1
|
Weng J, Durand A, Desobry S. Chitosan-Based Particulate Carriers: Structure, Production and Corresponding Controlled Release. Pharmaceutics 2023; 15:1455. [PMID: 37242694 PMCID: PMC10221392 DOI: 10.3390/pharmaceutics15051455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
The state of the art in the use of chitosan (CS) for preparing particulate carriers for drug delivery applications is reviewed. After evidencing the scientific and commercial potentials of CS, the links between targeted controlled activity, the preparation process and the kinetics of release are detailed, focusing on two types of particulate carriers: matrix particles and capsules. More precisely, the relationship between the size/structure of CS-based particles as multifunctional delivery systems and drug release kinetics (models) is emphasized. The preparation method and conditions greatly influence particle structure and size, which affect release properties. Various techniques available for characterizing particle structural properties and size distribution are reviewed. CS particulate carriers with different structures can achieve various release patterns, including zero-order, multi-pulsed, and pulse-triggered. Mathematical models have an unavoidable role in understanding release mechanisms and their interrelationships. Moreover, models help identify the key structural characteristics, thus saving experimental time. Furthermore, by investigating the close relation between preparation process parameters and particulate structural characteristics as well as their effect on release properties, a novel "on-demand" strategy for the design of drug delivery devices may be developed. This reverse strategy involves designing the production process and the related particles' structure based on the targeted release pattern.
Collapse
Affiliation(s)
- Jiaqi Weng
- Université de Lorraine, LIBio, F-54000 Nancy, France;
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | - Alain Durand
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France;
| | | |
Collapse
|
2
|
Bianchini M, Micera S, Redolfi Riva E. Recent Advances in Polymeric Drug Delivery Systems for Peripheral Nerve Regeneration. Pharmaceutics 2023; 15:pharmaceutics15020640. [PMID: 36839962 PMCID: PMC9965241 DOI: 10.3390/pharmaceutics15020640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
When a traumatic event causes complete denervation, muscle functional recovery is highly compromised. A possible solution to this issue is the implantation of a biodegradable polymeric tubular scaffold, providing a biomimetic environment to support the nerve regeneration process. However, in the case of consistent peripheral nerve damage, the regeneration capabilities are poor. Hence, a crucial challenge in this field is the development of biodegradable micro- nanostructured polymeric carriers for controlled and sustained release of molecules to enhance nerve regeneration. The aim of these systems is to favor the cellular processes that support nerve regeneration to increase the functional recovery outcome. Drug delivery systems (DDSs) are interesting solutions in the nerve regeneration framework, due to the possibility of specifically targeting the active principle within the site of interest, maximizing its therapeutical efficacy. The scope of this review is to highlight the recent advances regarding the study of biodegradable polymeric DDS for nerve regeneration and to discuss their potential to enhance regenerative performance in those clinical scenarios characterized by severe nerve damage.
Collapse
Affiliation(s)
- Marta Bianchini
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
| | - Silvestro Micera
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Translational Neuroengineering, Centre for Neuroprosthetics and Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1000 Lausanne, Switzerland
| | - Eugenio Redolfi Riva
- The BioRobotics Institute, Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, 56127 Pisa, Italy
- Correspondence:
| |
Collapse
|
3
|
Zolfagharzadeh V, Ai J, Soltani H, Hassanzadeh S, Khanmohammadi M. Sustain release of loaded insulin within biomimetic hydrogel microsphere for sciatic tissue engineering in vivo. Int J Biol Macromol 2023; 225:687-700. [PMID: 36403773 DOI: 10.1016/j.ijbiomac.2022.11.133] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
We developed insulin loaded biomimetic microsphere by laccase-mediated crosslinking using a microfluidic device in the water-in-oil emulsion system as an injectable vehicle for the repair of sciatic tissue. Aqueous polymeric solution of phenol-substituted hyaluronic acid (HAPh) and collagen (ColPh) containing insulin and laccase flowed from the inner channel into oil flow within an outer channel which leads formation of hydrogel microsphere. The physical properties of prepared specimens including swelling rate, mechanical resistance and the prolonged release rate of microspheres proved applicability of fabricated vehicles for tissue engineering and drug delivery systems. The growth profile and behavior of cells in microspheres indicated cytocompatibility of the method and prepared vehicles for microtissue development. Histopathological examination revealed a significant increase in axonal regeneration, and remyelination process in injured sciatic nerve following treatment with HAPh/ColPh microspheres containing insulin compared to control groups. Also, the functional characteristic of sciatic tissue showed that the presence of biomimetic microsphere and insulin simultaneously had improved sciatic tissue functions including functional sciatic index (SFI) values, reaction to hot plate and muscle weight of rats. In summary, the results proved that composite biomimetic microspheres containing insulin effectively improved nerve regeneration in the rat model.
Collapse
Affiliation(s)
- Vahid Zolfagharzadeh
- Chemical Engineering Department, Engineering Faculty, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Jafar Ai
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hadi Soltani
- Chemical Engineering Department, Engineering Faculty, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Sajad Hassanzadeh
- Eye Research Center, Five Senses Health Research Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Mehdi Khanmohammadi
- Skull Base Research Center, The Five Senses Institute, Hazrat Rasoul Akram Hospital, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| |
Collapse
|
4
|
Zhang H, Guo J, Wang Y, Shang L, Chai R, Zhao Y. Natural Polymer‐Derived Bioscaffolds for Peripheral Nerve Regeneration. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202203829] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 01/06/2025]
Abstract
AbstractIn recent decades, artificial nerve scaffolds have become a promising substitute for peripheral nerve repair. Considerable efforts have been devoted to improving the therapeutic effectiveness of artificial scaffolds. Among numerous biomaterials for tissue engineering scaffolds fabrication, natural polymers are considered as tremendous candidates because of their excellent biocompatibility, low toxicity, high cell affinity, wide source, and environmental protection. With the development of engineering technology, a variety of natural polymer‐derived nerve scaffolds have emerged, which are endowed with biological properties and appropriate physicochemical performances to gradually adapt to the needs of nerve regeneration. Significantly, the intergradation of exogenous biomolecules onto the artificial scaffolds is able to avoid low stability, rapid degradation, and redistribution of direct therapeutic drugs in vivo, thereby enhancing nerve regeneration and functional reconstruction. Here, the development of nerve scaffolds derived from natural polymers, and their applications in continuous administration and peripheral nerve regeneration are comprehensively and carefully reviewed, providing an advanced perspective of the field.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Life Science and Technology Southeast University Nanjing 210096 China
| | - Jiahui Guo
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Life Science and Technology Southeast University Nanjing 210096 China
| | - Yu Wang
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Life Science and Technology Southeast University Nanjing 210096 China
| | - Luoran Shang
- Shanghai Xuhui Central Hospital Zhongshan‐Xuhui Hospital and the Shanghai Key Laboratory of Medical Epigenetics the International Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology) Institutes of Biomedical Sciences Fudan University Shanghai 200433 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
| | - Renjie Chai
- State Key Laboratory of Bioelectronics Department of Otolaryngology Head and Neck Surgery Zhongda Hospital School of Life Sciences Jiangsu Province High‐Tech Key Laboratory for Bio‐Medical Research Southeast University 87# Dingjiaqiao Nanjing 210096 China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Life Science and Technology Southeast University Nanjing 210096 China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China
| |
Collapse
|
5
|
Li Q, Chang B, Dong H, Liu X. Functional microspheres for tissue regeneration. Bioact Mater 2022; 25:485-499. [PMID: 37056261 PMCID: PMC10087113 DOI: 10.1016/j.bioactmat.2022.07.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/13/2022] [Accepted: 07/26/2022] [Indexed: 11/02/2022] Open
Abstract
As a new type of injectable biomaterials, functional microspheres have attracted increasing attention in tissue regeneration because they possess some advantageous properties compared to other biomaterials, including hydrogels. A variety of bio-inspired microspheres with unique structures and properties have been developed as cellular carriers and drug delivery vehicles in recent years. In this review, we provide a comprehensive summary of the progress of functional and biodegradable microspheres that have been used for tissue regeneration over the last two decades. First, we briefly introduce the biomaterials and general methods for microsphere fabrication. Next, we focus on the newly developed technologies for preparing functional microspheres, including macroporous microspheres, nanofibrous microspheres, hollow microspheres, core-shell structured microspheres, and surface-modified functional microspheres. After that, we discuss the application of functional microspheres for tissue regeneration, specifically for bone, cartilage, dental, neural, cardiac, and skin tissue regeneration. Last, we present our perspectives and future directions of functional microspheres as injectable carriers for the future advancement of tissue regeneration.
Collapse
|
6
|
Zhang S, Lin A, Tao Z, Fu Y, Xiao L, Ruan G, Li Y. Microsphere‐containing hydrogel scaffolds for tissue engineering. Chem Asian J 2022; 17:e202200630. [PMID: 35909078 DOI: 10.1002/asia.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shihao Zhang
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Anqi Lin
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Ziwei Tao
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Yingying Fu
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Lan Xiao
- Queensland University of Technology Centre for Biomedical Technologies AUSTRALIA
| | | | - Yulin Li
- East China University of Science and Technology Meilong Road 130 Shanghai CHINA
| |
Collapse
|
7
|
Almukainzi M, A El-Masry T, A Negm W, Elekhnawy E, Saleh A, E Sayed A, A Khattab M, H Abdelkader D. Gentiopicroside PLGA Nanospheres: Fabrication, in vitro Characterization, Antimicrobial Action, and in vivo Effect for Enhancing Wound Healing in Diabetic Rats. Int J Nanomedicine 2022; 17:1203-1225. [PMID: 35330694 PMCID: PMC8938172 DOI: 10.2147/ijn.s358606] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/09/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose Gentiopicroside (GPS), an adequate bioactive candidate, has a promising approach for enhancing wound healing due to its antioxidant and antimicrobial properties. Its poor aqueous solubility negatively affects oral absorption accompanied by low bioavailability due to intestinal/hepatic first-pass metabolism. Our aim in this study is to fabricate GPS into appropriate nanocarriers (PLGA nanospheres, NSs) to enhance its solubility and hence its oral absorption would be improved. Methods Normal and ODS silica gel together with Sephadex LH20 column used for isolation of GPS from Gentiana lutea roots. Crude GPS would be further processed for nanospheres fabrication using a single o/w emulsion solvent evaporation technique followed by in vitro optimization study to examine the effect of two formulation variables: polymer (PLGA) and stabilizer (PVA) concentrations on the physical characterizations of prepared NSs. Possible GPS-PLGA chemical and physical interactions have been analyzed using Fourier-transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The optimum GPS-PLGA NSs have been chosen for antimicrobial study to investigate its inhibitory action on Staphylococcus aureus compared with unloaded GPS NSs. Also, a well-designed in vivo study on streptozotocin-induced diabetic rats has been performed to examine the wound healing effect of GPS-PLGA NSs followed by histological examination of wound incisions at different day intervals throughout the study. Results The optimum GPS PLGA NSs (F5) with well-controlled particle size (250.10±07.86 nm), relative high entrapment efficiency (83.35±5.71), and the highest % cumulative release (85.79±8.74) have increased the antimicrobial activity as it exhibited a higher inhibitory effect on bacterial growth than free GPS. F5 showed a greater enhancing impact on wound healing and a significant stimulating effect on the synthesis of collagen fibers compared with free GPS. Conclusion These findings demonstrate that loading GPS into PLGA NSs is considered a promising strategy ensuring optimum GPS delivery for potential management of wounds.
Collapse
Affiliation(s)
- May Almukainzi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Thanaa A El-Masry
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Walaa A Negm
- Pharmacognosy Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Engy Elekhnawy
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Asmaa Saleh
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
- Department of Biochemistry, Faculty of Pharmacy, Al Azhar University, Cairo, Egypt
| | | | - Mohamed A Khattab
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Dalia H Abdelkader
- Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- Correspondence: Dalia H Abdelkader, Pharmaceutical Technology Department, Faculty of Pharmacy, Tanta University, Tanta, 31111, Egypt, Tel +20 40 3336007, Fax +20 40 3335466, Email ;
| |
Collapse
|
8
|
Kim SM, Patel M, Patel R. PLGA Core-Shell Nano/Microparticle Delivery System for Biomedical Application. Polymers (Basel) 2021; 13:3471. [PMID: 34685230 PMCID: PMC8540999 DOI: 10.3390/polym13203471] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/24/2022] Open
Abstract
Core-shell particles are very well known for their unique features. Their distinctive inner core and outer shell structure allowed promising biomedical applications at both nanometer and micrometer scales. The primary role of core-shell particles is to deliver the loaded drugs as they are capable of sequence-controlled release and provide protection of drugs. Among other biomedical polymers, poly (lactic-co-glycolic acid) (PLGA), a food and drug administration (FDA)-approved polymer, has been recognized for the vehicle material. This review introduces PLGA core-shell nano/microparticles and summarizes various drug-delivery systems based on these particles for cancer therapy and tissue regeneration. Tissue regeneration mainly includes bone, cartilage, and periodontal regeneration.
Collapse
Affiliation(s)
- Se Min Kim
- Life Science and Biotechnology Department (LSBT), Underwood Division (UD), Underwood International College, Yonsei University, Sinchon, Seoul 03722, Korea;
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Woman’s University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Korea;
| | - Rajkumar Patel
- Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon 21983, Korea
| |
Collapse
|
9
|
Zeng W, Hui H, Liu Z, Chang Z, Wang M, He B, Hao D. TPP ionically cross-linked chitosan/PLGA microspheres for the delivery of NGF for peripheral nerve system repair. Carbohydr Polym 2021; 258:117684. [PMID: 33593557 DOI: 10.1016/j.carbpol.2021.117684] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 12/31/2020] [Accepted: 01/15/2021] [Indexed: 12/16/2022]
Abstract
To control the release of nerve growth factor (NGF) in the injured peripheral nerve, NGF-loaded chitosan/PLGA composite microspheres ionically cross-linked by tripolyphosphate (TPP/Chitosan/PLGA-NGF) were prepared. The encapsulation efficiency of NGF ranged from 83.4 ± 1.5 % to 72.1 ± 1.6 % with TPP concentrations from 1 % to 10 %. Zeta potential and FT-IR analyses together with confocal microscopy demonstrated that multiple NGF-loaded PLGA microspheres were embedded in chitosan matrix, the mean size of TPP/Chitosan/PLGA-NGF microspheres ranged from 40.2 ± 3.4 to 49.3 ± 3.1 μm. The increase of TPP concentration improved the network stability and decreased the swelling ratio, resulting in the decreased NGF release from 67.7 ± 1.2 % to 45.7 ± 0.8 % in 49 days. The sustained release of NGF could promote PC12 cells differentiation and neurite growth in vitro. Moreover, in comparison with NGF solution without microencapsulation, TPP/Chitosan/PLGA-NGF microspheres enhanced sciatic nerve regeneration and prevented gastrocnemius muscle atrophy in rats. These results demonstrate the feasibility of using TPP/Chitosan/PLGA-NGF microspheres for neural tissue repair.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Hua Hui
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Zhongyang Liu
- Department of Orthopedics, the Fourth Medical Centre, Chinese PLA General Hospital, Beijing, 100048, China; National Clinical Research Center for Orthopedics, Sports Medicine & Rehabilitation, Beijing, 100853, China
| | - Zhen Chang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China
| | - Mingbo Wang
- Shenzhen Lando Biomaterials Co., Ltd, Shenzhen, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
10
|
Bizeau J, Mertz D. Design and applications of protein delivery systems in nanomedicine and tissue engineering. Adv Colloid Interface Sci 2021; 287:102334. [PMID: 33341459 DOI: 10.1016/j.cis.2020.102334] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 02/06/2023]
Abstract
Proteins are biological macromolecules involved in a wide range of biological functions, which makes them very appealing as therapeutics agents. Indeed, compared to small molecule drugs, their endogenous nature ensures their biocompatibility and biodegradability, they can be used in a large range of applications and present a higher specificity and activity. However, they suffer from unfolding, enzymatic degradation, short half-life and poor membrane permeability. To overcome such drawbacks, the development of protein delivery systems to protect, carry and deliver them in a controlled way have emerged importantly these last years. In this review, the formulation of a wide panel of protein delivery systems either in the form of polymer or inorganic nanoengineered colloids and scaffolds are presented and the protein loading and release mechanisms are addressed. A section is also dedicated to the detection of proteins and the characterization methods of their release. Then, the main protein delivery systems developed these last three years for anticancer, tissue engineering or diabetes applications are presented, as well as the major in vivo models used to test them. The last part of this review aims at presenting the perspectives of the field such as the use of protein-rich material or the sequestration of proteins. This part will also deal with less common applications and gene therapy as an indirect method to deliver protein.
Collapse
|
11
|
Rong M, Chang Z, Ou J, Zhao S, Zeng W, Liu Q. [The fabrication and related properties study of chitosan-poly (lactide-co-glycolide) double-walled microspheres loaded with nerve growth factor]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2020; 34:102-108. [PMID: 31939244 DOI: 10.7507/1002-1892.201905074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To evaluate the feasibility of the chitosan-poly (lactide-co-glycolide) (PLGA) double-walled microspheres for sustained release of bioactive nerve growth factor (NGF) in vitro. Methods NGF loaded chitosan-PLGA double-walled microspheres were prepared by emulsion-ionic method with sodium tripolyphosphate (TPP) as an ionic cross-linker. The double-walled microspheres were cross-linked by different concentrations of TPP [1%, 3%, 10% ( W/ V)]. NGF loaded PLGA microspheres were also prepared. The outer and inner structures of double-walled microspheres were observed by light microscopy, scanning electron microscopy, confocal laser scanning microscopy, respectively. The size and distribution of microspheres and fourier transform infra red spectroscopy (FT-IR) were analyzed. PLGA microspheres with NGF or chitosan-PLGA double-walled microspheres cross-linked by 1%, 3%, and 10%TPP concentration (set as groups A, B, C, and D respectively) were used to determine the degradation ratio of microspheres in vitro and the sustained release ratio of NGF in microspheres at different time points. The bioactivity of NGF (expressed as the percentage of PC12 cells with positive axonal elongation reaction) in the sustained release solution of chitosan-PLGA double-walled microspheres without NGF (set as group A1) was compared in groups B, C, and D. Results The chitosan-PLGA double-walled microspheres showed relative rough and spherical surfaces without aggregation. Confocal laser scanning microscopy showed PLGA microspheres were evenly uniformly distributed in the chitosan-PLGA double-walled microspheres. The particle size of microspheres ranged from 18.5 to 42.7 μm. The results of FT-IR analysis showed ionic interaction between amino groups and phosphoric groups of chitosan in double-walled microspheres and TPP. In vitro degradation ratio analysis showed that the degradation ratio of double-walled microspheres in groups B, C, and D appeared faster in contrast to that in group A. In addition, the degradation ratio of double-walled microsphere in groups B, C, and D decreased when the TPP concentration increased. There were significant differences in the degradation ratio of each group ( P<0.05). In vitro sustained release ratio of NGF showed that when compared with PLGA microspheres in group A, double-walled microspheres in groups B, C, and D released NGF at a relatively slow rate, and the sustained release ratio decreased with the increase of TPP concentration. Except for 84 days, there was significant difference in the sustained release ratio of NGF between groups B, C, and D ( P<0.05). The bioactivity of NGF results showed that the percentage of PC12 cells with positive axonal elongation reaction in groups B, C, and D was significantly higher than that in group A1 ( P<0.05). At 7 and 28 days of culture, there was no significant difference between groups B, C, and D ( P>0.05); at 56 and 84 days of culture, the percentage of PC12 cells with positive axonal elongation reaction in groups C and D was significantly higher than that in group B ( P<0.05), and there was no significant difference between groups C and D ( P>0.05). Conclusion NGF loaded chitosan-PLGA double-walled microspheres have a potential clinical application in peripheral nerve regeneration after injury.
Collapse
Affiliation(s)
- Mengyao Rong
- Department of Internal Medicine, the Hospital of Xidian University, Xi'an Shaanxi, 710071, P.R.China
| | - Zhen Chang
- Department of Spinal Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, P.R.China
| | - Jiawei Ou
- Department of Spinal Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, P.R.China
| | - Songchuan Zhao
- Department of Spinal Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, P.R.China
| | - Wen Zeng
- Department of Spinal Surgery, Honghui Hospital Affiliated to Medical School of Xi'an Jiaotong University, Xi'an Shaanxi, 710054, P.R.China
| | - Qi Liu
- Department of Neurosurgery, the First Hospital of Yulin, Yulin Shaanxi, 718000,
| |
Collapse
|
12
|
Shen Y, Tu T, Yi B, Wang X, Tang H, Liu W, Zhang Y. Electrospun acid-neutralizing fibers for the amelioration of inflammatory response. Acta Biomater 2019; 97:200-215. [PMID: 31400522 DOI: 10.1016/j.actbio.2019.08.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/01/2019] [Accepted: 08/06/2019] [Indexed: 12/11/2022]
Abstract
Biodegradable aliphatic polyesters, especially polylactide (PLA), polyglycolide (PGA), and their copolymer poly(lactide-co-glycolide) (PLGA), are the most representative and widely used synthetic polymers in the field of tissue engineering and regenerative medicine. However, these polyesters often give rise to aseptic inflammation because of their acidic degradation products after implantation. Here, unidirectional shell-core structured fibers of chitosan/poly(lactide-co-glycolide) (i.e., CTS/PLGA) with acid-neutralizing capability were developed for addressing the noted issue by coating the PLGA fiber surfaces with a layer of the alkaline chitosan by coaxial electrospinning. Our results showed that during a period of 8-week degradation, the shell-layer of chitosan with its unique alkaline nature for acid-neutralization obviously hindered the pH decrease as a result of the degradation of PLGA-core. In a mocked acidic environment testing of the human dermal fibroblasts, chitosan-enabled acidity neutralization could significantly reduce in vitro the secretion of inflammatory factors and downregulate the expression of related inflammatory genes. Thereafter, biocompatibility assessment in vitro showed that the CTS/PLGA fibers had poorer cell adhesion capacity than the PLGA fibers but were cytocompatible and promoted cell migration and secretion of collagen. Moreover, subcutaneous embedding for two and four weeks in vivo revealed that the CTS/PLGA fibers significantly reduced the recruitment of inflammatory cells and the formation of foreign body giant cells (FBGCs). This study thereby demonstrated the evident acid-neutralizing effect of the chitosan-coating layer on alleviating the inflammatory responses caused by the acidic degradation products of the PLGA-core. Our highly aligned CTS/PLGA fibers, as a kind of quasi "pH-neutral fibers" with the acid-neutralizing capability, could be potentially applied for engineering those architecturally anisotropic tissues (e.g., tendon/ligament) toward improved efficacy of regeneration. STATEMENT OF SIGNIFICANCE: It is well known that acidic degradation products from representative aliphatic polyesters (e.g., PLA, PGA, and PLGA) give rise to the problem of aseptic inflammation. Various alkaline components acting as neutralizing agents have been used to address the noted issue. However, rather less attention has been paid to engineer these polyesters into a fibrous form with acid-neutralizing functionality. The present study proposes the concept of "pH-neutral fibers" and develops shell-core structured unidirectional fibers of chitosan/poly(lactide-co-glycolide) with acid-neutralizing capability for ameliorating inflammatory responses caused by the acidic degradation products of PLGA. It provides a comprehensive study encompassing fiber characterization and in vitro and in vivo evaluation, which would pave the way for developing sophisticated pH-neutral fibers for functional tissue regeneration.
Collapse
Affiliation(s)
- Yanbing Shen
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Tian Tu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Tissue Engineering Center of China, Shanghai 201100, China
| | - Bingcheng Yi
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Xianliu Wang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Han Tang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China
| | - Wei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China; National Tissue Engineering Center of China, Shanghai 201100, China.
| | - Yanzhong Zhang
- College of Chemistry, Chemical Engineering & Biotechnology, Donghua University, Shanghai 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China; Key Lab of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China.
| |
Collapse
|
13
|
Tokumasu A, Inose T, Yamauchi N, Nakashima K, Tokunaga M, Kato C, Hatoyama K, Kamei T, Gonda K, Kobayashi Y. Au nanoparticles coated with chitosan. Colloid Polym Sci 2019. [DOI: 10.1007/s00396-019-04524-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
14
|
Hu X, Zhou X, Li Y, Jin Q, Tang W, Chen Q, Aili D, Qian H. Application of stem cells and chitosan in the repair of spinal cord injury. Int J Dev Neurosci 2019; 76:80-85. [PMID: 31302172 DOI: 10.1016/j.ijdevneu.2019.07.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 06/25/2019] [Accepted: 07/10/2019] [Indexed: 12/14/2022] Open
Abstract
Cytology and histology obstacles have been the main barriers to multiple tissues injury repair. In search of the most promising treatment strategies for spinal cord injury (SCI), stem cell-based transplantation coupled with various materials/technologies have been explored extensively to enhance SCI repair. Chitosan (CS) has demonstrated immense potential for widespread application in the form of scaffolds and micro-particles for SCI repair. The current review summarizes the evidences for stem cell-based transplantation and CS in SCI repair. Stem cells transplantation, which plays a key role in the repair of SCI, mainly results from its neural differentiation potential and neurotrophic effects. Application of CS enhances the survival of grafted stem cells, upregulates the expression level of neurotrophic factors and heightens the neural differentiation of stem cells as well as the functional recovery of spinal cord. Meanwhile, CS can also be exploited as growth factors/RNA carriers to control the release of regenerating molecules which are beneficial to damage spinal cord repair.
Collapse
Affiliation(s)
- Xinyuan Hu
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xinru Zhou
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Yang Li
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qian Jin
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Wenjuan Tang
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Qun Chen
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Dilhumar Aili
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Hui Qian
- Zhenjiang Key Laboratory of High Technology Research on Exosomes Foundation and Transformation Application, Zhenjiang, Jiangsu, People's Republic of China.,Key Laboratory of Laboratory Medicine of Jiangsu Province, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
15
|
Teleanu RI, Gherasim O, Gherasim TG, Grumezescu V, Grumezescu AM, Teleanu DM. Nanomaterial-Based Approaches for Neural Regeneration. Pharmaceutics 2019; 11:E266. [PMID: 31181719 PMCID: PMC6630326 DOI: 10.3390/pharmaceutics11060266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Mechanical, thermal, chemical, or ischemic injury of the central or peripheral nervous system results in neuron loss, neurite damage, and/or neuronal dysfunction, almost always accompanied by sensorimotor impairment which alters the patient's life quality. The regenerative strategies for the injured nervous system are currently limited and mainly allow partial functional recovery, so it is necessary to develop new and effective approaches for nervous tissue regenerative therapy. Nanomaterials based on inorganic or organic and composite or hybrid compounds with tunable physicochemical properties and functionality proved beneficial for the transport and delivery/release of various neuroregenerative-relevant biomolecules or cells. Within the following paragraphs, we will emphasize that nanomaterial-based strategies (including nanosized and nanostructured biomaterials) represent a promising alternative towards repairing and regenerating the injured nervous system.
Collapse
Affiliation(s)
- Raluca Ioana Teleanu
- "Victor Gomoiu" Clinical Children's Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.
| | - Tudor George Gherasim
- National Institute of Neurology and Neurovascular Diseases, 077160 Bucharest, Romania.
| | - Valentina Grumezescu
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 077125 Magurele, Romania.
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania.
| | - Daniel Mihai Teleanu
- Emergency University Hospital, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania.
| |
Collapse
|
16
|
Esquivel-Castro TA, Ibarra-Alonso M, Oliva J, Martínez-Luévanos A. Porous aerogel and core/shell nanoparticles for controlled drug delivery: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 96:915-940. [DOI: 10.1016/j.msec.2018.11.067] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 11/06/2018] [Accepted: 11/27/2018] [Indexed: 12/12/2022]
|
17
|
Bee SL, Hamid ZAA, Mariatti M, Yahaya BH, Lim K, Bee ST, Sin LT. Approaches to Improve Therapeutic Efficacy of Biodegradable PLA/PLGA Microspheres: A Review. POLYM REV 2018. [DOI: 10.1080/15583724.2018.1437547] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Soo-Ling Bee
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Z. A. Abdul Hamid
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - M. Mariatti
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - B. H. Yahaya
- Regenerative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Keemi Lim
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Nibong Tebal, Penang, Malaysia
| | - Soo-Tueen Bee
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| | - Lee Tin Sin
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Jalan Sungai Long, Bandar Sungai Long, Cheras, Kajang, Selangor, Malaysia
| |
Collapse
|
18
|
Liu L, Yang J, Men K, He Z, Luo M, Qian Z, Wei X, Wei Y. Current Status of Nonviral Vectors for Gene Therapy in China. Hum Gene Ther 2018; 29:110-120. [PMID: 29320893 DOI: 10.1089/hum.2017.226] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Li Liu
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Jingyun Yang
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Ke Men
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhiyao He
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Min Luo
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Zhiyong Qian
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Xiawei Wei
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| | - Yuquan Wei
- Laboratory for Aging Research and Nanotoxicology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, P.R. China
| |
Collapse
|