1
|
Sun Y, Wang Y, Meng X. Atrazine concentration detection based on NiAl-layer double hydroxides nanosheets synaptic transistor. Colloids Surf B Biointerfaces 2024; 245:114210. [PMID: 39243708 DOI: 10.1016/j.colsurfb.2024.114210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
A transistor inspired by biological systems, which possesses synaptic and sensing capabilities, has demonstrated significant promise in the field of neuromorphic electronics and sensory systems resembling the human brain. Despite the remarkable advancements in emulating neuromorphic operations, the development of a synaptic FET with a bionic architecture, extended lifespan, minimal energy usage, and marker monitoring capability remains challenging. In this work, a synaptic transistor based on NiAl-layer double hydroxides nanosheets is reported. The synaptic transistor exhibits a significant ratio of on/off current (1.35×107) and possesses a high transconductance value (10.05 mS). The successful emulation included key synaptic characteristics, such as excitatory/inhibitory postsynaptic current, paired-pulse facilitation/depression, short-term plasticity spike amplitude-dependent plasticity, spike timing-dependent plasticity, as well as spike number-dependent plasticity. A consumption of 64.8 pJ per spike was achieved as a result of the efficient carrier transfer pathway facilitated by the nanosheets composed of double hydroxides. In addition, the FET's linear detection region (with a coefficient R2=0.811) encompassed atrazine concentrations ranging from 10 pg/mL to 0.1 μg/mL, thanks to its high surface area and significant transconductance. Therefore, this study presents a potential approach for achieving energy-efficient neuromorphic computing and high-performance synaptic devices.
Collapse
Affiliation(s)
- Yanmei Sun
- School of Electronic Engineering, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Micro-nano Sensitive Devices and Systems, Heilongjiang University, Harbin 150080, China.
| | - Yufei Wang
- School of Electronic Engineering, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Micro-nano Sensitive Devices and Systems, Heilongjiang University, Harbin 150080, China
| | - Xinru Meng
- School of Electronic Engineering, Heilongjiang University, Harbin 150080, China; Heilongjiang Provincial Key Laboratory of Micro-nano Sensitive Devices and Systems, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
2
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
3
|
Shang X, Yan Y, Li J, Zhou X, Xiang X, Huang R, Li X, Ma C, Nie X. A turn-on fluorescent strategy for alkaline phosphatase detection based on enzyme-assisted signal amplification. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121939. [PMID: 36219964 DOI: 10.1016/j.saa.2022.121939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/09/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
As a representative biochemical indicator, alkaline phosphatase (ALP) is of great importance in indicating and diagnosing clinical diseases. Herein, we developed a signal-on fluorescence sensing method for sensitive ALP activity detection based on the enzyme-assisted target recycling (EATR) technique. In this method, a two-step signal amplification process is designed. In the presence of ALP, the 3' phosphate group of an ss-DNA is removed explicitly by ALP, thus releasing free 3'-OH. Terminal deoxynucleotidyl transferase (TdT) can subsequently extend this substrate to generate poly(A) tails, converting the trace-level ALP information into multiple sequences and achieving the first-time amplification. A poly(T) Taqman probe labeled with FAM and BHQ1 provides the second one under the assistance of T7 exonuclease (T7 Exo) through alternate hybridization and degradation of ds-DNA regions. The previously quenched fluorescence is recovered due to the departure of FAM/BHQ1 during the cleavage of T7 Exo. Thus, taking advantage of template-free TdT-mediated polymerization and T7 Exo-based EATR, this strategy shows a sensitive LOD at 0.0074 U/L (S/N = 3) and a linear range of 0.01-8 U/L between ALP concentration and fluorescence intensity. To further verify the specificity and accuracy in practical application, we challenged it in a set of co-existing interference and biological environments and have gained satisfying results. The proposed method successfully quantified the ALP levels in clinical human serum samples, suggesting its applicability in practical application. Moreover, we have used this method to investigate the inhibition effects of Na3VO4. Above all, the proposed assay is sensitive, facile, and cost-effective for ALP determining, holding a promising perspective and excellent potential in clinical diagnosis and drug screening.
Collapse
Affiliation(s)
- Xueling Shang
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Ying Yan
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Jian Li
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xi Zhou
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Xinying Xiang
- School of Life Sciences, Central South University, Changsha 410013, China
| | - Rong Huang
- Department of Blood Transfusion, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Xisheng Li
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Changbei Ma
- School of Life Sciences, Central South University, Changsha 410013, China.
| | - Xinmin Nie
- Department of Laboratory Medicine, The Third Xiangya Hospital, Central South University, Changsha 410013, China; Hunan Engineering Technology Research Center of Optoelectronic Health Detection, Changsha 410013, China.
| |
Collapse
|
4
|
3D Printed Microfluidic Chemiluminescence PoC Device with Self-Powering and Integrated Incubating System: Validation via ALP Detection on Disposable µPADs. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
5
|
Ding Y, Lin T, Shen J, Wei Y, Wang C. In situ reaction-based ratiometric fluorescent assay for alkaline phosphatase activity and bioimaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 282:121698. [PMID: 35940067 DOI: 10.1016/j.saa.2022.121698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Alkaline phosphatase (ALP) is an important biomarker, it is of great significance to develop a sensitive and efficient analytical method for ALP. In this study, an in situ reaction based ratiometric fluorescence assay for ALP was proposed. l-ascorbic acid-2-phosphate (AA2P) was used as a substrate for ALP, and Cu2+/o-phenylenediamine (OPD) were involved in this system. Cu2+ can oxidize OPD to 2,3-diaminophenazine (OPDox) with an emission centered at 566 nm. The presence of ALP can catalyze the hydrolysis of AA2P to ascorbic acid (AA), which will inhibit the production of OPDox and reduce the corresponding fluorescence intensity, and AA will react with OPD to generate 3-(dihydroxyethyl)furan[3,4-b]quinoxalin-1-one (DFQ) with an emission peak at 447 nm. The fluorescence ratio of F447/F566 has a linear relationship with ALP activity. The proposed method is highly sensitive, finely selective, cost efficiency and easy to operate, it exhibits good linearity in the range of 0.5-22 and 22-40 mU·mL-1, with a detection limit as low as 0.06 mU·mL-1. The excellent applicability of this strategy in human serum samples and MCF-7 cells imaging suggests that this method has promising prospects for biomedical research.
Collapse
Affiliation(s)
- Yu Ding
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Tianxia Lin
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Jiwei Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Yinmao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China
| | - Chaozhan Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
6
|
A self-assembly lanthanide nanoparticle for ratiometric fluorescence determination of alkaline phosphatase activity. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Atomically-precise Au24Ag1 Clusterzymes with Enhanced Peroxidase-like Activity for Bioanalysis. Chem Res Chin Univ 2022. [DOI: 10.1007/s40242-022-2259-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Shaban SM, Byeok Jo S, Hafez E, Ho Cho J, Kim DH. A comprehensive overview on alkaline phosphatase targeting and reporting assays. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
9
|
Chen Z, Li B, Liu J, Li H, Li C, Xuan X, Li M. A label-free electrochemical immunosensor based on a gold-vertical graphene/TiO 2 nanotube electrode for CA125 detection in oxidation/reduction dual channels. Mikrochim Acta 2022; 189:257. [PMID: 35701556 DOI: 10.1007/s00604-022-05332-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
A label-free immunosensor was constructed in oxidation and reduction dual channel mode for the trace detection of cancer antigen 125 (CA125) in serum. The gold-vertical graphene/titanium dioxide (Au-VG/TiO2) electrode was used as the signal-amplification platform, and cytosine and dopamine were used as probes in the oxidation and reduction channels, respectively. VG nanosheets were synthesized on a TiO2 nanotube array via chemical vapor deposition (CVD), and Au nanoparticles were deeply embedded on the surface and in the root of the VG nanosheets via electrodeposition. The CA125 antibody was then directly immobilized onto the electrode surface, benefitting from its natural affinity for Au nanoparticles. In the oxidation and reduction channels the CA125 antibody-Au-VG/TiO2 immune electrode had the same response concentration range (0.01-1000 mU∙mL-1) for the determination of the CA125 antigen. However, the oxidation channel had a higher sensitivity (14.82 μA•(log(mU•mL-1))-1 at a working potential of ~ 1.25 V vs. SCE), lower detection limit (0.0001 mU∙mL-1), higher stability, and lower performance deviation than the reduction channel. This immunosensor was successfully used for CA125 detection in human serum. The recoveries of spiked serum samples ranged from 99.8 ± 0.5 to 100 ± 0.4%. The study on the difference in the sensing performance between oxidation and reduction channels provides a preliminary experimental reference for exploring dual-channel synchronous detection immunosensors and verifying the accuracy of the assay based on dual-channel data, which will promote the development of reliable electrochemical immunosensor technology.
Collapse
Affiliation(s)
- Zehua Chen
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Bingbing Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Jinbiao Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| | - Cuiping Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Xiuwei Xuan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, Engineering Research Center of Optoelectronic Devices & Communication Technology (Ministry of Education), School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin, 300384, People's Republic of China.
| |
Collapse
|
10
|
Li X, Lu J, Li Z, Yang H, Li W, Liu Y, Miao M. Electrochemical detection of alkaline phosphatase activity via atom transfer radical polymerization. Bioelectrochemistry 2022; 144:107998. [PMID: 34808503 DOI: 10.1016/j.bioelechem.2021.107998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 12/15/2022]
Abstract
Alkaline phosphatase (ALP) activity is a diagnostic indicator for a variety of clinical diseases. In this study, an electrochemical method for detecting ALP activity through activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) was developed. Specifically, 3-mercaptopropionic (MPA) was firstly fixed on the electrode through sulfur-gold bonding. Subsequently, α-bromophenylacetic acid (BPAA) as initiator was attached to MPA through the recognized carboxylate-Zr4+-phosphate chemistry. Finally, in the existence of ALP, L-Ascorbic acid 2-phosphate sesquimagnesium salt hydrate (AAPS) was hydrolyzed to produce ascorbic acid (AA) which participated in the ARGET ATRP reaction, grafting polymer containing plenty of ferrocene electroactive probes on the surface of electrode. Under optimal experimental conditions, this method had a linear scope of 20-200 mU mL-1, and a limit of detection (LOD) of 1.64 mU mL-1. In addition, the proposed method had good selectivity as well as anti-interference capability, with satisfactory results in inhibition rate and human serum experiments. By merits of good analytical performance, easy operation, and low cost, such a method for ALP activity detection has promising applications in ALP-related disease detection and inhibitor screening.
Collapse
Affiliation(s)
- Xiaofei Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jing Lu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Zutian Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Haoyuan Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Weiming Li
- The Third Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou 450003, PR China.
| | - Yanju Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
11
|
Wu X, Kang R, Zhang Y, Li W, Zhang T. Electrochemical Immune-Determination of Alkaline Phosphatase Based on Gold Nanoparticle/Ti3C2Tx MXenes as the Sensing Platform by Differential Pulse Voltammetry (DPV). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.2007941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xing Wu
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Rongbin Kang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Yiyuan Zhang
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Weiming Li
- Department of Orthopedics, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| | - Tao Zhang
- Department of Orthopedics Institute, Fuzhou Second Hospital Affiliated to Xiamen University, Fuzhou, China
| |
Collapse
|
12
|
Recent Progress in Electrochemical Immunosensors. BIOSENSORS-BASEL 2021; 11:bios11100360. [PMID: 34677316 PMCID: PMC8533705 DOI: 10.3390/bios11100360] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022]
Abstract
Biosensors used for medical diagnosis work by analyzing physiological fluids. Antibodies have been frequently used as molecular recognition molecules for the specific binding of target analytes from complex biological solutions. Electrochemistry has been introduced for the measurement of quantitative signals from transducer-bound analytes for many reasons, including good sensitivity. Recently, numerous electrochemical immunosensors have been developed and various strategies have been proposed to detect biomarkers. In this paper, the recent progress in electrochemical immunosensors is reviewed. In particular, we focused on the immobilization methods using antibodies for voltammetric, amperometric, impedimetric, and electrochemiluminescent immunosensors.
Collapse
|
13
|
Nano-carbons in biosensor applications: an overview of carbon nanotubes (CNTs) and fullerenes (C60). SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2404-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
14
|
Zhou X, Khusbu FY, Chen H, Ma C. A turn-on fluorescence assay of alkaline phosphatase activity based on an enzyme-triggered conformational switch of G-quadruplex. Talanta 2020; 208:120453. [DOI: 10.1016/j.talanta.2019.120453] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/30/2019] [Accepted: 10/06/2019] [Indexed: 12/15/2022]
|
15
|
Balbaied T, Moore E. Overview of Optical and Electrochemical Alkaline Phosphatase (ALP) Biosensors: Recent Approaches in Cells Culture Techniques. BIOSENSORS 2019; 9:E102. [PMID: 31450819 PMCID: PMC6784369 DOI: 10.3390/bios9030102] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 12/12/2022]
Abstract
Alkaline phosphatase (ALP), which catalyzes the dephosphorylation process of proteins, nucleic acids, and small molecules, can be found in a variety of tissues (intestine, liver, bone, kidney, and placenta) of almost all living organisms. This enzyme has been extensively used as a biomarker in enzyme immunoassays and molecular biology. ALP is also one of the most commonly assayed enzymes in routine clinical practice. Due to its close relation to a variety of pathological processes, ALP's abnormal level is an important diagnostic biomarker of many human diseases, such as liver dysfunction, bone diseases, kidney acute injury, and cancer. Therefore, the development of convenient and reliable assay methods for monitoring ALP activity/level is extremely important and valuable, not only for clinical diagnoses but also in the area of biomedical research. This paper comprehensively reviews the strategies of optical and electrochemical detection of ALP and discusses the electrochemical techniques that have been addressed to make them suitable for ALP analysis in cell culture.
Collapse
Affiliation(s)
- Thanih Balbaied
- University College Cork, Sensing & Separation Group, School of Chemistry and life Science Interface, Tyndall National Institute, T12R5CP Cork, Ireland
| | - Eric Moore
- University College Cork, Sensing & Separation Group, School of Chemistry and life Science Interface, Tyndall National Institute, T12R5CP Cork, Ireland.
| |
Collapse
|
16
|
Abstract
Immunosensors are compact tools on which antibody and antigen interactions are formed. The specific interaction between antibody and antigen is detected by using a transducer and an electrical signal is measured. This specific interaction between these molecules makes immunosensor very attractive for several applications in different fields. Electrochemical immunosensors are successful devices in selective and sensitive detection of several analytes. Electrochemical transducing methods such as voltammetric, potentiometric, conductometric or impedimetric have been utilized in different applications due to their excellent properties such as being low-cost, sensitivity and simplicity. In this chapter, the fundamentals of electrochemical immunosensors are summarized and different applications in food, environmental and clinical analyses are investigated and discussed.
Collapse
Affiliation(s)
- Elif Burcu Aydin
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey.
| | - Muhammet Aydin
- Namık Kemal University, Scientific and Technological Research Center, Tekirdağ, Turkey
| | - Mustafa Kemal Sezgintürk
- Çanakkale Onsekiz Mart University, Faculty of Engineering, Bioengineering Department, Çanakkale, Turkey
| |
Collapse
|
17
|
|
18
|
Lee J, Bubar CT, Moon HG, Kim J, Busnaina A, Lee H, Shefelbine SJ. Measuring Bone Biomarker Alkaline Phosphatase with Wafer-Scale Nanowell Array Electrodes. ACS Sens 2018; 3:2709-2715. [PMID: 30460852 DOI: 10.1021/acssensors.8b01298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Biosensors that can analyze a single drop of biological fluid can overcome limitations such as extraction volume from humans or animals, ethical problems, time, and cost. In this work, we have developed a highly sensitive electrochemical (EC) biosensor based on a nanowell array (NWA) for the detection of alkaline phosphatase (ALP), a serum indicator of bone formation. The size of the electrode is 2 × 1 mm2 and has over 10 million nanowells (400 nm diameter) arranged uniformly on the electrode surface. For detecting ALP, anti-ALP was immobilized and oriented on the NWA surface using a self-assembled monolayer and protein G. EC impedance spectroscopy (EIS) was used to determine the amount of ALP in 10 μL of sample. The impedance was calibrated with ALP concentration. The NWA has a linear dynamic range from 1 pg/mL to 100 ng/mL with a limit of detection (LOD) at 12 pg/mL. We used the sensor to measure the ALP in real mouse serum from 4, 10, and 20 weeks old mice and compared the results to the standard photometric assay. This work demonstrates the potential of EC NWA sensors to analyze a single drop of a real body fluid sample and to be developed for broad applications.
Collapse
Affiliation(s)
- JuKyung Lee
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
- Korea Institute of Toxicology, Jeongeup-Si 56212, Republic of Korea
| | - Cameron T. Bubar
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Hi Gyu Moon
- Korea Institute of Toxicology, Jeongeup-Si 56212, Republic of Korea
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jonghan Kim
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ahmed Busnaina
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - HeaYeon Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, Bouve College of Health Sciences, Northeastern University, Boston, Massachusetts 02115, United States
- Mara Nanotech New York, Inc., New York, New York 10031-9101, United States
| | - Sandra J. Shefelbine
- Department of Mechanical and Industrial Engineering, College of Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|