1
|
Fan L, Cai Z, Zhao J, Mahmoudi N, Wang Y, Cheeseman S, Aguilar LC, Reis RL, Kundu SC, Kaplan DL, Nisbet DR, Li JL. Gelation Dynamics, Formation Mechanism, Functionalization, and 3D Bioprinting of Silk Fibroin Hydrogel Materials for Biomedical Applications. ACS NANO 2025. [PMID: 40340314 DOI: 10.1021/acsnano.4c18568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Silk fibroin (SF), derived from silk cocoon fibers (Bombyx mori), is a natural protein polymer known for its biocompatibility, biodegradability, and sustainability. The protein can be processed into various material formats suitable for a range of applications. Among these, SF hydrogels are useful in the biomedical field, such as tissue engineering, due to the tailorable structures and properties achievable through tuning the gelation process. Therefore, the focus of this contribution is to comprehensively review and understand the formation, gelation mechanism, dynamic control, and functionalization of SF hydrogels. Unlike previous reviews, this work delves into understanding the strategies and mechanisms for tuning the gelation dynamics of SF from molecular assembly and crystallization points of view. Further, this review presents functionalization pathways and practical examples, such as for the 3D printing of SF hydrogels, to illustrate how these strategies, mechanisms, and pathways can be implemented in a specific application scenario. With these insights, researchers can gain a deeper understanding of how to manipulate or control the gelation process and the types of functionalization to achieve specific properties and features. This knowledge would further facilitate the development and application of SF hydrogel materials in various fields.
Collapse
Affiliation(s)
- Linpeng Fan
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Zengxiao Cai
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| | - Jian Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Negar Mahmoudi
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Yi Wang
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Lilith Caballero Aguilar
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
- The Aikenhead Centre for Medical Discovery, St Vincent's Hospital, Fitzroy, Victoria 3065, Australia
| | - Rui Luís Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Rua Ave 1, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Subhas C Kundu
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark - Parque da Ciência e Tecnologia, Rua Ave 1, 4805-694 Barco, Guimarães, Portugal
- ICVS/3B's-PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, Massachusetts 02155, United States
| | - David R Nisbet
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jing-Liang Li
- Institute for Frontier Materials, Deakin University, Geelong, Victoria 3220, Australia
| |
Collapse
|
2
|
Kaur T, Hinge N, Pukale S, Ansari MN, Thajudeen KY, Nandave M, Upadhyay J. Emerging Therapeutic Agents and Nanotechnology-Driven Innovations in Psoriasis Management. FRONT BIOSCI-LANDMRK 2025; 30:27910. [PMID: 40152381 DOI: 10.31083/fbl27910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 03/29/2025]
Abstract
Psoriasis has been a rising concern for over a decade, imposing significant challenges to individuals and society. Traditional topical therapy is non-targeted and acts systemically, with associated side effects. This increases the global burden both socially and economically. This review covers the evolution of drug molecules and nanotechnology-based approaches for the topical treatment of psoriasis, a chronic inflammatory skin disorder with no known etiology. Nanotechnology-based approaches offer promising solutions by reducing side effects, providing targeted delivery, protecting drug molecules from degradation, enhancing skin retention, and providing controlled release. Researchers have investigated the incorporation of various conventional and non-conventional therapeutic agents into nanocarriers for psoriasis treatment. The current understanding of the disease and its treatment using various therapeutic agents combined with novel formulation strategies will reduce the duration of treatment and improve the quality of life in psoriatic disease conditions.
Collapse
Affiliation(s)
- Tarnjot Kaur
- Department of Pharmaceutical Sciences, School of Health Science and Technology, UPES, 248007 Dehradun, Uttarakhand, India
| | - Nikita Hinge
- School of Pharmacy, Dr Vishwanath Karad MIT World Peace University, 411038 Pune, Maharashtra, India
| | - Sudeep Pukale
- Lupin Research Park, 412115 Pune, Maharashtra, India
| | - Mohd Nazam Ansari
- Department of Pharmacology & Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942 Al-Kharj, Saudi Arabia
| | - Kamal Y Thajudeen
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, 62529 Abha, Saudi Arabia
| | - Mukesh Nandave
- Department of Pharmacology, Delhi Pharmaceutical Sciences and Research University (DPSRU), 110017 New Delhi, India
| | - Jyoti Upadhyay
- Department of Pharmaceutical Sciences, School of Health Science and Technology, UPES, 248007 Dehradun, Uttarakhand, India
| |
Collapse
|
3
|
Tian Z, Chen H, Zhao P. Compliant immune response of silk-based biomaterials broadens application in wound treatment. Front Pharmacol 2025; 16:1548837. [PMID: 40012629 PMCID: PMC11861559 DOI: 10.3389/fphar.2025.1548837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/28/2025] Open
Abstract
The unique properties of sericin and silk fibroin (SF) favor their widespread application in biopharmaceuticals, particularly in wound treatment and bone repair. The immune response directly influences wound healing cycle, and the extensive immunomodulatory functions of silk-based nanoparticles and hydrogels have attracted wide attention. However, different silk-processing methods may trigger intense immune system resistance after implantation into the body. In this review, we elaborate on the inflammation and immune responses caused by the implantation of sericin and SF and also explore their anti-inflammatory properties and immune regulatory functions. More importantly, we describe the latest research progress in enhancing the immunotherapeutic and anti-inflammatory effects of composite materials prepared from silk from a mechanistic perspective. This review will provide a useful reference for using the correct processes to exploit silk-based biomaterials in different wound treatments.
Collapse
Affiliation(s)
- Zhiqiang Tian
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
| | - Hong Chen
- Department of Orthopedics, 903 Hospital of Joint Logistic Support Force of The People’s Liberation Army, Hangzhou, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing, China
| |
Collapse
|
4
|
Maia MV, do Egito EST, Sapin-Minet A, Viana DB, Kakkar A, Soares DCF. Fibroin-Hybrid Systems: Current Advances in Biomedical Applications. Molecules 2025; 30:328. [PMID: 39860198 PMCID: PMC11767523 DOI: 10.3390/molecules30020328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/09/2025] [Accepted: 01/11/2025] [Indexed: 01/27/2025] Open
Abstract
Fibroin, a protein extracted from silk, offers advantageous properties such as non-immunogenicity, biocompatibility, and ease of surface modification, which have been widely utilized for a variety of biomedical applications. However, in vivo studies have revealed critical challenges, including rapid enzymatic degradation and limited stability. To widen the scope of this natural biomacromolecule, the grafting of polymers onto the protein surface has been advanced as a platform to enhance protein stability and develop smart conjugates. This review article brings into focus applications of fibroin-hybrid systems prepared using chemical modification of the protein with polymers and inorganic compounds. A selection of recent preclinical evaluations of these hybrids is included to highlight the significance of this approach.
Collapse
Affiliation(s)
- Matheus Valentin Maia
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | - Eryvaldo Sócrates Tabosa do Egito
- Laboratório de Sistemas Dispersos LaSiD, Faculdade de Farmácia, Universidade Federal do Rio Grande no Norte, Natal 59012-570, Rio Grande do Norte, Brazil;
| | - Anne Sapin-Minet
- Faculté de Pharmacie, Université de Lorraine, CITHEFOR, F-54000 Nancy, France;
| | - Daniel Bragança Viana
- Laboratório de Bioengenharia, Universidade Federal de Itajubá, Itabira 35903-087, Minas Gerais, Brazil; (D.B.V.)
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montréal, QC H3A 0B8, Canada
| | | |
Collapse
|
5
|
Li A, Nicolas J, Mura S. Unlocking the Potential of Hybrid Nanocomposite Hydrogels: Design, Mechanical Properties and Biomedical Performances. ADVANCED FUNCTIONAL MATERIALS 2025; 35. [DOI: 10.1002/adfm.202409670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Indexed: 01/06/2025]
Abstract
AbstractHybrid nanocomposite hydrogels consist of the homogeneous incorporation of nano‐objects in a hydrogel matrix. The latter, whether made of natural or synthetic materials, possesses a microporous, soft structure that makes it an ideal host for a variety of polymer and lipid‐based nano‐objects as well as metal‐ and silica‐based ones. By carefully choosing the composition and the proportions of the different constituents, hybrid hydrogels can display a wide array of properties, from simple enhancement of mechanical characteristics to specific bioactivity. This review aims to provide an overview of the state of the art in hybrid hydrogels highlighting key aspects that make them a promising choice for a variety of biomedical applications. Strategies for the preparation of hybrid hydrogels are discussed by covering the selection of individual components. The review will also explore the physico‐chemical and rheological characterization of these materials, which is essential for understanding their structure and function, ultimately satisfying specifications for the intended use. Successful examples of biomedical applications will also be presented, and the main challenges to be met will be discussed, with the aim of stimulating the research community to exploit the full potential of these materials.
Collapse
Affiliation(s)
- Anqi Li
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Julien Nicolas
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| | - Simona Mura
- Université Paris‐Saclay CNRS Institut Galien Paris‐Saclay Orsay 91400 France
| |
Collapse
|
6
|
Peram MR, Dhananjay C, Chandrasekhar N, Kumbar VM, Suryadevara V, Patil SR, El-Zahaby SA. Acitretin-loaded nanoethosomal gel for the treatment of psoriasis: Formulation, optimization,
in vitro
, and
in viv
o assessment. J DISPER SCI TECHNOL 2024; 46:44-61. [DOI: 10.1080/01932691.2023.2278492] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/29/2023] [Indexed: 12/02/2024]
Affiliation(s)
- Malleswara Rao Peram
- Chebrolu Hanumaiah Institute of Pharmaceutical Sciences, Guntur, Andra Pradesh, India
| | - Chandrakant Dhananjay
- Department of Pharmaceutics, Maratha Mandal College of Pharmacy, Belagavi, Karnataka, India
| | - Nagesh Chandrasekhar
- Department of Pharmaceutics, Maratha Mandal College of Pharmacy, Belagavi, Karnataka, India
| | - Vijay M Kumbar
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research (KLE University), Belagavi, Karnataka, India
| | | | - Sachin R Patil
- Department of Pharmaceutics, Sarojini College of Pharmacy, Kolhapur, Maharashtra, India
| | - Sally A El-Zahaby
- Department of Pharmaceutics and Industrial Pharmacy, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), Alexandria, Egypt
| |
Collapse
|
7
|
Alam MS, Anwar MJ, Maity MK, Azam F, Jaremko M, Emwas AH. The Dynamic Role of Curcumin in Mitigating Human Illnesses: Recent Advances in Therapeutic Applications. Pharmaceuticals (Basel) 2024; 17:1674. [PMID: 39770516 PMCID: PMC11679877 DOI: 10.3390/ph17121674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Herbal medicine, particularly in developing regions, remains highly popular due to its cost-effectiveness, accessibility, and minimal risk of adverse effects. Curcuma longa L., commonly known as turmeric, exemplifies such herbal remedies with its extensive history of culinary and medicinal applications across Asia for thousands of years. Traditionally utilized as a dye, flavoring, and in cultural rituals, turmeric has also been employed to treat a spectrum of medical conditions, including inflammatory, bacterial, and fungal infections, jaundice, tumors, and ulcers. Building on this longstanding use, contemporary biochemical and clinical research has identified curcumin-the primary active compound in turmeric-as possessing significant therapeutic potential. This review hypothesizes that curcumin's antioxidant properties are pivotal in preventing and treating chronic inflammatory diseases, which are often precursors to more severe conditions, such as cancer, and neurological disorders, like Parkinson's and Alzheimer's disease. Additionally, while curcumin demonstrates a favorable safety profile, its anticoagulant effects warrant cautious application. This article synthesizes recent studies to elucidate the molecular mechanisms underlying curcumin's actions and evaluates its therapeutic efficacy in various human illnesses, including cancer, inflammatory bowel disease, osteoarthritis, atherosclerosis, peptic ulcers, COVID-19, psoriasis, vitiligo, and depression. By integrating diverse research findings, this review aims to provide a comprehensive perspective on curcumin's role in modern medicine and its potential as a multifaceted therapeutic agent.
Collapse
Affiliation(s)
- Md Shamshir Alam
- Department of Pharmacy Practice, College of Pharmacy, National University of Science and Technology, P.O. Box 620, Bosher, Muscat 130, Oman
| | - Md Jamir Anwar
- Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Manish Kumar Maity
- Department of Pharmacy Practice, MM College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala 133207, Haryana, India
| | - Faizul Azam
- Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
8
|
Maded ZK, Lassoued MA, Taqa GAA, Fawzi HA, Abdulqader AA, Jabir MS, Mahal RK, Sfar S. Topical Application of Dipyridamole and Roflumilast Combination Nanoparticles Loaded Nanoemulgel for the Treatment of Psoriasis in Rats. Int J Nanomedicine 2024; 19:13113-13134. [PMID: 39679247 PMCID: PMC11638079 DOI: 10.2147/ijn.s492180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Background Phosphodiesterase-4 is an enzyme that regulates immune responses and contributes to the development of psoriasis. Dipyridamole and roflumilast function as phosphodiesterase-4 inhibitors, reducing pro-inflammatory cytokine expression. The aim was to evaluate the anti-psoriatic effect of the topical administration of dipyridamole and roflumilast nanoemulgel combination on imiquimod-induced psoriasiform skin inflammation in rats. Methods Dipyridamole and roflumilast were formulated into nanoemulgel to enhance skin penetration and retention. The production of nanoemulgels involves a two-part process. A nanoemulsion is created (the aqueous phase titration method was employed to create nanoemulsions), which is then incorporated into the gelling agent during the second phase. The new formula was then tested in rats. The rats were divided into seven groups; all animals were treated for 16 days. Induction was achieved by 120 mg of 5% imiquimod cream, which was applied daily for 8 days. After induction, groups received one of the following: 0.05% clobetasol ointment, 1% dipyridamole nanoemulgel (D-NEG), 0.3% roflumilast nanoemulgel (R-NEG), 1% dipyridamole and 0.3% roflumilast gel combination (DR-gel), and 1% dipyridamole and 0.3% roflumilast nanoemulgel combination (DR-NEG). At the end of the experiment, all animals were euthanized, and their blood and skin tissue samples were obtained. Inflammatory markers, immunohistochemistry, and histopathology were measured. Results The DR-NEG group showed significantly lower levels of IL17, IL23, and TNF-α, while TGF-β showed higher levels than the clobetasol group. The expression of CK16 was significantly lower compared to the clobetasol group. DR-NEG showed a significantly lower PASI and Baker score than the clobetasol group. Conclusion The new DR-NEG's topical combination administration showed better anti-inflammatory, tissue healing, and anti-psoriatic activity than each drug alone or topical clobetasol administration; this could be attributed to the possible synergic effects of both drugs and the enhanced skin penetration offered by the nanoemulgel formulation.
Collapse
Affiliation(s)
- Zeyad Khalaf Maded
- Laboratory of Pharmaceutical, Chemical, and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Mohamed Ali Lassoued
- Laboratory of Pharmaceutical, Chemical, and Pharmacological Drug Development LR12ES09, Faculty of Pharmacy, University of Monastir, Monastir, Tunisia
| | - Ghada Abd Alrhman Taqa
- Department of Dental Basic Sciences, College of Dentistry, University of Mosul, Mosul, Iraq
| | | | | | - Majid S Jabir
- Department of Applied Science, University of Technology, Baghdad, Iraq
| | - Raffah Khamis Mahal
- Department of Pharmaceutics, College of Pharmacy, The University of Mashreq, Baghdad, 10023, Iraq
| | - Souad Sfar
- Laboratory of Chemical, Galenic and Pharmacological Development of Medicines (LR12ES09), Faculty of Pharmacy of Monastir, University of Monastir, Monastir, Tunisia
| |
Collapse
|
9
|
Ashraf M, El-Sawy HS, El Zaafarany GM, Abdel-Mottaleb MMA. Eucalyptus oil nanoemulsion for enhanced skin deposition of fluticasone propionate in psoriatic plaques: A combinatorial anti-inflammatory effect to suppress implicated cytokines. Arch Pharm (Weinheim) 2024:e2400557. [PMID: 39449230 DOI: 10.1002/ardp.202400557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/16/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Psoriasis is a chronic inflammatory skin disease that affects patients' quality of life. This study aimed to enhance the efficacy of topical application of fluticasone propionate (FP) using a eucalyptus oil-based nanoemulsion, an oil possessing anti-inflammatory activity and extracted from the leaves, fruits, and buds of Eucalyptus globulus or Eucalyptus maidenii, to improve the skin deposition of FP and aid its anti-inflammatory effect. Box-Behnken design was employed to optimize NE formulations, which were characterized for globule size, zeta potential, polydispersity index, rheological behavior, microscopic morphology, ex vivo skin permeation/deposition, and in vivo efficacy using imiquimod-induced psoriatic lesions. The optimized formulation depicted a droplet size of 188 ± 22.4 nm, a zeta potential of -17.63 ± 1.66 mV, and a viscosity of 204.9 mPa s. In addition to the increased FP retention in different skin layers caused by the NE and the reduced PASI score compared to the marketed cream, the levels of inflammatory cytokines IL-1α, IL-6, IL17a were markedly lowered, indicating the improved anti-psoriatic curable efficacy of the optimized formulation in comparison to the FP-marketed product.
Collapse
Affiliation(s)
- Mohamed Ashraf
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Hossam S El-Sawy
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
- Department of Pharmacy, Al-Kut University College, Kut, Wasit, Iraq
| | - Ghada M El Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
10
|
Sharma H, Gupta N, Garg N, Dhankhar S, Chauhan S, Beniwal S, Saini D. Herbal Medicinal Nanoformulations for Psoriasis Treatment: Current State of Knowledge and Future Directions. THE NATURAL PRODUCTS JOURNAL 2024; 14. [DOI: 10.2174/0122103155273976231126141100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2024]
Abstract
Background:Psoriasis is a persistent immune system disorder that influences the skin, leading to red, flaky patches that can be painful and irritated.Objective:Traditional treatments for psoriasis, such as topical creams and oral medications, may be effective but also have potential side effects. Herbal remedies have been used for centuries to treat skin conditions, and advancements in nanotechnology have led to the development of herbal nanoformulations that offer several advantages over traditional herbal remedies, such as efficacy, safety, and targeted delivery.Methods:The studies and reviews published under the title were looked up in several databases (including PubMed, Elsevier, and Google Scholar).Results:Several herbal nanoformulations, including those containing curcumin, aloe vera, and neem, have been shown to exhibit anti-inflammatory and immunomodulatory impacts, which will be useful within the treatment of psoriasis. However, more study is required to decide the efficacy and safety of these details, as well as the optimal dosing, duration of treatment, and potential side effects.Conclusion:Overall, herbal nanoformulations represent a promising area of research for the treatment of psoriasis, and may offer a safe and effective alternative or adjunct therapy to conventional treatments. This review article summarizes the present state of information for the herbal nanoformulations role in the treatment of psoriasis and their future perspectives.
Collapse
Affiliation(s)
- Himanshu Sharma
- Smt. Tarawati Institute of Bio-Medical and Applied Sciences, Roorkee, 247667, Dehradun, Uttarakhand, India
| | - Neha Gupta
- Smt. Tarawati Institute of Bio-Medical and Applied Sciences, Roorkee, 247667, Dehradun, Uttarakhand, India
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Suresh Beniwal
- Ganpati Institute of Pharmacy, Bilaspur, 135102, Yamuna Nagar, Haryana, India
| | - Deepak Saini
- Smt. Tarawati Institute of Bio-Medical and Applied Sciences, Roorkee, 247667, Dehradun, Uttarakhand, India
| |
Collapse
|
11
|
Yadav T, Yadav HKS, Raizaday A, Alam MS. The treatment of psoriasis via herbal formulation and nano-polyherbal formulation: A new approach. BIOIMPACTS : BI 2024; 15:30341. [PMID: 40256226 PMCID: PMC12008506 DOI: 10.34172/bi.30341] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/27/2024] [Accepted: 07/02/2024] [Indexed: 04/22/2025]
Abstract
Psoriasis is a chronic condition that can strike at any age. This sickness is associated with inflammatory problems that impact all humans in the world. Psoriasis is more common in Scandinavians than in Asian and African populations due to a combination of factors such as age, gender, geographic location, ethnicity, genetic and environmental factors. Immune stimulation, genetic contribution, antimicrobial peptides, and other significant triggers such as medicines, immunizations, infections, trauma, stress, obesity, alcohol intake, smoking, air pollution, sun exposure, and particular disorders cause psoriasis. Numerous clinical research investigations are now underway, and therapeutic alternatives are available. However, these therapies only improve symptoms and do not accomplish a complete cure; they also have dangerous and undesirable side effects. Natural products have gained popularity recently due to their great effectiveness, safety, and low toxicity. Natural formulations of various nanocarriers like liposomes, lipospheres, nanogels, emulgel, nanostructured lipid carriers, nanosponge, nanofibers, niosomes, nanomiemgel, nanoemulsions, nanospheres, cubosomes, microneedles, nanomicelles, ethosomes, nanocrystals, and foams, have significantly contributed and encouraged advancement in psoriasis disease treatment. These phytochemical-loaded new nanoformulations address several issues associated with natural products in conventional dosage forms, such as instability, poor solubility, and limited bioavailability. This article reviews some of the intriguing phytochemicals, as well as their possible molecular target locations and mechanisms of action, which may assist in the development of more specific and selective antipsoriatic medicines. Exploring and understanding phytochemicals' functions will allow for more site-specific psoriasis treatment techniques. This review concluded the psoriasis disease with phytoconstituent loaded herbal or polyherbal nanocarriers and their mechanistic approach.
Collapse
Affiliation(s)
- Tejpal Yadav
- Gyan Vihar School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
| | | | - Abhay Raizaday
- Department of Pharmaceutics, College of Pharmacy, JSS Academy of Technical Education, Noida, Uttar Pradesh, India
| | - Md Sabir Alam
- SGT College of Pharmacy, SGT University, Gurgaon-Badli Road Chandu, Budhera, Gurugram, Haryana-122505, India
| |
Collapse
|
12
|
Burlec AF, Hăncianu M, Ivănescu B, Macovei I, Corciovă A. Exploring the Therapeutic Potential of Natural Compounds in Psoriasis and Their Inclusion in Nanotechnological Systems. Antioxidants (Basel) 2024; 13:912. [PMID: 39199158 PMCID: PMC11352172 DOI: 10.3390/antiox13080912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Psoriasis is a chronic inflammatory disease that affects around 2-3% of the world's population. The treatment for this autoimmune disease still remains centered around conventional methods using synthetic substances, even though more recent advancements focus on biological therapies. Given the numerous side effects of such treatments, current research involves plant extracts and constituents that could prove useful in treating psoriasis. The aim of this narrative review is to highlight the most known representatives belonging to classes of natural compounds such as polyphenols (e.g., astilbin, curcumin, hesperidin, luteolin, proanthocyanidins, and resveratrol), alkaloids (e.g., berberine, capsaicin, and colchicine), coumarins (psoralen and 8-methoxypsoralen), and terpenoids (e.g., celastrol, centelloids, and ursolic acid), along with plants used in traditional medicine that could present therapeutic potential in psoriasis. The paper also provides an overview of these compounds' mechanisms of action and current inclusion in clinical studies, as well as an investigation into their potential incorporation in various nanotechnological systems, such as lipid-based nanocarriers or polymeric nanomaterials, that may optimize their efficacy during treatment.
Collapse
Affiliation(s)
- Ana Flavia Burlec
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Monica Hăncianu
- Department of Pharmacognosy, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania;
| | - Bianca Ivănescu
- Department of Pharmaceutical Botany, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania
| | - Irina Macovei
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| | - Andreia Corciovă
- Department of Drug Analysis, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16 University Street, 700115 Iasi, Romania; (A.F.B.); (A.C.)
| |
Collapse
|
13
|
Huang R, Hua J, Ru M, Yu M, Wang L, Huang Y, Yan S, Zhang Q, Xu W. Superb Silk Hydrogels with High Adaptability, Bioactivity, and Versatility Enabled by Photo-Cross-Linking. ACS NANO 2024; 18:15312-15325. [PMID: 38809601 DOI: 10.1021/acsnano.4c05017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
The exceptional biocompatibility and adaptability of hydrogels have garnered significant interest in the biomedical field for the fabrication of biomedical devices. However, conventional synthetic hydrogels still exhibit relatively weak and fragile properties. Drawing inspiration from the photosynthesis process, we developed a facile approach to achieve a harmonious combination of superior mechanical properties and efficient preparation of silk fibroin hydrogel through photo-cross-linking technology, accomplished within 60 s. The utilization of riboflavin and H2O2 enabled a sustainable cyclic photo-cross-linking reaction, facilitating the transformation from tyrosine to dityrosine and ultimately contributing to the formation of highly cross-linked hydrogels. These photo-cross-linking hydrogels exhibited excellent elasticity and restorability even after undergoing 1000 cycles of compression. Importantly, our findings presented that hydrogel-encapsulated adipose stem cells possess the ability to stimulate cell proliferation along with stem cell stemness. This was evidenced by the continuous high expression levels of OCT4 and SOX2 over 21 days. Additionally, the utilization of photo-cross-linking hydrogels can be extended to various material molding platforms, including microneedles, microcarriers, and bone screws. Consequently, this study offered a significant approach to fabricating biomedical hydrogels capable of facilitating real-time cell delivery, thereby introducing an innovative avenue for designing silk devices with exceptional machinability and adaptability in biomedical applications.
Collapse
Affiliation(s)
- Renyan Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jiahui Hua
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Min Ru
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Meng Yu
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Ying Huang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Shuqin Yan
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiang Zhang
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Weilin Xu
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
14
|
Bodnár K, Fehér P, Ujhelyi Z, Bácskay I, Józsa L. Recent Approaches for the Topical Treatment of Psoriasis Using Nanoparticles. Pharmaceutics 2024; 16:449. [PMID: 38675110 PMCID: PMC11054466 DOI: 10.3390/pharmaceutics16040449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
Psoriasis (PSO) is a chronic autoimmune skin condition characterized by the rapid and excessive growth of skin cells, which leads to the formation of thick, red, and scaly patches on the surface of the skin. These patches can be itchy and painful, and they may cause discomfort for patients affected by this condition. Therapies for psoriasis aim to alleviate symptoms, reduce inflammation, and slow down the excessive skin cell growth. Conventional topical treatment options are non-specific, have low efficacy and are associated with adverse effects, which is why researchers are investigating different delivery mechanisms. A novel approach to drug delivery using nanoparticles (NPs) shows promise in reducing toxicity and improving therapeutic efficacy. The unique properties of NPs, such as their small size and large surface area, make them attractive for targeted drug delivery, enhanced drug stability, and controlled release. In the context of PSO, NPs can be designed to deliver active ingredients with anti-inflammatory effect, immunosuppressants, or other therapeutic compounds directly to affected skin areas. These novel formulations offer improved access to the epidermis and facilitate better absorption, thus enhancing the therapeutic efficacy of conventional anti-psoriatic drugs. NPs increase the surface-to-volume ratio, resulting in enhanced penetration through the skin, including intracellular, intercellular, and trans-appendage routes. The present review aims to discuss the latest approaches for the topical therapy of PSO using NPs. It is intended to summarize the results of the in vitro and in vivo examinations carried out in the last few years regarding the effectiveness and safety of nanoparticles.
Collapse
Affiliation(s)
- Krisztina Bodnár
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Pálma Fehér
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Zoltán Ujhelyi
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Ildikó Bácskay
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| | - Liza Józsa
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary; (K.B.); (P.F.); (Z.U.); (I.B.)
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
- Institute of Healthcare Industry, University of Debrecen, Nagyerdei körút 98, 4032 Debrecen, Hungary
| |
Collapse
|
15
|
Demartis S, Rassu G, Mazzarello V, Larrañeta E, Hutton A, Donnelly RF, Dalpiaz A, Roldo M, Guillot AJ, Melero A, Giunchedi P, Gavini E. Delivering hydrosoluble compounds through the skin: what are the chances? Int J Pharm 2023; 646:123457. [PMID: 37788729 DOI: 10.1016/j.ijpharm.2023.123457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 09/27/2023] [Indexed: 10/05/2023]
Affiliation(s)
- S Demartis
- Department of Chemical, Mathematical, Natural and Physical Sciences, University of Sassari, Sassari 07100, Italy
| | - G Rassu
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - V Mazzarello
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - E Larrañeta
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - A Hutton
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - R F Donnelly
- School of Pharmacy, Queen's University, Belfast 97 Lisburn Road, Belfast BT9 7BL, UK
| | - A Dalpiaz
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Via Fossato di Mortara 19, I-44121 Ferrara, Italy
| | - M Roldo
- School of Pharmacy and Biomedical Sciences, St Michael's Building, White Swan Road, University of Portsmouth, Portsmouth PO1 2DT, UK
| | - A J Guillot
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - A Melero
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, Faculty of Pharmacy, University of Valencia, Avda. Vincent Andrés Estellés s/n, 46100 Burjassot, Spain
| | - P Giunchedi
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy
| | - E Gavini
- Department of Medicine and Surgery, University of Sassari, Sassari 07100, Italy.
| |
Collapse
|
16
|
Dartora VFC, Passos JS, Osorio B, Hung RC, Nguyen M, Wang A, Panitch A. Chitosan hydrogels with MK2 inhibitor peptide-loaded nanoparticles to treat atopic dermatitis. J Control Release 2023; 362:591-605. [PMID: 37660990 DOI: 10.1016/j.jconrel.2023.08.061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 08/05/2023] [Accepted: 08/31/2023] [Indexed: 09/05/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin disorder that lacks ideal long-term treatment options due to a series of side effects, such as skin atrophy, related to the most common treatment prescribed to manage moderate-to-severe AD. In this study, a cell-penetrating MK2 inhibitor peptide YARA (YARAAARQARAKALNRQGLVAA) was loaded into hollow thermo-responsive pNIPAM nanoparticles (NP), which were further incorporated into chitosan hydrogels (H-NP-YARA) to promote local drug delivery, improve moisture and the anti-inflammatory activity. The NPs exhibited high loading efficiency (>50%) and the hydrogel remained porous following NP incorporation as observed by scanning electron microscopy (SEM). Both nanoparticles and hydrogels were able to improve the release of YARA and sustained release to up to 120 h. The hydrogels and NPs delivered 2 and 4-fold more YARA into viable skin layers of porcine skin in vitro at 12 h post-application than the non-encapsulated compound in intact and impaired barrier conditions. Furthermore, the YARA-loaded NPs (NP-YARA) and H-NP-YARA treatment decreased the levels of inflammatory cytokines up to 20 time-fold compared with the non-treated group of human keratinocytes under inflammatory conditions. Consistent with the results in cell culture, the loading of YARA in NP reduced the levels of IL-1β, IL-6, and TNF-α up to 3.3 times in an ex vivo skin culture model after induction of inflammation. A further decrease of up to 17 times-fold was observed with H-NP-YARA treatment compared to the drug in solution. Our data collectively suggest that chitosan hydrogel containing YARA-loaded nanoparticles is a promising new formulation for the topical treatment of AD.
Collapse
Affiliation(s)
- Vanessa F C Dartora
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Julia Sapienza Passos
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Institute of Biomedical Sciences, Department of Pharmacology, University of Sao Paulo, Brazil
| | - Blanca Osorio
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA
| | - Ruei-Chun Hung
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA
| | - Michael Nguyen
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA
| | - Aijun Wang
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Department of Surgery, University of California Davis, Sacramento, CA, USA; Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, CA, USA
| | - Alyssa Panitch
- Biomedical Engineering Graduate Group, University of California Davis, Davis, CA, USA; Department of Surgery, University of California Davis, Sacramento, CA, USA; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA.
| |
Collapse
|
17
|
Anwer AH, Ahtesham A, Shoeb M, Mashkoor F, Ansari MZ, Zhu S, Jeong C. State-of-the-art advances in nanocomposite and bio-nanocomposite polymeric materials: A comprehensive review. Adv Colloid Interface Sci 2023; 318:102955. [PMID: 37467558 DOI: 10.1016/j.cis.2023.102955] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 05/23/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
The modern eco-friendly materials used in research and innovation today consist of nanocomposites and bio-nanocomposite polymers. Their unique composite properties make them suitable for various industrial, medicinal, and energy applications. Bio-nanocomposite polymers are made of biopolymer matrices that have nanofillers dispersed throughout them. There are several types of fillers that can be added to polymers to enhance their quality, such as cellulose-based fillers, clay nanomaterials, carbon black, talc, carbon quantum dots, and many others. Biopolymer-based nanocomposites are considered a superior alternative to traditional materials as they reduce reliance on fossil fuels and promote the use of renewable resources. This review covers the current state-of-the-art in nanocomposite and bio-nanocomposite materials, focusing on ways to improve their features and the various applications they can be used for. The review article also investigates the utilization of diverse nanocomposites as a viable approach for developing bio-nanocomposites. It delves into the underlying principles that govern the synthesis of these materials and explores their prospective applications in the biomedical field, food packaging, sensing (Immunosensors), and energy storage devices. Lastly, the review discusses the future outlook and current challenges of these materials, with a focus on sustainability.
Collapse
Affiliation(s)
- Abdul Hakeem Anwer
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Afreen Ahtesham
- School of Chemical Sciences University Sains Malaysia, Penang, Malaysia
| | - Mohd Shoeb
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Fouzia Mashkoor
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Mohd Zahid Ansari
- School of Materials Science and Engineering, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Shushuai Zhu
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Changyoon Jeong
- School of Mechanical Engineering, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea.
| |
Collapse
|
18
|
Fazal T, Murtaza BN, Shah M, Iqbal S, Rehman MU, Jaber F, Dera AA, Awwad NS, Ibrahium HA. Recent developments in natural biopolymer based drug delivery systems. RSC Adv 2023; 13:23087-23121. [PMID: 37529365 PMCID: PMC10388836 DOI: 10.1039/d3ra03369d] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Targeted delivery of drug molecules to diseased sites is a great challenge in pharmaceutical and biomedical sciences. Fabrication of drug delivery systems (DDS) to target and/or diagnose sick cells is an effective means to achieve good therapeutic results along with a minimal toxicological impact on healthy cells. Biopolymers are becoming an important class of materials owing to their biodegradability, good compatibility, non-toxicity, non-immunogenicity, and long blood circulation time and high drug loading ratio for both macros as well as micro-sized drug molecules. This review summarizes the recent trends in biopolymer-based DDS, forecasting their broad future clinical applications. Cellulose chitosan, starch, silk fibroins, collagen, albumin, gelatin, alginate, agar, proteins and peptides have shown potential applications in DDS. A range of synthetic techniques have been reported to design the DDS and are discussed in the current study which is being successfully employed in ocular, dental, transdermal and intranasal delivery systems. Different formulations of DDS are also overviewed in this review article along with synthesis techniques employed for designing the DDS. The possibility of these biopolymer applications points to a new route for creating unique DDS with enhanced therapeutic qualities for scaling up creative formulations up to the clinical level.
Collapse
Affiliation(s)
- Tanzeela Fazal
- Department of Chemistry, Abbottabad University of Science and Technology Pakistan
| | - Bibi Nazia Murtaza
- Department of Zoology, Abbottabad University of Science and Technology Pakistan
| | - Mazloom Shah
- Department of Chemistry, Faculty of Science, Grand Asian University Sialkot Pakistan
| | - Shahid Iqbal
- Department of Chemistry, School of Natural Sciences (SNS), National University of Science and Technology (NUST) H-12 Islamabad 46000 Pakistan
| | - Mujaddad-Ur Rehman
- Department of Microbiology, Abbottabad University of Science & Technology Pakistan
| | - Fadi Jaber
- Department of Biomedical Engineering, Ajman University Ajman UAE
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University Ajman UAE
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University Abha Saudi Arabia
| | - Nasser S Awwad
- Chemistry Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Hala A Ibrahium
- Biology Department, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| |
Collapse
|
19
|
Niu J, Yuan M, Gao P, Wang L, Qi Y, Chen J, Bai K, Fan Y, Liu X. Microemulsion-Based Keratin-Chitosan Gel for Improvement of Skin Permeation/Retention and Activity of Curcumin. Gels 2023; 9:587. [PMID: 37504466 PMCID: PMC10379975 DOI: 10.3390/gels9070587] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/29/2023] Open
Abstract
Curcumin (Cur) is a kind of polyphenol with a variety of topical pharmacological properties including antioxidant, analgesic and anti-inflammatory activities. However, its low water solubility and poor skin bioavailability limit its effectiveness. In the current study, we aimed to develop microemulsion-based keratin-chitosan gel for the improvement of the topical activity of Cur. The curcumin-loaded microemulsion (CME) was formulated and then loaded into the keratin-chitosan (KCS) gel to form the CME-KCS gel. The formulated CME-KCS gel was evaluated for its characterization, in vitro release, in vitro skin permeation and in vivo activity. The results showed that the developed CME-KCS gel had an orange-yellow and gel-like appearance. The particle size and zeta potential of the CME-KCS gel were 186.45 ± 0.75 nm and 9.42 ± 0.86 mV, respectively. The CME-KCS gel showed desirable viscoelasticity, spreadability, bioadhesion and controlled drug release, which was suitable for topical application. The in vitro skin permeation and retention study showed that the CME-KCS gel had better in vitro skin penetration than the Cur solution and achieved maximum skin drug retention (3.75 ± 0.24 μg/cm2). In vivo experimental results confirmed that the CME-KCS gel was more effective than curcumin-loaded microemulsion (Cur-ME) in analgesic and anti-inflammatory activities. In addition, the CME-KCS gel did not cause any erythema or edema based on a mice skin irritation test. These findings indicated that the developed CME-KCS gel could improve the skin penetration and retention of Cur and could become a promising formulation for topical delivery to treat local diseases.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Ming Yuan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Panpan Gao
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Liye Wang
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yueheng Qi
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Jingjing Chen
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Kaiyue Bai
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Yanli Fan
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xianming Liu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| |
Collapse
|
20
|
Aziz Hazari S, Kaur H, Karwasra R, Abourehab MAS, Ali Khan A, Kesharwani P. An overview of topical lipid-based and polymer-based nanocarriers for treatment of psoriasis. Int J Pharm 2023; 638:122938. [PMID: 37031809 DOI: 10.1016/j.ijpharm.2023.122938] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/04/2023] [Indexed: 04/11/2023]
Abstract
Psoriasis is a consistently recurring, inflammatory skin disease, affecting about 2 - 5 % of the world population. Different types of psoriasis can be observed such as guttate psoriasis, pustular psoriasis, psoriatic arthritis, scalp psoriasis, flexural psoriasis etc. Several therapeutic approaches are available for the treatment of psoriasis. However, none of them are entirely safe and effective to treat the disease without compromising patient compliance. The traditional treatment plan is associated with harmful side effects such asimmune system suppression and damage of essential organs at high doses, which poses a challenge to treat psoriasis. Novel drug delivery systems are being developed to replace traditional therapy in order to address these shortcomings. Currently, nanoformulations have gained widespread application for treatment of psoriasis. Researchers have developed different types of lipid-based nanoparticles like liposomes, niosomes, ethosomes, transethosomes, nanostructured lipid carriers and solid lipid nanoparticles. These innovative formulations provide advantages in terms of reduction in dose, dosing frequency, dose-dependency with enhanced efficacy, improved encapsulation efficiency, controlled release, increased surface area, high bioavailability and greater stratum corneum permeability. This review highlights detailed and comparative discussion of lipid-based and polymer-based nanoparticles for psoriasis along with the pathophysiology and other treatments of psoriasis.
Collapse
Affiliation(s)
- Sahim Aziz Hazari
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Harsimran Kaur
- Department of Pharmaceutics, Delhi Pharmaceutical Sciences and Research University, New Delhi 110017, India
| | - Ritu Karwasra
- Central Council for Research in Unani Medicine, Ministry of AYUSH, Govt of India, New Delhi-110058, India
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Asim Ali Khan
- Central Council for Research in Unani Medicine, Ministry of Ayush, Janakpuri, New Delhi-110058, India
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; Center for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical science, Chennai, India.
| |
Collapse
|
21
|
Madamsetty V, Vazifehdoost M, Alhashemi SH, Davoudi H, Zarrabi A, Dehshahri A, Fekri HS, Mohammadinejad R, Thakur VK. Next-Generation Hydrogels as Biomaterials for Biomedical Applications: Exploring the Role of Curcumin. ACS OMEGA 2023; 8:8960-8976. [PMID: 36936324 PMCID: PMC10018697 DOI: 10.1021/acsomega.2c07062] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Since the first report on the pharmacological activity of curcumin in 1949, enormous amounts of research have reported diverse activities for this natural polyphenol found in the dietary spice turmeric. However, curcumin has not yet been used for human application as an approved drug. The clinical translation of curcumin has been hampered due to its low solubility and bioavailability. The improvement in bioavailability and solubility of curcumin can be achieved by its formulation using drug delivery systems. Hydrogels with their biocompatibility and low toxicity effects have shown a substantial impact on the successful formulation of hydrophobic drugs for human clinical trials. This review focuses on hydrogel-based delivery systems for curcumin and describes its applications as anti-cancer as well as wound healing agents.
Collapse
Affiliation(s)
- Vijay
Sagar Madamsetty
- Department
of Biochemistry and Molecular Biology, Mayo
Clinic College of Medicine and Science, Jacksonville, Florida 32224, United States
| | - Maryam Vazifehdoost
- Department
of Toxicology & Pharmacology, School of Pharmacy, Kerman University of Medical Sciences, Kerman 6718773654, Iran
| | - Samira Hossaini Alhashemi
- Pharmaceutical
Sciences Research Center, Shiraz University
of Medical Sciences, Shiraz 7146864685, Iran
| | - Hesam Davoudi
- Department
of Biology, Faculty of Sciences, University
of Zanjan, Zanjan 4537138111, Iran
| | - Ali Zarrabi
- Department
of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396 Istanbul, Turkey
| | - Ali Dehshahri
- Department
of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 7146864685, Iran
| | - Hojjat Samareh Fekri
- Student Research
Committee, Kerman University of Medical
Sciences, Kerman 7619813159, Iran
| | - Reza Mohammadinejad
- Research
Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Vijay Kumar Thakur
- Biorefining
and Advanced Materials Research Center, Scotland’s Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.
- School
of Engineering, University of Petroleum
& Energy Studies (UPES), Dehradun, Uttarakhand 248007, India
| |
Collapse
|
22
|
Can Essential Oils/Botanical Agents Smart-Nanoformulations Be the Winning Cards against Psoriasis? Pharmaceutics 2023; 15:pharmaceutics15030750. [PMID: 36986611 PMCID: PMC10056241 DOI: 10.3390/pharmaceutics15030750] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/26/2023] Open
Abstract
Although psoriasis remains one of the most devastating inflammatory disorders due to its huge negative impact on patients’ quality of life, new “green” treatment approaches still need to be fully explored. The purpose of this review article is to focus on the utilization of different essential oils and active constituents of herbal botanical origin for the treatment of psoriasis that proved efficacious via both in vitro and in vivo models. The applications of nanotechnology-based formulations which displayed great potential in augmenting the permeation and delivery of these agents is also addressed. Numerous studies have been found which assessed the potential activity of natural botanical agents to overcome psoriasis. Nano-architecture delivery is applied in order to maximize the benefits of their activity, improve properties, and increase patient compliance. This field of natural innovative formulations can be a promising tool to optimize remediation of psoriasis while minimizing adverse effects.
Collapse
|
23
|
Polymer-based biomaterials for pharmaceutical and biomedical applications: a focus on topical drug administration. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Wang X, Liu K, Fu S, Wu X, Xiao L, Yang Y, Zhang Z, Lu Q. Silk Nanocarrier with Tunable Size to Improve Transdermal Capacity for Hydrophilic and Hydrophobic Drugs. ACS APPLIED BIO MATERIALS 2023; 6:74-82. [PMID: 36603189 DOI: 10.1021/acsabm.2c00666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Transdermal drug delivery is an attractive option for multiple disease therapies as it reduces adverse reactions and improves patient compliance. Water-dispersible β-sheet rich silk nanofiber carriers have hydrophobic properties that benefit transdermal delivery but still show inferior transdermal capacities. Thus, hydrophobic silk nanofibers were fabricated to fine-tune their size and endow them with desirable transdermal delivery capacities. Silk nanocarrier length was shortened from 2000 nm to approximately 40 nm after ultrasonic treatment. In vitro human skin and in vivo animal studies revealed different transdermal behaviors for silk nanocarriers at different nanosizes. Silk nanocarriers passed slowly through the corneum without destroying the corneum structure. Improved transdermal capacity was achieved for smaller size carriers. Both hydrophilic and hydrophobic drugs could be loaded onto silk nanocarriers, suggesting a promising future for different disease therapies. No cytotoxicity and skin irritation were identified for silk nanocarriers, which strengthened their superiority as transdermal carriers. Therefore, silk nanocarriers <100 nm may promote the percutaneous absorption of active cargos for disease therapy and cosmetic applications.
Collapse
Affiliation(s)
- Xue Wang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Ke Liu
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Shibo Fu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Xiaoqian Wu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| | - Liying Xiao
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| | - Yali Yang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China.,Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Zhen Zhang
- Department of Dermatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China.,Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200011, China
| | - Qiang Lu
- State Key Laboratory of Radiation Medicine and Radiation Protection, Institutes for Translational Medicine, Soochow University, Suzhou215123, China
| |
Collapse
|
25
|
Ahmad MZ, Mohammed AA, Algahtani MS, Mishra A, Ahmad J. Nanoscale Topical Pharmacotherapy in Management of Psoriasis: Contemporary Research and Scope. J Funct Biomater 2022; 14:jfb14010019. [PMID: 36662067 PMCID: PMC9867016 DOI: 10.3390/jfb14010019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/31/2022] Open
Abstract
Psoriasis is a typical dermal condition that has been anticipated since prehistoric times when it was mistakenly implicit in being a variant of leprosy. It is an atypical organ-specific autoimmune disorder, which is triggered by the activation of T-cells and/or B-cells. Until now, the pathophysiology of this disease is not completely explicated and still, many research investigations are ongoing. Different approaches have been investigated to treat this dreadful skin disease using various anti-psoriatic drugs of different modes of action through smart drug-delivery systems. Nevertheless, there is no ideal therapy for a complete cure of psoriasis owing to the dearth of an ideal drug-delivery system for anti-psoriatic drugs. The conventional pharmacotherapy approaches for the treatment of psoriasis demand various classes of anti-psoriatic drugs with optimum benefit/risk ratio and insignificant untoward effects. The advancement in nanoscale drug delivery had a great impact on the establishment of a nanomedicine-based therapy for better management of psoriasis in recent times. Nanodrug carriers are exploited to design and develop nanomedicine-based therapy for psoriasis. It has a promising future in the improvement of the therapeutic efficacy of conventional anti-psoriatic drugs. The present manuscript aims to discuss the pathophysiology, conventional pharmacotherapy, and contemporary research in the area of nanoscale topical drug delivery systems for better management of psoriasis including the significance of targeted pharmacotherapy in psoriasis.
Collapse
Affiliation(s)
- Mohammad Zaki Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Abdul Aleem Mohammed
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Mohammed S. Algahtani
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, Assam, India
| | - Javed Ahmad
- Department of Pharmaceutics, College of Pharmacy, Najran University, Najran 11001, Saudi Arabia
- Correspondence: or
| |
Collapse
|
26
|
The Therapeutic Effect of Tacrolimus in a Mouse Psoriatic Model is Associated with the Induction of Myeloid-derived Suppressor Cells. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2022; 3:190-197. [PMID: 36879838 PMCID: PMC9984933 DOI: 10.2478/rir-2022-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/11/2022] [Indexed: 02/10/2023]
Abstract
Objectives Topical administration of Tacrolimus (TAC) is efective in the treatment of psoriasis in human patients and in mouse models. Previously, we showed that, though promoting the proliferative expansion of CD4+Foxp3+ regulatory T cells (Tregs), TNFR2 was protective in mouse psoriasis model. We thus examined the role of TNFR2 signal in the efect of TAC in the treatment of mouse psoriasis. Methods To this end, psoriasis was induced in WT, or TNFR1 KO, or TNFR2 KO mice, and the psoriatic mice were treated with or without IMQ. Results The results showed that TAC treatment potently inhibited the development of psoriasis in WT and TNFR1 KO mice, but not in TNFR2 KO mice. However, the treatment of TAC failed to induce the expansion of Tregs in psoriatic mice. In addition to playing a decisive role in the activation of Tregs, TNFR2 stimulates the generation and activation of myeloid-derived suppressor cells (MDSCs). This led us to found that the topical treatment with TAC markedly increased the number of MDSCs in the spleen of WT and TNFR1 KO mice, but not in TNFR2 KO mice. Consequently, TAC potently decreased serum levels of IL-17A, INF-γ, and TNF and their mRNA levels in the inflamed skin lesion. Conclusion Therefore, our study for the first time found that the therapeutic efect of TAC in psoriasis is associated with the expansion of MDSCs in a TNFR2-dependent manner.
Collapse
|
27
|
Shree D, Patra CN, Sahoo BM. Novel Herbal Nanocarriers for Treatment of Dermatological Disorders. Pharm Nanotechnol 2022; 10:246-256. [PMID: 35733305 DOI: 10.2174/2211738510666220622123019] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 12/29/2022]
Abstract
BACKGROUND AND OBJECTIVE In the present scenario, the use of novel nanocarriers to provide a better therapy regimen is noteworthy. Nanotechnology with the advanced system enables the herbs for encapsulation within the smart carrier and boosts the nanotherapeutic. These emerging innovations of herbal nanocarriers have paved the way for dermal targeting by eliciting the desired response for particular diseases. METHODS In this current manuscript, an extensive search is conducted for the original research papers using databases, viz., Google Scholar, PubMed, Science Direct, etc. Furthermore, painstaking efforts are made to compile and update the novel herbal nanocarriers, such as liposomes, ethosomes, transferosomes, niosomes, nanoemulsions, nanogels, nanostructured lipid carriers, solid lipid carriers, etc., which are mostly used for the treatment of several skin maladies, viz., eczema, psoriasis, acne, etc. This article highlights the recent findings that the innovators are exclusively working on herbal drug delivery systems for dermal targeting, and these are enumerated in the form of tables. CONCLUSION Herbal formulations employing a suitable nanocarrier could be a promising approach for the treatment of several pathological conditions, including skin ailments. Therefore, scientific research is still being carried out in this specific area for a better perspective in herbal drug delivery and targeting.
Collapse
Affiliation(s)
- Dipthi Shree
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Chinam Niranjan Patra
- Department of Pharmaceutics, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| | - Biswa Mohan Sahoo
- Department of Pharmaceutical Chemistry, Roland Institute of Pharmaceutical Sciences, Berhampur 760010, Odisha, India
| |
Collapse
|
28
|
Hu J, Bian Q, Ma X, Xu Y, Gao J. A double-edged sword: ROS related therapies in the treatment of psoriasis. Asian J Pharm Sci 2022; 17:798-816. [PMID: 36600897 PMCID: PMC9800958 DOI: 10.1016/j.ajps.2022.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022] Open
Abstract
In the onset and progression of psoriasis, redox imbalance is a vital factor. It's widely accepted that too much reactive oxygen species (ROS) always make psoriasis worse. Recent research, however, has shown that the accumulation of ROS is not entirely detrimental, as it helps reduce psoriasis lesions by inhibiting epidermal proliferation and keratinocyte death. As a result, ROS appears to have two opposing effects on the treatment of psoriasis. In this review, the current ROS-related therapies for psoriasis, including basic and clinical research, are presented. Additionally, the design and therapeutic benefits of various drug delivery systems and therapeutic approaches are examined, and a potential balance between anti-oxidative stress and ROS accumulation is also trying to be investigated.
Collapse
Affiliation(s)
- Jingyi Hu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiong Bian
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China,College of Pharmacy, Inner Mongolia Medical University, Hohhot 010000, China
| | - Xiaolu Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yihua Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China,Jiangsu Engineering Research Center for New-type External and Transdermal Preparations, Changzhou 213149, China,Corresponding author.
| |
Collapse
|
29
|
Cyclodextrin-based dermatological formulations: dermopharmaceutical and cosmetic applications. Colloids Surf B Biointerfaces 2022; 221:113012. [DOI: 10.1016/j.colsurfb.2022.113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/28/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022]
|
30
|
Hussain Z, Thu HE, Khan S, Sohail M, Sarfraz RM, Mahmood A, Abourehab MA. Phytonanomedicines, a state-of-the-art strategy for targeted delivery of anti-inflammatory phytochemicals: A review of improved pharmacokinetic profile and therapeutic efficacy. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
31
|
Niu J, Yuan M, Liu Y, Wang L, Tang Z, Wang Y, Qi Y, Zhang Y, Ya H, Fan Y. Silk peptide-hyaluronic acid based nanogels for the enhancement of the topical administration of curcumin. Front Chem 2022; 10:1028372. [PMID: 36199664 PMCID: PMC9527322 DOI: 10.3389/fchem.2022.1028372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The present study focused on the development of Cur-loaded SOHA nanogels (Cur-SHNGs) to enhance the topical administration of Cur. The physiochemical properties of Cur-SHNGs were characterized. Results showed that the morphology of the Cur-SHNGs was spherical, the average size was 171.37 nm with a zeta potential of −13.23 mV. Skin permeation experiments were carried out using the diffusion cell systems. It was found that the skin retention of Cur-SHNGs was significantly improved since it showed the best retention value (0.66 ± 0.17 μg/cm2). In addition, the hematoxylin and eosin staining showed that the Cur-SHNGs improved transdermal drug delivery by altering the skin microstructure. Fluorescence imaging indicated that Cur-SHNGs could effectively deliver the drug to the deeper layers of the skin. Additionally, Cur-SHNGs showed significant analgesic and anti-inflammatory activity with no skin irritation. Taken together, Cur-SHNGs could be effectively used for the topical delivery of therapeutic drugs.
Collapse
Affiliation(s)
- Jiangxiu Niu
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Ming Yuan
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Yao Liu
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Liye Wang
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
- *Correspondence: Liye Wang, ; Zigui Tang, ; Huiyuan Ya,
| | - Zigui Tang
- Department of Pharmacy, Henan Medical College, Zhengzhou, China
- *Correspondence: Liye Wang, ; Zigui Tang, ; Huiyuan Ya,
| | - Yihan Wang
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | - Yueheng Qi
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| | | | - Huiyuan Ya
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
- *Correspondence: Liye Wang, ; Zigui Tang, ; Huiyuan Ya,
| | - Yanli Fan
- College of Food and Drug, Henan Functional Cosmetics Engineering and Technology Research Center, Luoyang Normal University, Luoyang, Henan, China
| |
Collapse
|
32
|
Zhang S, Wang J, Liu L, Sun X, Zhou Y, Chen S, Lu Y, Cai X, Hu M, Yan G, Miao X, Li X. Efficacy and safety of curcumin in psoriasis: preclinical and clinical evidence and possible mechanisms. Front Pharmacol 2022; 13:903160. [PMID: 36120325 PMCID: PMC9477188 DOI: 10.3389/fphar.2022.903160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 08/01/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Psoriasis is a chronic and immune-mediated inflammatory skin disease. Many studies have shown that curcumin (CUR) has strong anti-inflammatory effects and can improve psoriasis; however, its efficacy and safety have not been confirmed, and the specific mechanism remains to be elucidated. Objective: To evaluate the efficacy, safety, and possible mechanisms of CUR in the treatment of psoriasis. Methods: The Cochrane Library, Embase, PubMed, Web of Science, China National Knowledge Infrastructure, Wanfang, and VIP (China Science and Technology Journal Database) were systematically searched for clinical trials and preclinical studies on the use of CUR in psoriasis treatment. All databases were searched from inception to January 2022. The meta-analysis was performed using RevMan 5.3 software. Results: Our meta-analysis included 26 studies, comprising seven clinical randomized controlled trials and 19 preclinical studies. A meta-analysis of clinical trials showed that both CUR monotherapy and combination therapy improved Psoriasis Area and Severity Index (PASI) scores in patients compared to controls (standard mean difference [std.MD]: −0.83%; 95% confidence interval [CI]: −1.53 to 0.14; p = 0.02). In preclinical studies, CUR showed better performance in improving the phenotype of psoriatic dermatitis mice compared to controls, including total PASI score (std.MD: 6.50%; 95% CI: 10.10 to −2.90; p = 0.0004); ear thickness (p = 0.01); and the expression of inflammatory cytokines such as interleukin (IL)-17, tumor necrosis factor (TNF)-α, IL-17F, and IL-22 (p < 0.05). In cell studies, CUR inhibited cell proliferation (p = 0.04) and the cell cycle (p = 0.03) and downregulated the inflammatory cytokines IL-6 and IL-8 (p < 0.05). Conclusions: CUR has excellent efficacy and broad potential to treat psoriasis in multiple ways. Its use also plays a crucial role in improving the psoriasis phenotype and reducing the inflammatory microenvironment. In conclusion, our findings suggest that CUR alone or in combination with other conventional treatments can effectively treat psoriasis.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiao Wang
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Liu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoying Sun
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yaqiong Zhou
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Siting Chen
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Lu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoce Cai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Manqi Hu
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ge Yan
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiao Miao
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xin Li, ; Xiao Miao,
| | - Xin Li
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Xin Li, ; Xiao Miao,
| |
Collapse
|
33
|
Rahiman N, Markina YV, Kesharwani P, Johnston TP, Sahebkar A. Curcumin-based nanotechnology approaches and therapeutics in restoration of autoimmune diseases. J Control Release 2022; 348:264-286. [PMID: 35649486 DOI: 10.1016/j.jconrel.2022.05.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 12/15/2022]
Abstract
Autoimmune diseases usually arise as a result of an aberrant immune system attack on normal tissues of the body, which leads to a cascade of inflammatory reactions. The immune system employs different types of protective and anti-inflammatory cells for the regulation of this process. Curcumin is a known natural anti-inflammatory agent that inhibits pathological autoimmune processes by regulating inflammatory cytokines and their associated signaling pathways in immune cells. Due to the unstable nature of curcumin and its susceptibility to either degradation, or metabolism into other chemical entities (i.e., metabolites), encapsulation of this agent into various nanocarriers would appear to be an appropriate strategy for attaining greater beneficial effects from curcumin as it pertains to immunomodulation. Many studies have focused on the design and development of curcumin nanodelivery systems (micelles, dendrimers, and diverse nanocarriers) and are summarized in this review in order to obtain greater insight into novel drug delivery systems for curcumin and their suitability for the management of autoimmune diseases.
Collapse
Affiliation(s)
- Niloufar Rahiman
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad, Iran
| | - Yuliya V Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI "Petrovsky National Research Center of Surgery", 3 Tsyurupy Str., 117418, Moscow, Russia
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran..
| |
Collapse
|
34
|
Zhang S, Lin A, Tao Z, Fu Y, Xiao L, Ruan G, Li Y. Microsphere‐containing hydrogel scaffolds for tissue engineering. Chem Asian J 2022; 17:e202200630. [PMID: 35909078 DOI: 10.1002/asia.202200630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/25/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Shihao Zhang
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Anqi Lin
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Ziwei Tao
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Yingying Fu
- East China University of Science and Technology Engineering Research Center for Biomaterials of Ministry of Education CHINA
| | - Lan Xiao
- Queensland University of Technology Centre for Biomedical Technologies AUSTRALIA
| | | | - Yulin Li
- East China University of Science and Technology Meilong Road 130 Shanghai CHINA
| |
Collapse
|
35
|
Chen A, Luo Y, Xu J, Guan X, He H, Xuan X, Wu J. Latest on biomaterial-based therapies for topical treatment of psoriasis. J Mater Chem B 2022; 10:7397-7417. [PMID: 35770701 DOI: 10.1039/d2tb00614f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Psoriasis is an autoimmune inflammatory disease which is fundamentally different from dermatitis. Its treatments include topical medications and systemic drugs depending on different stages of the disease. However, these commonly used therapies are falling far short of clinical needs due to various drawbacks. More precise therapeutic strategies with minimized side effects and improved compliance are highly demanded. Recently, the rapid development of biomaterial-based therapies has made it possible and promising to attain topical psoriasis treatment. In this review, we briefly describe the significance and challenges of the topical treatment of psoriasis and emphatically overview the latest progress in novel biomaterial-based topical therapies for psoriasis including microneedles, nanoparticles, nanofibers, and hydrogels. Current clinical trials related to each biomaterial are also summarized and discussed.
Collapse
Affiliation(s)
- Anqi Chen
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuting Luo
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Jie Xu
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xueran Guan
- School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Xuan Xuan
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jiang Wu
- Department of Dermatology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China. .,School of Pharmaceutical Sciences, Key Laboratory of Biotechnology and Pharmaceutical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| |
Collapse
|
36
|
Shaif M, Kushwaha P, Usmani S, Pandey S. Exploring the potential of nanocarriers in antipsoriatic therapeutics. J DERMATOL TREAT 2022; 33:2919-2930. [PMID: 35729857 DOI: 10.1080/09546634.2022.2089616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Psoriasis is an autoimmune disease characterized by erythematous, scaly patches on the skin. It can be effectively managed with topical therapies since they deliver drugs to target sites of disease efficiently and can minimize systemic side-effects while ensuring high patient compliance. However, conventional topical formulations are ineffective in treating psoriasis due to their poor percutaneous penetration and inability to reach deeper layers of the skin. Thus, it is important to explore new approaches for managing psoriasis safely and effectively while also maintaining patient compliance without compromising safety. Over the last few decades, a variety of nanocarriers have been extensively investigated as a new approach to delivering drugs to the skin that are effective against psoriasis. These nanocarriers are notable for their therapeutic effectiveness, increased localization of medication in the skin, and reduced side-effects. The purpose of this review is to explore the recent advances in polymer-based, lipid-based, metallic, and microneedle-based novel nanoformulations of antipsoriatic drugs. There have been detailed discussions about several nanocarrier systems including nanoemulsions, liposomes, nanostructured lipid carriers, ethosomes, solid lipid nanoparticles, micelles, gold nanoparticles, silver nanoparticles, and microneedles. In a nutshell, nanoformulations are considered a promising avenue for psoriasis treatment since they offer better penetration, targeted delivery, and enhanced safety and efficacy.
Collapse
Affiliation(s)
- Mohammad Shaif
- Faculty of Pharmacy, Integral University, Lucknow, India
| | | | - Shazia Usmani
- Faculty of Pharmacy, Integral University, Lucknow, India
| | - Supriya Pandey
- Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
37
|
Fereig S, El-Zaafarany GM, Arafa M, Abdel-Mottaleb MMA. Boosting the anti-inflammatory effect of self-assembled hybrid lecithin-chitosan nanoparticles via hybridization with gold nanoparticles for the treatment of psoriasis: elemental mapping and in vivo modeling. Drug Deliv 2022; 29:1726-1742. [PMID: 35635314 PMCID: PMC9176676 DOI: 10.1080/10717544.2022.2081383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Gold nanoparticles are a promising drug delivery system for treatment of inflammatory skin conditions, including psoriasis, due to their small size and anti-inflammatory properties. The aim of this study was to conjugate gold nanoparticles with anti-psoriatic formulations that previously showed successful results in the treatment of psoriasis (tacrolimus-loaded chitosan nanoparticles and lecithin-chitosan nanoparticles) by virtue of their surface charges, then examine whether the hybridization with gold nanoparticles would enhance the anti-psoriatic efficacy in vivo. Successful formation of gold nanoparticles was examined by elemental mapping and selected area electron diffraction (SAED). Hybrid conjugates were examined in terms of particle size and zeta potential by dynamic light scattering (DLS). Morphological features were captured by transmission electron microscope (TEM) and X-ray diffraction (XRD) analysis was conducted, as well. All characterization was conducted for the conjugated nanoparticles and compared with their bare counterparts. The in vivo results on imiquimod (IMQ)-induced mouse model showed promising anti-psoriatic effects upon application of gold conjugated tacrolimus-loaded lecithin-chitosan hybrid nanoparticles with a significant difference from the bare hybrid nanoparticles in some of the inflammatory markers. The anti-inflammatory effect of the gold conjugate was also evident by a lower spleen to body weight ratio and a better histopathological skin condition compared to other tested formulations.
Collapse
Affiliation(s)
- Salma Fereig
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), El Shorouk City, Egypt
| | - Ghada M El-Zaafarany
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona Arafa
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, The British University in Egypt (BUE), El Shorouk City, Egypt.,Chemotherapeutic Unit, Mansoura University Hospitals, Mansoura, Egypt
| | - Mona M A Abdel-Mottaleb
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
38
|
Saini K, Verma S, Kakkar V. Anti-psoriatic effects of tetrahydrocurcumin lipidic nanoparticles in IMQ induced psoriatic plaque: A research report. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
39
|
Lv B, Shen N, Cheng Z, Chen Y, Ding H, Yuan J, Zhao K, Zhang Y. Strategies for Biomaterial-Based Spinal Cord Injury Repair via the TLR4-NF-κB Signaling Pathway. Front Bioeng Biotechnol 2022; 9:813169. [PMID: 35600111 PMCID: PMC9116428 DOI: 10.3389/fbioe.2021.813169] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/13/2021] [Indexed: 12/23/2022] Open
Abstract
The repair and motor functional recovery after spinal cord injury (SCI) has remained a clinical challenge. Injury-induced gliosis and inflammation lead to a physical barrier and an extremely inhibitory microenvironment, which in turn hinders the recovery of SCI. TLR4-NF-κB is a classic implant-related innate immunomodulation signaling pathway and part of numerous biomaterial-based treatment strategies for SCI. Numerous experimental studies have demonstrated that the regulation of TLR4-NF-κB signaling pathway plays an important role in the alleviation of inflammatory responses, the modulation of autophagy, apoptosis and ferroptosis, and the enhancement of anti-oxidative effect post-SCI. An increasing number of novel biomaterials have been fabricated as scaffolds and carriers, loaded with phytochemicals and drugs, to inhibit the progression of SCI through regulation of TLR4-NF-κB. This review summarizes the empirical strategies for the recovery after SCI through individual or composite biomaterials that mediate the TLR4-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Bin Lv
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Naiting Shen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhangrong Cheng
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Ding
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Jishan Yuan
- Department of Orthopedics, Affiliated People’s Hospital of Jiangsu University, Zhenjiang, China
| | - Kangchen Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yukun Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Boscariol R, Caetano ÉA, Grotto D, Rosa-Castro RM, Oliveira Junior JM, Vila MMDC, Balcão VM. Transdermal Permeation Assays of Curcumin Aided by CAGE-IL: In Vivo Control of Psoriasis. Pharmaceutics 2022; 14:pharmaceutics14040779. [PMID: 35456612 PMCID: PMC9027471 DOI: 10.3390/pharmaceutics14040779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/26/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a clinically heterogeneous skin disease with an important genetic component, whose pathophysiology is not yet fully understood and for which there is still no cure. Hence, alternative therapies have been evaluated, using plant species such as turmeric (Curcuma longa Linn.) in topical preparations. However, the stratum corneum is a barrier to be overcome, and ionic liquids have emerged as potential substances that promote skin permeation. Thus, the main objective of this research was to evaluate a biopolysaccharide hydrogel formulation integrating curcumin with choline and geranic acid ionic liquid (CAGE-IL) as a facilitator of skin transdermal permeation, in the treatment of chemically induced psoriasis in mice. The developed gel containing curcumin and CAGE-IL showed a high potential for applications in the treatment of psoriasis, reversing the histological manifestations of psoriasis to a state very close to that of normal skin.
Collapse
Affiliation(s)
- Rodrigo Boscariol
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - Érika A. Caetano
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - Denise Grotto
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - Raquel M. Rosa-Castro
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - José M. Oliveira Junior
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
| | - Marta M. D. C. Vila
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
- Correspondence: (M.M.D.C.V.); (V.M.B.); Tel.: +55-15-2101-7029 (M.M.D.C.V. & V.M.B.)
| | - Victor M. Balcão
- Phagelab, Laboratory of Biofilms and Bacteriophages, University of Sorocaba (UNISO), Sorocaba 18023-000, Brazil; (R.B.); (É.A.C.); (D.G.); (R.M.R.-C.); (J.M.O.J.)
- Department of Biology and CESAM, University of Aveiro, Campus Universitário de Santiago, P-3810-193 Aveiro, Portugal
- Correspondence: (M.M.D.C.V.); (V.M.B.); Tel.: +55-15-2101-7029 (M.M.D.C.V. & V.M.B.)
| |
Collapse
|
41
|
Lin X, Meng X, Song Z, Lin J. Peroxisome proliferator-activator receptor γ and psoriasis, molecular and cellular biochemistry. Mol Cell Biochem 2022; 477:1905-1920. [PMID: 35348980 DOI: 10.1007/s11010-022-04417-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/16/2022] [Indexed: 10/18/2022]
Abstract
The pathophysiology of psoriasis is complex and has not been completely elucidated. Better understanding of the pathogenesis may contribute to further improvement of our therapeutic strategies controlling psoriasis. Emerging evidence points to a causative relationship between altered activity of peroxisome proliferator-activated receptor γ (PPARγ) and psoriasis. The present review focuses on deeper understanding of the possible role of PPARγ in the pathogenesis of psoriasis and the potential of PPARγ agonist to improve the treatment of psoriasis. PPARγ is decreased in psoriasis. PPARγ possibly has effects on the multiple aspects of the pathogenesis of psoriasis, including abnormal lipid metabolism, insulin resistance, immune cells, pro-inflammatory cytokines, keratinocytes, angiogenesis, oxidative stress, microRNAs and nuclear factor kappa B. As defective activation of PPARγ is involved in psoriasis development, PPARγ agonists may be promising agents for treatment of psoriasis. Pioglitazone appears an effective and safe option in the treatment of patients with psoriasis, but there are still concerns about its potential side effects. Research effort has recently been undertaken to explore the PPARγ-activating potential of natural products. Among them some have been studied clinically or preclinically for treatment of psoriasis with promising results.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China.
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, 450 Cresson BLVD, Oaks, PA, 19456, USA
| | - Zhiqi Song
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China
| |
Collapse
|
42
|
Chamani S, Moossavi M, Naghizadeh A, Abbasifard M, Majeed M, Johnston TP, Sahebkar A. Immunomodulatory effects of curcumin in systemic autoimmune diseases. Phytother Res 2022; 36:1616-1632. [PMID: 35302258 DOI: 10.1002/ptr.7417] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 12/23/2022]
Abstract
Systemic autoimmune diseases like rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus represent various autoimmune conditions identified by immune system dysregulation. The activation of immune cells, auto-antigen outbreak, inflammation, and multi-organ impairment is observed in these disorders. The immune system is an essential complex network of cells and chemical mediators which defends the organism's integrity against foreign microorganisms, and its precise operation and stability are compulsory to avoid a wide range of medical complications. Curcumin is a phenolic ingredient extracted from turmeric and belongs to the Zingiberaceae, or ginger family. Curcumin has multiple functions, such as inhibiting inflammation, oxidative stress, tumor cell proliferation, cell death, and infection. Nevertheless, the immunomodulatory influence of curcumin on immunological reactions/processes remains mostly unknown. In the present narrative review, we sought to provide current information concerning the preclinical and clinical uses of curcumin in systemic autoimmune diseases.
Collapse
Affiliation(s)
- Sajjad Chamani
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran.,Department of Immunology, Faculty of Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Maryam Moossavi
- Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
| | - Ali Naghizadeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences (BUMS), Birjand, Iran
| | - Mitra Abbasifard
- Immunology of Infectious Diseases Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.,Department of Internal Medicine, Ali-Ibn Abi-Talib Hospital, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Muhammed Majeed
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
43
|
Nunes D, Andrade S, Ramalho MJ, Loureiro JA, Pereira MC. Polymeric Nanoparticles-Loaded Hydrogels for Biomedical Applications: A Systematic Review on In Vivo Findings. Polymers (Basel) 2022; 14:polym14051010. [PMID: 35267833 PMCID: PMC8912535 DOI: 10.3390/polym14051010] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/18/2022] [Accepted: 03/01/2022] [Indexed: 02/07/2023] Open
Abstract
Clinically available medications face several hurdles that limit their therapeutic activity, including restricted access to the target tissues due to biological barriers, low bioavailability, and poor pharmacokinetic properties. Drug delivery systems (DDS), such as nanoparticles (NPs) and hydrogels, have been widely employed to address these issues. Furthermore, the DDS improves drugs’ therapeutic efficacy while reducing undesired side effects caused by the unspecific distribution over the different tissues. The integration of NPs into hydrogels has emerged to improve their performance when compared with each DDS individually. The combination of both DDS enhances the ability to deliver drugs in a localized and targeted manner, paired with a controlled and sustained drug release, resulting in increased drug therapeutic effectiveness. With the incorporation of the NPs into hydrogels, it is possible to apply the DDS locally and then provide a sustained release of the NPs in the site of action, allowing the drug uptake in the required location. Additionally, most of the materials used to produce the hydrogels and NPs present low toxicity. This article provides a systematic review of the polymeric NPs-loaded hydrogels developed for various biomedical applications, focusing on studies that present in vivo data.
Collapse
Affiliation(s)
- Débora Nunes
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Stéphanie Andrade
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Maria João Ramalho
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Joana A. Loureiro
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (J.A.L.); (M.C.P.)
| | - Maria Carmo Pereira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (D.N.); (S.A.); (M.J.R.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- Correspondence: (J.A.L.); (M.C.P.)
| |
Collapse
|
44
|
|
45
|
Stie MB, Kalouta K, Vetri V, Foderà V. Protein materials as sustainable non- and minimally invasive strategies for biomedical applications. J Control Release 2022; 344:12-25. [PMID: 35182614 DOI: 10.1016/j.jconrel.2022.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/17/2023]
Abstract
Protein-based materials have found applications in a wide range of biomedical fields because of their biocompatibility, biodegradability and great versatility. Materials of different physical forms including particles, hydrogels, films, fibers and microneedles have been fabricated e.g. as carriers for drug delivery, factors to promote wound healing and as structural support for the generation of new tissue. This review aims at providing an overview of the current scientific knowledge on protein-based materials, and selected preclinical and clinical studies will be reviewed in depth as examples of the latest progress within the field of protein-based materials, specifically focusing on non- and minimally invasive strategies mainly for topical application.
Collapse
Affiliation(s)
- Mai Bay Stie
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| | - Kleopatra Kalouta
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Dipartimento di Fisica e Chimica, Università Degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Valeria Vetri
- Dipartimento di Fisica e Chimica, Università Degli Studi di Palermo, Viale delle Scienze ed. 18, 90128 Palermo, Italy
| | - Vito Foderà
- Department of Pharmacy, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark.
| |
Collapse
|
46
|
Wang Y, Fu S, Lu Y, Lai R, Liu Z, Luo W, Xu Y. Chitosan/hyaluronan nanogels co-delivering methotrexate and 5-aminolevulinic acid: A combined chemo-photodynamic therapy for psoriasis. Carbohydr Polym 2022; 277:118819. [PMID: 34893236 DOI: 10.1016/j.carbpol.2021.118819] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 12/19/2022]
Abstract
Psoriasis does not respond adequately to the monotherapy, tailoring combined strategies for synergistical treatment remains challenging. We fabricated chitosan/hyaluronan nanogels to co-load methotrexate (MTX) and 5-aminoleavulinic acid (ALA), i.e., MTX-ALA NGs, for a combined chemo-photodynamic therapy for psoriasis. Compared with MTX-ALA suspension, the NGs enhanced the penetration and retention of MTX and ALA through and into the skin in vitro and in vivo (p < 0.001). NGs enhanced the cellular uptake (p < 0.001), protoporphyrin IX conversion (p < 0.001), and reactive oxygen species generation (3.93-fold), subsequently exerted the synergistical anti-proliferation and apoptosis on lipopolysaccharide-irritated HaCaT cells with the apoptosis rate of 78.6%. MTX-ALA NGs efficiently ameliorated the skin manifestations and down-regulated the proinflammatory cytokines of TNF-α and IL-17A in imiquimod-induced psoriatic mice (p < 0.001). Importantly, MTX-ALA NGs reduced the toxicities of oral MTX to the liver and kidney. The results support that MTX-ALA NG is a convenient, effective, and safe combined chemo-photodynamic strategy for psoriasis treatment.
Collapse
Affiliation(s)
- Yixuan Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Shijia Fu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yi Lu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongrong Lai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Ziyi Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Weixuan Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Yuehong Xu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
47
|
Ali F, Neha K, Sharma K, Khasimbi S, Chauhan G. Nanotechnology-based medicinal products and patents: a promising way to treat psoriasis. Curr Drug Deliv 2022; 19:587-599. [PMID: 35081890 DOI: 10.2174/1567201819666220126163943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 11/22/2022]
Abstract
Psoriasis is an autoimmune skin disorder that is characterised by chronic inflammation and erythematous scaly patches. It has a significant impact on the patient's quality of life and can cause psychological stress. There are several aspects which cause psoriasis for instance, environmental issues, immune disorders, bacterial infections, and genetic issues. Plentiful therapeutic means or treatments are accessible, but not any of them can completely and effectively cure psoriasis without hindering patient compliance. Hence, it becomes challenging to discover a new drug moiety or any drug delivery method to cure psoriasis. Conventional treatment of psoriasis involves anti-inflammatory agents, immune suppressants, phototherapy, and biologic treatment, those were given in different forms such as topical, oral, or systemic formulations, but these all were unsuccessful to accomplish complete reduction of psoriasis as well as causing adverse side effects. In terms of dose frequency, doses, efficacy, and side effects, nanotechnology-based new formulations are the most promising prospects for addressing the challenges and limits associated with present psoriasis formulations. Hence, our major goal of this review is to present various advanced nanotechnological approaches for effective topical treatment of psoriasis. In short, nano-formulations continue to be formed as very promising modality in the treatment of psoriasis as they suggest improved penetration, targeted delivery, increased safety, and efficacy.
Collapse
Affiliation(s)
- Faraat Ali
- Department of Inspection and Enforcement, Laboratory Services, Botswana Medicines Regulatory Authority, Plot 112, International Finance Park, Gaborone, Botswana
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Kamna Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Shaik Khasimbi
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| | - Garima Chauhan
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), DPSR University, New Delhi, India
| |
Collapse
|
48
|
Li N, Qin Y, Dai D, Wang P, Shi M, Gao J, Yang J, Xiao W, Song P, Xu R. Transdermal Delivery of Therapeutic Compounds With Nanotechnological Approaches in Psoriasis. Front Bioeng Biotechnol 2022; 9:804415. [PMID: 35141215 PMCID: PMC8819148 DOI: 10.3389/fbioe.2021.804415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Psoriasis is a chronic, immune-mediated skin disorder involving hyperproliferation of the keratinocytes in the epidermis. As complex as its pathophysiology, the optimal treatment for psoriasis remains unsatisfactorily addressed. Though systemic administration of biological agents has made an impressive stride in moderate-to-severe psoriasis, a considerable portion of psoriatic conditions were left unresolved, mainly due to adverse effects from systemic drug administration or insufficient drug delivery across a highly packed stratum corneum via topical therapies. Along with the advances in nanotechnologies, the incorporation of nanomaterials as topical drug carriers opens an obvious prospect for the development of antipsoriatic topicals. Hence, this review aims to distinguish the benefits and weaknesses of individual nanostructures when applied as topical antipsoriatics in preclinical psoriatic models. In view of specific features of each nanostructure, we propose that a proper combination of distinctive nanomaterials according to the physicochemical properties of loaded drugs and clinical features of psoriatic patients is becoming a promising option that potentially drives the translation of nanomaterials from bench to bedside with improved transdermal drug delivery and consequently therapeutic effects.
Collapse
Affiliation(s)
- Ning Li
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yeping Qin
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Dai
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Pengyu Wang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mingfei Shi
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junwei Gao
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinsheng Yang
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wei Xiao
- State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu Kanion Pharmaceutical Co., Ltd, Lianyungang, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ping Song
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| | - Ruodan Xu
- Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, China
- Interdisciplinary of Nanoscience Center (iNANO), Aarhus University, Aarhus, Denmark
- *Correspondence: Wei Xiao, ; Ping Song, ; Ruodan Xu,
| |
Collapse
|
49
|
McLean K, Zhan W. Mathematical modelling of nanoparticle-mediated topical drug delivery to skin tissue. Int J Pharm 2022; 611:121322. [PMID: 34848364 DOI: 10.1016/j.ijpharm.2021.121322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/14/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022]
Abstract
Nanoparticles have been extensively studied to improve drug delivery outcomes, however, their use in topical delivery remains controversial. Although the feasibility to cross the human skin barrier has been demonstrated in experiments, the risk of low drug concentration in deep tissue still limits the application. In this study, mathematical modelling is employed to examine the performance of nanoparticle-mediated topical delivery for sending drugs into the deep skin tissue. The pharmacokinetic effect is evaluated based on the drug exposure over time. As compared to the delivery using plain drugs, nanoparticle-mediated topical delivery has the potential to significantly improve the drug exposure in deep skin tissue. Modelling predictions denote that the importance of sufficient long-term drug-skin contact in achieving effective drug deposition in the deep skin tissue. The delivery outcomes are highly sensitive to the release rate. Accelerating the release from nanoparticles in stratum corneum is able to improve the drug exposure in stratum corneum and viable epidermis while resulting in the reductions in dermis and blood. The release rate in stratum corneum and viable epidermis should be well-designed below a threshold for generating effective drug accumulation in dermis and blood. A more localised drug accumulation can be achieved in the capillary-rich region of dermis by increasing the local release rate. The release rate in dermis needs to be optimised to increase the drug exposure in the dermis region where there are fewer blood and lymphatics capillaries. Results from this study can be used to improve the regimen of topical delivery for localised treatment.
Collapse
Affiliation(s)
- Kevin McLean
- School of Engineering, King's College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom
| | - Wenbo Zhan
- School of Engineering, King's College, University of Aberdeen, Aberdeen AB24 3UE, United Kingdom.
| |
Collapse
|
50
|
Polymer nanotherapeutics to correct autoimmunity. J Control Release 2022; 343:152-174. [PMID: 34990701 DOI: 10.1016/j.jconrel.2021.12.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/24/2021] [Accepted: 12/28/2021] [Indexed: 12/11/2022]
Abstract
The immune system maintains homeostasis and protects the body from pathogens, mutated cells, and other harmful substances. When immune homeostasis is disrupted, excessive autoimmunity will lead to diseases. To inhibit the unexpected immune responses and reduce the impact of treatment on immunoprotective functions, polymer nanotherapeutics, such as nanomedicines, nanovaccines, and nanodecoys, were developed as part of an advanced strategy for precise immunomodulation. Nanomedicines transport cytotoxic drugs to target sites to reduce the occurrence of side effects and increase the stability and bioactivity of various immunomodulating agents, especially nucleic acids and cytokines. In addition, polymer nanomaterials carrying autoantigens used as nanovaccines can induce antigen-specific immune tolerance without interfering with protective immune responses. The precise immunomodulatory function of nanovaccines has broad prospects for the treatment of immune related-diseases. Besides, nanodecoys, which are designed to protect the body from various pathogenic substances by intravenous administration, are a simple and relatively noninvasive treatment. Herein, we have discussed and predicted the application of polymer nanotherapeutics in the correction of autoimmunity, including treating autoimmune diseases, controlling hypersensitivity, and avoiding transplant rejection.
Collapse
|