1
|
Akhtar M, Peng P, Bernhardt A, Gelinsky M, Ur Rehman MA, Boccaccini AR, Basu B. Gelatin Methacryloyl (GelMA) - 45S5 Bioactive Glass (BG) Composites for Bone Tissue Engineering: 3D Extrusion Printability and Cytocompatibility Assessment Using Human Osteoblasts. ACS Biomater Sci Eng 2024; 10:5122-5135. [PMID: 39038164 DOI: 10.1021/acsbiomaterials.4c00583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
3D extrusion printing has been widely investigated for low-volume production of complex-shaped scaffolds for tissue regeneration. Gelatin methacryloyl (GelMA) is used as a baseline material for the synthesis of biomaterial inks, often with organic/inorganic fillers, to obtain a balance between good printability and biophysical properties. The present study demonstrates how 45S5 bioactive glass (BG) addition and GelMA concentrations can be tailored to develop GelMA composite scaffolds with good printability and buildability. The experimental results suggest that 45S5 BG addition consistently decreases the compression stiffness, irrespective of GelMA concentration, albeit within 20% of the baseline scaffold (without 45S5 BG). The optimal addition of 2 wt % 45S5 BG in 7.5 wt % GelMA was demonstrated to provide the best combination of printability and buildability in the 3D extrusion printing route. The degradation decreases and the swelling kinetics increases with 45S5 BG addition, irrespective of GelMA concentration. Importantly, the dissolution in simulated body fluid over 3 weeks clearly promoted the nucleation and growth of crystalline calcium phosphate particles, indicating the potential of GelMA-45S5 BG to promote biomineralization. The cytocompatibility assessment using human osteoblasts could demonstrate uncompromised cell proliferation or osteogenic marker expression over 21 days in culture for 3D printable 7.5 wt % GelMA -2 wt % 45S5 BG scaffolds when compared to 7.5 wt % GelMA. The results thus encourage further investigations of the GelMA/45S5 BG composite system for bone tissue engineering applications.
Collapse
Affiliation(s)
- Memoona Akhtar
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Peixi Peng
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine, Technische Universität Dresden, 01307 Dresden, Germany
| | - Muhammad Atiq Ur Rehman
- Department of Materials Science & Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Bikramjit Basu
- Laboratory for Biomaterials Science and Translational Research, Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
2
|
Dornelas J, Dornelas G, Rossi A, Piattelli A, Di Pietro N, Romasco T, Mourão CF, Alves GG. The Incorporation of Zinc into Hydroxyapatite and Its Influence on the Cellular Response to Biomaterials: A Systematic Review. J Funct Biomater 2024; 15:178. [PMID: 39057300 PMCID: PMC11277605 DOI: 10.3390/jfb15070178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/20/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Zinc is known for its role in enhancing bone metabolism, cell proliferation, and tissue regeneration. Several studies proposed the incorporation of zinc into hydroxyapatite (HA) to produce biomaterials (ZnHA) that stimulate and accelerate bone healing. This systematic review aimed to understand the physicochemical characteristics of zinc-doped HA-based biomaterials and the evidence of their biological effects on osteoblastic cells. A comprehensive literature search was conducted from 2022 to 2024, covering all years of publications, in three databases (Web of Science, PUBMED, Scopus), retrieving 609 entries, with 36 articles included in the analysis according to the selection criteria. The selected studies provided data on the material's physicochemical properties, the methods of zinc incorporation, and the biological effects of ZnHA on bone cells. The production of ZnHA typically involves the wet chemical synthesis of HA and ZnHA precursors, followed by deposition on substrates using processes such as liquid precursor plasma spraying (LPPS). Characterization techniques confirmed the successful incorporation of zinc into the HA lattice. The findings indicated that zinc incorporation into HA at low concentrations is non-cytotoxic and beneficial for bone cells. ZnHA was found to stimulate cell proliferation, adhesion, and the production of osteogenic factors, thereby promoting in vitro mineralization. However, the optimal zinc concentration for the desired effects varied across studies, making it challenging to establish a standardized concentration. ZnHA materials are biocompatible and enhance osteoblast proliferation and differentiation. However, the mechanisms of zinc release and the ideal concentrations for optimal tissue regeneration require further investigation. Standardizing these parameters is essential for the effective clinical application of ZnHA.
Collapse
Affiliation(s)
- Jessica Dornelas
- NanoOnco3D, Rio de Janeiro 20000-000, Brazil
- Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | - Giselle Dornelas
- Post-Graduation Program in Sciences & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| | - Alexandre Rossi
- CBPF–Brazilian Center for Research in Physics, Rio de Janeiro 22290-180, Brazil
| | - Adriano Piattelli
- School of Dentistry, Saint Camillus International, University of Health and Medical Sciences, 00131 Rome, Italy
| | - Natalia Di Pietro
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Tea Romasco
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology-CAST, “G. D’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Gutemberg Gomes Alves
- Cell and Molecular Biology Department, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
- Post-Graduation Program in Sciences & Biotechnology, Institute of Biology, Fluminense Federal University, Niteroi 24220-900, Brazil
| |
Collapse
|
3
|
Tang S, Shen Y, Jiang L, Zhang Y. Surface Modification of Nano-Hydroxyapatite/Polymer Composite for Bone Tissue Repair Applications: A Review. Polymers (Basel) 2024; 16:1263. [PMID: 38732732 PMCID: PMC11085102 DOI: 10.3390/polym16091263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/19/2024] [Accepted: 04/18/2024] [Indexed: 05/13/2024] Open
Abstract
Nano-hydroxyapatite (n-HA) is the main inorganic component of natural bone, which has been widely used as a reinforcing filler for polymers in bone materials, and it can promote cell adhesion, proliferation, and differentiation. It can also produce interactions between cells and material surfaces through selective protein adsorption and has therefore always been a research hotspot in orthopedic materials. However, n-HA nano-particles are inherently easy to agglomerate and difficult to disperse evenly in the polymer. In addition, there are differences in trace elements between n-HA nano-particles and biological apatite, so the biological activity needs to be improved, and the slow degradation in vivo, which has seriously hindered the application of n-HA in bone fields, is unacceptable. Therefore, the modification of n-HA has been extensively reported in the literature. This article reviewed the physical modification and various chemical modification methods of n-HA in recent years, as well as their modification effects. In particular, various chemical modification methods and their modification effects were reviewed in detail. Finally, a summary and suggestions for the modification of n-HA were proposed, which would provide significant reference for achieving high-performance n-HA in biomedical applications.
Collapse
Affiliation(s)
- Shuo Tang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Yifei Shen
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Liuyun Jiang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| | - Yan Zhang
- National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research (Ministry of Education, China), College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
- Key Laboratory of Light Energy Conversion Materials of Hunan Province College, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
4
|
Lv N, Zhou Z, Hong L, Li H, Liu M, Qian Z. Zinc-energized dynamic hydrogel accelerates bone regeneration via potentiating the coupling of angiogenesis and osteogenesis. Front Bioeng Biotechnol 2024; 12:1389397. [PMID: 38633665 PMCID: PMC11022217 DOI: 10.3389/fbioe.2024.1389397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/20/2024] [Indexed: 04/19/2024] Open
Abstract
Insufficient initial vascularization plays a pivotal role in the ineffectiveness of bone biomaterials for treating bone defects. Consequently, enhancing the angiogenic properties of bone repair biomaterials holds immense importance in augmenting the efficacy of bone regeneration. In this context, we have successfully engineered a composite hydrogel capable of promoting vascularization in the process of bone regeneration. To achieve this, the researchers first prepared an aminated bioactive glass containing zinc ions (AZnBg), and hyaluronic acid contains aldehyde groups (HA-CHO). The composite hydrogel was formed by combining AZnBg with gelatin methacryloyl (GelMA) and HA-CHO through Schiff base bonding. This composite hydrogel has good biocompatibility. In addition, the composite hydrogel exhibited significant osteoinductive activity, promoting the activity of ALP, the formation of calcium nodules, and the expression of osteogenic genes. Notably, the hydrogel also promoted umbilical vein endothelial cell migration as well as tube formation by releasing zinc ions. The results of in vivo study demonstrated that implantation of the composite hydrogel in the bone defect of the distal femur of rats could effectively stimulate bone generation and the development of new blood vessels, thus accelerating the bone healing process. In conclusion, the combining zinc-containing bioactive glass with hydrogels can effectively promote bone growth and angiogenesis, making it a viable option for the repair of critical-sized bone defects.
Collapse
Affiliation(s)
- Nanning Lv
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Zhangzhe Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Lihui Hong
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Hongye Li
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Mingming Liu
- Department of Orthopedic Surgery, The Affiliated Lianyungang Clinical College of Xuzhou Medical University (The Second People’s Hospital of Lianyungang), Lianyungang, China
| | - Zhonglai Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| |
Collapse
|
5
|
Liang W, Zhou C, Bai J, Zhang H, Long H, Jiang B, Dai H, Wang J, Zhang H, Zhao J. Current developments and future perspectives of nanotechnology in orthopedic implants: an updated review. Front Bioeng Biotechnol 2024; 12:1342340. [PMID: 38567086 PMCID: PMC10986186 DOI: 10.3389/fbioe.2024.1342340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/04/2024] [Indexed: 04/04/2024] Open
Abstract
Orthopedic implants are the most commonly used fracture fixation devices for facilitating the growth and development of incipient bone and treating bone diseases and defects. However, most orthopedic implants suffer from various drawbacks and complications, including bacterial adhesion, poor cell proliferation, and limited resistance to corrosion. One of the major drawbacks of currently available orthopedic implants is their inadequate osseointegration at the tissue-implant interface. This leads to loosening as a result of immunological rejection, wear debris formation, low mechanical fixation, and implant-related infections. Nanotechnology holds the promise to offer a wide range of innovative technologies for use in translational orthopedic research. Nanomaterials have great potential for use in orthopedic applications due to their exceptional tribological qualities, high resistance to wear and tear, ability to maintain drug release, capacity for osseointegration, and capability to regenerate tissue. Furthermore, nanostructured materials possess the ability to mimic the features and hierarchical structure of native bones. They facilitate cell proliferation, decrease the rate of infection, and prevent biofilm formation, among other diverse functions. The emergence of nanostructured polymers, metals, ceramics, and carbon materials has enabled novel approaches in orthopaedic research. This review provides a concise overview of nanotechnology-based biomaterials utilized in orthopedics, encompassing metallic and nonmetallic nanomaterials. A further overview is provided regarding the biomedical applications of nanotechnology-based biomaterials, including their application in orthopedics for drug delivery systems and bone tissue engineering to facilitate scaffold preparation, surface modification of implantable materials to improve their osteointegration properties, and treatment of musculoskeletal infections. Hence, this review article offers a contemporary overview of the current applications of nanotechnology in orthopedic implants and bone tissue engineering, as well as its prospective future applications.
Collapse
Affiliation(s)
- Wenqing Liang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Chao Zhou
- Department of Orthopedics, Zhoushan Guanghua Hospital, Zhoushan, China
| | - Juqin Bai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hongwei Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengguo Long
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Bo Jiang
- Rehabilitation Department, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Haidong Dai
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiangwei Wang
- Medical Research Center, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Hengjian Zhang
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| | - Jiayi Zhao
- Department of Orthopaedics, Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University, Zhoushan, China
| |
Collapse
|
6
|
Xue J, Gurav N, Elsharkawy S, Deb S. Hydrogel Composite Magnetic Scaffolds: Toward Cell-Free In Situ Bone Tissue Engineering. ACS APPLIED BIO MATERIALS 2024; 7:168-181. [PMID: 38109842 PMCID: PMC10792668 DOI: 10.1021/acsabm.3c00732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/20/2023]
Abstract
Reconstruction of critical sized bone defects in the oral and maxillofacial region continues to be clinically challenging despite the significant development of osteo-regenerative materials. Among 3D biomaterials, hydrogels and hydrogel composites have been explored for bone regeneration, however, their inferior clinical performance in comparison to autografts is mainly attributed to variable rates of degradation and lack of vascularization. In this study, we report hydrogel composite magnetic scaffolds formed from calcium carbonate, poly(vinyl alcohol) (PVA), and magnetic nanoparticles (MNPs), using PVA as matrix and calcium carbonate particles in vaterite phase as filler, to enhance the cross-linking of matrix and porosity with MNPs that can target and regulate cell signaling pathways to control cell behavior and improve the osteogenic and angiogenic potential. The physical and mechanical properties were evaluated, and cytocompatibility was investigated by culturing human osteoblast-like cells onto the scaffolds. The vaterite phase due to its higher solubility in comparison to calcium phosphates, combined with the freezing-thawing process of PVA, yielded porous scaffolds that exhibited adequate thermal stability, favorable water-absorbing capacity, excellent mineralization ability, and cytocompatibility. An increasing concentration from 1, 3, and 6 wt % MNPs in the scaffolds showed a statistically significant increase in compressive strength and modulus of the dry specimens that exhibited brittle fracture. However, the hydrated specimens were compressible and showed a slight decrease in compressive strength with 6% MNPs, although this value was higher compared to that of the scaffolds with no MNPs.
Collapse
Affiliation(s)
- Jingyi Xue
- Faculty of Dentistry, Oral
and Craniofacial Sciences, King’s
College London, London SE1 9RT, United
Kingdom
| | - Neelam Gurav
- Faculty of Dentistry, Oral
and Craniofacial Sciences, King’s
College London, London SE1 9RT, United
Kingdom
| | - Sherif Elsharkawy
- Faculty of Dentistry, Oral
and Craniofacial Sciences, King’s
College London, London SE1 9RT, United
Kingdom
| | - Sanjukta Deb
- Faculty of Dentistry, Oral
and Craniofacial Sciences, King’s
College London, London SE1 9RT, United
Kingdom
| |
Collapse
|
7
|
Wen X, Wang J, Pei X, Zhang X. Zinc-based biomaterials for bone repair and regeneration: mechanism and applications. J Mater Chem B 2023; 11:11405-11425. [PMID: 38010166 DOI: 10.1039/d3tb01874a] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Zinc (Zn) is one of the most important trace elements in the human body and plays a key role in various physiological processes, especially in bone metabolism. Zn-containing materials have been reported to enhance bone repair through promoting cell proliferation, osteogenic activity, angiogenesis, and inhibiting osteoclast differentiation. Therefore, Zn-based biomaterials are potential substitutes for traditional bone grafts. In this review, the specific mechanisms of bone formation promotion by Zn-based biomaterials were discussed, and recent developments in their application in bone tissue engineering were summarized. Moreover, the challenges and perspectives of Zn-based biomaterials were concluded, revealing their attractive potential and development directions in the future.
Collapse
Affiliation(s)
- Xinyu Wen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xibo Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
8
|
Zhang K, Liu Y, Zhao Z, Shi X, Zhang R, He Y, Zhang H, Sun Y, Wang W. Synthesis Technology of Magnesium-Doped Nanometer Hydroxyapatite: A Review. ACS OMEGA 2023; 8:44458-44471. [PMID: 38046298 PMCID: PMC10688058 DOI: 10.1021/acsomega.3c06091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023]
Abstract
Ion substitution techniques for nanoparticles have become an important neighborhood of biomedical engineering and have led to the development of innovative bioactive materials for health systems. Magnesium-doped nanohydroxyapatite (Mg-nHA) has good bone conductivity, biological activity, flexural strength, and fracture toughness due to particle doping technology, making it an ideal candidate material for biomedical applications. In this Review, we have systematically presented the synthesis methods of Mg-nHA and their application in the field of biomedical science and highlighted the pros and cons of each method. Finally, some future prospects for this important neighborhood are proposed. The purpose of this Review is to provide readers with an understanding of this new field of research on bioactive materials with innovative functions and systematically introduce the latest technologies for obtaining uniform, continuous, and morphologically diverse Mg-nHA.
Collapse
Affiliation(s)
- Kui Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yan Liu
- Department
of Gynecology, First Affiliated Hospital
of Xi ’an Medical College, Xi’an, Shaanxi 710000, China
| | - Zhenrui Zhao
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xuewen Shi
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Ruihao Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yixiang He
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huaibin Zhang
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yi Sun
- The
First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenji Wang
- Department
of Orthopedics, The First Hospital of Lanzhou
University, Lanzhou, Gansu 730000, China
| |
Collapse
|
9
|
Sánchez-Salcedo S, García A, González-Jiménez A, Vallet-Regí M. Antibacterial effect of 3D printed mesoporous bioactive glass scaffolds doped with metallic silver nanoparticles. Acta Biomater 2023; 155:654-666. [PMID: 36332875 DOI: 10.1016/j.actbio.2022.10.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/12/2022]
Abstract
The development of new biomaterials for bone tissue regeneration with high bioactivity abilities and antibacterial properties is being intensively investigated. We have synthesized nanocomposites formed by mesoporous bioactive glasses (MBGs) in the ternary SiO2, CaO and P2O5 system doped with metallic silver nanoparticles (AgNPs) that were homogenously embedded in the MBG matrices. Ag/MBG nanocomposites have been directly synthesized and silver species were spontaneously reduced to metallic AgNPs by high temperatures (700 °C) obtained of last MBG synthesis step. Three-dimensional silver-containing mesoporous bioactive glass scaffolds were fabricated showing uniformly interconnected ultrapores, macropores and mesopores. The manufacture method consisted of a combination of a single-step sol-gel route in the mesostructure directing agent (P123) presence and a biomacromolecular polymer such as (hydroxypropyl)methyl cellulose (HPMC) as the macrostructure template, followed by rapid prototyping (RP) technique. Biological properties of Ag/MBG nanocomposites were evaluated by MC3T3-E1 preosteoblastic cells culture tests and bacterial (E. coli and S. aureus) assays. The results showed that the MC3T3-E1 cells morphology was not affected while preosteoblastic proliferation decreased when the presence of silver increased. Antimicrobial assays indicated that bacterial growth inhibition and biofilm destruction were directly proportional to the increased presence of AgNPs in the MBG matrices. Furthermore, in vitro co-culture of MC3T3-E1 cells and S. aureus bacteria confirmed that AgNPs presence was necessary for antibacterial activity, and AgNPs slightly affected cell proliferation parameters. Therefore, 3D printed scaffolds with hierarchical pore structure and high antimicrobial capacity have potential applications in bone tissue regeneration. STATEMENT OF SIGNIFICANCE: This study combines three key scientific aspects for bone tissue engineering: (i) materials with high bioactivity to repair and regenerate bone tissue that (ii) contain antibacterial agents to reduce the infection risk (iii) in the form of three-dimensional scaffolds with hierarchical porosity. Innovative methodology is described here: sol-gel method, which is employed to obtain mesoporous bioactive glass matrices doped with metallic silver nanoparticles where different polymer templates facilitate the different size scales presence, and rapid prototyping technique that provides ultra-large macroporosity according to computer-aided design. The dual scaffolds obtained are biocompatible and deliver active doses of silver capable of combating bone infections, which represent one of the most serious complications associated to surgical treatments of bone diseases and fractures.
Collapse
Affiliation(s)
- Sandra Sánchez-Salcedo
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Ana García
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| | - Adela González-Jiménez
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Unidad de Química Inorgánica (Bioinorgánica y Biomateriales), Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12. Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain.
| |
Collapse
|
10
|
Xiong H, Zhao F, Peng Y, Li M, Qiu H, Chen K. Easily attainable and low immunogenic stem cells from exfoliated deciduous teeth enhanced the in vivo bone regeneration ability of gelatin/bioactive glass microsphere composite scaffolds. Front Bioeng Biotechnol 2022; 10:1049626. [PMID: 36568292 PMCID: PMC9780285 DOI: 10.3389/fbioe.2022.1049626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/25/2022] [Indexed: 12/14/2022] Open
Abstract
Repair of critical-size bone defects remains a considerable challenge in the clinic. The most critical cause for incomplete healing is that osteoprogenitors cannot migrate to the central portion of the defects. Herein, stem cells from exfoliated deciduous teeth (SHED) with the properties of easy attainability and low immunogenicity were loaded into gelatin/bioactive glass (GEL/BGM) scaffolds to construct GEL/BGM + SHED engineering scaffolds. An in vitro study showed that BGM could augment the osteogenic differentiation of SHED by activating the AMPK signaling cascade, as confirmed by the elevated expression of osteogenic-related genes, and enhanced ALP activity and mineralization formation in SHED. After implantation in the critical bone defect model, GEL/BGM + SHED scaffolds exhibited low immunogenicity and significantly enhanced new bone formation in the center of the defect. These results indicated that GEL/BGM + SHED scaffolds present a new promising strategy for critical-size bone healing.
Collapse
|
11
|
Morphological Changes, Antibacterial Activity, and Cytotoxicity Characterization of Hydrothermally Synthesized Metal Ions-Incorporated Nanoapatites for Biomedical Application. Pharmaceuticals (Basel) 2022; 15:ph15070885. [PMID: 35890183 PMCID: PMC9315733 DOI: 10.3390/ph15070885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 02/05/2023] Open
Abstract
The objective of this study was to prepare hydroxyapatite (HA) with potential antibacterial activity against gram-negative and gram-positive bacteria by incorporating different atomic ratios of Cu2+ (0.1–1.0%), Mg2+ (1.0–7.0%), and Zn2+ (1.0–7.0%) to theoretically replace Ca2+ ions during the hydrothermal synthesis of grown precipitated HA nanorods. This study highlights the role of comparing different metal ions on synthetic nanoapatite in regulating the antibacterial properties and toxicity. The comparisons between infrared spectra and between diffractograms have confirmed that metal ions do not affect the formation of HA phases. The results show that after doped Cu2+, Mg2+, and Zn2+ ions replace Ca2+, the ionic radius is almost the same, but significantly smaller than that of the original Ca2+ ions, and the substitution effect causes the lattice distance to change, resulting in crystal structure distortion and reducing crystallinity. The reduction in the length of the nanopatites after the incorporation of Cu2+, Mg2+, and Zn2+ ions confirmed that the metal ions were mainly substituted during the growth of the rod-shape nanoapatite Ca2+ distributed along the longitudinal site. The antibacterial results show that nanoapatite containing Cu2+ (0.1%), Mg2+ (3%), and Zn2+ (5–7%) has obvious and higher antibacterial activity against gram-positive bacteria Staphylococcus aureus within 2 days. The antibacterial effect against the gram-negative bacillus Escherichia coli is not as pronounced as against Staphylococcus aureus. The antibacterial effect of Cu2+ substituted Ca2+ with an atomic ratio of 0.1~1.0% is even better than that of Mg2+- and Zn2+- doped with 1~7% groups. In terms of cytotoxicity, nanoapatites with Cu2+ (~0.2%) exhibit cytotoxicity, whereas Mg2+- (1–5%) and Zn2+- (~1%) doped nanoapatites are biocompatible at low concentrations but become cytotoxic as ionic concentration increases. The results show that the hydrothermally synthesized nanoapatite combined with Cu2+ (0.2%), Mg2+ (3%), and Zn2+ (3%) exhibits low toxicity and high antibacterial activity, which provides a good prospect for bypassing antibiotics for future biomedical applications.
Collapse
|
12
|
Li Y, Ramesh V, Bider F, Bradshaw N, Rehbock C, Boccaccini AR, Barcikowski S. Co-doping of iron and copper ions in nanosized bioactive glass by reactive laser fragmentation in liquids. J Biomed Mater Res A 2022; 110:1537-1550. [PMID: 35437923 DOI: 10.1002/jbm.a.37393] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/02/2022] [Accepted: 03/22/2022] [Indexed: 11/10/2022]
Abstract
Bioactive glass (BG) is a frequently used biomaterial applicable in bone tissue engineering and known to be particularly effective when applied in nanoscopic dimensions. In this work, we employed the scalable reactive laser fragmentation in liquids method to produce nanosized 45S5 BG in the presence of light-absorbing Fe and Cu ions. Here, the function of the ions was twofold: (i) increasing the light absorption and thus causing a significant increase in laser fragmentation efficiency by a factor of 100 and (ii) doping the BG with bioactive metal ions up to 4 wt%. Our findings reveal an effective downsizing of the BG from micrometer-sized educts into nanoparticles having average diameters of <50 nm. This goes along with successful element-specific incorporation of the metal ions into the BG, inducing co-doping of Fe and Cu ions as verified by energy-dispersive X-ray spectroscopy (EDX). In this context, the overall amorphous structure is retained, as evidenced by X-ray powder diffraction (XRD). We further demonstrate that the level of doping for both elements can be adjusted by changing the BG/ion concentration ratio during laser fragmentation. Consecutive ion release experiments using inductively-coupled plasma mass spectrometry (ICP-MS) were conducted to assess the potential bioactivity of the doped nanoscopic BG samples, and cell culture experiments using MG-63 osteoblast-like cells demonstrated their cytocompatibility. The elegant method of in situ co-doping of Fe and Cu ions during BG nanosizing may provide functionality-advanced biomaterials for future studies on angiogenesis or bone regeneration, particularly as the level of doping may be adjusted by ion concentrations and ion type in solution.
Collapse
Affiliation(s)
- Yaya Li
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| | - Vaijayanthi Ramesh
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| | - Faina Bider
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Nathan Bradshaw
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| | - Christoph Rehbock
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Stephan Barcikowski
- Institute of Technical Chemistry I, University of Duisburg-Essen and Center for NanoIntegration Duisburg-Essen, CENIDE, Essen, Germany
| |
Collapse
|
13
|
Surface Modification, Functionalization and Characterization of Metallic Biomaterials. METALS 2022. [DOI: 10.3390/met12040667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
There is an increase in the demand for human implants for the complete or partial replacement of soft and/or hard human tissues due to different reasons, such as a higher life expectancy [...]
Collapse
|
14
|
Bahraminasab M, Janmohammadi M, Arab S, Talebi A, Nooshabadi VT, Koohsarian P, Nourbakhsh MS. Bone Scaffolds: An Incorporation of Biomaterials, Cells, and Biofactors. ACS Biomater Sci Eng 2021; 7:5397-5431. [PMID: 34797061 DOI: 10.1021/acsbiomaterials.1c00920] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Large injuries to bones are still one of the most challenging musculoskeletal problems. Tissue engineering can combine stem cells, scaffold biomaterials, and biofactors to aid in resolving this complication. Therefore, this review aims to provide information on the recent advances made to utilize the potential of biomaterials for making bone scaffolds and the assisted stem cell therapy and use of biofactors for bone tissue engineering. The requirements and different types of biomaterials used for making scaffolds are reviewed. Furthermore, the importance of stem cells and biofactors (growth factors and extracellular vesicles) in bone regeneration and their use in bone scaffolds and the key findings are discussed. Lastly, some of the main obstacles in bone tissue engineering and future trends are highlighted.
Collapse
Affiliation(s)
- Marjan Bahraminasab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Mahsa Janmohammadi
- Department of Biomedical Engineering, Faculty of New Sciences and Technologies, Semnan University, Semnan 3513119111, Iran
| | - Samaneh Arab
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Athar Talebi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Vajihe Taghdiri Nooshabadi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran.,Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | - Parisa Koohsarian
- Department of Biochemistry and Hematology, School of Medicine, Semnan University of Medical Sciences, Semnan 3513138111, Iran
| | | |
Collapse
|
15
|
Bhat S, Uthappa UT, Altalhi T, Jung HY, Kurkuri MD. Functionalized Porous Hydroxyapatite Scaffolds for Tissue Engineering Applications: A Focused Review. ACS Biomater Sci Eng 2021; 8:4039-4076. [PMID: 34499471 DOI: 10.1021/acsbiomaterials.1c00438] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biomaterials have been widely used in tissue engineering applications at an increasing rate in recent years. The increased clinical demand for safe scaffolds, as well as the diversity and availability of biomaterials, has sparked rapid interest in fabricating diverse scaffolds to make significant progress in tissue engineering. Hydroxyapatite (HAP) has drawn substantial attention in recent years owing to its excellent physical, chemical, and biological properties and facile adaptable surface functionalization with other innumerable essential materials. This focused review spotlights a brief introduction on HAP, scope, a historical outline, basic structural features/properties, various synthetic strategies, and their scientific applications concentrating on functionalized HAP in the diverse area of tissue engineering fields such as bone, skin, periodontal, bone tissue fixation, cartilage, blood vessel, liver, tendon/ligament, and corneal are emphasized. Besides clinical translation aspects, the future challenges and prospects of HAP based biomaterials involved in tissue engineering are also discussed. Furthermore, it is expected that researchers may find this review expedient in gaining an overall understanding of the latest advancement of HAP based biomaterials.
Collapse
Affiliation(s)
- Shrinath Bhat
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| | - U T Uthappa
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India.,Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia
| | - Ho-Young Jung
- Department of Environment and Energy Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Republic of Korea
| | - Mahaveer D Kurkuri
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru 562112, Karnataka, India
| |
Collapse
|
16
|
Dittler ML, Zelís PM, Beltrán AM, Destch R, Grillo CA, Gonzalez MC, Boccaccini AR. Magnetic 3D scaffolds for tissue engineering applications: bioactive glass (45S5) coated with iron-loaded hydroxyapatite nanoparticles. Biomed Mater 2021; 16. [PMID: 34265757 DOI: 10.1088/1748-605x/ac14cc] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/15/2021] [Indexed: 11/11/2022]
Abstract
Magnetic 45S5 bioactive glass (BG) based scaffolds covered with iron-loaded hydroxyapatite (Fe-HA-BG) nanoparticles were obtained and its cytotoxicity investigated. Fe-HA nanoparticles were synthesized by a wet chemical method involving the simultaneous addition of Fe2+/Fe3+ions. BG based scaffolds were prepared by the foam replica procedure and covered with Fe-HA by dip-coating. Fe-HA-BG magnetic saturation values of 0.049 emu g-1and a very low remanent magnetization of 0.01 emu g-1were observed. The mineralization assay in simulated body fluid following Kokubo's protocol indicated that Fe-HA-BG scaffolds exhibited improved hydroxyapatite formation in comparison to uncoated scaffolds at shorter immersion times. The biocompatibility of the materialin vitrowas assessed using human osteoblast-like MG-63 cell cultures and mouse bone marrow-derived stroma cell line ST-2. Overall, the results herein discussed suggest that magnetic Fe-HA coatings seem to enhance the biological performance of 45S5 BG based scaffolds. Thus, this magnetic Fe-HA coated scaffold is an interesting system for bone tissue engineering applications and warrant further investigation.
Collapse
Affiliation(s)
- María Laura Dittler
- INIFTA-CCT CONICET (La Plata), Chemistry Department, Faculty of Science, National University of La Plata, La Plata, Argentina
| | - Pedro Mendoza Zelís
- IFLP CONICET (La Plata), Department of Physics, National University of La Plata, La Plata, Argentina
| | - Ana M Beltrán
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, 41011 Sevilla, Spain
| | - Rainer Destch
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Claudia A Grillo
- INIFTA-CCT CONICET (La Plata), Chemistry Department, Faculty of Science, National University of La Plata, La Plata, Argentina
| | - Mónica C Gonzalez
- INIFTA-CCT CONICET (La Plata), Chemistry Department, Faculty of Science, National University of La Plata, La Plata, Argentina
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
17
|
Bose S, Bhattacharjee A, Banerjee D, Boccaccini AR, Bandyopadhyay A. Influence of random and designed porosities on 3D printed tricalcium phosphate-bioactive glass scaffolds. ADDITIVE MANUFACTURING 2021; 40:101895. [PMID: 34692425 PMCID: PMC8530344 DOI: 10.1016/j.addma.2021.101895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Calcium phosphate (CaP)-based ceramics are a popular choice for bone-graft applications due to their compositional similarities with bone. Similarly, Bioactive glass (BG) is also common for bone tissue engineering applications due to its excellent biocompatibility and bone binding ability. We report tricalcium phosphate (TCP)-BG (45S5 BG) composite scaffolds using conventional processing and binder jetting-based 3D printing (3DP) technique. We hypothesize that BG's addition in TCP will enhance densification via liquid phase sintering and improve mechanical properties. Further, BG addition to TCP should modulate the dissolution kinetics in vitro. This work's scientific objective is to understand the influence of random vs. designed porosity in TCP-BG ceramics towards variations in compressive strength and in vitro biocompatibility. Our findings indicate that a 5 wt % BG in TCP composite shows a compressive strength of 26.7 ± 2.7 MPa for random porosity structures having a total porosity of ~47.9%. The same composition in a designed porosity structure shows a compressive strength of 21.3 ± 2.9 MPa, having a total porosity of ~54.1%. Scaffolds are also tested for their dissolution kinetics and in vitro bone cell materials interaction, where TCP-BG compositions show favorable bone cell materials interactions. The addition of BG enhances a flaky hydroxycarbonate apatite (HCA) layer in 8 weeks in vitro. Our research shows that the porous TCP- BG scaffolds, fabricated via binder jetting method with enhanced mechanical properties and dissolution properties can be utilized in bone graft applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
- Corresponding author. (S. Bose)
| | - Arjak Bhattacharjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Dishary Banerjee
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Amit Bandyopadhyay
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
18
|
Three-Dimensional Printing of Hydroxyapatite Composites for Biomedical Application. CRYSTALS 2021. [DOI: 10.3390/cryst11040353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hydroxyapatite (HA) and HA-based nanocomposites have been recognized as ideal biomaterials in hard tissue engineering because of their compositional similarity to bioapatite. However, the traditional HA-based nanocomposites fabrication techniques still limit the utilization of HA in bone, cartilage, dental, applications, and other fields. In recent years, three-dimensional (3D) printing has been shown to provide a fast, precise, controllable, and scalable fabrication approach for the synthesis of HA-based scaffolds. This review therefore explores available 3D printing technologies for the preparation of porous HA-based nanocomposites. In the present review, different 3D printed HA-based scaffolds composited with natural polymers and/or synthetic polymers are discussed. Furthermore, the desired properties of HA-based composites via 3D printing such as porosity, mechanical properties, biodegradability, and antibacterial properties are extensively explored. Lastly, the applications and the next generation of HA-based nanocomposites for tissue engineering are discussed.
Collapse
|
19
|
Marczewski M, Jurczyk MU, Kowalski K, Miklaszewski A, Wirstlein PK, Jurczyk M. Composite and Surface Functionalization of Ultrafine-Grained Ti23Zr25Nb Alloy for Medical Applications. MATERIALS 2020; 13:ma13225252. [PMID: 33233693 PMCID: PMC7699683 DOI: 10.3390/ma13225252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 12/26/2022]
Abstract
In this study, the ultrafine-grained Ti23Zr25Nb-based composites with 45S5 Bioglass and Ag, Cu, or Zn additions were produced by application of the mechanical alloying technique. Additionally, the base Ti23Zr25Nb alloy was electrochemically modified in the two stages of processing: electrochemical etching in the solution of H3PO4 and HF followed by electrochemical deposition in Ca(NO3)2, (NH4)2HPO4, and HCl. The in vitro cytocompatibility studies were also done with comparison to the commercially pure titanium. The established cell lines of Normal Human Osteoblasts (NHost, CC-2538) and Human Periodontal Ligament Fibroblasts (HPdLF, CC-7049) were used. The culture was conducted among the tested materials. Ultrafine-grained titanium-based composites modified with 45S5 Bioglass and Ag, Cu, or Zn metals have higher biocompatibility than the reference material in the form of a microcrystalline Ti. Proliferation activity was at a stable level with contact with studied materials. In vitro evaluation research showed that the ultrafine-grained Ti23Zr25Nb-based composites with 45S5 Bioglass and Ag, Cu, or Zn additions, with a Young modulus below 50 GPa, can be further used in the biomedical field.
Collapse
Affiliation(s)
- Mateusz Marczewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
- Correspondence: ; Tel.: +48-61-665-3508
| | - Mieczysława U. Jurczyk
- Division of Mother’s and Child’s Health, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Kamil Kowalski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
| | - Andrzej Miklaszewski
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
| | - Przemysław K. Wirstlein
- Department of Gynaecology and Obstetrics, Division of Reproduction, Poznan University of Medical Sciences, Polna 33, 60-535 Poznan, Poland;
| | - Mieczysław Jurczyk
- Institute of Materials Science and Engineering, Poznan University of Technology, Jana Pawła II 24, 61-138 Poznan, Poland; (K.K.); (A.M.); (M.J.)
| |
Collapse
|
20
|
Li Y, Yang Y, Qing Y, Li R, Tang X, Guo D, Qin Y. Enhancing ZnO-NP Antibacterial and Osteogenesis Properties in Orthopedic Applications: A Review. Int J Nanomedicine 2020; 15:6247-6262. [PMID: 32903812 PMCID: PMC7445529 DOI: 10.2147/ijn.s262876] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/30/2020] [Indexed: 12/29/2022] Open
Abstract
Prosthesis-associated infections and aseptic loosening are major causes of implant failure. There is an urgent need to improve the antibacterial ability and osseointegration of orthopedic implants. Zinc oxide nanoparticles (ZnO-NPs) are a common type of zinc-containing metal oxide nanoparticles that have been widely studied in many fields, such as food packaging, pollution treatment, and biomedicine. The ZnO-NPs have low toxicity and good biological functions, as well as antibacterial, anticancer, and osteogenic capabilities. Furthermore, ZnO-NPs can be easily obtained through various methods. Among them, green preparation methods can improve the bioactivity of ZnO-NPs and strengthen their potential application in the biological field. This review discusses the antibacterial abilities of ZnO-NPs, including mechanisms and influencing factors. The toxicity and shortcomings of anticancer applications are summarized. Furthermore, osteogenic mechanisms and synergy with other materials are introduced. Green preparation methods are also briefly reviewed.
Collapse
Affiliation(s)
- Yuehong Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yue Yang
- Department of Cardiology, China-Japan Union Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yun’an Qing
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Ruiyan Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Xiongfeng Tang
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Deming Guo
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Yanguo Qin
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
21
|
Ye G, Bao F, Zhang X, Song Z, Liao Y, Fei Y, Bunpetch V, Heng BC, Shen W, Liu H, Zhou J, Ouyang H. Nanomaterial-based scaffolds for bone tissue engineering and regeneration. Nanomedicine (Lond) 2020; 15:1995-2017. [PMID: 32812486 DOI: 10.2217/nnm-2020-0112] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The global incidence of bone tissue injuries has been increasing rapidly in recent years, making it imperative to develop suitable bone grafts for facilitating bone tissue regeneration. It has been demonstrated that nanomaterials/nanocomposites scaffolds can more effectively promote new bone tissue formation compared with micromaterials. This may be attributed to their nanoscaled structural and topological features that better mimic the physiological characteristics of natural bone tissue. In this review, we examined the current applications of various nanomaterial/nanocomposite scaffolds and different topological structures for bone tissue engineering, as well as the underlying mechanisms of regeneration. The potential risks and toxicity of nanomaterials will also be critically discussed. Finally, some considerations for the clinical applications of nanomaterials/nanocomposites scaffolds for bone tissue engineering are mentioned.
Collapse
Affiliation(s)
- Guo Ye
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Fangyuan Bao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Xianzhu Zhang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Zhe Song
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Youguo Liao
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Yang Fei
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Varitsara Bunpetch
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China
| | - Boon Chin Heng
- School of Stomatology, Peking University, Beijing, PR China
| | - Weiliang Shen
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hua Liu
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Jing Zhou
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| | - Hongwei Ouyang
- Dr Li Dak Sum & Yip Yio Chin Center for Stem Cells & Regenerative Medicine & Department of Orthopedic Surgery of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.,Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine & Key Laboratory of Tissue Engineering & Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, PR China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, PR China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, PR China
| |
Collapse
|
22
|
Wang N, Fuh JYH, Dheen ST, Senthil Kumar A. Functions and applications of metallic and metallic oxide nanoparticles in orthopedic implants and scaffolds. J Biomed Mater Res B Appl Biomater 2020; 109:160-179. [PMID: 32776481 DOI: 10.1002/jbm.b.34688] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/26/2020] [Accepted: 06/27/2020] [Indexed: 12/12/2022]
Abstract
Bone defects and diseases are devastating, and can lead to severe functional deficits or even permanent disability. Nevertheless, orthopedic implants and scaffolds can facilitate the growth of incipient bone and help us to treat bone defects and diseases. Currently, a wide range of biomaterials with distinct biocompatibility, biodegradability, porosity, and mechanical strength is used in bone-related research. However, most orthopedic implants and scaffolds have certain limitations and diverse complications, such as limited corrosion resistance, low cell proliferation, and bacterial adhesion. With recent advancements in materials science and nanotechnology, metallic and metallic oxide nanoparticles have become the subject of significant interest as they offer an ample variety of options to resolve the existing problems in the orthopedic industry. More importantly, these nanoparticles possess unique physicochemical and mechanical properties not found in conventional materials, and can be incorporated into orthopedic implants and scaffolds to enhance their antimicrobial ability, bioactive molecular delivery, mechanical strength, osteointegration, and cell labeling and imaging. However, many metallic and metallic oxide nanoparticles can also be toxic to nearby cells and tissues. This review article will discuss the applications and functions of metallic and metallic oxide nanoparticles in orthopedic implants and bone tissue engineering.
Collapse
Affiliation(s)
- Niyou Wang
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - Jerry Ying Hsi Fuh
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| | - S Thameem Dheen
- Department of Anatomy, 4 Medical Drive, National University of Singapore, Singapore, Singapore
| | - A Senthil Kumar
- Department of Mechanical Engineering, 9 Engineering Drive, National University of Singapore, Singapore, Singapore
| |
Collapse
|
23
|
Souza EQM, Costa Klaus AE, Espósito Santos BF, Carvalho da Costa M, Ervolino E, Coelho de Lima D, Fernandes LA. Evaluations of hydroxyapatite and bioactive glass in the repair of critical size bone defects in rat calvaria. J Oral Biol Craniofac Res 2020; 10:422-429. [PMID: 32775186 DOI: 10.1016/j.jobcr.2020.07.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/10/2020] [Accepted: 07/19/2020] [Indexed: 01/02/2023] Open
Abstract
To overcome the morbidity of autogenous graft removal and limitations of allogeneic and xenogeneic grafts, a great interest exists in the development of biomaterials of synthetic origin. OBJECTIVE The aim of this study was to evaluate the biological behavior of a novel bioactive glass (60% SiO2- 36% CaO-4% P2O5) as bone substitute in critical calvaria defects of rats, in comparison to hydroxyapatite. METHODS Sixty male Wistar rats were divided in three groups, according to the treatment: Control Group (C) - blood clot; Hydroxyapatite (HA) - particulate hydroxyapatite (≤0,5 mm); and Bioactive Glass (BG) - particulate bioactive glass (0.04-1 mm). RESULTS From the intergroup analysis, it was observed that Group C presented a greater newly formed bone area (NBA) when compared to Groups HA and BG. In addition, Group HA showed higher NBA when compared to Group BG at 30 and 60 days (P < 0.05). Immunohistochemistry revealed that groups HA and BG presented high and moderate osteocalcin immunolabeling respectively. Group HA displayed a greater number of TRAP-positive cells compared to Groups C and BG at 30 and 60 days (p < 0.05). CONCLUSION From these results, we can conclude that the resorption rate of hydroxyapatite is higher than the novel bioactive glass, which maintained significant higher volume until the last experimental period. Both of the tested biomaterials acted as osteoconductors during bone repair, and their physical characteristics importantly influenced this process.
Collapse
Affiliation(s)
| | | | | | | | - Edilson Ervolino
- Professor of Integral Dedication to the Doctrine and Research - São Paulo State University "Júlio de Mesquita Filho" (UNESP), Brazil
| | - Daniela Coelho de Lima
- Doctor in Public Health, Adjunct Professor IV - Federal University of Alfenas (UNIFAL-MG), Brazil
| | - Leandro Araújo Fernandes
- Doctor in Periodontics, Adjunct Professor IV - Federal University of Alfenas (UNIFAL-MG), Brazil
| |
Collapse
|
24
|
Pulsed Laser Deposition Derived Bioactive Glass-Ceramic Coatings for Enhancing the Biocompatibility of Scaffolding Materials. MATERIALS 2020; 13:ma13112615. [PMID: 32521699 PMCID: PMC7321570 DOI: 10.3390/ma13112615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/07/2023]
Abstract
The purpose of this work was to propose and evaluate a new composition for a bioactive glass-ceramic starting from the well-known 45S5 commercial product. Thus, we developed a modified version, including MgO, an oxide that turned out to induce superior mechanical properties and improved biological response. This had the following molar percentages: 46.1% SiO2, 2.6% P2O5, 16.9% CaO, 10.0% MgO, and 24.4% Na2O. The precursor alkoxides and nitrates were processed by a standard sol-gel technique, resulting in a glass-ceramic target, suitable for laser ablation experiments. Combeite (Na2Ca2Si3O9) was identified as a main crystalline phase within the calcined sol-gel powder, as well as in the case of the target sintered at 900 °C. The thin films were deposited on silicon substrates, at room temperature or 300 °C, being subsequently characterized from the material point of view, as well as in terms of bioactivity in simulated conditions and biocompatibility in relation to human fibroblast BJ cells. The investigations revealed the deposition of nanostructured glassy layers with a low proportion of crystalline domains; it was shown that a higher substrate temperature promoted the formation of surfaces with less irregularities, as a consequence of material arrangement into a shell with better morphological homogeneity. The complex elemental composition of the target was successfully transferred to the coatings, which ensured pronounced mineralization and a stimulating environment for the cell cultures. Thereby, both samples were covered with a thick layer of apatite after immersion in simulated body fluid for 28 days, and the one processed at room temperature was qualified to be the best in relation to the cells.
Collapse
|
25
|
Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M. Bone Diseases: Current Approach and Future Perspectives in Drug Delivery Systems for Bone Targeted Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E875. [PMID: 32370009 PMCID: PMC7279399 DOI: 10.3390/nano10050875] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Bone diseases include a wide group of skeletal-related disorders that cause mobility limitations and mortality. In some cases, e.g., in osteosarcoma (OS) and metastatic bone cancer, current treatments are not fully effective, mainly due to low patient compliance and to adverse side effects. To overcome these drawbacks, nanotechnology is currently under study as a potential strategy allowing specific drug release kinetics and enhancing bone regeneration. Polymers, ceramics, semiconductors, metals, and self-assembled molecular complexes are some of the most used nanoscale materials, although in most cases their surface properties need to be tuned by chemical or physical reactions. Among all, scaffolds, nanoparticles (NPs), cements, and hydrogels exhibit more advantages than drawbacks when compared to other nanosystems and are therefore the object of several studies. The aim of this review is to provide information about the current therapies of different bone diseases focusing the attention on new discoveries in the field of targeted delivery systems. The authors hope that this paper could help to pursue further directions about bone targeted nanosystems and their application for bone diseases and bone regeneration.
Collapse
Affiliation(s)
- Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Mónica Cristina Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina;
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| |
Collapse
|
26
|
Plasma-Assisted Deposition of Magnesium-Containing Coatings on Porous Scaffolds for Bone Tissue Engineering. COATINGS 2020. [DOI: 10.3390/coatings10040356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Magnesium plays a pivotal role in the formation, growth, and repair of bone tissue; therefore, magnesium-based materials can be considered promising candidates for bone tissue engineering. This study aims to functionalize the surfaces of three-dimensional (3D) porous poly-ε caprolactone (PCL) scaffolds with magnesium-containing coatings using cold plasma-assisted deposition processes. For this purpose, the radiofrequency (RF) sputtering of a magnesium oxide target was carried out in a low-pressure plasma reactor using argon, water vapor, hydrogen, or mixtures of argon with one of the latter two options as the feed. Plasma processes produced significant differences in the chemical composition and wettability of the treated PCL samples, which are tightly related to the gas feed composition, as shown by X-ray photoelectron spectroscopy (XPS) and water contact angle (WCA) analyses. Cytocompatibility assays performed with Saos-2 osteoblast cells showed that deposited magnesium-containing thin films favor cell proliferation and adhesion on 3D scaffold surfaces, as well as cell colonization inside them. These films appear to be very promising for bone tissue regeneration.
Collapse
|
27
|
Zhu L, Luo D, Liu Y. Effect of the nano/microscale structure of biomaterial scaffolds on bone regeneration. Int J Oral Sci 2020; 12:6. [PMID: 32024822 PMCID: PMC7002518 DOI: 10.1038/s41368-020-0073-y] [Citation(s) in RCA: 216] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 12/15/2019] [Accepted: 12/18/2019] [Indexed: 01/12/2023] Open
Abstract
Natural bone is a mineralized biological material, which serves a supportive and protective framework for the body, stores minerals for metabolism, and produces blood cells nourishing the body. Normally, bone has an innate capacity to heal from damage. However, massive bone defects due to traumatic injury, tumor resection, or congenital diseases pose a great challenge to reconstructive surgery. Scaffold-based tissue engineering (TE) is a promising strategy for bone regenerative medicine, because biomaterial scaffolds show advanced mechanical properties and a good degradation profile, as well as the feasibility of controlled release of growth and differentiation factors or immobilizing them on the material surface. Additionally, the defined structure of biomaterial scaffolds, as a kind of mechanical cue, can influence cell behaviors, modulate local microenvironment and control key features at the molecular and cellular levels. Recently, nano/micro-assisted regenerative medicine becomes a promising application of TE for the reconstruction of bone defects. For this reason, it is necessary for us to have in-depth knowledge of the development of novel nano/micro-based biomaterial scaffolds. Thus, we herein review the hierarchical structure of bone, and the potential application of nano/micro technologies to guide the design of novel biomaterial structures for bone repair and regeneration.
Collapse
Affiliation(s)
- Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China
| | - Dan Luo
- State Key Laboratory of Heavy Oil Processing, College of New Energy and Materials, Beijing Key Laboratory of Biogas Upgrading Utilization, China University of Petroleum (Beijing), Beijing, China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, Beijing, China.
| |
Collapse
|
28
|
Perez Enriquez DJ, Dell’ Arciprete ML, Dittler ML, Miñan A, Prieto E, Gonzalez MC. Amorphous calcium organophosphate nanoshells as potential carriers for drug delivery to Ca2+-enriched surfaces. NEW J CHEM 2020. [DOI: 10.1039/c9nj06414a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Our amorphous calcium organophosphate nanoshells are prone to agglomerate and disassemble when Ca2+ ions are present in the solution and on surfaces. This have great implications for targeting and drug release in Ca-rich environments, such as bone.
Collapse
Affiliation(s)
- Darlin J. Perez Enriquez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- CCT-La Plata-CONICET
- Universidad Nacional de La Plata
- La Plata
- Argentina
| | - María L. Dell’ Arciprete
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- CCT-La Plata-CONICET
- Universidad Nacional de La Plata
- La Plata
- Argentina
| | - María L. Dittler
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- CCT-La Plata-CONICET
- Universidad Nacional de La Plata
- La Plata
- Argentina
| | - Alejandro Miñan
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- CCT-La Plata-CONICET
- Universidad Nacional de La Plata
- La Plata
- Argentina
| | - Eduardo Prieto
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- CCT-La Plata-CONICET
- Universidad Nacional de La Plata
- La Plata
- Argentina
| | - Mónica C. Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA)
- CCT-La Plata-CONICET
- Universidad Nacional de La Plata
- La Plata
- Argentina
| |
Collapse
|
29
|
Crovace AM, Giancamillo AD, Gervaso F, Mangiavini L, Zani D, Scalera F, Palazzo B, Izzo D, Agnoletto M, Domenicucci M, Sosio C, Sannino A, Giancamillo MD, Peretti GM. Evaluation of in Vivo Response of Three Biphasic Scaffolds for Osteochondral Tissue Regeneration in a Sheep Model. Vet Sci 2019; 6:vetsci6040090. [PMID: 31717551 PMCID: PMC6958333 DOI: 10.3390/vetsci6040090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 01/26/2023] Open
Abstract
Osteochondral defects are a common problem in both human medicine and veterinary practice although with important limits concerning the cartilaginous tissue regeneration. Interest in the subchondral bone has grown, as it is now considered a key element in the osteochondral defect healing. The aim of this work was to generate and to evaluate the architecture of three cell-free scaffolds made of collagen, magnesium/hydroxyapatite and collagen hydroxyapatite/wollastonite to be implanted in a sheep animal model. Scaffolds were designed in a bilayer configuration and a novel “Honey” configuration, where columns of hydroxyapatite were inserted within the collagen matrix. The use of different types of scaffolds allowed us to identify the best scaffold in terms of integration and tissue regeneration. The animals included were divided into four groups: three were treated using different types of scaffold while one was left untreated and represented the control group. Evaluations were made at 3 months through CT analysis. The novel “Honey” configuration of the scaffold with hydroxyapatite seems to allow for a better reparative process, although we are still far from obtaining a complete restoration of the defect at this time point of follow-up.
Collapse
Affiliation(s)
- Alberto M. Crovace
- Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, 70010 Bari, Italy
- Correspondence: ; Tel.: +39-3208239830
| | - Alessia Di Giancamillo
- Department of Veterinary Medicine, University of Milan, 20122 Milano, Italy; (A.D.G.); (D.Z.); (M.D.G.)
| | - Francesca Gervaso
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (F.G.); (F.S.); (B.P.); (D.I.); (A.S.)
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Laura Mangiavini
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20122 Milano, Italy; (L.M.); (M.A.); (C.S.); (G.M.P.)
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| | - Davide Zani
- Department of Veterinary Medicine, University of Milan, 20122 Milano, Italy; (A.D.G.); (D.Z.); (M.D.G.)
| | - Francesca Scalera
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (F.G.); (F.S.); (B.P.); (D.I.); (A.S.)
- CNR NANOTEC, Institute of Nanotechnology c/o Campus Ecotekne, via Monteroni, 73100 Lecce, Italy
| | - Barbara Palazzo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (F.G.); (F.S.); (B.P.); (D.I.); (A.S.)
| | - Daniela Izzo
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (F.G.); (F.S.); (B.P.); (D.I.); (A.S.)
| | - Marco Agnoletto
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20122 Milano, Italy; (L.M.); (M.A.); (C.S.); (G.M.P.)
| | - Marco Domenicucci
- Residency Program in Orthopaedics and Traumatology, University of Milan, 20122 Milan, Italy;
| | - Corrado Sosio
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20122 Milano, Italy; (L.M.); (M.A.); (C.S.); (G.M.P.)
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (F.G.); (F.S.); (B.P.); (D.I.); (A.S.)
| | - Mauro Di Giancamillo
- Department of Veterinary Medicine, University of Milan, 20122 Milano, Italy; (A.D.G.); (D.Z.); (M.D.G.)
| | - Giuseppe M. Peretti
- IRCCS Istituto Ortopedico Galeazzi, Via R. Galeazzi 4, Milan, 20122 Milano, Italy; (L.M.); (M.A.); (C.S.); (G.M.P.)
- Department of Biomedical Sciences for Health, University of Milan, 20122 Milan, Italy
| |
Collapse
|