1
|
Nyandoro VO, Ismail EA, Tageldin A, Gafar MA, Peters XQ, Mautsoe R, Omolo CA, Govender T. Potential of nanocarrier-mediated delivery of vancomycin for MRSA infections. Expert Opin Drug Deliv 2025; 22:347-365. [PMID: 39949087 DOI: 10.1080/17425247.2025.2459756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 01/24/2025] [Indexed: 02/20/2025]
Abstract
INTRODUCTION Methicillin-resistant Staphylococcus aureus (MRSA) threatens global health due to its resistance to vancomycin, which is the standard treatment despite limitations, including nephrotoxicity and low intracellular permeability. This necessitates the development of innovative strategies such as nanocarrier-mediated delivery to overcome such limitations. Nanocarriers serve as delivery systems for vancomycin and exhibit inherent antibacterial properties, potentially providing synergism and overcoming MRSA's resistance. Nanocarriers provide sustained release and targeted delivery of vancomycin to the infection site, achieving higher therapeutic concentrations and superior antibacterial activity with reduced doses, which minimizes systemic toxicity. Moreover, leveraging simulations techniques provides more insights on vancomycin-nanocarrier interactions, facilitating the optimization of nanosystems. AREAS COVERED The article discusses the potential of nanocarriers in delivering vancomycin to infection site, reducing systemic toxicity, and potentiating anti-MRSA activity. Additionally, it reviews modeling and simulation studies to provide a deeper understanding of vancomycin-nanocarrier interactions. The literature search included experimental articles from 2017 to 2024, searched in Web of Science, Google scholar, PubMed, and Scopus. EXPERT OPINION Nanocarrier-mediated delivery of vancomycin offers promising approaches to combat MRSA infections by enhancing therapeutic efficacy and reducing systemic toxicity. However, further research is required to optimize these nanoformulations and advance them to clinical trials and practical applications.
Collapse
Affiliation(s)
- Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics and Pharmaceutical Chemistry, School of Pharmacy, Kabarak University, Kabarak, Kenya
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Abdelrahman Tageldin
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Xylia Q Peters
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Relebohile Mautsoe
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- School of Pharmacy and Health Sciences, Department of Pharmaceutics, United States International University-Africa, Nairobi, Kenya
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
2
|
Li Z, Li H, Tang Z, Tang Q, Liao C, Tang H, Wang D. Design of acidic activation-responsive charge-switchable carbon dots and validation of their antimicrobial activity. RSC Adv 2025; 15:5413-5425. [PMID: 39967894 PMCID: PMC11833602 DOI: 10.1039/d5ra00174a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Bacterial biofilms play a crucial role in the emergence of antibiotic resistance and the persistence of chronic infections. The challenge of effectively eradicating bacterial biofilms while ensuring minimal toxicity to normal cells persists. Carbon-based artificial nanoenzymes have attracted considerable attention as emerging nanotheranostic agents, owing to their biocompatibility, cost-effectiveness, and straightforward synthesis. In this study, we have developed a multifunctional carbon dots (CDs) system, specifically CDs functionalized with 1-(3-aminopropyl) imidazole (API), termed CDs-API. This system demonstrates acid-activated antibiofilm activity. The CDs-API were synthesized from chlorogenic acid (ChA), a bioactive compound naturally occurring in coffee, and subsequently functionalized with API to achieve charge-switchable properties under acidic conditions. This distinctive feature enables CDs-API to efficiently penetrate bacterial biofilms and selectively target the colonized bacteria. The enzyme-like activity of CDs-API effectively consumes high levels of glutathione (GSH) within the biofilm, leading to the accumulation of reactive oxygen species (ROS). Consequently, this process degrades the extracellular polymeric substance (EPS) matrix, damages bacterial DNA and protein structures, and disrupts the redox balance, ultimately leading to bacterial cell death. Experimental results demonstrated that CDs-API effectively inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (PAE) while promoting wound healing with minimal damage to healthy tissues. The acid-activated charge-switchable capability of CDs-API provides superior antibacterial efficacy compared to traditional antibiotics, rendering it a promising candidate for the treatment of bacterial biofilm infections.
Collapse
Affiliation(s)
- Zhuo Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Hui Li
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Zhenrong Tang
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University Chongqing 400010 China
| | - Qingxia Tang
- Clinical Laboratory, The People's Hospital of Rongchang District Chongqing 402460 China
| | - Chang Liao
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Hua Tang
- Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Chongqing Medical University Chongqing 400010 China
| | - Dan Wang
- Post-Doctoral Research Center, The People's Hospital of Rongchang District Chongqing 402460 China
| |
Collapse
|
3
|
Elhassan E, Omolo CA, Gafar MA, Ismail EA, Ibrahim UH, Khan R, Lesouhaitier M, Kubes P, Govender T. Multifunctional hyaluronic acid-based biomimetic/pH-responsive hybrid nanostructured lipid carriers for treating bacterial sepsis. J Biomed Sci 2025; 32:19. [PMID: 39930418 PMCID: PMC11812216 DOI: 10.1186/s12929-024-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 12/17/2024] [Indexed: 02/13/2025] Open
Abstract
INTRODUCTION The application of biomimetic and stimuli-responsive nanocarriers displays considerable promise in improving the management of bacterial sepsis and overcoming antimicrobial resistance. Therefore, the study aimed to synthesize a novel hyaluronic acid-lysine conjugate (HA-Lys) and to utilize the attributes of the synthesized HA-Lys with Tocopherol succinate (TS) and Oleylamine (OLA) in the formulation of multifunctional biomimetic pH-responsive HNLCs loaded with vancomycin (VCM-HNLCs), to combat bacterial sepsis. METHODS A novel hyaluronic acid-lysine conjugate (HA-Lys) was synthesized and characterized using FTIR and 1H NMR spectroscopy. Vancomycin-loaded hybrid nanosystems (VCM-HNLCs) were prepared through hot homogenization ultrasonication and evaluated for particle size, polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%). In vitro biocompatibility was assessed via MTT assay and red blood cell hemolysis test. The binding affinity to TLR2 and TLR4 was measured using microscale thermophoresis (MST). Drug release was evaluated using the dialysis bag method. Antimicrobial activity against MRSA and efflux pump inhibition were also determined. Efficacy was demonstrated in an MRSA-induced sepsis mice model. RESULTS The VCM-HNLCs, produced via hot homogenization ultrasonication, exhibited particle size (PS), polydispersity index (PDI), zeta potential (ZP), and encapsulation efficiency (EE%) of 110.77 ± 1.692 nm, 0.113 ± 0.022, - 2.92 ± 0.210 mV, and 76.27 ± 1.200%, respectively. In vitro, biocompatibility was proven by hemolysis and cytotoxicity studies. The VCM-HNLCs demonstrated targetability to human Toll-like receptors (TLR 2 and 4) as validated by microscale thermophoresis (MST). VCM-HNLCs showed a twofold reduction in MIC values at physiological pH compared to the bare VCM against S. aureus and MRSA for 48 h. While at pH 6.0, MIC values were reduced by fourfold in the first 24 h and by eightfold in the subsequent 48 and 72 h against tested strains. Furthermore, VCM-HNLCs showed inhibitory effects against MRSA efflux pumps, reactive oxygen species (ROS), and lipopolysaccharide (LPS)-induced hyperinflammation. In an MRSA-induced sepsis mice model, VCM-HNLCs demonstrated superior efficacy compared to free VCM, significantly eliminated bacteria and improved survival rates. CONCLUSIONS Overall, these results highlight the potential of VCM-HNLCs as novel multifunctional nanocarriers to combat antimicrobial resistance (AMR) and enhance sepsis outcomes.
Collapse
Affiliation(s)
- Eman Elhassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Khartoum, Khartoum, Sudan
| | - Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
- Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Usri H Ibrahim
- Discipline of Human Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
| | - Mathieu Lesouhaitier
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Paul Kubes
- Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AL, Canada
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
4
|
Nazli A, Irshad Khan MZ, Rácz Á, Béni S. Acid-sensitive prodrugs; a promising approach for site-specific and targeted drug release. Eur J Med Chem 2024; 276:116699. [PMID: 39089000 DOI: 10.1016/j.ejmech.2024.116699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/03/2024]
Abstract
Drugs administered through conventional formulations are devoid of targeting and often spread to various undesired sites, leading to sub-lethal concentrations at the site of action and the emergence of undesired effects. Hence, therapeutic agents should be delivered in a controlled manner at target sites. Currently, stimuli-based drug delivery systems have demonstrated a remarkable potential for the site-specific delivery of therapeutic moieties. pH is one of the widely exploited stimuli for drug delivery as several pathogenic conditions such as tumor cells, infectious and inflammatory sites are characterized by a low pH environment. This review article aims to demonstrate various strategies employed in the design of acid-sensitive prodrugs, providing an overview of commercially available acid-sensitive prodrugs. Furthermore, we have compiled the progress made for the development of new acid-sensitive prodrugs currently undergoing clinical trials. These prodrugs include albumin-binding prodrugs (Aldoxorubicin and DK049), polymeric micelle (NC-6300), polymer conjugates (ProLindac™), and an immunoconjugate (IMMU-110). The article encompasses a broad spectrum of studies focused on the development of acid-sensitive prodrugs for anticancer, antibacterial, and anti-inflammatory agents. Finally, the challenges associated with the acid-sensitive prodrug strategy are discussed, along with future directions.
Collapse
Affiliation(s)
- Adila Nazli
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | | | - Ákos Rácz
- Department of Pharmacognosy, Semmelweis University, 1085, Budapest, Hungary.
| | - Szabolcs Béni
- Integrative Health and Environmental Analysis Research Laboratory, Department of Analytical Chemistry, Institute of Chemistry, Eötvös Loránd University, 1117, Budapest, Hungary.
| |
Collapse
|
5
|
Feng C, Sun C, Ho EA. Bacteria-responsive drug release platform for the local treatment of bacterial vaginosis. NANOTECHNOLOGY 2024; 35:475101. [PMID: 39163877 DOI: 10.1088/1361-6528/ad7143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/20/2024] [Indexed: 08/22/2024]
Abstract
Bacterial vaginosis (BV) is a common vaginal infection affecting millions of women. Vaginal anaerobic dysbiosis occurs whenLactobacillusspp., the dominant flora in healthy vagina is replaced by certain overgrown anaerobes, resulting in unpleasant symptoms such as vaginal discharge and odor. With a high recurrence rate, BV also severely impacts the overall quality of life of childbearing women by inducing preterm delivery and increasing the risks of pelvic inflammatory disease and sexually transmitted infections. Among various BV-associated bacteria,Gardnerella vaginalis(G. vaginalis) has been identified as a primary pathogen since it has been isolated from almost all women carrying BV and exhibits higher virulence potential over other bacteria. When dealing with BV relapse, intravaginal drug delivery systems are superior to conventional oral antibiotic therapies in improving therapeutic efficacy owing to more effective drug dose, reduced drug resistance and minimized side effects such as stomach irritation. Traditional intravaginal drug administration generally involves solids, semi-solids and delivery devices inserted into the vaginal lumen to achieve sustained drug release. However, they are mostly designed for continuous drug release and are not preventative therapies, resulting in severe side effects caused by excess dosing. Stimuli-responsive systems that can release drug only when needed ('on-demand') can help diminish these negative side effects. Hence, we developed a bacteria-responsive liposomal platform for the prevention and treatment of BV. This platform demonstrated sustained drug release in the presence of vaginolysin, a toxin secreted specifically byG. vaginalis. We prepared four liposome formulations and evaluated their responsiveness toG. vaginalis. The results demonstrated that the liposome formulations could achieve cumulative drug release ranging from 46.7% to 51.8% over a 3-5 d period in response toG. vaginalisand hardly any drug release in the presence ofLactobacillus crispatus(L. crispatus), indicating the high specificity of the system. Overall, the bacteria-responsive drug release platform has great potential, since it will be the first time to realize sustained drug release stimulated by a specific pathogen for BV prevention and treatment. This on-demand therapy can potentially provide relief to the millions of women affected by BV.
Collapse
Affiliation(s)
- Chuying Feng
- School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, Ontario, Canada
| | - Chen Sun
- School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, Ontario, Canada
| | - Emmanuel A Ho
- School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, Ontario, Canada
- Waterloo Institute for Nanotechnology, Waterloo, Ontario, Canada
| |
Collapse
|
6
|
Ismail EA, Omolo CA, Gafar MA, Khan R, Nyandoro VO, Salifu EY, Govender T. Multi-functional pH-responsive and biomimetic chitosan-based nanoplexes for targeted delivery of ciprofloxacin against bacterial sepsis. Int J Biol Macromol 2024; 262:130046. [PMID: 38336334 DOI: 10.1016/j.ijbiomac.2024.130046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/31/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Bacterial sepsis is a mortal syndromic disease characterized by a complex pathophysiology that hinders effective targeted therapy. This study aimed to develop multifunctional, biomimetic and pH-responsive ciprofloxacin-loaded chitosan (CS)/sodium deoxycholic acid (SDC) nanoplexes (CS/SDC) nanoplexes with the ability to target and modulate the TLR4 pathway, activated during sepsis. The formulated nanoplexes were characterized in terms of physicochemical properties, in silico and in vitro potential biological activities. The optimal formulation showed good biocompatibility and stability with appropriate physicochemical parameters. The surface charge changed from negative at pH 7.4 to positive at pH 6.0 accompanied with a significantly faster release of CIP at pH 6.0 compared to 7.4. The biomimicry was elucidated by in silico tools and MST and results confirmed strong binding between the system and TLR4. Furthermore, the system revealed 4- and 2-fold antibacterial enhancement at acidic pH, and 3- and 4-fold better antibiofilm efficacy against Methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa (P. aeruginosa) respectively, compared to bare CIP. In addition, enhanced bacterial efflux pump inhibition was demonstrated by CS/SDC nanoplexes. Finally, the developed nanosystem showed excellent antioxidant activity against DPPH radicals. Taken together, the study confirmed the multi-functionalities of CS/SDC nanoplexes and their potential benefits in improving bacterial sepsis therapy.
Collapse
Affiliation(s)
- Eman A Ismail
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; Department of Pharmaceutics, Faculty of Pharmacy, University of Gezira, Wad Medani, Sudan
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Mohammed A Gafar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Rene Khan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Vincent O Nyandoro
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Elliasu Y Salifu
- Biomedical Research and Innovation Platform (BRIP), South African Medical Research Council (SAMRC), Cape Town 7505, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
7
|
Li B, Mao J, Wu J, Mao K, Jia Y, Chen F, Liu J. Nano-Bio Interactions: Biofilm-Targeted Antibacterial Nanomaterials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306135. [PMID: 37803439 DOI: 10.1002/smll.202306135] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/10/2023] [Indexed: 10/08/2023]
Abstract
Biofilm is a spatially organized community formed by the accumulation of both microorganisms and their secretions, leading to persistent and chronic infections because of high resistance toward conventional antibiotics. In view of the tunable physicochemical properties and the related unique biological behavior (e.g., size-, shape-, and surface charge-dependent penetration, protein corona endowed targeting, catalytic- and electronic-related oxidative stress, optical- and magnetic-associated hyperthermia, etc.), nanomaterials-based therapeutics are widely used for the treatment of biofilm-associated infections. In this review, the biological characteristics of biofilm are introduced. And the nanomaterials-based antibacterial strategies are further discussed via biofilm targeting, including preventing biofilm formation, enhancing biofilm penetration, disrupting the mature biofilm, and acting as drug delivery systems. In which, the interactions between biofilm and nanomaterials include mechanical disruption, electron transfer, enzymatic degradation, oxidative stress, and hyperthermia. Additionally, the current advances of nanomaterials for antibacterial nanomaterials by biofilm targeting are summarized. This review aims to present a complete vision of antibacterial nanomaterials-biofilm (nano-bio) interactions, paving the way for the future development and clinical translation of effective antibacterial nanomedicines.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiahui Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jiawei Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Kerou Mao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Yangrui Jia
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Fulin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Faculty of Life Science and Medicine, Northwest University, Xi'an, 710069, P. R. China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety and CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China
| |
Collapse
|
8
|
Nayak R, Halder J, Rajwar TK, Pradhan D, Rai VK, Dubey D, Kar B, Ghosh G, Rath G. Metronidazole loaded chitosan-phytic acid polyelectrolyte complex nanoparticles as mucoadhesive vaginal delivery system for bacterial vaginosis. Int J Biol Macromol 2024; 255:128212. [PMID: 37989434 DOI: 10.1016/j.ijbiomac.2023.128212] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/22/2023] [Accepted: 11/15/2023] [Indexed: 11/23/2023]
Abstract
Bacterial vaginosis (BV) is a recurring infection that is difficult to treat due to the limited bioavailability of antimicrobials. In this study, Metronidazole (MTZ)-loaded chitosan nanoparticles (MCSNP) were synthesized employing phytic acid (PA) as a crosslinking agent for treating bacterial vaginosis. The prepared MCSNPs were characterized for size, shape, surface charge, compatibility, cytotoxicity, biofilm inhibition, and in-vitro/in-vivo antimicrobial activities. Morphological examination revealed that nanoparticles generated from 0.535 % w/v chitosan and 0.112 % w/v PA were non-spherical, discontinuous, and irregular, with zeta potential ranging from 25.00 ± 0.45 to 39 ± 0.7. The results of DSC and XRD demonstrated no change in the physical state of the drug in the finished formulation. The optimized formulation demonstrates a cumulative drug release of about 98 ± 1.5 % within 8 h. Antimicrobial studies demonstrated that the optimized formulation had enhanced efficacy against acid-adapted BV pathogens, with a MIC value of 0.9 ± 0.1 μg/mL. Compared to the MTZ alone, the in-vivo antibacterial results of in the case of developed nanoparticles showed a four-fold reduction in bacterial count in female Swiss albino mice. Based on the experimental findings, it was concluded that MCSNPs, due to their excellent physiochemical and antibacterial properties, could serve as a potential topical alternative for treating BV.
Collapse
Affiliation(s)
- Reena Nayak
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Jitu Halder
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Tushar Kanti Rajwar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Deepak Pradhan
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Vineet Kumar Rai
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Debasmita Dubey
- Medical Research Laboratory, Institute of Medical Sciences & SUM Hospital, Siksha O Anusandhan Deemed to be University, Bhubaneswar, Odisha 751003, India
| | - Biswakanth Kar
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Ghosh
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Goutam Rath
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India.
| |
Collapse
|
9
|
Karnwal A, Kumar G, Pant G, Hossain K, Ahmad A, Alshammari MB. Perspectives on Usage of Functional Nanomaterials in Antimicrobial Therapy for Antibiotic-Resistant Bacterial Infections. ACS OMEGA 2023; 8:13492-13508. [PMID: 37091369 PMCID: PMC10116640 DOI: 10.1021/acsomega.3c00110] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/28/2023] [Indexed: 05/03/2023]
Abstract
The clinical applications of nanotechnology are emerging as widely popular, particularly as a potential treatment approach for infectious diseases. Diseases associated with multiple drug-resistant organisms (MDROs) are a global concern of morbidity and mortality. The prevalence of infections caused by antibiotic-resistant bacterial strains has increased the urgency associated with researching and developing novel bactericidal medicines or unorthodox methods capable of combating antimicrobial resistance. Nanomaterial-based treatments are promising for treating severe bacterial infections because they bypass antibiotic resistance mechanisms. Nanomaterial-based approaches, especially those that do not rely on small-molecule antimicrobials, display potential since they can bypass drug-resistant bacteria systems. Nanoparticles (NPs) are small enough to pass through the cell membranes of pathogenic bacteria and interfere with essential molecular pathways. They can also target biofilms and eliminate infections that have proven difficult to treat. In this review, we described the antibacterial mechanisms of NPs against bacteria and the parameters involved in targeting established antibiotic resistance and biofilms. Finally, yet importantly, we talked about NPs and the various ways they can be utilized, including as delivery methods, intrinsic antimicrobials, or a mixture.
Collapse
Affiliation(s)
- Arun Karnwal
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Kumar
- Department
of Microbiology, School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Gaurav Pant
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun, Uttarakhand 248002, India
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Road, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
10
|
Fan D, Liu X, Ren Y, Bai S, Li Y, Luo Z, Dong J, Chen F, Zeng W. Functional insights to the development of bioactive material for combating bacterial infections. Front Bioeng Biotechnol 2023; 11:1186637. [PMID: 37152653 PMCID: PMC10160456 DOI: 10.3389/fbioe.2023.1186637] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/13/2023] [Indexed: 05/09/2023] Open
Abstract
The emergence of antibiotic-resistant "superbugs" poses a serious threat to human health. Nanomaterials and cationic polymers have shown unprecedented advantages as effective antimicrobial therapies due to their flexibility and ability to interact with biological macromolecules. They can incorporate a variety of antimicrobial substances, achieving multifunctional effects without easily developing drug resistance. Herein, this article discusses recent advances in cationic polymers and nano-antibacterial materials, including material options, fabrication techniques, structural characteristics, and activity performance, with a focus on their fundamental active elements.
Collapse
Affiliation(s)
- Duoyang Fan
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Xiaohui Liu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yueming Ren
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Shuaige Bai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Yanbing Li
- Xiangya Hospital, Central South University, Changsha, China
| | - Ziheng Luo
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Jie Dong
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
| | - Fei Chen
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
- *Correspondence: Fei Chen, ; Wenbin Zeng,
| | - Wenbin Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, China
- *Correspondence: Fei Chen, ; Wenbin Zeng,
| |
Collapse
|
11
|
Nwabuife JC, Hassan D, Madhaorao Pant A, Devnarain N, Gafar MA, Osman N, Rambharose S, Govender T. Novel vancomycin free base – Sterosomes for combating diseases caused by Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus infections (S. Aureus and MRSA). J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2022.104089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Synthesis of pH-responsive dimethylglycine surface-modified branched lipids for targeted delivery of antibiotics. Chem Phys Lipids 2022; 249:105241. [PMID: 36152880 DOI: 10.1016/j.chemphyslip.2022.105241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 01/25/2023]
Abstract
The rampant antimicrobial resistance crisis calls for efficient and targeted drug delivery of antibiotics at the infectious site. Hence, this study aimed to synthesize a pH-responsive dimethylglycine surface-modified branched lipid (DMGSAD-lipid). The structure of the synthesized lipid was fully confirmed. The lipid polymer hybrid nanoparticles (LPHNPs) were formulated using the solvent evaporation method and characterised. Two LPHNPs (VCM_HS15_LPHNPs and VCM_RH40_LPHNPs) were formulated and characterised for size, polydispersity index (PDI), and zeta potential (ZP). Atomistic molecular dynamics simulations revealed that both the systems self-assembled to form energetically stable aggregates. The ZP of RH40_VCM_LPHNPs changed from 0.55 ± 0.14-9.44 ± 0.33 Vm, whereas for SH15_VCM_LPHNPs, ZP changed from - 1.55 ± 0.184 Vm to 9.83 ± 0.52 Vm at pH 7.4 and 6.0, respectively. The encapsulation efficiencies of VCM were above 40% while the drug release was faster at acidic pH when compared to pH 7.4. The antibacterial activity of LPHNPs against MRSA was eight-fold better in MICs at pH 6.0, compared to 7.4, when compared to bare VCM-treated specimens. The study confirms that pH-responsive LPHNPs have the potential for enhancing the treatment of bacterial infections and other diseases characterised by acidic conditions at the target site.
Collapse
|
13
|
Yadav N, Kumar U, Chauhan VS. Conformationally restricted, dipeptide-based, self-assembled nanoparticles for efficient vancomycin delivery. Nanomedicine (Lond) 2022; 17:2023-2035. [PMID: 36645108 DOI: 10.2217/nnm-2022-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Aim: Emergence of vancomycin (Van) resistance, and usage of its higher dose and short half-life are posing a serious concern. Slow and sustained release of Van using a nanodelivery system may overcome these problems. Materials & methods: Arginine-α,β-dehydrophenylalanine (RΔF) was synthesized using solution-phase synthesis which self-assembled into nanospheres. Van was entrapped in the nanoparticles (NPs). In vitro and in vivo efficacy of Van-RΔF was determined using broth microdilution and the mouse thigh infection model, respectively. Results & conclusion: Van-RΔF NPs efficiently inhibited bacterial growth (Staphylococcus aureus), while Van alone showed limited growth inhibition in in vitro. Intravenous administration of Van-RΔF in mice with bacterial thigh infection showed enhanced efficacy (double) compared with Van alone, which indicates its high potential for further development.
Collapse
Affiliation(s)
- Nitin Yadav
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Delhi Institute of Pharmaceutical Sciences & Research, Mehrauli-Badarpur Road, Sector-3, Pushpvihar, New Delhi, 110017, India
| | - Utkarsh Kumar
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Virander Singh Chauhan
- Molecular Medicine Group, International Centre for Genetic Engineering & Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067, India
| |
Collapse
|
14
|
Behbahani SB, Kiridena SD, Wijayaratna UN, Taylor C, Anker JN, Tzeng TRJ. pH variation in medical implant biofilms: Causes, measurements, and its implications for antibiotic resistance. Front Microbiol 2022; 13:1028560. [PMID: 36386694 PMCID: PMC9659913 DOI: 10.3389/fmicb.2022.1028560] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 01/28/2023] Open
Abstract
The advent of implanted medical devices has greatly improved the quality of life and increased longevity. However, infection remains a significant risk because bacteria can colonize device surfaces and form biofilms that are resistant to antibiotics and the host's immune system. Several factors contribute to this resistance, including heterogeneous biochemical and pH microenvironments that can affect bacterial growth and interfere with antibiotic biochemistry; dormant regions in the biofilm with low oxygen, pH, and metabolites; slow bacterial growth and division; and poor antibody penetration through the biofilm, which may also be regions with poor acid product clearance. Measuring pH in biofilms is thus key to understanding their biochemistry and offers potential routes to detect and treat latent infections. This review covers the causes of biofilm pH changes and simulations, general findings of metabolite-dependent pH gradients, methods for measuring pH in biofilms, effects of pH on biofilms, and pH-targeted antimicrobial-based approaches.
Collapse
Affiliation(s)
| | | | | | - Cedric Taylor
- Department of Biological Sciences, Clemson University, Clemson, SC, United States
| | - Jeffrey N. Anker
- Department of Chemistry, Clemson University, Clemson, SC, United States
| | | |
Collapse
|
15
|
Smart Bacteria-Responsive Drug Delivery Systems in Medical Implants. J Funct Biomater 2022; 13:jfb13040173. [PMID: 36278642 PMCID: PMC9589986 DOI: 10.3390/jfb13040173] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
Abstract
With the rapid development of implantable biomaterials, the rising risk of bacterial infections has drawn widespread concern. Due to the high recurrence rate of bacterial infections and the issue of antibiotic resistance, the common treatments of peri-implant infections cannot meet the demand. In this context, stimuli-responsive biomaterials have attracted attention because of their great potential to spontaneously modulate the drug releasing rate. Numerous smart bacteria-responsive drug delivery systems (DDSs) have, therefore, been designed to temporally and spatially release antibacterial agents from the implants in an autonomous manner at the infected sites. In this review, we summarized recent advances in bacteria-responsive DDSs used for combating bacterial infections, mainly according to the different trigger modes, including physical stimuli-responsive, virulence-factor-responsive, host-immune-response responsive and their combinations. It is believed that the smart bacteria-responsive DDSs will become the next generation of mainstream antibacterial therapies.
Collapse
|
16
|
Nazli A, He DL, Liao D, Khan MZI, Huang C, He Y. Strategies and progresses for enhancing targeted antibiotic delivery. Adv Drug Deliv Rev 2022; 189:114502. [PMID: 35998828 DOI: 10.1016/j.addr.2022.114502] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 08/10/2022] [Accepted: 08/16/2022] [Indexed: 01/24/2023]
Abstract
Antibiotic resistance is a global health issue and a potential risk for society. Antibiotics administered through conventional formulations are devoid of targeting effect and often spread to various undesired body sites, leading to sub-lethal concentrations at the site of action and thus resulting in emergence of resistance, as well as side effects. Moreover, we have a very slim antibiotic pipeline. Drug-delivery systems have been designed to control the rate, time, and site of drug release, and innovative approaches for antibiotic delivery provide a glint of hope for addressing these issues. This review elaborates different delivery strategies and approaches employed to overcome the limitations of conventional antibiotic therapy. These include antibiotic conjugates, prodrugs, and nanocarriers for local and targeted antibiotic release. In addition, a wide range of stimuli-responsive nanocarriers and biological carriers for targeted antibiotic delivery are discussed. The potential advantages and limitations of targeted antibiotic delivery strategies are described along with possible solutions to avoid these limitations. A number of antibiotics successfully delivered through these approaches with attained outcomes and potentials are reviewed.
Collapse
Affiliation(s)
- Adila Nazli
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | - David L He
- College of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Dandan Liao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China
| | | | - Chao Huang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| | - Yun He
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, PR China.
| |
Collapse
|
17
|
Khan S, Madni A, Shah H, Jan N, Shafiq A, Basit A, Rai N, Ali A, Khan MM. Folate decorated lipid chitosan hybrid nanoparticles of 5-fluorouracil for enhanced anticancer efficacy against colon cancer. Int J Biol Macromol 2022; 222:497-508. [PMID: 36174854 DOI: 10.1016/j.ijbiomac.2022.09.196] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/17/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
The study aimed to develop folate decorated lipid chitosan hybrid nanoparticles for targeted delivery of 5-fluorouracil in colon cancer by utilizing the overexpressed folate receptors on the surface of HT-29 and HCT 116 cancer cell lines. The developed formulations were prepared by the ionic gelation method with slight modifications. The developed formulations exhibited spherical morphology, smaller particle size (158 to 225 nm), zeta potential (32.24 to 35.95 mV), PDI (0.19 to 0.35), and high encapsulation efficiency (85.3 % to 94.2 %) with optimal physicochemical characteristics. The in vitro release showed a biphasic release pattern with an initial burst release followed by a sustained release for 48 h. Moreover, the in vitro cell line study revealed that FA-CLPN-2 exhibited an enhanced cellular uptake and greater cytotoxic effect in HT-29 and HCT 116 cell lines compared to non-targeted CLPN-2 and free drug solution due to the folate receptor facilitated endocytosis process. The in vivo toxicity study revealed the safety and biocompatibility of the developed formulations in biological systems. The stability study demonstrates the stability of the developed formulations. Overall, these results suggest that the folate decorated lipid chitosan hybrid nanoparticles could be used as a potential delivery system for tumor-targeted therapy with reduced side effects.
Collapse
Affiliation(s)
- Safiullah Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Asadullah Madni
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Hassan Shah
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Center of Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| | - Nasrullah Jan
- Akson College of Pharmacy, Mirpur University of Science and Technology (MUST), Mirpur 10250, AJ&K, Pakistan
| | - Afifa Shafiq
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Basit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Nadia Rai
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ahsan Ali
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan; Center of Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston 02115, MA, USA
| | - Muhammad Muzamil Khan
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
18
|
Mathew S, Arumainathan S. Crosslinked Chitosan-Gelatin Biocompatible Nanocomposite as a Neuro Drug Carrier. ACS OMEGA 2022; 7:18732-18744. [PMID: 35694506 PMCID: PMC9178715 DOI: 10.1021/acsomega.2c01443] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/06/2022] [Indexed: 05/04/2023]
Abstract
The polymers, chitosan, a polysaccharide, and gelatin, a protein, are crosslinked in different ratios without the aid of a crosslinking agent. Facile chemical reactions were followed to synthesize a chitosan/gelatin nanocomposite in three different ratios (1:1, 1:3, and 3:1). The solubility of chitosan and the stability of gelatin were improved due to the crosslinking. Both the polymers have excellent biodegradability, biocompatibility, adhesion, and absorption properties in a biological environment. The properties of the composite were favorable to be used in drug delivery applications, and the drug dopamine was encapsulated in the composite for all three ratios. The properties of the chitosan/gelatin nanocomposite and dopamine-loaded chitosan/gelatin nanocomposite were examined using XRD, FTIR, SEM, UV, TGA, TEM, and DLS techniques, and the crosslinking was confirmed. Higuchi kinetic release was seen with a cumulative release of 93% within 24 h for the 1:3 nanocomposite in a neutral medium. The peaks at 9 and 20° in the XRD spectrum confirmed the encapsulation of dopamine with the increase in the crystallinity of chitosan, which is also evident from the SAED image. The dopamine functional groups were confirmed from the IR peaks between 500 and 1500 cm-1 and the wide UV absorption maxima between 250 and 290 nm. The particle size of the drug-loaded composite in the ratios 1:1, 1:3, and 3:1 were calculated to be 275, 405, and 355 nm, respectively. The nanocomposite also showed favorable DPPH antioxidant and antibacterial activity againstStaphylococcus aureus. Sustained release of dopamine in a neutral medium using crosslinked chitosan and gelatin without the presence of a crosslinker is the highlight of the work.
Collapse
|
19
|
Huang Y, Zou L, Wang J, Jin Q, Ji J. Stimuli-responsive nanoplatforms for antibacterial applications. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2022; 14:e1775. [PMID: 35142071 DOI: 10.1002/wnan.1775] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
The continuously increasing bacterial resistance has become a big threat to public health worldwide, which makes it urgent to develop innovative antibacterial strategies. Nanotechnology-based drug delivery systems are considered as promising strategies in combating bacterial infections which are expected to improve the therapeutic efficacy and minimize the side effects. Unfortunately, the conventional nanodrug delivery systems always suffer from practical dilemmas, including incomplete and slow drug release, insufficient accumulation in infected sites, and weak biofilm penetration ability. Stimuli-responsive nanoplatforms are hence developed to overcome the disadvantages of conventional nanoparticles. In this review, we provide an extensive review of the recent progress of endogenous and exogenous stimuli-responsive nanoplatforms in the antibacterial area, including planktonic bacteria, intracellular bacteria, and bacterial biofilms. Taking advantage of the specific infected microenvironment (pH, enzyme, redox, and toxin), the mechanisms and strategies of the design of endogenous stimuli-responsive nanoplatforms are discussed, with an emphasis on how to improve the therapeutic efficacy and minimize side effects. How to realize controlled drug delivery using exogenous stimuli-responsive nanoplatforms especially light-responsive nanoparticles for improved antibacterial effects is another topic of this review. We especially highlight photothermal-triggered drug delivery systems by the combination of photothermal agents and thermo-responsive materials. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yue Huang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Lingyun Zou
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
20
|
Kumari SD, Chevala NT, Jitta SR, Kumar L, Verma R, Jose J. Design and Development of Naringin Loaded Proposomal Gel for Wound Healing. J Cosmet Dermatol 2022; 21:5187-5202. [PMID: 35486446 DOI: 10.1111/jocd.15029] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/18/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND The injuries or wounds caused by various means will impact human lives severely. An increase in the demand for wounds or burns was observed. For better wound healing and to combat the free radical effect on the healing process, wounds must be treated with multifunctional or multipurpose dressing or gel or any other type of biomaterial. OBJECTIVES The study aims to develop, optimize, and evaluate the naringin-loaded proposomal gel (PPG) for quick wound healing. METHODS The central composite design was employed for the optimization of proposomes. Naringin-loaded proposomes were evaluated for percentage entrapment efficiency (EE), the particle size of proposomes (PsP), and the zeta potential of proposomes (ZpP). The change in drug release profile was studied by dissolution. Furthermore, naringin and naringin-loaded proposomes, antioxidant activity was determined by 2,2- diphenyl-1-picrylhydrazyl hydrate (DPPH) reagent and ascorbic acid as a reference standard. Different gel bases were prepared, and based on various parameters, the G2 (0.6 % Carbopol 974) gel base was selected for naringin proposomes loading. The naringin-loaded PPG was evaluated for various in vitro and in vivo wound healing properties. RESULTS The optimized naringin-loaded proposomes showed extended drug release (90.78 ± 2.19%) for 72 h. The naringin-loaded PPG improved the permeability of naringin, which showed 28.91 ± 2.81% of drug release after 96 h, and the drug solution showed 9.05 ± 0.92%. IC50 values of antioxidant activity of naringin and naringin proposomes were found to be 337.31 μg/ mL and 201.86 μg/ mL, respectively. The naringin-loaded PPG showed better-wound closure on the 15th day (3.32%) compared to proposomal solution (4.75%) or naringin topical gel (4.2%). CONCLUSION Based on the obtained results, we conclude naringin-loaded PPG can be an alternative strategic approach to deliver the naringin for quick wound healing.
Collapse
Affiliation(s)
- Shifali D Kumari
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Naga Thirumalesh Chevala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Srinivas Reddy Jitta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Lalit Kumar
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Ruchi Verma
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576 104, Udupi, Karnataka, India
| | - Jobin Jose
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, NITTE (Deemed to be University), 575 018, Karnataka, India
| |
Collapse
|
21
|
Jampilek J, Kralova K. Advances in Nanostructures for Antimicrobial Therapy. MATERIALS (BASEL, SWITZERLAND) 2022; 15:2388. [PMID: 35407720 PMCID: PMC8999898 DOI: 10.3390/ma15072388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/16/2022] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Microbial infections caused by a variety of drug-resistant microorganisms are more common, but there are fewer and fewer approved new antimicrobial chemotherapeutics for systemic administration capable of acting against these resistant infectious pathogens. Formulation innovations of existing drugs are gaining prominence, while the application of nanotechnologies is a useful alternative for improving/increasing the effect of existing antimicrobial drugs. Nanomaterials represent one of the possible strategies to address this unfortunate situation. This review aims to summarize the most current results of nanoformulations of antibiotics and antibacterial active nanomaterials. Nanoformulations of antimicrobial peptides, synergistic combinations of antimicrobial-active agents with nitric oxide donors or combinations of small organic molecules or polymers with metals, metal oxides or metalloids are discussed as well. The mechanisms of actions of selected nanoformulations, including systems with magnetic, photothermal or photodynamic effects, are briefly described.
Collapse
Affiliation(s)
- Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia;
| |
Collapse
|
22
|
Berini F, Orlandi V, Gornati R, Bernardini G, Marinelli F. Nanoantibiotics to fight multidrug resistant infections by Gram-positive bacteria: hope or reality? Biotechnol Adv 2022; 57:107948. [PMID: 35337933 DOI: 10.1016/j.biotechadv.2022.107948] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 12/17/2022]
Abstract
The spread of antimicrobial resistance in Gram-positive pathogens represents a threat to human health. To counteract the current lack of novel antibiotics, alternative antibacterial treatments have been increasingly investigated. This review covers the last decade's developments in using nanoparticles as carriers for the two classes of frontline antibiotics active on multidrug-resistant Gram-positive pathogens, i.e., glycopeptide antibiotics and daptomycin. Most of the reviewed papers deal with vancomycin nanoformulations, being teicoplanin- and daptomycin-carrying nanosystems much less investigated. Special attention is addressed to nanoantibiotics used for contrasting biofilm-associated infections. The status of the art related to nanoantibiotic toxicity is critically reviewed.
Collapse
Affiliation(s)
- Francesca Berini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Viviana Orlandi
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Rosalba Gornati
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Giovanni Bernardini
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| | - Flavia Marinelli
- Department of Biotechnology and Life Sciences, University of Insubria, via JH Dunant 3, 21100 Varese, Italy.
| |
Collapse
|
23
|
Edr A, Wrobel D, Krupková A, Šťastná LČ, Cuřínová P, Novák A, Malý J, Kalasová J, Malý J, Malý M, Strašák T. Adaptive Synthesis of Functional Amphiphilic Dendrons as a Novel Approach to Artificial Supramolecular Objects. Int J Mol Sci 2022; 23:ijms23042114. [PMID: 35216229 PMCID: PMC8877797 DOI: 10.3390/ijms23042114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/04/2022] [Accepted: 02/09/2022] [Indexed: 11/16/2022] Open
Abstract
Supramolecular structures, such as micelles, liposomes, polymerosomes or dendrimerosomes, are widely studied and used as drug delivery systems. The behavior of amphiphilic building blocks strongly depends on their spatial distribution and shape of polar and nonpolar component. This report is focused on the development of new versatile synthetic protocols for amphiphilic carbosilane dendrons (amp-CS-DDNs) capable of self-assembly to regular micelles and other supramolecular objects. The presented strategy enables the fine modification of amphiphilic structure in several ways and also enables the facile connection of a desired functionality. DLS experiments demonstrated correlations between structural parameters of amp-CS-DDNs and the size of formed nanoparticles. For detailed information about the organization and spatial distribution of amp-CS-DDNs assemblies, computer simulation models were studied by using molecular dynamics in explicit water.
Collapse
Affiliation(s)
- Antonín Edr
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Dominika Wrobel
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Alena Krupková
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Aleš Novák
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Jan Malý
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic; (J.M.); (J.K.)
| | - Jitka Kalasová
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 16828 Prague 6, Czech Republic; (J.M.); (J.K.)
| | - Jan Malý
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
| | - Marek Malý
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
- Correspondence: (M.M.); (T.S.)
| | - Tomáš Strašák
- Institute of Chemical Process Fundamentals of the CAS, v.v.i., Rozvojová 135, 16502 Prague, Czech Republic; (A.E.); (A.K.); (L.Č.Š.); (P.C.)
- Faculty of Science, J.E. Purkyně University in Ústí nad Labem, Pasteurova 15, 40096 Ústí nad Labem, Czech Republic; (D.W.); (A.N.); (J.M.)
- Correspondence: (M.M.); (T.S.)
| |
Collapse
|
24
|
Li D, Tang G, Yao H, Zhu Y, Shi C, Fu Q, Yang F, Wang X. Formulation of pH-responsive PEGylated nanoparticles with high drug loading capacity and programmable drug release for enhanced antibacterial activity. Bioact Mater 2022; 16:47-56. [PMID: 35386319 PMCID: PMC8958631 DOI: 10.1016/j.bioactmat.2022.02.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Dawei Li
- Senior Department of Orthopedics, The Fourth Medical Center of PLA General Hospital, Beijing, 100091, China
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoke Tang
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
| | - Hui Yao
- Department of Orthopedics, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, 100040, China
| | - Yuqi Zhu
- Department of Orthopedics, Eye Hospital China Academy of Chinese Medical Sciences, Beijing, 100040, China
| | - Changgui Shi
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, 20003, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai, 200080, China
- Corresponding author.
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Corresponding author. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,
| | - Xing Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Corresponding author. Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| |
Collapse
|
25
|
Hemmingsen LM, Škalko-Basnet N, Jøraholmen MW. The Expanded Role of Chitosan in Localized Antimicrobial Therapy. Mar Drugs 2021; 19:697. [PMID: 34940696 PMCID: PMC8704789 DOI: 10.3390/md19120697] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Chitosan is one of the most studied natural origin polymers for biomedical applications. This review focuses on the potential of chitosan in localized antimicrobial therapy to address the challenges of current rising antimicrobial resistance. Due to its mucoadhesiveness, chitosan offers the opportunity to prolong the formulation residence time at mucosal sites; its wound healing properties open possibilities to utilize chitosan as wound dressings with multitargeted activities and more. We provide an unbiased overview of the state-of-the-art chitosan-based delivery systems categorized by the administration site, addressing the site-related challenges and evaluating the representative formulations. Specifically, we offer an in-depth analysis of the current challenges of the chitosan-based novel delivery systems for skin and vaginal infections, including its formulations optimizations and limitations. A brief overview of chitosan's potential in treating ocular, buccal and dental, and nasal infections is included. We close the review with remarks on toxicity issues and remaining challenges and perspectives.
Collapse
Affiliation(s)
- Lisa Myrseth Hemmingsen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| | | | - May Wenche Jøraholmen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Universitetsvegen 57, 9037 Tromsø, Norway;
| |
Collapse
|
26
|
Zhang Y, Dong Y, Zhou J, Huang W, Wu Y, Zhao S, Shi Y, Bai S, Li C, Huang Y, Dong A. Possibility for double optimization of siRNA intracellular delivery efficiency and antibacterial activity: Structure screening of pH-sensitive triblock amphiphilic polycation micelles. Colloids Surf B Biointerfaces 2021; 209:112178. [PMID: 34742020 DOI: 10.1016/j.colsurfb.2021.112178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/04/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022]
Abstract
Optimal combination of hydrophobic-hydrophilic balance, proton buffering and electrostatic interaction is the key issue for designing polycations as efficient gene vectors and antibacterial agents. Herein, we screened a series of pH-sensitive quaternary ammonium-based amphiphilic triblock copolymers, mPEG2k-P(DPAa/DMAb)-PQAc (TDDE-x), which had different pKa values and proton buffering capacities. Significantly, we found that both the highest siRNA intracellular delivery efficiency and the strongest antibacterial capacity occurred on TDDE-3 micelles with the segment structure of mPEG2k-P(DPA50/DMA56)-PQA55. The TDDE-3/siRNA complex achieved 67% silencing efficiency on H9C2 cells (N/P = 5, 50 nM siRNA), higher than the advanced commercial transfection reagents RNAiMAX (58%) and Lipo2000 (30%). Moreover, TDDE-3 micelles showed quite low MICs of 32 μg/mL and 8 μg/mL against E. coli and S. aureus, respectively. Further studies on the structure-function relationship indicated that TDDE-3 micelles could mediate robust endosome escape and siRNA cytosolic release, and strong bacterial cell membrane-destabilizing function. Undoubtedly, this work reveals the possibility for double optimization of siRNA intracellular delivery efficiency and antibacterial activity of amphiphilic polycations by reasonable structure design, which is significant for low-cost development and clinical translation of efficient multifunctional polycations.
Collapse
Affiliation(s)
- Yufeng Zhang
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China; Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yanliang Dong
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Junhui Zhou
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenjun Huang
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yidi Wu
- Laboratory of Nucleic Acid Technology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Shuyue Zhao
- Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yongli Shi
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China.
| | - Suping Bai
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China
| | - Chunhui Li
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Beijing Institute of Technology, Beijing 100081, PR China
| | - Yuanyu Huang
- School of Life Science; Advanced Research Institute of Multidisciplinary Science; Institute of Engineering Medicine; Key Laboratory of Molecular Medicine and Biotherapy; Beijing Institute of Technology, Beijing 100081, PR China
| | - Anjie Dong
- College of Pharmacy, Xinxiang Medical University, 453003 Xinxiang, PR China; Department of Polymer Science and Technology, Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
27
|
Gooneh-Farahani S, Naghib SM, Naimi-Jamal MR, Seyfoori A. A pH-sensitive nanocarrier based on BSA-stabilized graphene-chitosan nanocomposite for sustained and prolonged release of anticancer agents. Sci Rep 2021; 11:17404. [PMID: 34465842 PMCID: PMC8408197 DOI: 10.1038/s41598-021-97081-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/11/2021] [Indexed: 02/02/2023] Open
Abstract
Smart nanomaterials with stimuli-responsive behavior are considered as promising platform for various drug delivery applications. Regarding their specific conditions, such as acidic pH, drug carriers to treatment of tumor microenvironment need some criteria to enhance drug delivery efficiency. In this study, for the first time, pH-sensitive BSA-stabilized graphene (BSG)/chitosan nanocomposites were synthesized through electrostatic interactions between the positively charged chitosan nanoparticles and negatively charged BSG and used for Doxorubicin (DOX) encapsulation as a general anticancer drug. Physicochemical characterization of the nanocomposites with different concentrations of BSG (0.5, 2, and 5wt%) showed effective decoration of chitosan nanoparticles on BSG. Comparing DOX release behavior from the nanocomposites and free BSG-chitosan nanoparticles were evaluated at two pHs of 7.4 and 4.5 in 28 days. It was shown that the presence of BSG significantly reduced the burst release observed in chitosan nanoparticles. The nanocomposite of 2wt% BSG was selected as the optimal nanocomposite with a release of 84% in 28 days and with the most uniform release in 24 h. Furthermore, the fitting of release data with four models including zero-order, first-order, Higuchi, and Korsmeyer-Peppas indicated that the addition of BSG changed the release mechanism of the drug, enabling uniform release for the optimal nanocomposite in first 24 h, compared to that for pure chitosan nanoparticles. This behavior was proved using metabolic activity assay of the SKBR-3 breast cancer cell spheroids exposed to DOX release supernatant at different time intervals. It was also demonstrated that DOX released from the nanocomposite had a significant effect on the suppression of cancer cell proliferation at acidic pH.
Collapse
Affiliation(s)
- Sahar Gooneh-Farahani
- Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Seyed Morteza Naghib
- Nanotechnology Department, School of New Technologies, Iran University of Science and Technology (IUST), Tehran, Iran.
| | - M Reza Naimi-Jamal
- Research Laboratory of Green Organic Synthesis and Polymers, Chemistry Department, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Amir Seyfoori
- Biomaterials and Tissue Engineering Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
28
|
Abstract
Polysaccharide biomaterials have gained significant importance in the manufacture of nanoparticles used in colon-targeted drug delivery systems. These systems are a form of non-invasive oral therapy used in the treatment of various diseases. To achieve successful colonic delivery, the chemical, enzymatic and mucoadhesive barriers within the gastrointestinal (GI) tract must be analyzed. This will allow for the nanomaterials to cross these barriers and reach the colon. This review provides information on the development of nanoparticles made from various polysaccharides, which can overcome multiple barriers along the GI tract and affect encapsulation efficiency, drug protection, and release mechanisms upon arrival in the colon. Also, there is information disclosed about the size of the nanoparticles that are usually involved in the mechanisms of diffusion through the barriers in the GI tract, which may influence early drug degradation and release in the digestive tract.
Collapse
|
29
|
Jaglal Y, Osman N, Omolo CA, Mocktar C, Devnarain N, Govender T. Formulation of pH-responsive lipid-polymer hybrid nanoparticles for co-delivery and enhancement of the antibacterial activity of vancomycin and 18β-glycyrrhetinic acid. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102607] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
30
|
Li X, Gui R, Li J, Huang R, Shang Y, Zhao Q, Liu H, Jiang H, Shang X, Wu X, Nie X. Novel Multifunctional Silver Nanocomposite Serves as a Resistance-Reversal Agent to Synergistically Combat Carbapenem-Resistant Acinetobacter baumannii. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30434-30457. [PMID: 34161080 DOI: 10.1021/acsami.1c10309] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the face of the abundant production of various types of carbapenemases, the antibacterial efficiency of imipenem, seen as "the last line of defense", is weakening. Following, the incidence of carbapenem-resistant Acinetobacter baumannii (CRAB), which can generate antibiotic-resistant biofilms, is increasing. Based on the superior antimicrobial activity of silver nanoparticles against multifarious bacterial strains compared with common antibiotics, we constructed the IPM@AgNPs-PEG-NOTA nanocomposite (silver nanoparticles were coated with SH-PEG-NOTA as well as loaded by imipenem) whose core was a silver nanoparticle to address the current challenge, and IPM@AgNPs-PEG-NOTA was able to function as a novel smart pH-sensitive nanodrug system. Synergistic bactericidal effects of silver nanoparticles and imipenem as well as drug-resistance reversal via protection of the β-ring of carbapenem due to AgNPs-PEG-NOTA were observed; thus, this nanocomposite confers multiple advantages for efficient antibacterial activity. Additionally, IPM@AgNPs-PEG-NOTA not only offers immune regulation and accelerates tissue repair to improve therapeutic efficacy in vivo but also can prevent the interaction of pathogens and hosts. Compared with free imipenem or silver nanoparticles, this platform significantly enhanced antibacterial efficiency while increasing reactive oxygen species (ROS) production and membrane damage, as well as affecting cell wall formation and metabolic pathways. According to the results of crystal violet staining, LIVE/DEAD backlight bacterial viability staining, and real-time quantitative polymerase chain reaction (RT-qPCR), this silver nanocomposite downregulated the levels of ompA expression to prevent formation of biofilms. In summary, this research demonstrated that the IPM@AgNPs-PEG-NOTA nanocomposite is a promising antibacterial agent of security, pH sensitivity, and high efficiency in reversing resistance and synergistically combatting carbapenem-resistant A. baumannii. In the future, various embellishments and selected loads for silver nanoparticles will be the focus of research in the domains of medicine and nanotechnology.
Collapse
Affiliation(s)
- Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Rong Gui
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Yinghui Shang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Qiangqiang Zhao
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Haiting Liu
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Haiye Jiang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xueling Shang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xin Wu
- Department of Orthopedics, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, P. R. China
- Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha 410000, Hunan, China
| |
Collapse
|
31
|
Niaz T, Imran M, Mackie A. Improving carvacrol bioaccessibility using core-shell carrier-systems under simulated gastrointestinal digestion. Food Chem 2021; 353:129505. [PMID: 33735775 DOI: 10.1016/j.foodchem.2021.129505] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 02/21/2021] [Accepted: 02/28/2021] [Indexed: 01/11/2023]
Abstract
The impact of encapsulating carvacrol in chitosan-albumin based core-shell nano-carriers (NCs) on its stability and bioaccessibility was determined under simulated digestion conditions. These NCs consisted of chitosan (C) core enclosed by bovine serum albumin (BSA) shell. The mean particle size ranged from 52.4 ± 10 nm to 203 ± 6 nm and zeta-potential from + 21 ± 3.6 to -18 ± 2.7 mV. The size and charge were significantly modified after the protein-shell formation around the polysaccharide-core. Core-shell NCs were more stable, with less aggregation under simulated gastrointestinal conditions than C-NCs, presumably due to greater steric repulsion. Likewise, core-shell NCs were observed relatively more stabilized in the intestinal phase than gastric phase. The bioaccessibility of carvacrol was enhanced significantly when it was encapsulated in the core-shell NCs. These findings imply that C-BSA based core-shell NCs might be an efficient means of encapsulating, protecting and delivering hydrophobic bioactive compounds for applications in functional foods.
Collapse
Affiliation(s)
- Taskeen Niaz
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Muhammad Imran
- Department of Biosciences, COMSATS University Islamabad (CUI), Park Road, Islamabad, Pakistan.
| | - Alan Mackie
- Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
32
|
Makabenta JMV, Nabawy A, Li CH, Schmidt-Malan S, Patel R, Rotello VM. Nanomaterial-based therapeutics for antibiotic-resistant bacterial infections. Nat Rev Microbiol 2021; 19:23-36. [PMID: 32814862 PMCID: PMC8559572 DOI: 10.1038/s41579-020-0420-1] [Citation(s) in RCA: 653] [Impact Index Per Article: 163.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2020] [Indexed: 12/22/2022]
Abstract
Antibiotic-resistant bacterial infections arising from acquired resistance and/or through biofilm formation necessitate the development of innovative 'outside of the box' therapeutics. Nanomaterial-based therapies are promising tools to combat bacterial infections that are difficult to treat, featuring the capacity to evade existing mechanisms associated with acquired drug resistance. In addition, the unique size and physical properties of nanomaterials give them the capability to target biofilms, overcoming recalcitrant infections. In this Review, we highlight the general mechanisms by which nanomaterials can be used to target bacterial infections associated with acquired antibiotic resistance and biofilms. We emphasize design elements and properties of nanomaterials that can be engineered to enhance potency. Lastly, we present recent progress and remaining challenges for widespread clinical implementation of nanomaterials as antimicrobial therapeutics.
Collapse
Affiliation(s)
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Cheng-Hsuan Li
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA
| | - Suzannah Schmidt-Malan
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA, USA.
| |
Collapse
|
33
|
Ghaemi A, Bagheri E, Abnous K, Taghdisi SM, Ramezani M, Alibolandi M. CRISPR-cas9 genome editing delivery systems for targeted cancer therapy. Life Sci 2020; 267:118969. [PMID: 33385410 DOI: 10.1016/j.lfs.2020.118969] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
The prokaryotic CRISPR-Cas systems could be applied as revolutionized genome editing tool in live cells of various species to modify, visualize and identify definite sequences of DNA and RNA. CRISPR-Cas could edit the genome by homology-directed repair and non-homologous end joining mechanisms. Furthermore, DNA-targeting modification by CRISPR-Cas methodology provides opportunity for diagnosis, therapy and the genetic disorders investigation. Here, we summarized delivery systems employed for CRISPR-Cas9 for genome editing. Then preclinical studies of the CRISPR-Cas9-based therapeutics will be discussed considering the associated challenges and developments in its translation to clinic for cancer therapy.
Collapse
Affiliation(s)
- Asma Ghaemi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elnaz Bagheri
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Khalil Abnous
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mohammad Taghdisi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran; Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Ramezani
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mona Alibolandi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
34
|
Gao Y, Chen Y, Cao Y, Mo A, Peng Q. Potentials of nanotechnology in treatment of methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2020; 213:113056. [PMID: 33280899 DOI: 10.1016/j.ejmech.2020.113056] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023]
Abstract
Abuse of antibiotics has led to the emergence of drug-resistant pathogens. Methicillin-resistant Staphylococcus aureus (MRSA) was reported just two years after the clinical use of methicillin, which can cause severe infections with high morbidity and mortality in both community and hospital. The treatment of MRSA infection is greatly challenging since it has developed the resistance to almost all types of antibiotics. As such, it is of great significance and importance to develop novel therapeutic approaches. The fast development of nanotechnology provides a promising solution to this dilemma. Functional nanomaterials and nanoparticles can act either as drug carriers or as antibacterial agents for antibacterial therapy. Herein, we aim to provide a comprehensive understanding of the drug resistance mechanisms of MRSA and discuss the potential applications of some functionalized nanomaterials in anti-MRSA therapy. Also, the concerns and possible solutions for the nanomaterials-based anti-MRSA therapy are discussed.
Collapse
Affiliation(s)
- Yujie Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yuan Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China; Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yubin Cao
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Anchun Mo
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
35
|
Hassan D, Omolo CA, Fasiku VO, Elrashedy AA, Mocktar C, Nkambule B, Soliman MES, Govender T. Formulation of pH-Responsive Quatsomes from Quaternary Bicephalic Surfactants and Cholesterol for Enhanced Delivery of Vancomycin against Methicillin Resistant Staphylococcus aureus. Pharmaceutics 2020; 12:E1093. [PMID: 33202629 PMCID: PMC7696852 DOI: 10.3390/pharmaceutics12111093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/29/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Globally, human beings continue to be at high risk of infectious diseases caused by methicillin-resistant Staphylococcus aureus (MRSA); and current treatments are being depleted due to antimicrobial resistance. Therefore, the synthesis and formulation of novel materials is essential for combating antimicrobial resistance. The study aimed to synthesize a quaternary bicephalic surfactant (StBAclm) and thereof to formulate pH-responsive vancomycin (VCM)-loaded quatsomes to enhance the activity of the antibiotic against MRSA. The surfactant structure was confirmed using 1H, 13C nuclear magnetic resonance (NMR), Fourier-transform infrared spectroscopy (FT-IR), and high-resolution mass spectrometry (HRMS). The quatsomes were prepared using a sonication/dispersion method and were characterized using various in vitro, in vivo, and in silico techniques. The in vitro cell biocompatibility studies of the surfactant and pH-responsive vancomycin-loaded quatsomes (VCM-StBAclm-Qt1) revealed that they are biosafe. The prepared quatsomes had a mean hydrodynamic diameter (MHD), polydispersity index (PDI), and drug encapsulation efficiency (DEE) of 122.9 ± 3.78 nm, 0.169 ± 0.02 mV, and 52.22 ± 8.4%, respectively, with surface charge switching from negative to positive at pH 7.4 and pH 6.0, respectively. High-resolution transmission electron microscopy (HR-TEM) characterization of the quatsomes showed spherical vesicles with MHD similar to the one obtained from the zeta-sizer. The in vitro drug release of VCM from the quatsomes was faster at pH 6.0 compared to pH 7.4. The minimum inhibitory concentration (MIC) of the drug loaded quatsomes against MRSA was 32-fold and 8-fold lower at pH 6.0 and pH 7.4, respectively, compared to bare VCM, demonstrating the pH-responsiveness of the quatsomes and the enhanced activity of VCM at acidic pH. The drug-loaded quatsomes demonstrated higher electrical conductivity and a decrease in protein and deoxyribonucleic acid (DNA) concentrations as compared to the bare drug. This confirmed greater MRSA membrane damage, compared to treatment with bare VCM. The flow cytometry study showed that the drug-loaded quatsomes had a similar bactericidal killing effect on MRSA despite a lower (8-fold) VCM concentration when compared to the bare VCM. Fluorescence microscopy revealed the ability of the drug-loaded quatsomes to eradicate MRSA biofilms. The in vivo studies in a skin infection mice model showed that groups treated with VCM-loaded quatsomes had a 13-fold decrease in MRSA CFUs when compared to the bare VCM treated groups. This study confirmed the potential of pH-responsive VCM-StBAclm quatsomes as an effective delivery system for targeted delivery and for enhancing the activity of antibiotics.
Collapse
Affiliation(s)
- Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Calvin A. Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
- Department of Pharmaceutics and Pharmacy Practice, School of Pharmacy and Health Sciences, United States International University-Africa, P. O. Box 14634, Nairobi 00800, Kenya
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Ahmed A Elrashedy
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Bongani Nkambule
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| | - Mahmoud E. S. Soliman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa; (D.H.); (V.O.F.); (A.A.E.); (C.M.); (M.E.S.S.)
| |
Collapse
|
36
|
Boda SK, Fischer NG, Ye Z, Aparicio C. Dual Oral Tissue Adhesive Nanofiber Membranes for pH-Responsive Delivery of Antimicrobial Peptides. Biomacromolecules 2020; 21:4945-4961. [PMID: 32961056 DOI: 10.1021/acs.biomac.0c01163] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Bioadhesive membranes with controllable and reversible underwater adhesion are desirable for several biomedical applications ranging from biosensing, drug/therapeutic delivery, and tissue regeneration. Here, we present dual soft mucosal and hard bone/enamel tissue adhesive nanofiber membranes composed of chitosan and pectin derivatives for pH-controlled delivery of antimicrobial peptides (AMPs) in the oral cavity. Ex vivo testing with porcine esophagus (soft mucosal mimic) indicated a 2-fold increase in the mucoadhesion of chitosan membranes with 0.05 wt % oxidized pectin coating, while the uncoated membranes exhibited 3-4-fold stronger adhesion to hydroxyapatite discs (enamel/hard bone mimic) compared to the coated membranes. The former is attributed to a synergistic interaction of surface nanofiber topography, intermolecular hydrogen bonding, and aldehyde-amine chemistry between surface polar groups and mucosal proteins, while the latter may arise from electrostatic interactions between cationic amines (-NH3+) in chitosan and anionic phosphates (-PO43-) in hydroxyapatite. Further, the dual hard-soft oral tissue adhesive nanofiber membranes loaded with cationic amphipathic AMPs (D-GL13K and IDR-1018) elicited pH-responsive AMP delivery and antimicrobial action comparable to chlorhexidine (CHX) against oral streptococci. Concurrently, the AMP loaded membranes were cytocompatible to both soft epithelial tissue-derived human oral keratinocytes and hard calvarial murine pre-osteoblast cells. We envision these membranes to function as adhesive gingival grafts and guided bone regeneration (GBR) membranes at the hard-soft tissue interface while simultaneously protecting against oral infections.
Collapse
Affiliation(s)
- Sunil Kumar Boda
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Nicholas G Fischer
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Zhou Ye
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Conrado Aparicio
- MDRCBB, Minnesota Dental Research Center for Biomaterials and Biomechanics, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
37
|
Devnarain N, Osman N, Fasiku VO, Makhathini S, Salih M, Ibrahim UH, Govender T. Intrinsic stimuli-responsive nanocarriers for smart drug delivery of antibacterial agents-An in-depth review of the last two decades. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2020; 13:e1664. [PMID: 32808486 DOI: 10.1002/wnan.1664] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 06/30/2020] [Accepted: 07/20/2020] [Indexed: 12/18/2022]
Abstract
Antibiotic resistance due to suboptimal targeting and inconsistent antibiotic release at bacterial infection sites has driven the formulation of stimuli-responsive nanocarriers for antibacterial therapy. Unlike conventional nanocarriers, stimuli-responsive nanocarriers have the ability to specifically enhance targeting and drug release profiles. There has been a significant escalation in the design and development of novel nanomaterials worldwide; in particular, intrinsic stimuli-responsive antibiotic nanocarriers, due to their enhanced activity, improved targeted delivery, and superior potential for bacterial penetration and eradication. Herein, we provide an extensive and critical review of pH-, enzyme-, redox-, and ionic microenvironment-responsive nanocarriers that have been reported in literature to date, with an emphasis on the mechanisms of drug release, the nanomaterials used, the nanosystems constructed and the antibacterial efficacy of the nanocarriers. The review also highlights further avenues of research for optimizing their potential and commercialization. This review confirms the potential of intrinsic stimuli-responsive nanocarriers for enhanced drug delivery and antibacterial killing. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Nikita Devnarain
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nawras Osman
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sifiso Makhathini
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mohammed Salih
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Usri H Ibrahim
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
38
|
Rana R, Awasthi R, Sharma B, Kulkarni GT. Nanoantibiotic Formulations to Combat Antibiotic Resistance - Old Wine in a New Bottle. ACTA ACUST UNITED AC 2020; 13:174-183. [PMID: 31544718 DOI: 10.2174/1872211313666190911124626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 08/13/2019] [Accepted: 08/19/2019] [Indexed: 01/03/2023]
Abstract
Antibiotic resistance is becoming one of the major obstacles to treatment success in various pathological conditions. Development process of a new antimicrobial agent is slow and difficult, whereas bacterial resistance is decreasing the arsenal of existing antibiotics. Therefore, there is a need to develop novel antibiotic formulations to combat the resistance of existing antibiotics. Nanoparticles are investigated as novel antibiotic formulation, but are often inefficient in practical applications. Nanotechnology presents a new frontier to overcome the issue of antibiotic resistance through the development of functionalized particles. Balance of physicochemical characteristics such as small particle size and high drug loading capacity along with improved stability are the challenges associated with large scale manufacturing of nanoantibiotic formulations. In the last 1-2 decades, a gradual increase in patents on nanoantibiotic formulations has been noted to address the resistance issues of antibiotic. The aim of this review is to consolidate recently-investigated nanoantibiotic formulations to combat antibiotic resistance.
Collapse
Affiliation(s)
- Rachna Rana
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Rajendra Awasthi
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Bhupesh Sharma
- Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| | - Giriraj T Kulkarni
- Department of Pharmaceutics, Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sec 125, Noida, 201303, Uttar Pradesh, India
| |
Collapse
|
39
|
Abstract
When antibiotics are administered, orally or intravenously, they pass through different organs and layers of tissue on their way to the site of infection; this can cause dilution and/or intoxication. To overcome these problems, drug delivery vehicles have been used to encapsulate and deliver antibiotics, improving their therapeutic index while minimizing their adverse effects. Liposomes are self-assembled lipid vesicles made from at least one bilayer of phospholipids with an inner aqueous compartment. Liposomes are attractive vehicles to deliver antibiotics because they can encapsulate both hydrophobic and hydrophilic antibiotics, they have low toxicity, and they can change the biodistribution of the drug. Furthermore, liposomes have been approved by regulatory agencies. However, most developmental and mechanistic research in the field has been focused on encapsulation and delivery of anticancer drugs, a class of molecules that differ significantly in chemistry from antibiotics. In this critical Review, we discuss the state of knowledge regarding the design of liposomes for encapsulation and delivery of antibiotics and offer insight into the challenges and promises of using liposomes for antibiotic delivery.
Collapse
Affiliation(s)
- Azucena Gonzalez Gomez
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L9S 8L7, Canada
| | - Zeinab Hosseinidoust
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L9S 8L7, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L98 4LS, Canada
| |
Collapse
|
40
|
Pais GM, Liu J, Zepcan S, Avedissian SN, Rhodes NJ, Downes KJ, Moorthy GS, Scheetz MH. Vancomycin-Induced Kidney Injury: Animal Models of Toxicodynamics, Mechanisms of Injury, Human Translation, and Potential Strategies for Prevention. Pharmacotherapy 2020; 40:438-454. [PMID: 32239518 PMCID: PMC7331087 DOI: 10.1002/phar.2388] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/21/2020] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Vancomycin is a recommended therapy in multiple national guidelines. Despite the common use, there is a poor understanding of the mechanistic drivers and potential modifiers of vancomycin-mediated kidney injury. In this review, historic and contemporary rates of vancomycin-induced kidney injury (VIKI) are described, and toxicodynamic models and mechanisms of toxicity from preclinical studies are reviewed. Aside from known clinical covariates that worsen VIKI, preclinical models have demonstrated that various factors impact VIKI, including dose, route of administration, and thresholds for pharmacokinetic parameters. The degree of acute kidney injury (AKI) is greatest with the intravenous route and higher doses that produce larger maximal concentrations and areas under the concentration curve. Troughs (i.e., minimum concentrations) have less of an impact. Mechanistically, preclinical studies have identified that VIKI is a result of drug accumulation in proximal tubule cells, which triggers cellular oxidative stress and apoptosis. Yet, there are several gaps in the knowledge that may represent viable targets to make vancomycin therapy less toxic. Potential strategies include prolonging infusions and lowering maximal concentrations, administration of antioxidants, administering agents that decrease cellular accumulation, and reformulating vancomycin to alter the renal clearance mechanism. Based on preclinical models and mechanisms of toxicity, we propose potential strategies to lessen VIKI.
Collapse
Affiliation(s)
- Gwendolyn M. Pais
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| | - Jiajun Liu
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| | - Sanja Zepcan
- Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
| | - Sean N. Avedissian
- Antiviral Pharmacology Laboratory, University of Nebraska Medical Center (UNMC) Center for Drug Discovery, UNMC, Omaha, Nebraska
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska
| | - Nathaniel J. Rhodes
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| | - Kevin J. Downes
- Division of Infectious Diseases, The Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ganesh S. Moorthy
- Division of Critical Care, Department of Anesthesiology and Critical Care, The University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Marc H. Scheetz
- Department of Pharmacy Practice, Chicago College of Pharmacy, Midwestern University, Downers Grove, Illinois
- Pharmacometrics Center of Excellence, Midwestern University Chicago College of Pharmacy, Downers Grove, Illinois
| |
Collapse
|
41
|
Eleraky NE, Allam A, Hassan SB, Omar MM. Nanomedicine Fight against Antibacterial Resistance: An Overview of the Recent Pharmaceutical Innovations. Pharmaceutics 2020; 12:E142. [PMID: 32046289 PMCID: PMC7076477 DOI: 10.3390/pharmaceutics12020142] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/16/2022] Open
Abstract
Based on the recent reports of World Health Organization, increased antibiotic resistance prevalence among bacteria represents the greatest challenge to human health. In addition, the poor solubility, stability, and side effects that lead to inefficiency of the current antibacterial therapy prompted the researchers to explore new innovative strategies to overcome such resilient microbes. Hence, novel antibiotic delivery systems are in high demand. Nanotechnology has attracted considerable interest due to their favored physicochemical properties, drug targeting efficiency, enhanced uptake, and biodistribution. The present review focuses on the recent applications of organic (liposomes, lipid-based nanoparticles, polymeric micelles, and polymeric nanoparticles), and inorganic (silver, silica, magnetic, zinc oxide (ZnO), cobalt, selenium, and cadmium) nanosystems in the domain of antibacterial delivery. We provide a concise description of the characteristics of each system that render it suitable as an antibacterial delivery agent. We also highlight the recent promising innovations used to overcome antibacterial resistance, including the use of lipid polymer nanoparticles, nonlamellar liquid crystalline nanoparticles, anti-microbial oligonucleotides, smart responsive materials, cationic peptides, and natural compounds. We further discuss the applications of antimicrobial photodynamic therapy, combination drug therapy, nano antibiotic strategy, and phage therapy, and their impact on evading antibacterial resistance. Finally, we report on the formulations that made their way towards clinical application.
Collapse
Affiliation(s)
- Nermin E. Eleraky
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
| | - Ayat Allam
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt; (N.E.E.); (A.A.)
- Assiut International Center of Nanomedicine, Al-Rajhy Liver Hospital, Assiut University, Assiut 71515, Egypt
| | - Sahar B. Hassan
- Department of Clinical pharmacy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt;
| | - Mahmoud M. Omar
- Department of Pharmaceutics and Industrial Pharmacy, Deraya University, Minia 61768, Egypt
- Department of Pharmaceutics and Clinical Pharmacy, Faculty of Pharmacy Sohag University, Sohag 82524, Egypt
| |
Collapse
|
42
|
AB2-type amphiphilic block copolymer containing a pH-cleavable hydrazone linkage for targeted antibiotic delivery. Int J Pharm 2020; 575:118948. [DOI: 10.1016/j.ijpharm.2019.118948] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 12/01/2019] [Accepted: 12/07/2019] [Indexed: 11/22/2022]
|
43
|
Huang D, Ren J, Li R, Guan C, Feng Z, Bao B, Wang W, Zhou C. Tooth Regeneration: Insights from Tooth Development and Spatial-Temporal Control of Bioactive Drug Release. Stem Cell Rev Rep 2020; 16:41-55. [PMID: 31834583 PMCID: PMC6987083 DOI: 10.1007/s12015-019-09940-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Tooth defect and tooth loss are common clinical diseases in stomatology. Compared with the traditional oral restoration treatment, tooth regeneration has unique advantages and is currently the focus of oral biomedical research. It is known that dozens of cytokines/growth factors and other bioactive factors are expressed in a spatial-temporal pattern during tooth development. On the other hand, the technology for spatial-temporal control of drug release has been intensively studied and well developed recently, making control release of these bioactive factors mimicking spatial-temporal pattern more feasible than ever for the purpose of tooth regeneration. This article reviews the research progress on the tooth development and discusses the future of tooth regeneration in the context of spatial-temporal release of developmental factors.
Collapse
Affiliation(s)
- Delan Huang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Jianhan Ren
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Runze Li
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chenyu Guan
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhicai Feng
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Baicheng Bao
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Weicai Wang
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Chen Zhou
- Guanghua School of Stomatology, Hospital of Stomatology, and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
44
|
Enhancement in site-specific delivery of carvacrol for potential treatment of infected wounds using infection responsive nanoparticles loaded into dissolving microneedles: A proof of concept study. Eur J Pharm Biopharm 2020; 147:57-68. [DOI: 10.1016/j.ejpb.2019.12.008] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/14/2019] [Accepted: 12/16/2019] [Indexed: 02/05/2023]
|
45
|
Hassan D, Omolo CA, Fasiku VO, Mocktar C, Govender T. Novel chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (OLA-LPHVs) for delivery of vancomycin against methicillin-resistant Staphylococcus aureus infections. Int J Biol Macromol 2020; 147:385-398. [PMID: 31926237 DOI: 10.1016/j.ijbiomac.2020.01.019] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 10/25/2022]
Abstract
The development of novel materials is necessary for adequate delivery of drugs to combat the Methicillin-resistant Staphylococcus aureus (MRSA) burden due to the limitations of conventional methods and challenges associated with antimicrobial resistance. Hence, this study aimed to synthesise a novel oleylamine based zwitterionic lipid (OLA) and explore its potential to formulate chitosan-based pH-responsive lipid-polymer hybrid nanovesicles (VM-OLA-LPHVs1) to deliver VM against MRSA. The OLA was synthesised, and the structure characterised by 1H NMR, 13C NMR, FT-IR and HR-MS. The preliminary biocompatibility of OLA and VM-OLA-LPHVs1 was evaluated on HEK-293, A-549, MCF-7 and HepG-2 cell lines using in vitro cytotoxicity assay. The VM-OLA-LPHVs1 were formulated by ionic gelation method and characterised in order to determine the hydrodynamic diameter (DH), morphology in vitro and in vivo antibacterial efficacy. The result of the in vitro cytotoxicity study revealed cell viability of above 75% in all cell lines when exposed to OLA and VM-OLA-LPHVs1, thus indicating their biosafety. The VM-OLA-LPHVs1 had a DH, polydispersity index (PDI), and EE% of 198.0 ± 14.04 nm, 0.137 ± 0.02, and 45.61 ± 0.54% respectively at physiological pH, with surface-charge (ζ) switching from negative at pH 7.4 to positive at pH 6.0. The VM release from the VM-OLA-LPHVs1 was faster at pH 6.0 compared to physiological pH, with 97% release after 72-h. The VM-OLA-LPHVs1 had a lower minimum inhibitory concentration (MIC) value of 0.59 μg/mL at pH 6.0 compared to 2.39 μg/mL at pH 7.4, against MRSA with 52.9-fold antibacterial enhancement. The flow cytometry study revealed that VM-OLA-LPHVs1 had similar bactericidal efficacy on MRSA compared to bare VM, despite an 8-fold lower VM concentration in the nanovesicles. Additionally, fluorescence microscopy study showed the ability of the VM-OLA-LPHVs1 to eliminate biofilms. The electrical conductivity, and protein/DNA concentration, increased and decreased respectively, as compared to bare VM which indicated greater MRSA membrane damage. The in vivo studies in a BALB/c mouse-infected skin model treated with VM-OLA-LPHVs1 revealed 95-fold lower MRSA burden compared to the group treated with bare VM. These findings suggest that OLA can be used as an effective novel material for complexation with biodegradable polymer chitosan (CHs) to form pH-responsive VM-OLA-LPHVs1 nanovesicles which show greater potential for enhancement and improvement of treatment of bacterial infections.
Collapse
Affiliation(s)
- Daniel Hassan
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa; United States International University-Africa, School of Pharmacy and Health Sciences, Department of Pharmaceutics, P. O. Box 14634-00800, Nairobi, Kenya.
| | - Victoria Oluwaseun Fasiku
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Private Bag X54001, Durban, South Africa.
| |
Collapse
|
46
|
Lv X, Zhang J, Yang D, Shao J, Wang W, Zhang Q, Dong X. Recent advances in pH-responsive nanomaterials for anti-infective therapy. J Mater Chem B 2020; 8:10700-10711. [DOI: 10.1039/d0tb02177f] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The design and synthesis of pH-responsive antibacterial nanomaterials and their applications in anti-infective therapy.
Collapse
Affiliation(s)
- Xinyi Lv
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Jiayao Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Wenjun Wang
- School of Physical Science and Information Technology
- Liaocheng University
- Liaocheng 252059
- China
| | - Qi Zhang
- School of Pharmaceutical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences
- Nanjing Tech University (NanjingTech)
- Nanjing 211800
- China
- School of Chemistry and Materials Science
| |
Collapse
|
47
|
Omolo CA, Megrab NA, Kalhapure RS, Agrawal N, Jadhav M, Mocktar C, Rambharose S, Maduray K, Nkambule B, Govender T. Liposomes with pH responsive 'on and off' switches for targeted and intracellular delivery of antibiotics. J Liposome Res 2019; 31:45-63. [PMID: 31663407 DOI: 10.1080/08982104.2019.1686517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
pH responsive drug delivery systems are one of the new strategies to address the spread of bacterial resistance to currently used antibiotics. The aim of this study was to formulate liposomes with 'On' and 'Off'' pH responsive switches for infection site targeting. The vancomycin (VCM) loaded liposomes had sizes below 100 nm, at pH 7.4. The QL-liposomes had a negative zeta potential at pH 7.4 that switched to a positive charge at acidic pH. VCM release from the liposome was quicker at pH 6 than pH 7.4. The OA-QL-liposome showed 4-fold lower MIC at pH 7.4 and 8- and 16-fold lower at pH 6.0 against both MSSA and MRSA compared to the bare drug. OA-QL liposome had a 1266.67- and 704.33-fold reduction in the intracellular infection for TPH-1 macrophage and HEK293 cells respectively. In vivo studies showed that the amount of MRSA recovered from mice treated with formulations was 189.67 and 6.33-fold lower than the untreated and bare VCM treated mice respectively. MD simulation of the QL lipid with the phosphatidylcholine membrane (POPC) showed spontaneous binding of the lipid to the bilayer membrane both electrostatic and Van der Waals interactions contributed to the binding. These studies demonstrated that the 'On' and 'Off' pH responsive liposomes enhanced the activity targeted and intracellular delivery VCM.
Collapse
Affiliation(s)
- Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nagia A Megrab
- Department of Pharmaceutics and Industrial Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahantesh Jadhav
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Kaminee Maduray
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongani Nkambule
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
48
|
Walvekar P, Gannimani R, Salih M, Makhathini S, Mocktar C, Govender T. Self-assembled oleylamine grafted hyaluronic acid polymersomes for delivery of vancomycin against methicillin resistant Staphylococcus aureus (MRSA). Colloids Surf B Biointerfaces 2019; 182:110388. [DOI: 10.1016/j.colsurfb.2019.110388] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 11/28/2022]
|
49
|
Osman N, Omolo CA, Gannimani R, Waddad AY, Rambharose S, Mocktar C, Singh S, Parboosing R, Govender T. Novel fatty acid-based pH-responsive nanostructured lipid carriers for enhancing antibacterial delivery. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101125] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
50
|
Ding X, Wang A, Tong W, Xu FJ. Biodegradable Antibacterial Polymeric Nanosystems: A New Hope to Cope with Multidrug-Resistant Bacteria. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900999. [PMID: 30957927 DOI: 10.1002/smll.201900999] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/19/2019] [Indexed: 05/14/2023]
Abstract
The human society is faced with daunting threats from bacterial infections. Over decades, a variety of antibacterial polymeric nanosystems have exhibited great promise for the eradication of multidrug-resistant bacteria and persistent biofilms by enhancing bacterial recognition and binding capabilities. In this Review, the "state-of-the-art" biodegradable antibacterial polymeric nanosystems, which could respond to bacteria environments (e.g., acidity or bacterial enzymes) for controlled antibiotic release or multimodal antibacterial treatment, are summarized. The current antibacterial polymeric nanosystems can be categorized into antibiotic-containing and intrinsic antibacterial nanosystems. The antibiotic-containing polymeric nanosystems include antibiotic-encapsulated nanocarriers (e.g., polymeric micelles, vesicles, nanogels) and antibiotic-conjugated polymer nanosystems for the delivery of antibiotic drugs. On the other hand, the intrinsic antibacterial polymer nanosystems containing bactericidal moieties such as quaternary ammonium groups, phosphonium groups, polycations, antimicrobial peptides (AMPs), and their synthetic mimics, are also described. The biodegradability of the nanosystems can be rendered by the incorporation of labile chemical linkages, such as carbonate, ester, amide, and phosphoester bonds. The design and synthesis of the degradable polymeric building blocks and their fabrications into nanosystems are also explicated, together with their plausible action mechanisms and potential biomedical applications. The perspectives of the current research in this field are also described.
Collapse
Affiliation(s)
- Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Anzhi Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Wei Tong
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Lab of Biomedical Materials of Natural Macromolecules, Beijing University of Chemical Technology, Ministry of Education, Beijing, 100029, China
- Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|