1
|
Feng X, Shi N, Guo S, Wu B, Li G, Lou B, Yang X, Wang Y, Xiang P, He X, Liu D. Performance of ethanol transformable microemulsions and remediation of salinized oil - contaminated soils. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137543. [PMID: 39954441 DOI: 10.1016/j.jhazmat.2025.137543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
The effective and efficient separation of oil pollutants solubilized in microemulsions (MEs) represents a significant challenge in the remediation of oil-contaminated soils (OS). In this study, phase-transformable W/O microemulsions (W/O-MEs) were configured for efficient elution of salinized OS. Meanwhile, the phase transformation mechanism was demonstrated by investigating of the effect of ethanol concentration on microemulsions phase behavior. Firstly, W/O-MEs with an oil removal efficiency (Re) of 90.2 wt% were formulated through an analysis of the phase distribution and elution effect. Furthermore, the impact of ethanol concentration on microemulsion phase behavior was investigated in depth using dynamic light scattering (DLS), interfacial tension (IFT), and UV-visible spectroscopy. The findings substantiated that ethanol can facilitate the transformation of W/O-MEs (Winsor II) to O/W-MEs (Winsor I), thereby enhancing oil Re and separation capability. Moreover, a microemulsion elution route for salinized OS was devised on the basis of the principles of continuity and recycling in industrial cleaning processes. The results demonstrated that the ethanol and water facilitated the desorption of residues, including residual oils, surfactants, salts and alkalis, achieving an oil Re of 97.2 wt%. In particular, the recovered ethanol and water can be recycled for microemulsion preparation. Finally, the efficiency and feasibility of the microemulsion elution process is evaluated using scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS), fluorescence imaging, and contact angle (CA) analysis. This study provides theoretical guidance for the application of microemulsion elution in the remediation of industrial OS.
Collapse
Affiliation(s)
- Xiaoning Feng
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China; Yunnan Provincial Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Nan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110011, China
| | - Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110011, China
| | - Gang Li
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110011, China
| | - Bin Lou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Xiujie Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Yifan Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China
| | - Ping Xiang
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, China; Yunnan Provincial Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming 650224, China
| | - Xiahong He
- Yunnan Provincial Key Laboratory for Conservation and Utilization of In-forest Resource, Southwest Forestry University, Kunming 650224, China.
| | - Dong Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Qingdao 266555, China.
| |
Collapse
|
2
|
de Sousa Silva M, Passos JS, Daré RG, Nunes JR, Adriani PP, Lopes LB. Microemulsions Improve the Cutaneous Co-Localization of Lipoic Acid and Quercetin and Antioxidant Effects in Cutaneous Cells and Tissue. AAPS PharmSciTech 2025; 26:70. [PMID: 40011308 DOI: 10.1208/s12249-025-03062-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/03/2025] [Indexed: 02/28/2025] Open
Abstract
Quercetin and α-lipoic acid are antioxidants with potential applications in the treatment of various skin conditions, such as wounds and chemoprevention of skin cancer. To enable their effective topical co-delivery and co-localization in the tissue, we developed microemulsions (ME). The selected ME (ME-50) formed a stable system with a mean droplet size of 134.4 ± 17.9 nm, increasing to 224.9 ± 19.9 nm upon antioxidants co-incorporation. The ME preserved the antioxidant capacities of the molecules, with DPPH (2,2-diphenyl-1-picrylhydrazyl) scavenging assay showing an IC50 of 6.2 ± 0.1 µg/mL, similar to the solution. Skin penetration studies revealed a 2.4-fold increase in quercetin (Q) accumulation in the stratum corneum and a 3.5-fold increase in the delivery to viable epidermis and dermis (ED) after a 12 h-treatment with the ME compared to control solutions; α-lipoic acid (LA) penetration improved up to 1.9-fold in ED upon ME incorporation. Treatment with Q + LA co-loaded ME enhanced the antioxidant activity in the stratum corneum and ED by 1.3-fold and 2.0-fold, respectively, compared to solutions. Treatment with the ME for 24 h also reduced oxidative species levels by 55% in H2O2-exposed keratinocytes compared to the control (untreated) cells. Taken together, these results suggest that ME-50 is a promising delivery system for enhancing the cutaneous co-delivery of quercetin and α-lipoic acid and the antioxidant effects in the tissue, offering a potential topical treatment for oxidative stress-related skin conditions.
Collapse
Affiliation(s)
- Mariana de Sousa Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
- School of Pharmaceutical Sciences of São Paulo, University of São Paulo, Sao Paulo, Brazil
| | - Julia S Passos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Regina G Daré
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Jessica R Nunes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Patricia P Adriani
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil
| | - Luciana B Lopes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, 1524 Av. Prof. Lineu Prestes, Sao Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
3
|
Musakhanian J, Osborne DW. Understanding Microemulsions and Nanoemulsions in (Trans)Dermal Delivery. AAPS PharmSciTech 2025; 26:31. [PMID: 39794642 DOI: 10.1208/s12249-024-02997-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 11/07/2024] [Indexed: 01/13/2025] Open
Abstract
Continuously explored in pharmaceuticals, microemulsions and nanoemulsions offer drug delivery opportunities that are too significant to ignore, namely safe delivery of clinically relevant drug doses across biological membranes. Their effectiveness as drug vehicles in mucosal and (trans)dermal delivery is evident from the volume of published literature. Commonly, their ability to enhance skin permeation is attributed to dispersion size, a characteristic closely related to solubilization capacity. However, the literature falls short on distinctions between microemulsions and nanoemulsions for definitions, behavior, or specific differences in their mechanisms of action in (trans)dermal delivery. The focus is typically on surfactant/cosurfactant ratio and droplet size but the role of mesostructures or the effect of cosolvent (Csol), oil (O) or water (W) on permeation profile remain poorly explained. Towards a deeper understanding of these vehicles in (trans)dermal drug delivery, this review begins with their conceptual and practical distinctions before delving into the published works for less obvious but potentially important underlying mechanisms; notably composition and the competitive positioning of system constituents in the resulting microstructures and subsequent effect(s) these may have on skin structures and drug permeability. For practical purposes, this review focuses on formulation systems based on ternary diagrams with commonly accepted non-ionic surfactants, cosurfactants, cosolvents, and oils used in pharmaceutical applications.
Collapse
|
4
|
Toor J, Agrawal S, Birajdar MR, Tiwari P, Tiwari S. A nonionic microemulsion co-loaded with atorvastatin and quercetin: Simultaneous spectroscopic analysis and payload release kinetics. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 314:124237. [PMID: 38579427 DOI: 10.1016/j.saa.2024.124237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
In this study, we have co-loadedatorvastatin (ATR) and quercetin (QCT) in a nonionic microemulsion. After developing a derivative ratio spectrophotometric technique for simultaneous analysis of ATR and QCT, pseudoternary phase diagram was constructed utilizing1:4 d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) and ethanol as surfactant and cosurfactant, respectively. Oleic acid was used as oil phase. Structural characterization of the formulation was carried out along a water dilution line created in monophasic region. Characterizations at these dilution points were performed using dynamic light scattering and polarized light microscopy. The average hydrodynamic size of the optimized formulation was found to be 18.9 nm and it did not change upon loading of ATR and QCT. In vitro release was assessed for the formulations loaded with different ratios of ATR and QCT, and the data were fitted to different mathematical models. Interestingly, we noticed differences in release kinetics during changes in dose ratios, particularly for QCT. Higuchi kinetics, observed at equal dose, shifted to Korsmeyer-Peppas model at higher QCT-ATR ratio (2:1 and 4:1). This difference is attributable to the ability of QCT molecules of overwhelming the interface at higher concentrations. Altogether, our observations highlight that the ratio of payloads should be selected carefully in order to avoid unpredictable release patterns.
Collapse
Affiliation(s)
- Jastarn Toor
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Shivanshu Agrawal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Mayuri R Birajdar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Priyanka Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Qiao Y, Wang X, Ren H, Cui Y, Ren J, Hao C, Zhao Z, Liu J, Zhao R, Li Y, Tian Q, Qiu L. A study on the preparation conditions of lidocaine microemulsion based on multi-objective genetic algorithm. Front Pharmacol 2023; 14:1272454. [PMID: 37841920 PMCID: PMC10576434 DOI: 10.3389/fphar.2023.1272454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/19/2023] [Indexed: 10/17/2023] Open
Abstract
Background: Topical lidocaine microemulsion preparations with low toxicity, low irritation, strong transdermal capability and convenient administration are urgently needed. Methods: Box-Behnken design was performed for three preparation conditions of 5% lidocaine microemulsions: mass ratio of the mass ratio of surfactant/(oil phase + surfactant) (X1), the mass ratio of olive oil/(α-linolenic acid + linoleic acid) (X2) and the water content W% (X3). Then, five multi-objective genetic algorithms were used to optimize the three evaluation indices to optimize the effects of lidocaine microemulsion preparations. Finally, the ideal optimization scheme was experimentally verified. Results: Non-dominated Sorting Genetic Algorithm-II was used for 30 random searches. Among these, Scheme 2: X1 = 0.75, X2 = 0.35, X3 = 75%, which resulted in Y1 = 0.17 μg/(cm2·s) and Y2 = 0.74 mg/cm2; and the Scheme 19: X1 = 0.68, X2 = 1.42, X3 = 75% which resulted in Y1 = 0.14 μg/(cm2·s) and Y2 = 0.80 mg/cm2, provided the best matches for the objective function requirements. The maximum and average fitness of the method have reached stability after 3 generations of evolution. Experimental verification of the above two schemes showed that there were no statistically significant differences between the measured values of Y1 and Y2 and the predicted values obtained by optimization (p > 0.05) and are close to the target value. Conclusion: Two lidocaine microemulsion preparation protocols were proposed in this study. These preparations resulted in good transdermal performance or long anesthesia duration, respectively.
Collapse
Affiliation(s)
- Yuchao Qiao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Xuchun Wang
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Hao Ren
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yu Cui
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jiahui Ren
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Chongqi Hao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Zhiyang Zhao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Liu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruiqing Zhao
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yiting Li
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qingping Tian
- School of Pharmacy, Shanxi Medical University, Taiyuan, China
| | - Lixia Qiu
- Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
6
|
Bao Y, Pignitter M. Mechanisms of lipid oxidation in water-in-oil emulsions and oxidomics-guided discovery of targeted protective approaches. Compr Rev Food Sci Food Saf 2023; 22:2678-2705. [PMID: 37097053 PMCID: PMC10962568 DOI: 10.1111/1541-4337.13158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 02/21/2023] [Accepted: 03/30/2023] [Indexed: 04/26/2023]
Abstract
Lipid oxidation is an inevitable event during the processing, storage, and even consumption of lipid-containing food, which may cause adverse effects on both food quality and human health. Water-in-oil (W/O) food emulsions contain a high content of lipids and small water droplets, which renders them vulnerable to lipid oxidation. The present review provides comprehensive insights into the lipid oxidation of W/O food emulsions. The key influential factors of lipid oxidation in W/O food emulsions are presented systematically. To better interpret the specific mechanisms of lipid oxidation in W/O food emulsions, a comprehensive detection method, oxidative lipidomics (oxidomics), is proposed to identify novel markers, which not only tracks the chemical molecules but also considers the changes in supramolecular properties, sensory properties, and nutritional value. The microstructure of emulsions, components from both phases, emulsifiers, pH, temperature, and light should be taken into account to identify specific oxidation markers. A correlation of these novel oxidation markers with the shelf life, the organoleptic properties, and the nutritional value of W/O food emulsions should be applied to develop targeted protective approaches for limiting lipid oxidation. Accordingly, the processing parameters, the application of antioxidants and emulsifiers, as well as packing and storage conditions can be optimized to develop W/O emulsions with improved oxidative stability. This review may help in emphasizing the future research priorities of investigating the mechanisms of lipid oxidation in W/O emulsion by oxidomics, leading to practical solutions for the food industry to prevent oxidative rancidity in W/O food emulsions.
Collapse
Affiliation(s)
- Yifan Bao
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
- Vienna Doctoral School in Chemistry (DoSChem)University of ViennaViennaAustria
| | - Marc Pignitter
- Institute of Physiological ChemistryFaculty of Chemistry, University of ViennaViennaAustria
| |
Collapse
|
7
|
Afzal O, Altamimi ASA, Alamri MA, Altharawi A, Alossaimi MA, Akhtar MS, Tabassum F, Almalki WH, Singh T. Resveratrol-Loaded Chia Seed Oil-Based Nanogel as an Anti-Inflammatory in Adjuvant-Induced Arthritis. Gels 2023; 9:gels9020131. [PMID: 36826301 PMCID: PMC9956310 DOI: 10.3390/gels9020131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Natural anti-inflammatory nutraceuticals may be useful in preventing rheumatoid arthritis from worsening. Resveratrol (RV) and chia seed oil, having antioxidant potential, can assist in avoiding oxidative stress-related disorders. This investigation developed and evaluated resveratrol-loaded chia seed oil-based nanoemulsion (NE) gel formulations through in vitro and in vivo studies. The physical stability and in vitro drug permeability of the chosen formulations (NE1 to NE10) were studied. The optimized RV-loaded nanoemulsion (NE2) had droplets with an average size of 37.48 nm that were homogeneous in shape and had a zeta potential of -18 mV. RV-NE2, with a permeability of 98.21 ± 4.32 µg/cm2/h, was gelled with 1% carbopol-940P. A 28-day anti-arthritic assessment (body weight, paw edema, and levels of pro-inflammatory mediators including TNF-α, IL-6, IL-1β, and COX-2) following topical administration of RV-NE2 gel showed significant reversal of arthritic symptoms in arthritic Wistar rats induced by Freund's complete adjuvant injection. Therefore, RV-NE2 gel demonstrated the potential to achieve local therapeutic benefits in inflammatory arthritic conditions due to its increased topical bioavailability and balancing of pro-inflammatory mediators.
Collapse
Affiliation(s)
- Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Correspondence: ; Tel.: +966-1158-86094
| | - Abdulamalik S. A. Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mubarak A. Alamri
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Ali Altharawi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Manal A. Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Md Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia
| | - Fauzia Tabassum
- Department of Pharmacology, College of Dentistry and Pharmacy, Buraydah Private Colleges, Buraydah 51418, Saudi Arabia
| | - Waleed H. Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 24382, Saudi Arabia
| | - Tanuja Singh
- Department of Botany, Patliputra University, Patna 800020, India
| |
Collapse
|
8
|
Suthar T, Patel P, Singh P, Datusalia AK, Yadav AK, Jain K. Hesperidin microemulsion: Formulation optimization, characterization, and in vitro evaluation. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
9
|
Zhu Y, Dai C, Lv D, Guan Y. Development of nonionic nanoemulsions to improve hydrophobic 9′-cis-bixin stability in acidic aqueous medium with in vitro cytosis and nanosafety evaluation. Food Chem 2023; 400:134076. [DOI: 10.1016/j.foodchem.2022.134076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 04/11/2022] [Accepted: 08/28/2022] [Indexed: 11/25/2022]
|
10
|
Wang M, Malfanti A, Bastiancich C, Préat V. Synergistic effect of doxorubicin lauroyl hydrazone derivative delivered by α-tocopherol succinate micelles for the treatment of glioblastoma. Int J Pharm X 2022; 5:100147. [PMID: 36620521 PMCID: PMC9813532 DOI: 10.1016/j.ijpx.2022.100147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
We hypothesized that tocopherol succinate (TOS) and D-α-tocopherol polyethylene2000 succinate (TPGS2000) micelles could work as a drug delivery system while enhancing the anti-cancer efficacy of doxorubicin lauryl hydrazone derivative (DOXC12) for the treatment of glioblastoma. The DOXC12-TOS-TPGS2000 micelles were formulated with synthesized DOXC12 and TPGS2000. They showed a high drug loading of hydrophobic DOXC12 (29%), a size of <100 nm and a pH sensitive drug release behaviour. In vitro, fast uptake of DOXC12-TOS-TPGS2000 micelles by GL261 cells was observed. For cytotoxicity, DOXC12-TOS-TPGS2000 micelles were evaluated on two glioblastoma cell lines and showed synergism between DOXC12 and TOS-TPGS2000. The higher cytotoxicity of DOXC12-TOS-TPGS2000 micelles was mainly caused by necrosis. The DOXC12-TOS-TPGS2000 micelles seem to be a promising delivery system for enhancing the anticancer efficacy of doxorubicin in glioblastoma (GBM).
Collapse
Affiliation(s)
- Mingchao Wang
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Alessio Malfanti
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium
| | - Chiara Bastiancich
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium,Aix-Marseille Univ, CNRS, INP, Inst Neurophysiopathol, Marseille, France,Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Véronique Préat
- Université Catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, Brussels, Belgium,Corresponding author.
| |
Collapse
|
11
|
Kanike S, Sarolia J, Toor J, Ray D, Aswal VK, Tiwari S. Loading of alpha-tocopherol in a nonionic microemulsion: phase behaviour and structural characteristics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
12
|
Rathod S, Arya S, Kanike S, Shah SA, Bahadur P, Tiwari S. Advances on nanoformulation approaches for delivering plant-derived antioxidants: A case of quercetin. Int J Pharm 2022; 625:122093. [PMID: 35952801 DOI: 10.1016/j.ijpharm.2022.122093] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 10/15/2022]
Abstract
Oxidative stress has been implicated in tumorigenic, cardiovascular, neuro-, and age-related degenerative changes. Antioxidants minimize the oxidative damage through neutralization of reactive oxygen species (ROS) and other causative agents. Ever since the emergence of COVID-19, plant-derived antioxidants have received enormous attention, particularly in the Indian subcontinent. Quercetin (QCT), a bio-flavonoid, exists in the glycosylated form in fruits, berries and vegetables. The antioxidant potential of QCT analogs relates to the number of free hydroxyl groups in their structure. Despite presence of these groups, QCT exhibits substantial hydrophobicity. Formulation scientists have tested nanotechnology-based approaches for its improved solubilization and delivery to the intended site of action. By the virtue of its hydrophobicity, QCT gets encapsulated in nanocarriers carrying hydrophobic domains. Apart from passive accumulation, active uptake of such formulations into the target cells can be facilitated through well-studied functionalization strategies. In this review, we have discussed the approaches of improving solubilization and bioavailability of QCT with the use of nanoformulations.
Collapse
Affiliation(s)
- Sachin Rathod
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Shirisha Kanike
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India
| | - Shailesh A Shah
- UKA Tarsadia University, Maliba Pharmacy College, Gopal-Vidyanagar Campus, Surat 394350, India
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
| | - Sanjay Tiwari
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER) - Raebareli, Lucknow 226002, India.
| |
Collapse
|
13
|
Gu Z, Xue Y, Li S, Adu-Frimpong M, Xu Y, Yu J, Xu X, Zhu Y. Design, Characterization, and Evaluation of Diosmetin-Loaded Solid Self-microemulsifying Drug Delivery System Prepared by Electrospray for Improved Bioavailability. AAPS PharmSciTech 2022; 23:106. [PMID: 35381887 DOI: 10.1208/s12249-022-02263-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 03/21/2022] [Indexed: 11/30/2022] Open
Abstract
Diosmetin (DIOS) is a functional compound with poor water solubility, bad permeability, and crystal form. Self-microemulsifying drug delivery system (SMEDDS) was an effective formulation to overcome these shortcomings. In this study, liquid SMEDDS was prepared using Capmul® MCM C8 EP/NF, Cremophor EL, and PEG 400 (2:5.6:2.4, w/w/w) as excipients. Then, the novel technology of electrospray solidified liquid SMEDDS and prepared solid SMEDDS for inhibiting crystallization. Polyvinyl pyrrolidone (PVP) was used as carrier to construct DIOS-loaded solid SMEDDS, with polyethylene oxide (PEO) contributing to the formation of regular sphere in the process of spinning. The particle size of solid SMEDDS (194 ± 5 nm) was much bigger than of liquid SMEDDS (25 ± 1 nm), while DIOS-loaded solid SMEDDS showed greater dissolution rates in pH 1.2 and pH 6.8 media through in vitro drug release study. The solid nanoparticles were smooth and uniform from the graph of a scanning electron microscope (SEM). The graph of a transmission electron microscope (TEM) showed that small droplets were loaded in the matrix. Furthermore, DIOS was encapsulated by matrix in amorphous state via differential scanning calorimetry (DSC) and attenuated total reflection Fourier transform infrared (ATR-FTIR). The crystalline of DIOS was not formed in solid SMEDDS due to the characteristic peaks of DIOS disappeared in X-ray diffraction (XRD) pattern. Therefore, the oral bioavailability of DIOS improved significantly compared with liquid SMEDDS (4.27-fold). Hence, solid SMEDDS could improve the solubility and bioavailability of DIOS, through transfer of the state of crystalline to amorphous by electrospray technology.
Collapse
|
14
|
Microemulsion Delivery System Improves Cellular Uptake of Genipin and Its Protective Effect against Aβ1-42-Induced PC12 Cell Cytotoxicity. Pharmaceutics 2022; 14:pharmaceutics14030617. [PMID: 35335992 PMCID: PMC8950416 DOI: 10.3390/pharmaceutics14030617] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 02/04/2023] Open
Abstract
Genipin has attracted much attention for its hepatoprotective, anti-inflammatory, and neuroprotection activities. However, poor water solubility and active chemical properties limit its application in food and pharmaceutical industries. This article aimed to develop a lipid-based microemulsion delivery system to improve the stability and bioavailability of genipin. The excipients for a genipin microemulsion (GME) preparation were screened and a pseudo-ternary phase diagram was established. The droplet size (DS), zeta potential (ZP), polydispersity index (PDI), physical and simulated gastrointestinal digestion stability, and in vitro drug release properties were characterized. Finally, the effect of the microemulsion on its cellular uptake by Caco-2 cells and the protective effect on PC12 cells were investigated. The prepared GME had a transparent appearance with a DS of 16.17 ± 0.27 nm, ZP of −8.11 ± 0.77 mV, and PDI of 0.183 ± 0.013. It exhibited good temperature, pH, ionic strength, and simulated gastrointestinal digestion stability. The in vitro release and cellular uptake data showed that the GME had a lower release rate and better bioavailability compared with that of free genipin. Interestingly, the GME showed a significantly better protective effect against amyloid-β (Aβ1-42)-induced PC12 cell cytotoxicity than that of the unencapsulated genipin. These findings suggest that the lipid-based microemulsion delivery system could serve as a promising approach to improve the application of genipin.
Collapse
|
15
|
Tiwari S, Singh K, Gerrard Marangoni D, Bahadur P. Amphiphilic star block copolymer micelles in saline as effective vehicle for quercetin solubilization. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
16
|
Rathod S, Arya S, Shukla R, Ray D, Aswal VK, Bahadur P, Tiwari S. Investigations on the role of edge activator upon structural transitions in Span vesicles. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Chen L, Alrobaian M, Afzal O, Kazmi I, Panda SK, Alfawaz Altamimi AS, Al-Abbasi FA, Almalki WH, Katouah HA, Singh T, Soni K, Hafeez A, Beg S, Kumar V, Rahman M. Crotamiton-loaded tea tree oil containing phospholipid-based microemulsion hydrogel for scabies treatment: in vitro, in vivo evaluation, and dermatokinetic studies. Drug Deliv 2021; 28:1972-1981. [PMID: 34565260 PMCID: PMC8475106 DOI: 10.1080/10717544.2021.1979131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Crotamiton (CRT) is a commonly approved drug prescribed for the scabies treatment in many countries across the globe. However, poor aqueous solubility and low bioavailability, and side effects restrict its use. To avoid such issues, an appropriate carrier system is necessary which can address the aforementioned challenges for attaining enhanced biopharmaceutical attributes. The current study intends to provide a detailed account on the development and evaluation of CRT-loaded microemulsion (ME) hydrogel formulation containing tea tree oil (TTO) for improved drug delivery for scabies treatment in a safe and effective manner. Pseudo-ternary phase diagrams were constructed with TTO as the oily phase, and Cremophor®EL was used as the surfactant in a mass ratio 2:1 with co-surfactants (mixture of phospholipid 90G and Transcutol®P), and aqueous solution as the external phase. The optimized drug-loaded ME formulation was evaluated for skin penetration, retention, compliance, and dermatokinetics. The nonirritant behavior of the formulation was revealed by skin histopathology, which showed no changes in normal skin histology. In comparison to the conventional product, dermatokinetic experiments revealed that CRT has greater penetration and distribution in the epidermis of the mice skin. The findings imply that the proposed lipid-based ME hydrogel can aid in the resolution of CRT issues by providing a better and safer delivery option to epidermis and deeper epidermis in substantial quantities.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Dermatology, Taizhou People's Hospital, Taizhou, China
| | - Majed Alrobaian
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sunil K Panda
- Menovo Pharmaceuticals Research Lab, Ningbo, People's Republic of China
| | | | - Fahad A Al-Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Hanadi A Katouah
- Chemistry Department, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Tanuja Singh
- Department of Botany, Patliputra University, Patna, India
| | - Kriti Soni
- Formulation Development, Dabur Research Foundation, Ghaziabad, India
| | - Abdul Hafeez
- Glocal School of Pharmacy, Glocal University, Saharanpur, India
| | - Sarwar Beg
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Vikas Kumar
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| |
Collapse
|
18
|
Sarolia J, Shukla R, Ray D, Aswal VK, Choudhury SD, Bahadur P, Tiwari S. Mobility of doxorubicin in TPGS micelles in response to sodium taurodeoxycholate incorporation: Analyses based on scattering and fluorescence studies. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Patel D, Agarwal S, Ray D, Kuperkar K, Aswal VK, Bahadur P. An expedient in to the phase behaviour and scattering profile in PEO-PPO-PEO block copolymer mixed systems in aqueous solution. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126330] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
20
|
Małycha K, Burakowski A, Gliński J, Niu H, Bai SL, Orzechowski K. Characterization of isooctane/AOT/water reverse micelles by dielectric spectroscopy, dynamic light scattering and acoustic methods. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Emulsions Incorporated in Polysaccharide-Based Active Coatings for Fresh and Minimally Processed Vegetables. Foods 2021; 10:foods10030665. [PMID: 33804642 PMCID: PMC8003668 DOI: 10.3390/foods10030665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
The consumption of minimally processed fresh vegetables has increased by the consumer's demand of natural products without synthetic preservatives and colorants. These new consumption behaviors have prompted research on the combination of emulsion techniques and coatings that have traditionally been used by the food industries. This combination brings great potential for improving the quality of fresh-cut fruits and vegetables by allowing the incorporation of natural and multifunctional additives directly into food formulations. These antioxidant, antibacterial, and/or antifungal additives are usually encapsulated at the nano- or micro-scale for their stabilization and protection to make them available by food through the coating. These nano- or micro-emulsions are responsible for the release of the active agents to bring them into direct contact with food to protect it from possible organoleptic degradation. Keeping in mind the widespread applications of micro and nanoemulsions for preserving the quality and safety of fresh vegetables, this review reports the latest works based on emulsion techniques and polysaccharide-based coatings as carriers of active compounds. The technical challenges of micro and nanoemulsion techniques, the potential benefits and drawbacks of their use, the development of polysaccharide-based coatings with natural active additives are considered, since these systems can be used as alternatives to conventional coatings in food formulations.
Collapse
|
22
|
Water driven transformation of a nonionic microemulsion into liquid crystalline phase: Structural characterizations and drug release behavior. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Changes in aggregation properties of TPGS micelles in the presence of sodium cholate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
24
|
Rathod S, Bahadur P, Tiwari S. Nanocarriers based on vitamin E-TPGS: Design principle and molecular insights into improving the efficacy of anticancer drugs. Int J Pharm 2021; 592:120045. [DOI: 10.1016/j.ijpharm.2020.120045] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 02/06/2023]
|
25
|
Talianu MT, Dinu-Pîrvu CE, Ghica MV, Anuţa V, Jinga V, Popa L. Foray into Concepts of Design and Evaluation of Microemulsions as a Modern Approach for Topical Applications in Acne Pathology. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2292. [PMID: 33228156 PMCID: PMC7699607 DOI: 10.3390/nano10112292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2023]
Abstract
With a fascinating complexity, governed by multiple physiological processes, the skin is considered a mantle with protective functions which during lifetime are frequently impaired, triggering dermatologic disorders. As one of the most prevalent dermatologic conditions worldwide, characterized by a complex pathogenesis and a high recurrence, acne can affect the patient's quality of life. Smart topical vehicles represent a good option in the treatment of a versatile skin condition. By surpassing the stratum corneum known for diffusional resistance, a superior topical bioavailability can be obtained at the affected place. In this direction, the literature study presents microemulsions as a part of a condensed group of modern formulations. Microemulsions are appreciated for their superior profile in matters of drug delivery, especially for challenging substances with hydrophilic or lipophilic structures. Formulated as transparent and thermodynamically stable systems, using simplified methods of preparation, microemulsions have a simple and clear appearance. Their unique structures can be explained as a function of the formulation parameters which were found to be the mainstay of a targeted therapy.
Collapse
Affiliation(s)
- Marina-Theodora Talianu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Cristina-Elena Dinu-Pîrvu
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Mihaela Violeta Ghica
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Valentina Anuţa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| | - Viorel Jinga
- Department of Clinical Sciences, no.3, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Lăcrămioara Popa
- Department of Physical and Colloidal Chemistry, Faculty of Pharmacy, “Carol Davila” University of Medicine and Pharmacy, 020950 Bucharest, Romania; (M.-T.T.); (C.-E.D.-P.); (V.A.); (L.P.)
| |
Collapse
|
26
|
Liang Y, Zou J, Zhang X, Shi Y, Tai J, Wang Y, Guo D, Yang M. Preparation and quality evaluation of a volatile oil microemulsion from Flos magnoliae and Centipeda minima. Mol Med Rep 2020; 22:4531-4540. [PMID: 33174034 PMCID: PMC7646747 DOI: 10.3892/mmr.2020.11571] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/10/2020] [Indexed: 11/05/2022] Open
Abstract
In order to improve the water solubility of the volatile oils extracted from Flos magnoliae (FM) and Centipeda minima (CM), they were prepared as a microemulsion (ME), which were then used in the development of an FM and CM volatile oil ME for the treatment of allergic rhinitis (AR). ME was prepared by phase inversion emulsification, and the prescription factors such as emulsifier, co‑emulsifier, oil phase, Km, which represents the ratio of the mass of emulsifier to that of the co‑emulsifier, and preparation factors such as temperature affecting the formation of the ME were selected according to the formation area of ME in a pseudo‑ternary phase diagram. The quality of the ME was evaluated based on its appearance, particle size, Zeta potential and stability. The content of eucalyptol in ME was determined by gas chromatography‑mass spectrometry (GC‑MS). The cumulative permeability of the ME within 24 h was measured with a transdermal diffusion tester. The results revealed that the best formula for preparation of the ME was as follows: Castor oil polyoxyethylene ether (EL‑40) was the emulsifier; the co‑emulsifier was anhydrous ethanol; the Km was 2:1; the mixed phase of volatile oil and isopropyl myristate with mass ratio of 1:1 was used as oil phase; and the preparation temperature was 25˚C. The content of eucalyptol in the ME was 2.57 mg/g, and the cumulative permeability of the ME in 24 h was significantly increased compared with that of the reference oil solution. The appearance of the ME was uniform, and the solution was transparent. In conclusion, compared with traditional preparations, FM and CM volatile oil ME is a novel, improved and more effective preparation for the treatment of AR.
Collapse
Affiliation(s)
- Yulin Liang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Junbo Zou
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Xiaofei Zhang
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yajun Shi
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Jia Tai
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Yu Wang
- Department of Pharmaceutics, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Dongyan Guo
- Shaanxi Province Key Laboratory of New Drugs and Chinese Medicine Foundation Research, College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, P.R. China
| | - Ming Yang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang, Jiangxi 330004, P.R. China
| |
Collapse
|
27
|
Fu Y, Xiao S, Liu S, Wu J, Wang X, Qiao L, Zhang Z, He J. Stability, deformation and rupture of Janus oligomer enabled self-emulsifying water-in-oil microemulsion droplets. Phys Chem Chem Phys 2020; 22:24907-24916. [PMID: 33124645 DOI: 10.1039/d0cp03092a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microemulsions exist widely in nature, daily life and industrial manufacturing processes, including petroleum production, food processing, drug delivery, new material fabrication, sewage treatment, etc. The mechanical properties of microemulsion droplets and a correlation to their molecular structures are of vital importance to those applications. Despite studies on their physicochemical determinants, there are lots of challenges of exploring the mechanical properties of microemulsions by experimental studies. Herein, atomistic modelling was utilized to study the stability, deformation, and rupture of Janus oligomer enabled water-in-oil microemulsion droplets, aiming at revealing their intrinsic relationship with Janus oligomer based surfactants and oil structures. The self-emulsifying process from a water, oil and surfactant mixture to a single microemulsion droplet was modulated by the amphiphilicity and structure of the surfactants. Four microemulsion systems with an interfacial thickness in the range of 7.4-17.3 Å were self-assembled to explore the effect of the surfactant on the droplet morphology. By applying counter forces on the water core and the surfactant shell, the mechanical stability of the microemulsion droplets was probed at different ambient temperatures. A strengthening response and a softening regime before and after a temperature-dependent peak force were identified followed by the final rupture. This work demonstrates a practical strategy to precisely tune the mechanical properties of a single microemulsion droplet, which can be applied in the formation, de-emulsification, and design of microemulsions in oil recovery and production, drug delivery and many other applications.
Collapse
Affiliation(s)
- Yuequn Fu
- NTNU Nanomechanical Lab, Norwegian University of Science and Technology (NTNU), Trondheim 7491, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Tiwari S, Sarolia J, Kansara V, Chudasama NA, Prasad K, Ray D, Aswal VK, Bahadur P. Synthesis, Colloidal Characterization and Targetability of Phenylboronic Acid Functionalized α-Tocopheryl Polyethylene Glycol Succinate in Cancer Cells. Polymers (Basel) 2020; 12:polym12102258. [PMID: 33019616 PMCID: PMC7600591 DOI: 10.3390/polym12102258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 09/27/2020] [Indexed: 12/20/2022] Open
Abstract
This study reports targetable micelles developed after covalent functionalization of α-tocopheryl polyethylene glycol succinate (TPGS) with amino phenylboronic acid (APBA). Nuclear magnetic resonance (NMR) and infrared (IR) spectroscopic results showed successful attachment of APBA to the hydrophilic segment of TPGS. Dynamic light scattering and small-angle neutron scattering studies revealed that the conjugate self-assembled in water to produce spherical core-shell micelles (14–20 nm) which remained stable against temperature (ca. 25–45 °C) and pH changes. The micelles could solubilize a high payload of paclitaxel (PLX) without exhibiting changes in the average size. However, at the saturation solubility, drug molecules migrated from the core to the shell region and engaged with APBA groups via π–π stacking interaction. Confocal microscopy and cell sorting analyses verified the effective translocation ability of TPGS-APBA micelles in sialic acid (SA) expressing MDA-MB-453 cells. At equivalent PLX dose, TPGS-APBA micelles showed about a twofold improvement in apoptotic death among the cells exposed for 2 h. Our findings indicate that the attachment of APBA can be a potential strategy for improving the intra-cellular localization of carriers among cancer cells expressing SA residues.
Collapse
Affiliation(s)
- Sanjay Tiwari
- Maliba Pharmacy College, Gopal-Vidyanagar Campus, Uka Tarsadia University, Surat 394350, India; (S.T.); (J.S.); (V.K.)
| | - Jayant Sarolia
- Maliba Pharmacy College, Gopal-Vidyanagar Campus, Uka Tarsadia University, Surat 394350, India; (S.T.); (J.S.); (V.K.)
| | - Vrushti Kansara
- Maliba Pharmacy College, Gopal-Vidyanagar Campus, Uka Tarsadia University, Surat 394350, India; (S.T.); (J.S.); (V.K.)
| | - Nishith A. Chudasama
- Natural Products & Green Chemistry Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; (N.A.C.); (K.P.)
| | - Kamalesh Prasad
- Natural Products & Green Chemistry Division, Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India; (N.A.C.); (K.P.)
| | - Debes Ray
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (D.R.); (V.K.A.)
| | - Vinod K Aswal
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India; (D.R.); (V.K.A.)
| | - Pratap Bahadur
- Department of Chemistry, Veer Narmad South Gujarat University, Surat 395007, India
- Correspondence:
| |
Collapse
|
29
|
Targeting anticancer drugs with pluronic aggregates: Recent updates. Int J Pharm 2020; 586:119544. [DOI: 10.1016/j.ijpharm.2020.119544] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/04/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
|