1
|
Olguín Y, Selva M, Benavente D, Orellana N, Montenegro I, Madrid A, Jaramillo-Pinto D, Otero MC, Corrales TP, Acevedo CA. Effect of Electrical Stimulation on PC12 Cells Cultured in Different Hydrogels: Basis for the Development of Biomaterials in Peripheral Nerve Tissue Engineering. Pharmaceutics 2023; 15:2760. [PMID: 38140099 PMCID: PMC10747664 DOI: 10.3390/pharmaceutics15122760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/26/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Extensive damage to peripheral nerves is a health problem with few therapeutic alternatives. In this context, the development of tissue engineering seeks to obtain materials that can help recreate environments conducive to cellular development and functional repair of peripheral nerves. Different hydrogels have been studied and presented as alternatives for future treatments to emulate the morphological characteristics of nerves. Along with this, other research proposes the need to incorporate electrical stimuli into treatments as agents that promote cell growth and differentiation; however, no precedent correlates the simultaneous effects of the types of hydrogel and electrical stimuli. This research evaluates the neural differentiation of PC12 cells, relating the effect of collagen, alginate, GelMA, and PEGDA hydrogels with electrical stimulation modulated in four different ways. Our results show significant correlations for different cultivation conditions. Electrical stimuli significantly increase neural differentiation for specific experimental conditions dependent on electrical frequency, not voltage. These backgrounds allow new material treatment schemes to be formulated through electrical stimulation in peripheral nerve tissue engineering.
Collapse
Affiliation(s)
- Yusser Olguín
- Departamento de Química y Medio Ambiente, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Mónica Selva
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Diego Benavente
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
| | - Nicole Orellana
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
| | - Ivan Montenegro
- Centro de Investigaciones Biomédicas, Escuela de Obstetricia, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2390123, Chile;
| | - Diego Jaramillo-Pinto
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - María Carolina Otero
- Escuela de Química y Farmacia, Facultad de Medicina, Universidad Andres Bello, Republica 252, Santiago 8370071, Chile;
| | - Tomas P. Corrales
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
- Millenium Nucleus in NanoBioPhysics (NNBP), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile
| | - Cristian A. Acevedo
- Centro Científico y Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (D.B.); (C.A.A.)
- Centro de Biotecnología, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile; (M.S.); (N.O.); (T.P.C.)
- Departamento de Física, Universidad Técnica Federico Santa María, Avenida España 1680, Valparaíso 2390123, Chile;
| |
Collapse
|
2
|
Pereira I, Lopez-Martinez MJ, Samitier J. Advances in current in vitro models on neurodegenerative diseases. Front Bioeng Biotechnol 2023; 11:1260397. [PMID: 38026882 PMCID: PMC10658011 DOI: 10.3389/fbioe.2023.1260397] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
3
|
Hall CM, Lasli S, Serwinski B, Djordjevic B, Sheridan GK, Moeendarbary E. Hippocampus of the APP NL-G-F mouse model of Alzheimer's disease exhibits region-specific tissue softening concomitant with elevated astrogliosis. Front Aging Neurosci 2023; 15:1212212. [PMID: 37547743 PMCID: PMC10398960 DOI: 10.3389/fnagi.2023.1212212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
Widespread neurodegeneration, enlargement of cerebral ventricles, and atrophy of cortical and hippocampal brain structures are classic hallmarks of Alzheimer's disease (AD). Prominent macroscopic disturbances to the cytoarchitecture of the AD brain occur alongside changes in the mechanical properties of brain tissue, as reported in recent magnetic resonance elastography (MRE) measurements of human brain mechanics. Whilst MRE has many advantages, a significant shortcoming is its spatial resolution. Higher resolution "cellular scale" assessment of the mechanical alterations to brain regions involved in memory formation, such as the hippocampus, could provide fresh new insight into the etiology of AD. Characterization of brain tissue mechanics at the cellular length scale is the first stepping-stone to understanding how mechanosensitive neurons and glia are impacted by neurodegenerative disease-associated changes in their microenvironment. To provide insight into the microscale mechanics of aging brain tissue, we measured spatiotemporal changes in the mechanical properties of the hippocampus using high resolution atomic force microscopy (AFM) indentation tests on acute brain slices from young and aged wild-type mice and the APPNL-G-F mouse model. Several hippocampal regions in APPNL-G-F mice are significantly softer than age-matched wild-types, notably the dentate granule cell layer and the CA1 pyramidal cell layer. Interestingly, regional softening coincides with an increase in astrocyte reactivity, suggesting that amyloid pathology-mediated alterations to the mechanical properties of brain tissue may impact the function of mechanosensitive astrocytes. Our data also raise questions as to whether aberrant mechanotransduction signaling could impact the susceptibility of neurons to cellular stressors in their microenvironment.
Collapse
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering, University College London, London, United Kingdom
- School of Applied Sciences, University of Brighton, Brighton, United Kingdom
| | - Soufian Lasli
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Bianca Serwinski
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
- Faculty of Social Sciences, Northeastern University London, London, United Kingdom
| | - Boris Djordjevic
- Department of Mechanical Engineering, University College London, London, United Kingdom
- 199 Biotechnologies Ltd., London, United Kingdom
| | - Graham K. Sheridan
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Emad Moeendarbary
- Department of Mechanical Engineering, University College London, London, United Kingdom
| |
Collapse
|
4
|
Zhang G, Zhen A, Chen J, Du B, Luo F, Li J, Tan H. In Vitro Effects of Waterborne Polyurethane 3D Scaffolds Containing Poly(lactic-co-glycolic acid)s of Different Lactic Acid/Glycolic Acid Ratios on the Inflammatory Response. Polymers (Basel) 2023; 15:polym15071786. [PMID: 37050400 PMCID: PMC10097270 DOI: 10.3390/polym15071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 04/07/2023] Open
Abstract
The physical and chemical properties of tissue engineering scaffolds have considerable effects on the inflammatory response at the implant site in soft tissue repair. The development of inflammation-modulating polymer scaffolds for soft tissue repair is attracting increasing attention. In this study, in order to regulate the inflammatory response at the implant site, a series of waterborne polyurethane (WPU) scaffolds with different properties were synthesized using polyethylene glycol (PEG), polycaprolactone (PCL) and poly (lactic acid)–glycolic acid copolymers (PLGAs) with three lactic acid/glycolic acid (LA/GA) ratios as the soft segments. Then, scaffolds were obtained using freeze-drying. The WPU scaffolds exhibited a porous cellular structure, high porosity, proper mechanical properties for repairing nerve tissue and an adjustable degradation rate. In vitro cellular experiments showed that the degradation solution possessed high biocompatibility. The in vitro inflammatory response of C57BL/6 mouse brain microglia (immortalized) (BV2) cells demonstrated that the LA/GA ratio of the PLGA in WPU scaffolds can regulate the external inflammatory response by altering the secretion of IL-10 and TNF-α. Even the IL-10/TNF-α of PU5050 (3.64) reached 69 times that of the control group (0.053). The results of the PC12 culture on the scaffolds showed that the scaffolds had positive effects on the growth, proliferation and differentiation of nerve cells and could even promote the formation of synapses. Overall, these scaffolds, particularly the PU5050, indeed prevent BV2 cells from differentiating into a pro-inflammatory M1 phenotype, which makes them promising candidates for reducing the inflammatory response and repairing nerve tissue. Furthermore, PU5050 had the best effect on preventing the transformation of BV2 cells into the pro-inflammatory M1 phenotype.
Collapse
Affiliation(s)
- Guanyu Zhang
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ao Zhen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jinlin Chen
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Bohong Du
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Feng Luo
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Jiehua Li
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Hong Tan
- State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Abstract
Recently, substrate stiffness has been involved in the physiology and pathology of the nervous system. However, the role and function of substrate stiffness remain unclear. Here, we review known effects of substrate stiffness on nerve cell morphology and function in the central and peripheral nervous systems and their involvement in pathology. We hope this review will clarify the research status of substrate stiffness in nerve cells and neurological disorder.
Collapse
Affiliation(s)
- Weijin Si
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Jihong Gong
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| | - Xiaofei Yang
- Key Laboratory of Cognitive Science, Hubei Key Laboratory of Medical Information Analysis and Tumor Diagnosis & Treatment, Laboratory of Membrane Ion Channels and Medicine, College of Biomedical Engineering, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
6
|
Pereira I, Lopez-Martinez MJ, Villasante A, Introna C, Tornero D, Canals JM, Samitier J. Hyaluronic acid-based bioink improves the differentiation and network formation of neural progenitor cells. Front Bioeng Biotechnol 2023; 11:1110547. [PMID: 36937768 PMCID: PMC10020230 DOI: 10.3389/fbioe.2023.1110547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
Introduction: Three-dimensional (3D) bioprinting is a promising technique for the development of neuronal in vitro models because it controls the deposition of materials and cells. Finding a biomaterial that supports neural differentiation in vitro while ensuring compatibility with the technique of 3D bioprinting of a self-standing construct is a challenge. Methods: In this study, gelatin methacryloyl (GelMA), methacrylated alginate (AlgMA), and hyaluronic acid (HA) were examined by exploiting their biocompatibility and tunable mechanical properties to resemble the extracellular matrix (ECM) and to create a suitable material for printing neural progenitor cells (NPCs), supporting their long-term differentiation. NPCs were printed and differentiated for up to 15 days, and cell viability and neuronal differentiation markers were assessed throughout the culture. Results and Discussion: This composite biomaterial presented the desired physical properties to mimic the ECM of the brain with high water intake, low stiffness, and slow degradation while allowing the printing of defined structures. The viability rates were maintained at approximately 80% at all time points. However, the levels of β-III tubulin marker increased over time, demonstrating the compatibility of this biomaterial with neuronal cell culture and differentiation. Furthermore, these cells showed increased maturation with corresponding functional properties, which was also demonstrated by the formation of a neuronal network that was observed by recording spontaneous activity via Ca2+ imaging.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Aranzazu Villasante
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Clelia Introna
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Creatio - Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research Foundation Clinic Barcelona-August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), Barcelona, Spain
| | - Daniel Tornero
- Research Foundation Clinic Barcelona-August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), Barcelona, Spain
- Laboratory of Neuronal Stem Cells and Cerebral Damage, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Josep M. Canals
- Laboratory of Stem Cells and Regenerative Medicine, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- Creatio - Production and Validation Center of Advanced Therapies, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
- Research Foundation Clinic Barcelona-August Pi i Sunyer Biomedical Research Institute (FRCB-IDIBAPS), Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Department of Electronic and Biomedical Engineering, University of Barcelona, Barcelona, Spain
- Biomedical Research Networking, Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
- *Correspondence: Josep Samitier,
| |
Collapse
|
7
|
Kumarapuram S, Kunnath AJ, Omelchenko A, Boustany NN, Firestein BL. Glutamate Receptors Mediate Changes to Dendritic Mitochondria in Neurons Grown on Stiff Substrates. Ann Biomed Eng 2022; 50:1116-1133. [PMID: 35652995 DOI: 10.1007/s10439-022-02987-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022]
Abstract
The stiffness of brain tissue changes during development and disease. These changes can affect neuronal morphology, specifically dendritic arborization. We previously reported that N-methyl-D-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors regulate dendrite number and branching in a manner that is dependent on substrate stiffness. Since mitochondria affect the shape of dendrites, in this study, we determined whether the stiffness of substrates on which rat hippocampal neurons are grown affects mitochondrial characteristics and if glutamate receptors mediate the effects of substrate stiffness. Dendritic mitochondria are small, short, simple, and scarce in neurons cultured on substrates of 0.5 kPa stiffness. In contrast, dendritic mitochondria are large, long, complex, and low in number in neurons grown on substrates of 4 kPa stiffness. Dendritic mitochondria of neurons cultured on glass are high in number and small with complex shapes. Treatment of neurons grown on the stiffer gels or glass with the NMDA and AMPA receptor antagonists, 2-amino-5-phosphonopentanoic acid and 6-cyano-7-nitroquinoxaline-2,3-dione, respectively, results in mitochondrial characteristics of neurons grown on the softer substrate. These results suggest that glutamate receptors play important roles in regulating both mitochondrial morphology and dendritic arborization in response to substrate stiffness.
Collapse
Affiliation(s)
- Siddhant Kumarapuram
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Ansley J Kunnath
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA
| | - Anton Omelchenko
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.,Neurosciences Graduate Program, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Nada N Boustany
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Bonnie L Firestein
- Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ, 08854-8082, USA.
| |
Collapse
|
8
|
Procès A, Luciano M, Kalukula Y, Ris L, Gabriele S. Multiscale Mechanobiology in Brain Physiology and Diseases. Front Cell Dev Biol 2022; 10:823857. [PMID: 35419366 PMCID: PMC8996382 DOI: 10.3389/fcell.2022.823857] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/08/2022] [Indexed: 12/11/2022] Open
Abstract
Increasing evidence suggests that mechanics play a critical role in regulating brain function at different scales. Downstream integration of mechanical inputs into biochemical signals and genomic pathways causes observable and measurable effects on brain cell fate and can also lead to important pathological consequences. Despite recent advances, the mechanical forces that influence neuronal processes remain largely unexplored, and how endogenous mechanical forces are detected and transduced by brain cells into biochemical and genetic programs have received less attention. In this review, we described the composition of brain tissues and their pronounced microstructural heterogeneity. We discuss the individual role of neuronal and glial cell mechanics in brain homeostasis and diseases. We highlight how changes in the composition and mechanical properties of the extracellular matrix can modulate brain cell functions and describe key mechanisms of the mechanosensing process. We then consider the contribution of mechanobiology in the emergence of brain diseases by providing a critical review on traumatic brain injury, neurodegenerative diseases, and neuroblastoma. We show that a better understanding of the mechanobiology of brain tissues will require to manipulate the physico-chemical parameters of the cell microenvironment, and to develop three-dimensional models that can recapitulate the complexity and spatial diversity of brain tissues in a reproducible and predictable manner. Collectively, these emerging insights shed new light on the importance of mechanobiology and its implication in brain and nerve diseases.
Collapse
Affiliation(s)
- Anthony Procès
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium.,Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Marine Luciano
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Yohalie Kalukula
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Laurence Ris
- Neurosciences Department, Research Institute for Biosciences, University of Mons, Mons, Belgium
| | - Sylvain Gabriele
- Mechanobiology and Biomaterials group, Interfaces and Complex Fluids Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium
| |
Collapse
|
9
|
Ozgun A, Lomboni D, Arnott H, Staines WA, Woulfe J, Variola F. Biomaterial-based strategies for in vitro neural models. Biomater Sci 2022; 10:1134-1165. [PMID: 35023513 DOI: 10.1039/d1bm01361k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro models have been used as a complementary tool to animal studies in understanding the nervous system's physiological mechanisms and pathological disorders, while also serving as platforms to evaluate the safety and efficiency of therapeutic candidates. Following recent advances in materials science, micro- and nanofabrication techniques and cell culture systems, in vitro technologies have been rapidly gaining the potential to bridge the gap between animal and clinical studies by providing more sophisticated models that recapitulate key aspects of the structure, biochemistry, biomechanics, and functions of human tissues. This was made possible, in large part, by the development of biomaterials that provide cells with physicochemical features that closely mimic the cellular microenvironment of native tissues. Due to the well-known material-driven cellular response and the importance of mimicking the environment of the target tissue, the selection of optimal biomaterials represents an important early step in the design of biomimetic systems to investigate brain structures and functions. This review provides a comprehensive compendium of commonly used biomaterials as well as the different fabrication techniques employed for the design of neural tissue models. Furthermore, the authors discuss the main parameters that need to be considered to develop functional platforms not only for the study of brain physiological functions and pathological processes but also for drug discovery/development and the optimization of biomaterials for neural tissue engineering.
Collapse
Affiliation(s)
- Alp Ozgun
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - David Lomboni
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - Hallie Arnott
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada
| | - William A Staines
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - John Woulfe
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada
| | - Fabio Variola
- Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Canada. .,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Canada.,Ottawa-Carleton Institute for Biomedical Engineering (OCIBME), Ottawa, Canada.,The Ottawa Hospital, Ottawa, Canada.,Children's Hospital of Eastern Ontario (CHEO), Ottawa, Canada
| |
Collapse
|
10
|
Luo Y, Li J, Li B, Xia Y, Wang H, Fu C. Physical Cues of Matrices Reeducate Nerve Cells. Front Cell Dev Biol 2021; 9:731170. [PMID: 34646825 PMCID: PMC8502847 DOI: 10.3389/fcell.2021.731170] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/20/2021] [Indexed: 11/15/2022] Open
Abstract
The behavior of nerve cells plays a crucial role in nerve regeneration. The mechanical, topographical, and electrical microenvironment surrounding nerve cells can activate cellular signaling pathways of mechanical transduction to affect the behavior of nerve cells. Recently, biological scaffolds with various physical properties have been developed as extracellular matrix to regulate the behavior conversion of nerve cell, such as neuronal neurite growth and directional differentiation of neural stem cells, providing a robust driving force for nerve regeneration. This review mainly focused on the biological basis of nerve cells in mechanical transduction. In addition, we also highlighted the effect of the physical cues, including stiffness, mechanical tension, two-dimensional terrain, and electrical conductivity, on neurite outgrowth and differentiation of neural stem cells and predicted their potential application in clinical nerve tissue engineering.
Collapse
Affiliation(s)
- Yiqian Luo
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jie Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Baoqin Li
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Yuanliang Xia
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Hengyi Wang
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| | - Changfeng Fu
- Department of Spine Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. In Vitro Cell Dev Biol Anim 2021; 57:191-206. [PMID: 33438114 PMCID: PMC7802613 DOI: 10.1007/s11626-020-00532-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Microphysiological systems (MPS) designed to study the complexities of the peripheral and central nervous systems have made marked improvements over the years and have allowed researchers to assess in two and three dimensions the functional interconnectivity of neuronal tissues. The recent generation of brain organoids has further propelled the field into the nascent recapitulation of structural, functional, and effective connectivities which are found within the native human nervous system. Herein, we will review advances in culture methodologies, focused especially on those of human tissues, which seek to bridge the gap from 2D cultures to hierarchical and defined 3D MPS with the end goal of developing a robust nervous system-on-a-chip platform. These advances have far-reaching implications within basic science, pharmaceutical development, and translational medicine disciplines.
Collapse
|
12
|
Karahuseyinoglu S, Sekerdag E, Aria MM, Cetin Tas Y, Nizamoglu S, Solaroglu I, Gürsoy-Özdemir Y. Three-dimensional neuron-astrocyte construction on matrigel enhances establishment of functional voltage-gated sodium channels. J Neurochem 2020; 156:848-866. [PMID: 32939791 DOI: 10.1111/jnc.15185] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Accepted: 09/04/2020] [Indexed: 11/28/2022]
Abstract
This study aimed to investigate and compare cell growth manners and functional differences of primary cortical neurons cultured on either poly-d-lysine (PDL) and or Matrigel, to delineate the role of extracellular matrix on providing resemblance to in vivo cellular interactions in nervous tissue. Primary cortical neurons, obtained from embryonic day 15 mice pups, seeded either on PDL- or Matrigel-coated culture ware were investigated by DIC/bright field and fluorescence/confocal microscopy for their morphology, 2D and 3D structure, and distribution patterns. Patch clamp, western blot, and RT-PCR studies were performed to investigate neuronal firing thresholds and sodium channel subtypes Nav1.2 and Nav1.6 expression. Cortical neurons cultured on PDL coating possessed a 2D structure composed of a few numbers of branched and tortuous neurites that contacted with each other in one to one manner, however, neurons on Matrigel coating showed a more complicated dimensional network that depicted tight, linear axonal bundles forming a 3D interacted neuron-astrocyte construction. This difference in growth patterns also showed a significant alteration in neuronal firing threshold which was recorded between 80 < Iinj > 120 pA on PDL and 2 < Iinj > 160 pA on Matrigel. Neurons grown up on Matrigel showed increased levels of sodium channel protein expression of Nav1.2 and Nav1.6 compared to neurons on PDL. These results have demonstrated that a 3D interacted neuron-astrocyte construction on Matrigel enhances the development of Nav1.2 and Nav1.6 in vitro and decreases neuronal firing threshold by 40 times compared to conventional PDL, resembling in vivo neuronal networks and hence would be a better in vitro model of adult neurons.
Collapse
Affiliation(s)
- Sercin Karahuseyinoglu
- Department of Histology and Embryology, School of Medicine, Koç University, Istanbul, Turkey
| | - Emine Sekerdag
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | | | - Yagmur Cetin Tas
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Sedat Nizamoglu
- Department of Electrical and Electronics Engineering, Koç University, Istanbul, Turkey
| | - Ihsan Solaroglu
- Department of Neurosurgery, School of Medicine, Koç University, Istanbul, Turkey.,Department of Basic Science, Loma Linda University, Loma Linda, CA, USA
| | - Yasemin Gürsoy-Özdemir
- Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey.,Department of Neurology, School of Medicine, Koç University, Istanbul, Turkey
| |
Collapse
|
13
|
Rey F, Barzaghini B, Nardini A, Bordoni M, Zuccotti GV, Cereda C, Raimondi MT, Carelli S. Advances in Tissue Engineering and Innovative Fabrication Techniques for 3-D-Structures: Translational Applications in Neurodegenerative Diseases. Cells 2020; 9:cells9071636. [PMID: 32646008 PMCID: PMC7407518 DOI: 10.3390/cells9071636] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022] Open
Abstract
In the field of regenerative medicine applied to neurodegenerative diseases, one of the most important challenges is the obtainment of innovative scaffolds aimed at improving the development of new frontiers in stem-cell therapy. In recent years, additive manufacturing techniques have gained more and more relevance proving the great potential of the fabrication of precision 3-D scaffolds. In this review, recent advances in additive manufacturing techniques are presented and discussed, with an overview on stimulus-triggered approaches, such as 3-D Printing and laser-based techniques, and deposition-based approaches. Innovative 3-D bioprinting techniques, which allow the production of cell/molecule-laden scaffolds, are becoming a promising frontier in disease modelling and therapy. In this context, the specific biomaterial, stiffness, precise geometrical patterns, and structural properties are to be considered of great relevance for their subsequent translational applications. Moreover, this work reports numerous recent advances in neural diseases modelling and specifically focuses on pre-clinical and clinical translation for scaffolding technology in multiple neurodegenerative diseases.
Collapse
Affiliation(s)
- Federica Rey
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Bianca Barzaghini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Alessandra Nardini
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
| | - Matteo Bordoni
- Dipartimento di Scienze Farmacologiche e Biomolecolari (DiSFeB), Centro di Eccellenza sulle Malattie Neurodegenerative, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy;
| | - Gian Vincenzo Zuccotti
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
| | - Cristina Cereda
- Genomic and post-Genomic Center, IRCCS Mondino Foundation, Via Mondino 2, 27100 Pavia, Italy;
| | - Manuela Teresa Raimondi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy; (B.B.); (A.N.)
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| | - Stephana Carelli
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Via Grassi 74, 20157 Milan, Italy; (F.R.); (G.V.Z.)
- Pediatric Clinical Research Center Fondazione “Romeo ed Enrica Invernizzi”, University of Milano, Via Grassi 74, 20157 Milano, Italy
- Correspondence: (M.T.R.); (S.C.); Tel.: +390-223-994-306 (M.T.R.); +390-250-319-825 (S.C.)
| |
Collapse
|
14
|
Hall CM, Moeendarbary E, Sheridan GK. Mechanobiology of the brain in ageing and Alzheimer's disease. Eur J Neurosci 2020; 53:3851-3878. [DOI: 10.1111/ejn.14766] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/20/2020] [Accepted: 04/23/2020] [Indexed: 02/07/2023]
Affiliation(s)
- Chloe M. Hall
- Department of Mechanical Engineering University College London London UK
- School of Pharmacy and Biomolecular Sciences University of Brighton Brighton UK
| | - Emad Moeendarbary
- Department of Mechanical Engineering University College London London UK
- Department of Biological Engineering Massachusetts Institute of Technology Cambridge MA USA
| | - Graham K. Sheridan
- School of Life Sciences Queens Medical Centre University of Nottingham Nottingham UK
| |
Collapse
|
15
|
Du B, Yin H, Chen Y, Lin W, Wang Y, Zhao D, Wang G, He X, Li J, Li Z, Luo F, Tan H, Fu Q. A waterborne polyurethane 3D scaffold containing PLGA with a controllable degradation rate and an anti-inflammatory effect for potential applications in neural tissue repair. J Mater Chem B 2020; 8:4434-4446. [PMID: 32367107 DOI: 10.1039/d0tb00656d] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
3D connected porous LGPU scaffolds with adjustable degradation and a strong anti-inflammatory effect were prepared for neural tissue repair.
Collapse
|
16
|
Yu Y, Liu S, Wu X, Yu Z, Xu Y, Zhao W, Zavodnik I, Zheng J, Li C, Zhao H. Mechanism of Stiff Substrates up-Regulate Cultured Neuronal Network Activity. ACS Biomater Sci Eng 2019; 5:3475-3482. [PMID: 33405731 DOI: 10.1021/acsbiomaterials.9b00225] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Our previous work provided compelling evidence showing that substrate stiffness is crucial for regulating synaptic connectivity and excitatory synaptic transmission among neurons in the neuronal network. However, the underlying mechanisms remain elusive. In our study, polydimethylsiloxane (PDMS) substrates with different stiffness have been fabricated to investigate the mechanisms by which the substrate stiffness upregulates the formation and activity of the cultured neuronal network. Here we report that stiff substrate increased both the number of synapses and the efficacy of excitatory synaptic transmission. More colocalization of synaptotagmin and PSD-95 was observed in the neuronal network on stiff substrate, which indicated the synapse number has increased. We also found that the increased synapse number was mediated by Hevin and SPARC that are secreted from astrocyte. The increased efficacy of excitatory synaptic transmission induced by stiff substrate was explored in three aspects. First, stiff substrate enhanced the presynaptic activity through increasing the vesicular release probability (Pr) of neurotransmitters as well as the calcium influx. Second, stiff substrate reduced voltage-dependent Mg2+ blockade to N-methyl-d-aspartate receptor (NMDAR) channels, which led to higher postsynaptic activity. Third, our work suggested that the increased excitatory synaptic transmission in the neural network on stiff substrate involved the upregulated synaptic glutamate concentration. Taken together, these findings may provide a molecular mechanism underlying substrate stiffness regulation of excitatory synaptic transmission in the cultured neural network.
Collapse
Affiliation(s)
- Yang Yu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Sisi Liu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Xiaoan Wu
- Department of Physiology and Biophysics, Miller School of Medicine, University of Miami, Miami, Florida 33136, United States
| | - Zhang Yu
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yishi Xu
- Beijing No. 4 High School, Beijing 100034, People's Republic of China
| | - Weijiang Zhao
- Center for Neuroscience, Shantou University Medical College, Shantou, Guangdong 515041, People's Republic of China
| | - Ilya Zavodnik
- Department of Biochemistry, Yanka Kupala State University Grodno, Blvd Len Kom 50, Grodno 230030, Belarus
| | - Jinping Zheng
- Department of Physiology, Changzhi Medical College, Changzhi 046000, People's Republic of China
| | - Chen Li
- Department of Physiology, Changzhi Medical College, Changzhi 046000, People's Republic of China
| | - Hucheng Zhao
- Institute of Biomechanics and Medical Engineering, School of Aerospace Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
17
|
Yan Y, Bejoy J, Marzano M, Li Y. The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration. Cells 2019; 8:E242. [PMID: 30875781 PMCID: PMC6468789 DOI: 10.3390/cells8030242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 12/30/2022] Open
Abstract
The mechanism that causes the Alzheimer's disease (AD) pathologies, including amyloid plaque, neurofibrillary tangles, and neuron death, is not well understood due to the lack of robust study models for human brain. Three-dimensional organoid systems based on human pluripotent stem cells (hPSCs) have shown a promising potential to model neurodegenerative diseases, including AD. These systems, in combination with engineering tools, allow in vitro generation of brain-like tissues that recapitulate complex cell-cell and cell-extracellular matrix (ECM) interactions. Brain ECMs play important roles in neural differentiation, proliferation, neuronal network, and AD progression. In this contribution related to brain ECMs, recent advances in modeling AD pathology and progression based on hPSC-derived neural cells, tissues, and brain organoids were reviewed and summarized. In addition, the roles of ECMs in neural differentiation of hPSCs and the influences of heparan sulfate proteoglycans, chondroitin sulfate proteoglycans, and hyaluronic acid on the progression of neurodegeneration were discussed. The advantages that use stem cell-based organoids to study neural degeneration and to investigate the effects of ECM development on the disease progression were highlighted. The contents of this article are significant for understanding cell-matrix interactions in stem cell microenvironment for treating neural degeneration.
Collapse
Affiliation(s)
- Yuanwei Yan
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA.
| | - Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA.
| | - Mark Marzano
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA.
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL 32310, USA.
| |
Collapse
|
18
|
The influence of the stiffness of GelMA substrate on the outgrowth of PC12 cells. Biosci Rep 2019; 39:BSR20181748. [PMID: 30606743 PMCID: PMC6340955 DOI: 10.1042/bsr20181748] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 12/07/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Recent studies have shown the importance of cell–substrate interaction on neurone outgrowth, where the Young’s modulus of the matrix plays a crucial role on the neurite length, migration, proliferation, and morphology of neurones. In the present study, PC12 cells were selected as the representative neurone to be cultured on hydrogel substrates with different stiffness to explore the effect of substrate stiffness on the neurone outgrowth. By adjusting the concentration of gelatin methacryloyl (GelMA), the hydrogel substrates with the variation of stiffnesses (indicated by Young’s modulus) from approximately 3–180 KPa were prepared. It is found that the stiffness of GelMA substrates influences neuronal outgrowth, including cell viability, adhesion, spreading, and average neurite length. Our results show a critical range of substrate’s Young’s modulus that support PC12 outgrowth, and modulate the cell characteristics and morphology. The present study provides an insight into the relationship between the stiffness of GelMA hydrogel substrates and PC12 cell outgrowth, and helps the design and optimization of tissue engineering scaffolds for nerve regeneration.
Collapse
|