrade
- Drug Delivery & Targeting Group, Vall d’Hebron Institut de Recerca, Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain
- Networking Research Centre for Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departament de Farmàcia i Tecnologia Farmacèutica i Fisicoquímica, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona (UB), 08028 Barcelona, Spain
- Correspondence: (D.R.); (I.A.); (F.A.)
| |
Collapse
|
18
|
Nowacka M, Kowalewska A, Rygala A, Kregiel D, Kaczorowski W. Hybrid Bio-Based Silicone Coatings with Anti-adhesive Properties. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1381. [PMID: 36837011 PMCID: PMC9961570 DOI: 10.3390/ma16041381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Hybrid polysiloxanes and polysilsesquioxanes grafted with naturally occurring bioactive phytochemicals: eugenol and linalool, were synthesized and investigated with regard to their structure and properties. The two series of materials, differing in the type of inorganic structure and the content of active groups, were coated onto the surface of glass plates, and their antibiofilm activities against bacteria Aeromonas hydrophila were assessed by luminometry and fluorescence microscopy. Bioactivity was correlated with specific properties of the hybrid coatings (chemical structure, surface free energy and adhesiveness). The functionalized polysilsesquioxanes exhibited the most favorable anti-adhesive effects. Cell adhesion after 6 days of incubation, expressed as RLU/cm2, was significantly reduced (44 and 67 for, respectively, Z-E-100 and Z-L-100, compared to 517 for the control glass carrier). The surface stickiness of polysiloxane films deteriorated their anti-adhesion properties, despite the presence of a large amount of bioactive species.
Collapse
Affiliation(s)
- Maria Nowacka
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Anna Kowalewska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Anna Rygala
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| | - Dorota Kregiel
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924 Łódź, Poland
| | - Witold Kaczorowski
- Institute of Materials Science and Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-924 Łódź, Poland
| |
Collapse
|
19
|
Rodenak-Kladniew B, Gambaro R, Cisneros JS, Huck-Iriart C, Padula G, Castro GR, Chain CY, Islan GA. Enhanced anticancer activity of encapsulated geraniol into biocompatible lipid nanoparticles against A549 human lung cancer cells. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
20
|
Kostrzewa T, Nowak I, Feliczak-Guzik A, Drzeżdżon J, Jacewicz D, Górska-Ponikowska M, Kuban-Jankowska A. Encapsulated Oxovanadium(IV) and Dioxovanadium(V) Complexes into Solid Lipid Nanoparticles Increase Cytotoxicity Against MDA-MB-231 Cell Line. Int J Nanomedicine 2023; 18:2507-2523. [PMID: 37197025 PMCID: PMC10184862 DOI: 10.2147/ijn.s403689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/14/2023] [Indexed: 05/19/2023] Open
Abstract
Introduction Solid lipid nanoparticles (SLN) have been considered lately as promising drug delivery system in treatment of many human diseases including cancers. We previously studied potential drug compounds that were effective inhibitors of PTP1B phosphatase - possible target for breast cancer treatment. Based on our studies, two complexes were selected for encapsulation into the SLNs, the compound 1 ([VO(dipic)(dmbipy)] · 2 H2O) and compound 2 ([VOO(dipic)](2-phepyH) · H2O). Here, we investigate the effect of encapsulation of those compounds on cell cytotoxicity against MDA-MB-231 breast cancer cell line. The study also included the stability evaluation of the obtained nanocarriers with incorporated active substances and characterization of their lipid matrix. Moreover, the cell cytotoxicity studies against the MDA-MB-231 breast cancer cell line in comparison and in combination with vincristine have been performed. Wound healing assay was carried out to observe cell migration rate. Methods The properties of the SLNs such as particle size, zeta potential (ZP), and polydispersity index (PDI) were investigated. The morphology of SLNs was observed by scanning electron microscopy (SEM), while the crystallinity of the lipid particles was analyzed by differential scanning calorimetry (DSC) and X-ray diffraction (XRD). The cell cytotoxicity of complexes and their encapsulated forms was carried out against MDA-MB-231 breast cancer cell line using standard MTT protocols. The wound healing assay was performed using live imaging microscopy. Results SLNs with a mean size of 160 ± 25 nm, a ZP of -34.00 ± 0.5, and a polydispersity index of 30 ± 5% were obtained. Encapsulated forms of compounds showed significantly higher cytotoxicity also in co-incubation with vincristine. Moreover, our research shows that the best compound was complex 2 encapsulated into lipid nanoparticles. Conclusion We observed that encapsulation of studied complexes into SLNs increases their cell cytotoxicity against MDA-MB-231 cell line and enhanced the effect of vincristine.
Collapse
Affiliation(s)
- Tomasz Kostrzewa
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
- Correspondence: Tomasz Kostrzewa; Alicja Kuban-Jankowska, Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland, Tel +48 58 349 14 50, Fax +48 58 349 14 56, Email ;
| | - Izabela Nowak
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Agnieszka Feliczak-Guzik
- Department of Applied Chemistry, Faculty of Chemistry, Adam Mickiewicz University, Poznań, 61-614, Poland
| | - Joanna Drzeżdżon
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Dagmara Jacewicz
- Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, 80-308, Poland
| | - Magdalena Górska-Ponikowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
- IEMEST Istituto Euro-Mediterraneo di Scienza e Tecnologia, Palermo, 90127, Italy
- Department of Biophysics, Institute of Biomaterials and Biomolecular Systems, University of Stuttgart, Stuttgart, 70174, Germany
| | - Alicja Kuban-Jankowska
- Department of Medical Chemistry, Faculty of Medicine, Medical University of Gdansk, Gdansk, 80-211, Poland
| |
Collapse
|
21
|
Cardoso RV, Pereira PR, Freitas CS, Paschoalin VMF. Trends in Drug Delivery Systems for Natural Bioactive Molecules to Treat Health Disorders: The Importance of Nano-Liposomes. Pharmaceutics 2022; 14:2808. [PMID: 36559301 PMCID: PMC9785269 DOI: 10.3390/pharmaceutics14122808] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/04/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Drug delivery systems are believed to increase pharmaceutical efficacy and the therapeutic index by protecting and stabilizing bioactive molecules, such as protein and peptides, against body fluids' enzymes and/or unsuitable physicochemical conditions while preserving the surrounding healthy tissues from toxicity. Liposomes are biocompatible and biodegradable and do not cause immunogenicity following intravenous or topical administration. Still, their most important characteristic is the ability to load any drug or complex molecule uncommitted to its hydrophobic or hydrophilic character. Selecting lipid components, ratios and thermo-sensitivity is critical to achieve a suitable nano-liposomal formulation. Nano-liposomal surfaces can be tailored to interact successfully with target cells, avoiding undesirable associations with plasma proteins and enhancing their half-life in the bloodstream. Macropinocytosis-dynamin-independent, cell-membrane-cholesterol-dependent processes, clathrin, and caveolae-independent mechanisms are involved in liposome internalization and trafficking within target cells to deliver the loaded drugs to modulate cell function. A successful translation from animal studies to clinical trials is still an important challenge surrounding the approval of new nano-liposomal drugs that have been the focus of investigations. Precision medicine based on the design of functionalized nano-delivery systems bearing highly specific molecules to drive therapies is a promising strategy to treat degenerative diseases.
Collapse
Affiliation(s)
| | | | | | - Vania Margaret Flosi Paschoalin
- Programa de Pós-Graduação em Ciência de Alimentos e Programa de Pós-Graduação em Quimica, Instituto de Química, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149-sala 545-Cidade Universitária, Rio de Janeiro 21941-909, RJ, Brazil
| |
Collapse
|
22
|
Synthesis of Lipid Nanoparticles Incorporated with Ferula assa-foetida L. Extract. COSMETICS 2022. [DOI: 10.3390/cosmetics9060129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Solid Lipid Nanoparticles (SLN) have been prepared by high-pressure homogenization and optimized in order to protect ferulic acid from Ferula assa-foetida L. extract. The influence of lipid and surfactant concentration on the mean particle size (Z-Ave), polydispersity index (PDI), and zeta potential (ZP) of SLN was analyzed. In addition, other parameters for the preparation of ferulic acid-loaded nanoparticles, such as extract concentration and variable parameters for the synthesis method used (e.g., pressure), were adjusted to obtain the smallest particle size and polydispersity index, as well as the highest value for zeta potential, which are characteristic of the stable SLN. The established formulation obtained from the optimized synthesis was composed of 6.0 wt.% of the lipid phase and 1.5 wt.% of surfactant, giving stable SLN with Z-Ave, PDI, and ZP values of 163.00 ± 1.06 nm, 0.16 ± 0.01, and −41.97 ± 0.47 mV, respectively. The loading of ferulic acid from Ferula assa-foetida L. extract within the SLN resulted in particles with a mean size of 155.3 ± 1.1 nm, polydispersity index of 0.16 ± 0.01, zeta potential of −38.00 ± 1.12 mV, and encapsulation efficiency of 27%, the latter being quantified on the basis of RP-HPLC analysis. Our findings highlight the added value of SLN as a delivery system for phenolic phytochemical compounds extracted from Ferula assa-foetida L.
Collapse
|
23
|
Jampilek J, Kralova K. Anticancer Applications of Essential Oils Formulated into Lipid-Based Delivery Nanosystems. Pharmaceutics 2022; 14:2681. [PMID: 36559176 PMCID: PMC9781429 DOI: 10.3390/pharmaceutics14122681] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022] Open
Abstract
The use of natural compounds is becoming increasingly popular among patients, and there is a renewed interest among scientists in nature-based bioactive agents. Traditionally, herbal drugs can be taken directly in the form of teas/decoctions/infusions or as standardized extracts. However, the disadvantages of natural compounds, especially essential oils, are their instability, limited bioavailability, volatility, and often irritant/allergenic potential. However, these active substances can be stabilized by encapsulation and administered in the form of nanoparticles. This brief overview summarizes the latest results of the application of nanoemulsions, liposomes, solid lipid nanoparticles, and nanostructured lipid carriers used as drug delivery systems of herbal essential oils or used directly for their individual secondary metabolites applicable in cancer therapy. Although the discussed bioactive agents are not typical compounds used as anticancer agents, after inclusion into the aforesaid formulations improving their stability and bioavailability and/or therapeutic profile, they indicated anti-tumor activity and became interesting agents with cancer treatment potential. In addition, co-encapsulation of essential oils with synthetic anticancer drugs into nanoformulations with the aim to achieve synergistic effect in chemotherapy is discussed.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
24
|
Gambaro RC, Berti IR, Cacicedo ML, Gehring S, Alvarez VA, Castro GR, Seoane A, Padula G, Islan GA. Colloidal delivery of vitamin E into solid lipid nanoparticles as a potential complement for the adverse effects of anemia treatment. Chem Phys Lipids 2022; 249:105252. [PMID: 36272518 DOI: 10.1016/j.chemphyslip.2022.105252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/24/2022] [Accepted: 10/17/2022] [Indexed: 01/25/2023]
Abstract
Vitamin E (VitE) is one of the most important antioxidants and plays a key role in decreasing the inflammatory effects of oxidative stress caused by recurrent doses of iron administration in anemia treatment. However, VitE is poorly soluble in aqueous environments. Here, VitE encapsulation into solid lipid nanoparticles (SLN) composed of myristil myristate to improve its bioavailability was proposed. A 99.9 ± 0.1% encapsulation efficiency with a drug/lipid ratio of 500 µg/mg and 478 higher VitE solubility was obtained. The antioxidant properties of VitE after encapsulation were maintained. SLN-VitE showed a 228.2 nm mean diameter with low polidispersitivity (0.335), and negative Z potential (ζ ≈ -9.0 mV). The SLN were well-dispersed, displayed spherical and homogeneous morphology by TEM. A controlled release of VitE from SLN was found. The XRD and FTIR analyses revealed the presence of a nanostructured architecture of SLN after VitE incorporation. We probed the safety of SLN-VitE after contact with three in vitro cell models: erythrocytes, lymphocytes and HepG2 cells. The cell viability in presence of SLN, SLN-VitE, and their combinations with iron was not affected. The comet assay demonstrated that the DNA damage caused by iron administration was decrease in presence of SLN-VitE.
Collapse
Affiliation(s)
- Rocío C Gambaro
- Instituto de Genética Veterinaria (IGEVET, UNLP-CONICET La Plata), Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Ignacio Rivero Berti
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), Calle 47y 115, (B1900AJI), La Plata, Buenos Aires, Argentina
| | - Maximiliano L Cacicedo
- Children's Hospital, University Medical Center of the Johannes-Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Stephan Gehring
- Children's Hospital, University Medical Center of the Johannes-Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Vera A Alvarez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMDP) - CONICET, Av. Colón 10850 (B7608FDQ), Mar del Plata, Buenos Aires, Argentina
| | - Guillermo R Castro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000 Rosario, Santa Fe, Argentina; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - Analía Seoane
- Instituto de Genética Veterinaria (IGEVET, UNLP-CONICET La Plata), Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Gisel Padula
- Instituto de Genética Veterinaria (IGEVET, UNLP-CONICET La Plata), Facultad de Ciencias Veterinarias Universidad Nacional de La Plata (UNLP), La Plata, Argentina; Facultad de Ciencias Naturales y Museo Universidad Nacional de La Plata (UNLP), La Plata, Argentina.
| | - German A Islan
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Laboratorio de Nanobiomateriales, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP)-CONICET (CCT La Plata), Calle 47y 115, (B1900AJI), La Plata, Buenos Aires, Argentina.
| |
Collapse
|
25
|
Keshavarz-Rezaei M, Hatamian-Zarmi A, Alvandi H, Ebrahimi-Hosseinzadeh B, Mokhtari-Hosseini ZB. The HbA1c and blood glucose response to selenium-rich polysaccharide from Fomes fomentarius loaded solid lipid nanoparticles as a potential antidiabetic agent in rats. BIOMATERIALS ADVANCES 2022; 140:213084. [PMID: 36027667 DOI: 10.1016/j.bioadv.2022.213084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/31/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Fomes fomentarius is a medicinal fungus used in traditional Chinese medicine to treat various illnesses. Antidiabetic effects of F. fomentarius extracts have been reported recently. In this study, F. fomentarius extracellular polysaccharide (PS) was prepared, and then to enhance its antidiabetic effects, Na2SeO3 was added to the culture medium, and selenium-polysaccharide (PS-Se) was obtained. Also, solid lipid nanoparticles containing PS (SLN-PS) and PS-Se (SLN-PS-Se) were synthesized by the microemulsion method to compare their effects with free polysaccharides in streptozotocin (STZ) diabetic rats. Optimized SLNs had a size of 170.5 nm and drug loading of 9.27 %. EDS analysis confirmed that Se presence in PS-Se. Characterization analyses such as FTIR, DSC, TGA, and XRD suggested that SLNs have good thermal stability and crystalline nature. Release of PS from SLNs demonstrated sustained profile, and MTT assay proved that PSs and SLNs have no cytotoxicity. Furthermore, oral administration of PS, PS-Se, SLN-PS, and SLN-PS-Se for 28 days to diabetic rats significantly declined blood glucose by 48.24 %, 49.96 %, 55.50 %, and 60.47 %, respectively. Also, insulin secretion and body weight improved, and HbA1c levels decreased. Treatment by PS, PS-Se, SLN-PS, and SLN-PS-Se alleviated lipid profiles, liver enzymes, and serum proteins. Liver anti-oxidant parameters and histopathological observation of the liver, pancreas, and kidney confirmed that F. fomentarius PSs and SLNs have antidiabetic impacts. Moreover, supplementation of PS with selenium improves its anti-hyperglycemic effects. Finally, SLN-PS and SLN-PS-Se showed a higher antidiabetic impact than free PS and PS-Se.
Collapse
Affiliation(s)
- Mohammad Keshavarz-Rezaei
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran.
| | - Hale Alvandi
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Bahman Ebrahimi-Hosseinzadeh
- Department of Life Sciences Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Zahra Beagom Mokhtari-Hosseini
- Chemical Engineering Group, Faculty of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| |
Collapse
|
26
|
Paiva KLR, Radicchi MA, Báo SN. In Vitro Evaluation of NLS-DTX Activity in Triple-Negative Breast Cancer. Molecules 2022; 27:molecules27154920. [PMID: 35956870 PMCID: PMC9370415 DOI: 10.3390/molecules27154920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 02/01/2023] Open
Abstract
Cancer is one of the most lethal diseases in the world, and the development and improvement of treatments used in cancer therapies are extremely important for a better quality of life for patients. In view of the current problems in drug administration such as low solubility and adverse effects, the activity of a solid lipid nanoparticle containing docetaxel (SLN-DTX), a drug already used in conventional therapies, was evaluated in a cell line (MDA-MB-231) of one of the most aggressive types of breast cancer with the worst prognosis, triple-negative breast cancer. Viability tests indicated that SLN-DTX has a greater dependence on the treatment dose when compared to the free drug, which indicates a more controlled release of the drug, and both reduced viability by around 50% at a concentration of 1 µg/mL after 72 h. Transmission electron microscopy (TEM) and confocal and light microscopy analyses indicated that after treatment the cells enter a mitotic catastrophe, characteristic of antimitotic drugs that usually make cells progress to death or senescence. Cells treated with both DTX and SLN-DTX showed significant inhibition of mobility, 73.6% and 66.5% when treated with SLN-DTX and DTX, respectively, compared to the 11.4% of the control after 72 h, characteristics that are very relevant in tumor development and progression. SLN-DTX demonstrated its great potential as a nanocarrier by maintaining and improving the drug’s action in the MDA-MB-231 cell line.
Collapse
Affiliation(s)
- Karen L. R. Paiva
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.L.R.P.); (M.A.R.)
- Postgraduate Program of Molecular Pathology, School of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Marina A. Radicchi
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.L.R.P.); (M.A.R.)
- Postgraduate Program of Molecular Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil
| | - Sônia N. Báo
- Department of Cell Biology, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (K.L.R.P.); (M.A.R.)
- Correspondence:
| |
Collapse
|
27
|
Nanostructured Lipid Carriers Loaded with Dexamethasone Prevent Inflammatory Responses in Primary Non-Parenchymal Liver Cells. Pharmaceutics 2022; 14:pharmaceutics14081611. [PMID: 36015237 PMCID: PMC9413549 DOI: 10.3390/pharmaceutics14081611] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 01/15/2023] Open
Abstract
Liver inflammation represents a major clinical problem in a wide range of pathologies. Among the strategies to prevent liver failure, dexamethasone (DXM) has been widely used to suppress inflammatory responses. The use of nanocarriers for encapsulation and sustained release of glucocorticoids to liver cells could provide a solution to prevent severe side effects associated with systemic delivery as the conventional treatment regime. Here we describe a nanostructured lipid carrier developed to efficiently encapsulate and release DXM. This nano-formulation proved to be stable over time, did not interact in vitro with plasma opsonins, and was well tolerated by primary non-parenchymal liver cells (NPCs). Released DXM preserved its pharmacological activity, as evidenced by inducing robust anti-inflammatory responses in NPCs. Taken together, nanostructured lipid carriers may constitute a reliable platform for the delivery of DXM to treat pathologies associated with chronic liver inflammation.
Collapse
|
28
|
Taleuzzaman M, Chauhan S, Tomar DS, Singh PK, Talwar I, Javed MN. Lipid Nanoformulation of Nutraceuticals as Neurotherapeuticals in Neurological Disorders. NANOTECHNOLOGY IN FUNCTIONAL FOODS 2022:161-191. [DOI: 10.1002/9781119905059.ch7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
|
29
|
Rivero Berti I, Rodenak-Kladniew BE, Katz SF, Arrua EC, Alvarez VA, Duran N, Castro GR. Enzymatic Active Release of Violacein Present in Nanostructured Lipid Carrier by Lipase Encapsulated in 3D-Bioprinted Chitosan-Hydroxypropyl Methylcellulose Matrix With Anticancer Activity. Front Chem 2022; 10:914126. [PMID: 35873038 PMCID: PMC9301079 DOI: 10.3389/fchem.2022.914126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Violacein (Viol) is a bacterial purple water-insoluble pigment synthesized by Chromobacterium violaceum and other microorganisms that display many beneficial therapeutic properties including anticancer activity. Viol was produced, purified in our laboratory, and encapsulated in a nanostructured lipid carrier (NLC). The NLC is composed of the solid lipid myristyl myristate, an oily lipid mixture composed of capric and caprylic acids, and the surfactant poloxamer P188. Dormant lipase from Rhizomucor miehei was incorporated into the NLC-Viol to develop an active release system. The NLC particle size determined by dynamic light scattering brings around 150 nm particle size and ζ≈ −9.0 mV with or without lipase, but the incorporation of lipase increase the PdI from 0.241 to 0.319 (≈32%). For scaffold development, a 2.5 hydroxypropyl methylcellulose/chitosan ratio was obtained after optimization of a composite for extrusion in a 3D-bioprinter developed and constructed in our laboratory. Final Viol encapsulation efficiency in the printings was over 90%. Kinetic release of the biodye at pH = 7.4 from the mesh containing NLC-lipase showed roughly 20% Viol fast release than without the enzyme. However, both Viol kinetic releases displayed similar profiles at pH = 5.0, where the lipase is inactive. The kinetic release of Viol from the NLC-matrices was modeled and the best correlation was found with the Korsmeyer-Peppas model (R2 = 0.95) with n < 0.5 suggesting a Fickian release of Viol from the matrices. Scanning Electron Microscope (SEM) images of the NLC-meshes showed significant differences before and after Viol’s release. Also, the presence of lipase dramatically increased the gaps in the interchain mesh. XRD and Fourier Transform Infrared (FTIR) analyses of the NLC-meshes showed a decrease in the crystalline structure of the composites with the incorporation of the NLC, and the decrease of myristyl myristate in the mesh can be attributed to the lipase activity. TGA profiles of the NLC-meshes showed high thermal stability than the individual components. Cytotoxic studies in A549 and HCT-116 cancer cell lines revealed high anticancer activity of the matrix mediated by mucoadhesive chitosan, plus the biological synergistic activities of violacein and lipase.
Collapse
Affiliation(s)
- Ignacio Rivero Berti
- Laboratorio de Nanobiomateriale, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, CONICET (CCT La Plata), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Boris E. Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - Sergio F. Katz
- Laboratorio de Nanobiomateriale, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, CONICET (CCT La Plata), Universidad Nacional de La Plata (UNLP), La Plata, Argentina
| | - Eva Carolina Arrua
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Desarrollo en Materiales Avanzados y Almacenamiento de Energía de Jujuy-Univ. Nac., de Jujuy, Argentina
| | - Vera A. Alvarez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMDP), CONICET, Mar del Plata, Argentina
| | - Nelson Duran
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, Brazil
| | - Guillermo R. Castro
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Rosario, Argentina
- Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, Brazil
- *Correspondence: Guillermo R. Castro,
| |
Collapse
|
30
|
Parvez S, Karole A, Mudavath SL. Fabrication, physicochemical characterization and In vitro anticancer activity of nerolidol encapsulated solid lipid nanoparticles in human colorectal cell line. Colloids Surf B Biointerfaces 2022; 215:112520. [PMID: 35489319 DOI: 10.1016/j.colsurfb.2022.112520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/15/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
Nerolidol is a sesquiterpene that occurs naturally and possesses a diverse set of biological characteristics including anticancer activity but has limited solubility, bioavailability, and fast hepatic metabolism. The goal of this study was to develop a nanocarrier system encapsulating a bioactive as well as to evaluate its efficacy in Human Colorectal Cell Line. Solid lipid nanoparticles were fabricated by the emulsion solvent evaporation method and determined the particle size, polydispersity index (PDI), zeta potential, % entrapment efficiency, scanning electron microscopy (SEM), transmission electron microscopy (TEM), drug-excipient interaction study of developed nanoparticles. MTT assay was used to assess the cytotoxicity of formulations in vitro. Nerolidol loaded solid lipid nanoparticles (NR-LNPs) have presented satisfactory properties: mean particles diameter of 159 ± 4.89 nm, PDI of 0.32 ± 0.01, the zeta potential value was found to be -10 ± 1.97 and % entrapment efficiency 71.3% ± 6.11. The formulations demonstrated enhanced biological activity due to enhanced solubility and stability of the bioactive after loading into a nanoformulation along with the better internalization inside the cells.
Collapse
Affiliation(s)
- Shabi Parvez
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Archana Karole
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India
| | - Shyam Lal Mudavath
- Infectious Disease Biology Laboratory, Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab 140306, India.
| |
Collapse
|
31
|
Nanomedicine as an Emerging Technology to Foster Application of Essential Oils to Fight Cancer. Pharmaceuticals (Basel) 2022; 15:ph15070793. [PMID: 35890092 PMCID: PMC9320655 DOI: 10.3390/ph15070793] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 12/01/2022] Open
Abstract
Natural prodrugs extracted from plants are increasingly used in many sectors, including the pharmaceutical, cosmetic, and food industries. Among these prodrugs, essential oils (EOs) are of particular importance. These biologically active volatile oily liquids are produced by medicinal and aromatic plants and characterized by a distinctive odor. EOs possess high anticancer, antibacterial, antiviral, and antioxidant potential but often are associated with low stability; high volatility; and a high risk of deterioration with exposure to heat, humidity, light, or oxygen. Furthermore, their bioavailability is limited because they are not soluble in water, and enhancements are needed to increase their potential to target specific cells or tissues, as well as for controlled release. Nanomedicine, the application of nanotechnology in medicine, may offer efficient solutions to these problems. The technology is based on creating nanostructures in which the natural prodrug is connected to or encapsulated in nanoparticles or submicron-sized capsules that ensure their solubility in water and their targeting properties, as well as controlled delivery. The potential of EOs as anticancer prodrugs is considerable but not fully exploited. This review focusses on the recent progress towards the practical application of EOs in cancer therapy based on nanotechnology applications.
Collapse
|
32
|
Elbe H, Ozturk F, Yigitturk G, Baygar T, Cavusoglu T. Anticancer activity of linalool: comparative investigation of ultrastructural changes and apoptosis in breast cancer cells. Ultrastruct Pathol 2022; 46:348-358. [PMID: 35727696 DOI: 10.1080/01913123.2022.2091068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Breast cancer is the most common cancer in women ın the world. Many anticancer drugs are currently used clinically have been isolated from plant species or are based on such substances. Linalool is aromatic compounds from the monoterpene group. It is the main constituents of essential oils and show antiproliferative, antioxidant, and antiseptic properties. The aim of this study was to investigate the antiproliferativeand apoptotic, effects of linalool in MCF-7 and MDA-MB-231 human breast cancer cells. MCF-7 and MDA-MB-231 human breast cancer cells were treated with different concentrations of linalool (100, 200, 400, 600, 800, 1000 µM) at 24 h and 48 h. MTT assay for cell proliferation and Annexin V assay for apoptosis was done. The morphology of breast cancer cells was investigated by lıght mıcroscope and scanning electron microscope (SEM). The study show that linalool significantly induced apoptosis in all groups as dose and time-dependent (p < .05). Linalool has apoptotic and antiproliferative properties in a concentration and time-dependent manner in breast cancer cells. The cytotoxic effects of linalool on MCF-7 and MDA-MB-231 human breast cancer cells was found to be associated with apoptotic cell death. Linalool was more effective on MCF-7 human breast cancer cells in smaller amounts.
Collapse
Affiliation(s)
- Hulya Elbe
- Department of Histology and Embryology, Mugla Sitki Kocman University Faculty of Medicine, Mugla, Turkey
| | - Feral Ozturk
- Department of Histology and Embryology, Mugla Sitki Kocman University Faculty of Medicine, Mugla, Turkey
| | - Gurkan Yigitturk
- Department of Histology and Embryology, Mugla Sitki Kocman University Faculty of Medicine, Mugla, Turkey
| | - Tuba Baygar
- Research Laboratories Center, Material Research Laboratory, Mugla Sitki Kocman University , Mugla, Turkey
| | - Turker Cavusoglu
- Department of Histology and Embryology, Izmır Bakırcay University Faculty of Medicine, Izmir, Turkey
| |
Collapse
|
33
|
Sanei-Dehkordi A, Agholi M, Shafiei M, Osanloo M. Promising Larvicidal Efficacy of Solid Lipid Nanoparticles Containing Mentha longifolia L., Mentha pulegium L., and Zataria multiflora Boiss. Essential Oils Against the Main Malaria Vector, Anopheles stephensi Liston. Acta Parasitol 2022; 67:1265-1272. [PMID: 35704149 DOI: 10.1007/s11686-022-00580-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 05/20/2022] [Indexed: 11/26/2022]
Abstract
PURPOSE An attempt was made in the current study to develop a natural mosquito larvicide using nanotechnology. METHODS Solid lipid nanoparticles (SLNs) containing three essential oils were first prepared using the high-pressure homogenizer. Larvicidal effects of essential oils and the SLNs against Anopheles stephensi were then compared. RESULTS The size of SLN containing Mentha longifolia, Mentha pulegium, Zataria multiflora essential oil was obtained as 105 ± 7, 210 ± 4, and 137 ± 8 nm. Their zeta potentials were - 7.8, - 4.7, and - 9.7 mV. Besides, their efficacy with LC50 values of 24.79, 5.11, and 9.19 µg/mL was significantly more potent than that of their un-formulated essential oils with LC50 values of 36.2, 27.55, and 33.33 µg/mL. CONCLUSION SLNs containing M. pulegium with the best efficacy (P < 0.05) could be considered as potent larvicides against other important species of mosquitoes and field trials.
Collapse
Affiliation(s)
- Alireza Sanei-Dehkordi
- Department of Medical Entomology and Vector Control, School of Health, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
- Infectious and Tropical Diseases Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mahmoud Agholi
- Department of Medical Parasitology and Mycology, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahsa Shafiei
- Noncommunicable Disease Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Mahmoud Osanloo
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran.
| |
Collapse
|
34
|
Chen X, Hu Z, Wang K, Chen D, Feng T. Preparation, characterization and in vitro saliva digestion of enzymatically modified octenylsuccinate starch‐methol inclusion complex. STARCH-STARKE 2022. [DOI: 10.1002/star.202200010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xingyu Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
| | - Zhongshan Hu
- Technology Center Shanghai Peony Flavors and Fragrances Co. Ltd. Shanghai 201210 P. R. China
| | - Kai Wang
- Technology Centre of China Tobacco Yunnan Industrial Co. Ltd. Kunming 650231 P. R. China
| | - Da Chen
- Department of Food Science and Technology The Ohio State University Columbus OH43210 USA
| | - Tao Feng
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 P. R. China
| |
Collapse
|
35
|
Wang J, Wang H, Xu H, Li J, Zhang X, Zhang X. Solid lipid nanoparticles as an effective sodium aescinate delivery system: formulation and anti-inflammatory activity. RSC Adv 2022; 12:6583-6591. [PMID: 35424603 PMCID: PMC8981568 DOI: 10.1039/d1ra07638h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
Sodium aescinate-loaded solid lipid nanoparticles were fabricated using a melt-emulsification and ultrasonication method. Based on mean particle size, polydispersity index, and encapsulation efficiency, orthogonal and Box-Behnken designs were applied to optimize solid lipid nanoparticles with single emulsification and double emulsification methods. The characterization of solid lipid nanoparticles was investigated by X-ray diffractometry, differential scanning calorimetry, and scanning electron microscopy. After optimization of sodium aescinate-loaded solid lipid nanoparticles with single emulsification, the particle size was 90.7 nm and encapsulation efficiency was 76.5%. The sodium aescinate-loaded solid lipid nanoparticles with double emulsification were negatively charged spherical particles with the size of 109.4 nm and encapsulation efficiency up to 86.6%. Both solid lipid nanoparticles with single emulsification and double emulsification exhibited sustained release for 12 h without an initial burst release. The results indicated that sodium aescinate-loaded solid lipid nanoparticles by double emulsification showed more drug loading and stability after reconstitution. The sodium aescinate-solid lipid nanoparticles with double emulsification demonstrated stronger anti-inflammatory activity, including paw edema and ear swelling in mice than that of free sodium aescinate. Therefore, solid lipid nanoparticles have great potential as an effective sodium aescinate delivery system for application in medicine.
Collapse
Affiliation(s)
- Jinyue Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986522 +86-24-23986522
| | - Hongyue Wang
- School of Function Food and Wine, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Hongjia Xu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986522 +86-24-23986522
| | - Jinghan Li
- Department of Pharmaceutics, College of Pharmacy, University of Minnesota-Twin Cities 308 SE Harvard St Minneapolis 55455 Minnesota USA
| | - Xu Zhang
- School of Function Food and Wine, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| | - Xiangrong Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China +86-24-23986522 +86-24-23986522
- School of Function Food and Wine, Shenyang Pharmaceutical University 103 Wenhua Road Shenyang 110016 China
| |
Collapse
|
36
|
Teixeira S, Carvalho MA, Castanheira EMS. Functionalized Liposome and Albumin-Based Systems as Carriers for Poorly Water-Soluble Anticancer Drugs: An Updated Review. Biomedicines 2022; 10:486. [PMID: 35203695 PMCID: PMC8962385 DOI: 10.3390/biomedicines10020486] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer is one of the leading causes of death worldwide. In the available treatments, chemotherapy is one of the most used, but has several associated problems, namely the high toxicity to normal cells and the resistance acquired by cancer cells to the therapeutic agents. The scientific community has been battling against this disease, developing new strategies and new potential chemotherapeutic agents. However, new drugs often exhibit poor solubility in water, which led researchers to develop functionalized nanosystems to carry and, specifically deliver, the drugs to cancer cells, targeting overexpressed receptors, proteins, and organelles. Thus, this review is focused on the recent developments of functionalized nanosystems used to carry poorly water-soluble drugs, with special emphasis on liposomes and albumin-based nanosystems, two major classes of organic nanocarriers with formulations already approved by the U.S. Food and Drug Administration (FDA) for cancer therapeutics.
Collapse
Affiliation(s)
- Sofia Teixeira
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| | - Maria Alice Carvalho
- Centre of Chemistry, Campus de Gualtar, University of Minho (CQUM), 4710-057 Braga, Portugal; (S.T.); (M.A.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
37
|
Kaplan A. The nanocomposites designs of phytomolecules from medicinal and aromatic plants: promising anticancer-antiviral applications. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022; 11:17. [PMID: 35127958 PMCID: PMC8799966 DOI: 10.1186/s43088-022-00198-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/17/2022] [Indexed: 12/25/2022] Open
Abstract
Abstract
Background
Nowadays, researchers are moving toward a herbal approach to cancer treatment because of the harmful effects of synthetic anti-tumor drugs. The evaluation of active compounds with plant origin may help in the remedy of human illnesses in the future. These active compounds have direct or indirect curative efficacies on difficult to cure diseases such as cancer. Investigation of nanoforms of these active compounds is one of the curious topics of the scientific community.
Main body
Saffron and its components obtained from Crocus sativa, essential oils obtained from lavender, Syzygium aromaticum called cloves and Beta vulgaris are known for their anticancer effects. Nano-drugs are designed to increase the anticancer activity of plant-derived drugs. Herbal extracts operate very great in the production of nanoparticles. The aim is to ensure that only the nano-drug is delivered to the tumor site. Furthermore, nanoparticles have hazardous effects when analyzed at elevated doses, but this issue can be doped together with plant extracts.
Short conclusions
The nanocomposites (graphene oxide, solid lipid nano and nanoemulsion) of phytomolecules obtained from saffron, clove, lavender and red beet may be effective in minimizing these toxic effects. In the near future, detecting the anticancer molecular mechanisms of these naturally derived compounds and nanocomposites could contribute to further cancer research. Apart from these, these compounds and its nanocomposites could have antiviral effects against today's threat covid-19 virus. Consequently, more promising anticancer and antiviral agents would be discovered.
Graphical abstract
Collapse
|
38
|
Aleixo NA, Gomes PSDS, Silva PBD, Sato MR, Campos DL, Barud HDS, Castro GR, Islan GA, Toledo C, Karp F, Chorilli M, Pavan FR, Resende FA. Study of antimycobacterial, cytotoxic, and mutagenic potential of polymeric nanoparticles of copper (II) complex. J Microencapsul 2022; 39:61-71. [PMID: 34984941 DOI: 10.1080/02652048.2022.2025935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to encapsulate and characterize a potential anti-tuberculosis copper complex (CuCl2(INH)2.H2O:I1) into polymeric nanoparticles (PNs) of polymethacrylate copolymers (Eudragit®, Eu) developed by nanoprecipitation method. NE30D, S100 and, E100 polymers were tested. The physicochemical characterizations were performed by DLS, TEM, FTIR, encapsulation efficiency and, in vitro release studies. Encapsulation of I1 in PN-NE30D, PN-E100, and PN-S100 was 26.3%, 94.5%, 22.6%, respectively. The particle size and zeta potential were 82.3 nm and -24.5 mV for PNs-NE30D, 304.4 nm and +18.7 mV for PNs-E100, and 517.9 nm and -6.9 mV for PNs-S100, respectively. All PDIs were under 0.5. The formulations showed a I1 controlled release at alkaline pH with 29.7% from PNs-NE30D, 7.9% from PNs-E100 and, 28.1% from PNs-S100 at 1 h incubation. PNs were stable for at least 3 months. Particularly, PNs-NE30D demonstrated moderate inhibition of M. tuberculosis and low cytotoxic activity. None of the PNs induced mutagenicity.
Collapse
Affiliation(s)
- Nadia Andrade Aleixo
- University of Araraquara (UNIARA), Department of Biological Sciences and Health, Araraquara, São Paulo State, Brazil
| | - Pietra Stefany da Silva Gomes
- University of Araraquara (UNIARA), Department of Biological Sciences and Health, Araraquara, São Paulo State, Brazil
| | - Patrícia Bento da Silva
- São Paulo State University (UNESP), Department of Drugs and Medicines, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil.,Nanobiotechnology Laboratory, Institute of Biological Sciences, Department of Genetics and Morphology, University of Brasilia, Brasília, Brazil
| | - Mariana Rillo Sato
- São Paulo State University (UNESP), Department of Drugs and Medicines, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil
| | - Débora Leite Campos
- São Paulo State University (UNESP), Department of Biological Sciences, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil
| | - Hernane da Silva Barud
- University of Araraquara (UNIARA), Department of Biological Sciences and Health, Araraquara, São Paulo State, Brazil
| | - Guillermo Raul Castro
- Universidad Nacional de La Plata - CONICET (CCT La Plata), Facultad de Ciencias Exactas, Departmento de Química, CINDEFI, Laboratorio de Nanobiomateriales, La Plata, Argentina.,Universidad Nacional de Rosario, Centro de Estudios Interdisciplinarios (CEI), Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG), Rosario, Santa Fe, Argentina
| | - German Abel Islan
- Universidad Nacional de La Plata - CONICET (CCT La Plata), Facultad de Ciencias Exactas, Departmento de Química, CINDEFI, Laboratorio de Nanobiomateriales, La Plata, Argentina
| | - Constanza Toledo
- Universidad Nacional de La Plata - CONICET (CCT La Plata), Facultad de Ciencias Exactas, Departmento de Química, CINDEFI, Laboratorio de Nanobiomateriales, La Plata, Argentina
| | - Federico Karp
- Universidad Nacional del Litoral (UNL), INTEC, Laboratorio de Química Fina (UNL-CONICET), Santa Fe, Argentina
| | - Marlus Chorilli
- São Paulo State University (UNESP), Department of Drugs and Medicines, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil
| | - Fernando Rogério Pavan
- São Paulo State University (UNESP), Department of Biological Sciences, School of Pharmaceutical Sciences, Campus Araraquara, São Paulo State, Brazil
| | - Flávia Aparecida Resende
- University of Araraquara (UNIARA), Department of Biological Sciences and Health, Araraquara, São Paulo State, Brazil
| |
Collapse
|
39
|
Ramalingam P, Prabakaran DS, Sivalingam K, Nallal VUM, Razia M, Patel M, Kanekar T, Krishnamoorthy D. Recent Advances in Nanomaterials-Based Drug Delivery System for Cancer Treatment. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:83-116. [DOI: 10.1007/978-3-030-80371-1_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Sharma M, Grewal K, Jandrotia R, Batish DR, Singh HP, Kohli RK. Essential oils as anticancer agents: Potential role in malignancies, drug delivery mechanisms, and immune system enhancement. Biomed Pharmacother 2021; 146:112514. [PMID: 34963087 DOI: 10.1016/j.biopha.2021.112514] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
Cancer retains a central place in fatality rates among the wide variety of diseases known world over, and the conventional synthetic medicaments, albeit used until now, produce numerous side effects. As a result, newer, better, and safer alternatives such as natural plant products, are gravely required. Essential oils (EOs) offer a plethora of bioactivities including antibacterial, antiviral, antioxidant, and anticancer properties, therefore, the use of EOs in combination with synthetic drugs or aromatherapy continues to be popular in many settings. In view of the paramount importance of EOs and their potential bioactivities, this review summarizes the current knowledge on the interconnection between EOs and cancer treatment. In particular, the current review presents an updated summary of the chemical composition of EOs, their current applications in cancer treatments based on clinical studies, and the mechanism of action against the cancer cell lines. Similarly, an overview of using EOs in aromatherapy and enhancing immunity during cancer treatment is provided. Further, this review focuses on the recent technological advancements such as the loading of EOs using protein microspheres, ligands, or nanoemulsions/nanoencapsulation, which offer multiple benefits in cancer treatment via site-specific and target-oriented delivery of drugs. The continuing clinical studies of EOs implicate that their pharmacological applications are a rewarding research area.
Collapse
Affiliation(s)
- Mansi Sharma
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India
| | - Kamaljit Grewal
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | - Rupali Jandrotia
- Department of Botany, Panjab University, Chandigarh 160 014, India
| | | | - Harminder Pal Singh
- Department of Environment Studies, Panjab University, Chandigarh 160 014, India.
| | | |
Collapse
|
41
|
Encapsulation of volatile compounds in liquid media: Fragrances, flavors, and essential oils in commercial formulations. Adv Colloid Interface Sci 2021; 298:102544. [PMID: 34717207 DOI: 10.1016/j.cis.2021.102544] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/23/2022]
Abstract
The first marketed example of the application of microcapsules dates back to 1957. Since then, microencapsulation techniques and knowledge have progressed in a plethora of technological fields, and efforts have been directed toward the design of progressively more efficient carriers. The protection of payloads from the exposure to unfavorable environments indeed grants enhanced efficacy, safety, and stability of encapsulated species while allowing for a fine tuning of their release profile and longer lasting beneficial effects. Perfumes or, more generally, active-loaded microcapsules are nowadays present in a very large number of consumer products. Commercial products currently make use of rigid, stable polymer-based microcapsules with excellent release properties. However, this type of microcapsules does not meet certain sustainability requirements such as biocompatibility and biodegradability: the leaking via wastewater contributes to the alarming phenomenon of microplastic pollution with about 4% of total microplastic in the environment. Therefore, there is a need to address new issues which have been emerging in relation to the poor environmental profile of such materials. The progresses in some of the main application fields of microencapsulation, such as household care, toiletries, cosmetics, food, and pesticides are reviewed herein. The main technologies employed in microcapsules production and the mechanisms underlying the release of actives are also discussed. Both the advantages and disadvantages of every technique have been considered to allow a careful choice of the most suitable technique for a specific target application and prepare the ground for novel ideas and approaches for encapsulation strategies that we expect to be proposed within the next years.
Collapse
|
42
|
Ferreira MA, de Almeida Júnior RF, Onofre TS, Casadei BR, Farias KJS, Severino P, de Oliveira Franco CF, Raffin FN, de Lima e Moura TFA, de Melo Barbosa R. Annatto Oil Loaded Nanostructured Lipid Carriers: A Potential New Treatment for Cutaneous Leishmaniasis. Pharmaceutics 2021; 13:1912. [PMID: 34834327 PMCID: PMC8618414 DOI: 10.3390/pharmaceutics13111912] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 11/18/2022] Open
Abstract
Annatto (Bixa orellana L.) is extensively used as food pigment worldwide. Recently, several studies have found it to have healing and antioxidant properties, as well as effective action against leishmaniasis. Therefore, the purpose of this study was to incorporate the oil obtained from annatto seeds into a nanostructured lipid carrier (NLC) and evaluate its physicochemical properties and biological activity against Leishmania major. Nanoparticles were prepared by the fusion-emulsification and ultrasonication method, with the components Synperonic™ PE (PL) as the surfactant, cetyl palmitate (CP) or myristyl myristate (MM) as solid lipids, annatto oil (AO) (2% and 4%, w/w) as liquid lipid and active ingredient, and ultra-pure water. Physicochemical and biological characterizations were carried out to describe the NLCs, including particle size, polydispersity index (PDI), and zeta potential (ZP) by dynamic light scattering (DLS), encapsulation efficiency (EE%), thermal behavior, X-ray diffraction (XRD), transmission electron microscopy (TEM), Electron Paramagnetic Resonance (EPR), cytotoxicity on BALB/c 3T3 fibroblasts and immortalized human keratinocyte cells, and anti-leishmaniasis activity in vitro. Nanoparticles presented an average diameter of ~200 nm (confirmed by TEM results), a PDI of less than 0.30, ZP between -12.6 and -31.2 mV, and more than 50% of AO encapsulated in NLCs. Thermal analyses demonstrated that the systems were stable at high temperatures with a decrease in crystalline structure due to the presence of AOs (confirmed by XRD). In vitro, the anti-leishmania test displayed good activity in encapsulating AO against L. major. The results indicate that the oily fraction of Bixa orellana L. in NLC systems should be evaluated as a potential therapeutic agent against leishmaniasis.
Collapse
Affiliation(s)
- Marianna Araújo Ferreira
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| | | | - Thiago Souza Onofre
- Biochemistry and Molecular Biology Department, Federal University of Viçosa (UFV), Viçosa 36570-900, Brazil;
| | - Bruna Renata Casadei
- Institute of Physics, University of São Paulo, USP, São Paulo 05508-090, Brazil;
| | | | - Patricia Severino
- Institute of Technology and Research (ITP), Aracaju 49010-390, Brazil;
| | | | - Fernanda Nervo Raffin
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| | | | - Raquel de Melo Barbosa
- Laboratory of Drug Development, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal 59012-570, Brazil; (M.A.F.); (F.N.R.)
| |
Collapse
|
43
|
A pre-formulation study of tetracaine loaded in optimized nanostructured lipid carriers. Sci Rep 2021; 11:21463. [PMID: 34728779 PMCID: PMC8563806 DOI: 10.1038/s41598-021-99743-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 09/30/2021] [Indexed: 11/14/2022] Open
Abstract
Tetracaine (TTC) is a local anesthetic broadly used for topical and spinal blockade, despite its systemic toxicity. Encapsulation in nanostructured lipid carriers (NLC) may prolong TTC delivery at the site of injection, reducing such toxicity. This work reports the development of NLC loading 4% TTC. Structural properties and encapsulation efficiency (%EE > 63%) guided the selection of three pre-formulations of different lipid composition, through a 23 factorial design of experiments (DOE). DLS and TEM analyses revealed average sizes (193-220 nm), polydispersity (< 0.2), zeta potential |- 21.8 to - 30.1 mV| and spherical shape of the nanoparticles, while FTIR-ATR, NTA, DSC, XRD and SANS provided details on their structure and physicochemical stability over time. Interestingly, one optimized pre-formulation (CP-TRANS/TTC) showed phase-separation after 4 months, as predicted by Raman imaging that detected lack of miscibility between its solid (cetyl palmitate) and liquid (Transcutol) lipids. SANS analyses identified lamellar arrangements inside such nanoparticles, the thickness of the lamellae been decreased by TTC. As a result of this combined approach (DOE and biophysical techniques) two optimized pre-formulations were rationally selected, both with great potential as drug delivery systems, extending the release of the anesthetic (> 48 h) and reducing TTC cytotoxicity against Balb/c 3T3 cells.
Collapse
|
44
|
An Q, Ren JN, Li X, Fan G, Qu SS, Song Y, Li Y, Pan SY. Recent updates on bioactive properties of linalool. Food Funct 2021; 12:10370-10389. [PMID: 34611674 DOI: 10.1039/d1fo02120f] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural products, including essential oils and their components, have been used for their bioactivities. Linalool (2,6-dimethyl-2,7-octadien-6-ol) is an aromatic monoterpene alcohol that is widely found in essential oils and is broadly used in perfumes, cosmetics, household cleaners and food additives. This review covers the sources, physicochemical properties, application, synthesis and bioactivities of linalool. The present study focuses on the bioactive properties of linalool, including anticancer, antimicrobial, neuroprotective, anxiolytic, antidepressant, anti-stress, hepatoprotective, renal protective, and lung protective activity and the underlying mechanisms. Besides this, the therapeutic potential of linalool and the prospect of encapsulating linalool are also discussed. Linalool can induce apoptosis of cancer cells via oxidative stress, and at the same time protects normal cells. Linalool exerts antimicrobial effects through disruption of cell membranes. The protective effects of linalool to the liver, kidney and lung are owing to its anti-inflammatory activity. On account of its protective effects and low toxicity, linalool can be used as an adjuvant of anticancer drugs or antibiotics. Therefore, linalool has a great potential to be applied as a natural and safe alternative therapeutic.
Collapse
Affiliation(s)
- Qi An
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Jing-Nan Ren
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Xiao Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Gang Fan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Sha-Sha Qu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yue Song
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Yang Li
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| | - Si-Yi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
45
|
Pramanik S, Mohanto S, Manne R, Rajendran RR, Deepak A, Edapully SJ, Patil T, Katari O. Nanoparticle-Based Drug Delivery System: The Magic Bullet for the Treatment of Chronic Pulmonary Diseases. Mol Pharm 2021; 18:3671-3718. [PMID: 34491754 DOI: 10.1021/acs.molpharmaceut.1c00491] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Chronic pulmonary diseases encompass different persistent and lethal diseases, including chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), asthma, and lung cancers that affect millions of people globally. Traditional pharmacotherapeutic treatment approaches (i.e., bronchodilators, corticosteroids, chemotherapeutics, peptide-based agents, etc.) are not satisfactory to cure or impede diseases. With the advent of nanotechnology, drug delivery to an intended site is still difficult, but the nanoparticle's physicochemical properties can accomplish targeted therapeutic delivery. Based on their surface, size, density, and physical-chemical properties, nanoparticles have demonstrated enhanced pharmacokinetics of actives, achieving the spotlight in the drug delivery research field. In this review, the authors have highlighted different nanoparticle-based therapeutic delivery approaches to treat chronic pulmonary diseases along with the preparation techniques. The authors have remarked the nanosuspension delivery via nebulization and dry powder carrier is further effective in the lung delivery system since the particles released from these systems are innumerable to composite nanoparticles. The authors have also outlined the inhaled particle's toxicity, patented nanoparticle-based pulmonary formulations, and commercial pulmonary drug delivery devices (PDD) in other sections. Recently advanced formulations employing nanoparticles as therapeutic carriers for the efficient treatment of chronic pulmonary diseases are also canvassed.
Collapse
Affiliation(s)
- Sheersha Pramanik
- Department of Pharmacy, Institute of Pharmacy Jalpaiguri, Netaji Subhas Chandra Bose Road, Hospital Para, Jalpaiguri, West Bengal 735101, India.,Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Sourav Mohanto
- Department of Pharmaceutics, Himalayan Pharmacy Institute, Majhitar, East Sikkim 737176, India.,Department of Pharmaceutics, Yenepoya Pharmacy College and Research Centre, Yenepoya, Mangalore, Karnataka 575018, India
| | - Ravi Manne
- Quality Control and Assurance Department, Chemtex Environmental Lab, 3082 25th Street, Port Arthur, Texas 77642, United States
| | - Rahul R Rajendran
- Department of Mechanical Engineering and Mechanics, Lehigh University, 19 Memorial Drive West, Bethlehem, Pennsylvania 18015, United States
| | - A Deepak
- Saveetha Institute of Medical and Technical Sciences, Saveetha School of Engineering, Chennai, Tamil Nadu 600128, India
| | - Sijo Joy Edapully
- School of Biotechnology, National Institute of Technology Calicut, NIT campus, Kozhikode, Kerala 673601, India.,Corporate Head Office, HLL Lifecare Limited, Poojappura, Thiruvananthapuram, Kerala 695012, India
| | - Triveni Patil
- Department of Pharmaceutics, Bharati Vidyapeeth Deemed University, Poona College of Pharmacy, Erandwane, Pune, Maharashtra 411038, India
| | - Oly Katari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Sila Katamur (Halugurisuk), Changsari, Kamrup, Guwahati, Assam 781101, India
| |
Collapse
|
46
|
Muraca GS, Soler-Arango J, Castro GR, Islan GA, Brelles-Mariño G. Improving ciprofloxacin antimicrobial activity through lipid nanoencapsulation or non-thermal plasma on Pseudomonas aeruginosa biofilms. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
47
|
Silva BIM, Nascimento EA, Silva CJ, Silva TG, Aguiar JS. Anticancer activity of monoterpenes: a systematic review. Mol Biol Rep 2021; 48:5775-5785. [PMID: 34304392 DOI: 10.1007/s11033-021-06578-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/15/2021] [Indexed: 01/06/2023]
Abstract
Secondary metabolites have been recognized for centuries as medicinal agents, in particular monoterpenes which have been the target of research in the discovery of antineoplastic drugs, as they have potential antitumor effect and low toxicity and are used as additives in foods and cosmetics. Another advantage of monoterpenes is structural diversity, which gives greater plasticity when interacting with cells. The purpose of this review was to summarize and critically discuss the anticancer potential of monoterpenes and their respective mechanisms of action. A systematic review of articles in the MEDLINE/PubMed, Web of Science, Scopus and Science Direct electronic databases was independently conducted by three reviewers using the combination of the following keywords: monoterpenes AND anticancer AND in vitro. Restriction in selecting articles followed pre-established inclusion and exclusion criteria by the reviewers, and also a time limitation with works published between 2015 and 2019 being selected. In total, 39 works were deemed eligible for inclusion in the final review. Monoterpenes have cytotoxic activity in a wide variety of tumor cell lines, and mainly appear to exert this effect by inducing apoptosis caused by oxidative stress. In addition, improved use of monoterpenes when used in drug delivery systems and the synergistic effect with conventional chemotherapeutic drugs are reported. These findings validate this class of compounds as a promising source of chemotherapeutic drugs yet to be explored.
Collapse
Affiliation(s)
- Bruno I M Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Erika A Nascimento
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Cleber J Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Teresinha G Silva
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Jaciana S Aguiar
- Department of Antibiotics, Federal University of Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
48
|
Xing Y, Lu P, Xue Z, Liang C, Zhang B, Kebebe D, Liu H, Liu Z. Nano-Strategies for Improving the Bioavailability of Inhaled Pharmaceutical Formulations. Mini Rev Med Chem 2021; 20:1258-1271. [PMID: 32386491 DOI: 10.2174/1389557520666200509235945] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 05/02/2019] [Accepted: 12/02/2019] [Indexed: 02/06/2023]
Abstract
Pulmonary pharmaceutical formulations are targeted for the treatment of respiratory diseases. However, their application is limited due to the physiological characteristics of the lungs, such as branching structure, mucociliary and macrophages, as well as certain properties of the drugs like particle size and solubility. Nano-formulations can ameliorate particle sizes and improve drug solubility to enhance bioavailability in the lungs. The nano-formulations for lungs reviewed in this article can be classified into nanocarriers, no-carrier-added nanosuspensions and polymer-drug conjugates. Compared with conventional inhalation preparations, these novel pulmonary pharmaceutical formulations have their own advantages, such as increasing drug solubility for better absorption and less inflammatory reaction caused by the aggregation of insoluble drugs; prolonging pulmonary retention time and reducing drug clearance; improving the patient compliance by avoiding multiple repeated administrations. This review will provide the reader with some background information for pulmonary drug delivery and give an overview of the existing literature about nano-formulations for pulmonary application to explore nano-strategies for improving the bioavailability of pulmonary pharmaceutical formulations.
Collapse
Affiliation(s)
- Yue Xing
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Peng Lu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhifeng Xue
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chunxia Liang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Bing Zhang
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Dereje Kebebe
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Hongfei Liu
- College of Pharmacy, Jiangsu University, Zhenjiang 212013, China
| | - Zhidong Liu
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
49
|
Lammari N, Louaer O, Meniai AH, Fessi H, Elaissari A. Plant oils: From chemical composition to encapsulated form use. Int J Pharm 2021; 601:120538. [PMID: 33781879 DOI: 10.1016/j.ijpharm.2021.120538] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/22/2021] [Indexed: 12/16/2022]
Abstract
The last decade has witnessed a burgeoning global movement towards essential and vegetable oils in the food, agriculture, pharmaceutical, cosmetic, and textile industries thanks to their natural and safe status, broad acceptance by consumers, and versatile functional properties. However, efforts to develop new therapy or functional agents based on plant oils have met with challenges of limited stability and/or reduced efficacy. As a result, there has been increased research interest in the encapsulation of plant oils, whereby the nanocarriers serve as barrier between plant oils and the environment and control oil release leading to improved efficacy, reduced toxicity and enhanced patient compliance and convenience. In this review, special concern has been addressed to the encapsulation of essential and vegetable oils in three types of nanocarriers: polymeric nanoparticles, liposomes and solid lipid nanoparticles. First, the chemical composition of essential and vegetable oils was handled. Moreover, we gather together the research findings reported by the literature regarding the different techniques used to generate these nanocarriers with their significant findings. Finally, differences and similarities between these nanocarriers are discussed, along with current and future applications that are warranted by their structures and properties.
Collapse
Affiliation(s)
- Narimane Lammari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France; Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Ouahida Louaer
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Abdeslam Hassen Meniai
- Environmental Process Engineering Laboratory, University Constantine 3, Salah Boubnider, Constantine, Algeria
| | - Hatem Fessi
- Univ Lyon, Université Claude Bernard Lyon-1, CNRS, LAGEP UMR 5007, F-69622 Lyon, France
| | - Abdelhamid Elaissari
- Univ Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Villeurbanne, France.
| |
Collapse
|
50
|
Rodenak-Kladniew B, Noacco N, Pérez de Berti I, Stewart SJ, Cabrera AF, Alvarez VA, García de Bravo M, Durán N, Castro GR, Islan GA. Design of magnetic hybrid nanostructured lipid carriers containing 1,8-cineole as delivery systems for anticancer drugs: Physicochemical and cytotoxic studies. Colloids Surf B Biointerfaces 2021; 202:111710. [PMID: 33765626 DOI: 10.1016/j.colsurfb.2021.111710] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/09/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
The development of versatile carriers to deliver chemotherapeutic agents to specific targets with establishing drug release kinetics and minimum undesirable side effects is becoming a promising relevant tool in the medical field. Magnetic hybrid nanostructured lipid carriers (NLC) were prepared by incorporation of 1,8-cineole (CN, a monoterpene with antiproliferative properties) and maghemite nanoparticles (MNPs) into a hybrid matrix composed of myristyl myristate coated with chitosan. Hybrid NLC characterized by DLS and TEM confirmed the presence of positively charged spherical nanoparticles of around 250 nm diameter and +10.2 mV of Z-potential. CN encapsulation into the lipid core was greater than 75 % and effectively released in 24 h. Modification of the crystalline structure of nanoparticles after incorporation of CN and MNPs was observed by XRD, DSC, and TGA analyses. Superparamagnetic NLC behavior was verified by recording the magnetization using a vibrating scanning magnetometer. NLC resulted in more cytotoxic than free CN in HepG2 and A549 cell lines. Particularly, viability inhibition of HepG2 and A549 cells was increased from 35 % to 55 % and from 38 % to 61 %, respectively, when 8 mM CN was incorporated into the lipid NPs at 24 h. Green fluorescent-labeled NLC with DIOC18 showed an enhanced cellular uptake with chitosan-coated NLC. Besides, no cytotoxicity of the formulations in normal WI-38 cells was observed, suggesting that the developed hybrid NLC system is a safe and good potential candidate for the selective delivery and potentiation of anticancer drugs.
Collapse
Affiliation(s)
- B Rodenak-Kladniew
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - N Noacco
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina
| | - I Pérez de Berti
- CINDECA, CONICET-CICPBA-Universidad Nacional de La Plata, Facultad de Ciencias Exactas, Calle 47 N 257, 1900, La Plata, Argentina
| | - S J Stewart
- IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 67, 1900, La Plata, Argentina
| | - A F Cabrera
- IFLP-CONICET, Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, C. C. 67, 1900, La Plata, Argentina
| | - V A Alvarez
- Grupo de Materiales Compuestos Termoplásticos (CoMP), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10850, 7600, Mar del Plata, Argentina
| | - M García de Bravo
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-UNLP, CCT-La Plata, Facultad de Ciencias Médicas, La Plata, Argentina
| | - N Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Biology Institute, University of Campinas, Campinas, SP, Brazil; Nanomedicine Research Unit (Nanomed), Federal University of ABC (UFABC), Santo André, SP, Brazil
| | - G R Castro
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina; Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC). Partner Laboratory of the Max Planck Institute for Biophysical Chemistry (MPIbpC, MPG). Centro de Estudios Interdisciplinarios (CEI), Universidad Nacional de Rosario, Maipú 1065, S2000, Rosario, Santa Fe, Argentina
| | - G A Islan
- Laboratorio de Nanobiomateriales, CINDEFI, Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata (UNLP) -CONICET (CCT La Plata), Calle 47 y 115, B1900AJI, La Plata, Buenos Aires, Argentina.
| |
Collapse
|