1
|
Dong SH, Gao Y, Li Y, Wu D, Chen Y, Chen SH. Coenzyme Q10 microemulsion ion-activated gel: a promising ophthalmic delivery system for enhanced corneal protection and sustained release. BMC Pharmacol Toxicol 2025; 26:87. [PMID: 40253426 PMCID: PMC12008920 DOI: 10.1186/s40360-025-00922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/08/2025] [Indexed: 04/21/2025] Open
Abstract
PURPOSE This study aimed to evaluate a novel microemulsion ion-activated gel system for the ophthalmic delivery of coenzyme Q10 (CoQ10). METHODS Various CoQ10 microemulsion ion-activated formulations were prepared and fully assessed for physical and chemical parameters, assay and related substances, in vitro release, rheological properties, in vitro cytotoxicity and ophthalmic retention. A preliminary pharmacokinetic study was also performed in rabbits. RESULTS The formulations met the specified criteria, showing a droplet size of 24.5 ± 2.0 nm for microemulsions, increasing slightly to 39.6 ± 3.5 nm for the microemulsion gels. They exhibited a 24-hour sustained in vitro release (80.0% ± 3.2%) and increased viscosity upon contact with artificial tears containing Ca2+ and K+ ions. The no-film dissolution method and in vitro models indicated first-order release kinetics (r = 0.987). The preparations demonstrated good tolerance and non-irritating properties, with a Draize score of 0-0.55 in rabbits, and provided a 2-hour extension in drug retention on the ocular surface compared with microemulsions alone. In ultraviolet B (UVB)-exposed rats, corneal epithelial damage was reduced and antioxidant marker levels (superoxide dismutase, malondialdehyde) were significantly improved. CONCLUSION This novel system is a promising preparation for ophthalmic CoQ10 delivery, offering sustained release and protection against UVB-induced corneal damage.
Collapse
Affiliation(s)
- Shao-Hua Dong
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, 430061, China
| | - Yue Gao
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, 430061, China.
| | - Yue Li
- Department of Respiratory, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, No. 4 Liangdaojie Road, Wuchang District, Wuhan, Hubei, 430061, China.
| | - Di Wu
- Department of Pharmacy, The General Hospital of Hubei Armed Police Forces, No.475 Minzhu Road, Wuchang District, Wuhan, 430061, China
| | - Ying Chen
- Department of Pharmacy, General Hospital of Central Theater Command, Wuhan, Hubei, 430070, China
| | - Shu-He Chen
- Department of Pharmacy, Hubei Provincial Hospital of Traditional Chinese Medicine, The Affiliated Hospital of Hubei University of Chinese Medicine, Hubei Province Academy of Traditional Chinese Medicine, Wuhan, Hubei, 430061, China
| |
Collapse
|
2
|
Morales-Becerril A, Aranda-Lara L, Isaac-Olive K, Ramírez-Villalva A, Ocampo-García B, Morales-Avila E. An Overview of Film-Forming Emulsions for Dermal and Transdermal Drug Delivery. AAPS PharmSciTech 2024; 25:259. [PMID: 39487372 DOI: 10.1208/s12249-024-02942-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024] Open
Abstract
Drug delivery through the skin is a widely used therapeutic method for the treatment of local dermatologic conditions. Dermal and transdermal methods of drug delivery offer numerous advantages, but some of the most important aspects of drug absorption through the skin need to be considered. Film-forming systems (FFS) represent a new mode of sustained drug delivery that can be used to replace traditional topical formulations such as creams, ointments, pastes, or patches. They are available in various forms, including solutions, gels, and emulsions, and can be categorised as film-forming gels and film-forming emulsions. Film-forming emulsions (FFE) are designed as oil-in-water (O/W) emulsions that form a film with oil droplets encapsulated in a dry polymer matrix, thus maintaining their dispersed nature. They offer several advantages, including improved solubility, bioavailability and chemical stability of lipophilic drugs. In addition, they could improve the penetration and diffusion of drugs through the skin and enhance their absorption at the target site due to the nature of the components used in the formulation. The aim of this review is to provide an up-to-date compilation of the technologies used in film-forming emulsions to support their development and availability on the market as well as the development of new pharmaceutical forms.
Collapse
Affiliation(s)
- Aideé Morales-Becerril
- Facultad de Química, Universidad Autónoma del Estado de México, 50120, Toluca, Estado de México, Mexico
| | - Liliana Aranda-Lara
- Facultad de Medicina, Universidad Autónoma del Estado de México, 50180, Toluca, Estado de México, Mexico
| | - Keila Isaac-Olive
- Facultad de Medicina, Universidad Autónoma del Estado de México, 50180, Toluca, Estado de México, Mexico
| | - Alejandra Ramírez-Villalva
- Escuela Profesional en Química Farmacéutica Biológica-INIES, Universidad de Ixtlahuaca, CUI. Ixtlahuaca, San Pedro, 50740, Estado de México, México
| | - Blanca Ocampo-García
- Departamento de Materiales Radiactivos, Instituto Nacional de Investigaciones Nucleares, 52750, Ocoyoacac, Estado de México, Mexico
| | - Enrique Morales-Avila
- Facultad de Química, Universidad Autónoma del Estado de México, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
3
|
Nery Dos Santos Q, Teles DCS, de Araujo GRS, Lima OVA, Silva LAS, de Carvalho RDCV, Carlos de Sousa V, Matos SS, Costa AMB, Andrade-Neto VV, Torres-Santos EC, Antunes de S Araújo A, Sarmento VHV, Aécio de Amorim Carvalho F, de S Nunes R, Lira AAM. Microemulsions strongly promoted the activity of α-bisabolol against different Leishmania species and its skin permeation. Exp Parasitol 2024; 265:108808. [PMID: 39094996 DOI: 10.1016/j.exppara.2024.108808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/15/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study aimed to develop microemulsions (MEs) containing α-bisabolol for the topical treatment of cutaneous leishmaniasis (CL). Initially, pseudoternary phase diagrams were developed using α-bisabolol as the oil phase, Eumulgin® CO 40 as the surfactant, Polymol® HE as the co-surfactant, and distilled water as the aqueous phase. Two transparent liquid systems (TLS) containing 5% of α-bisabolol were selected and characterized (F5E25 and F5EP25). Next, skin permeation and retention assays were performed using Franz cells. The interaction of the formulation with the stratum corneum (SC) was evaluated using the FTIR technique. The cytotoxicity was evaluated in murine peritoneal macrophages. Finally, the antileishmanial activity of microemulsions was determined in promastigotes and amastigotes of L. amazonensis (strain MHOM/BR/77/LTB 0016). As a result, the selected formulations showed isotropy, nanometric size (below 25 nm), Newtonian behavior and pH ranging from 6.5 to 6.9. The MEs achieved a 2.5-fold increase in the flux and skin-permeated amount of α-bisabolol. ATR-FTIR results showed that microemulsions promoted fluidization and extraction of lipids and proteins of the stratum corneum, increasing the diffusion coefficient and partition coefficient of the drug in the skin. Additionally, F5E25 and F5EP25 showed higher activity against promastigotes (IC50 13.27 and 18.29, respectively) compared to unencapsulated α-bisabolol (IC50 53.8). Furthermore, F5E25 and F5EP25 also showed antileishmanial activity against intracellular amastigotes of L. amazonensis, with IC50 50 times lower than free α-bisabolol and high selectivity index (up to 15). Therefore, the systems obtained are favorable to topical administration, with significant antileishmanial activity against L. amazonensis promastigotes and amastigotes, being a promising system for future in vivo trials.
Collapse
Affiliation(s)
| | | | | | | | - Luiz André S Silva
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | - Saulo S Matos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | | | | | | | | | | - Rogéria de S Nunes
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Ana Amélia M Lira
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil.
| |
Collapse
|
4
|
Siqueira IB, de Oliveira YLM, Caron BO, Schmidt D, Silva ARST, Jain S, de Souza JDS, Sarmento VHV, Alves SM, Rott MB, Correa CB, Scher R, Barbosa AAT, Dolabella SS. Amoebicidal activity of essential oils and essential oil-based microemulsions of Aloysia citrodora Ortega ex Pers., Cymbopogon winterianus Jowitt ex Bor, and Ocimum gratissimum L. against Acanthamoeba polyphaga trophozoites. J Appl Microbiol 2024; 135:lxae232. [PMID: 39237458 DOI: 10.1093/jambio/lxae232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/31/2024] [Accepted: 09/04/2024] [Indexed: 09/07/2024]
Abstract
AIMS Evaluate the in vitro efficacy of the essential oils derived from Aloysia citrodora (Verbenaceae), Cymbopogon winterianus (Poaceae), and Ocimum gratissimum (Lamiaceae) against Acanthamoeba polyphaga trophozoites. Additionally, microemulsions formulated with these essential oils, along with their major components, were analyzed. METHODS AND RESULTS The prepared microemulsions were characterized using polarized light microscopy and rheological techniques. The amoebicidal activity was determined by measuring the inhibitory concentration (IC50). Flow cytometry was employed to detect membrane damage and alterations in trophozoites size. The results revealed transparent and thermodynamically stable microemulsions. The essential oil from O. gratissimum exhibited a lower IC50, with values of 280.66 and 47.28 µg ml-1 after 24 and 48 h, respectively. When microemulsions containing essential oils were tested, the IC50 values exhibited a reduction of over 80% after 24 h. Particularly, eugenol, a constituent of the O. gratissimum essential oil, displayed higher amoebicidal activity. The essential oils also caused damage to the cell membrane, resulting in the subsequent death of the trophozoites. CONCLUSIONS The EOs of A. citrodora, C. winterianus, and O. gratissimum and their microemulsions showed antiparasitic effect against A. polyphaga trophozoites, representing promising alternatives for the treatment of diseases caused by this protozoan.
Collapse
Affiliation(s)
- Ingrid Borges Siqueira
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, 49107-230 Sergipe, Brazil
| | | | - Braulio Otomar Caron
- Department of Agronomic and Environmental Sciences, Federal University of Santa Maria, Frederico Westphalen, 98400-000 Rio Grande do Sul, Brazil
| | - Denise Schmidt
- Department of Agronomic and Environmental Sciences, Federal University of Santa Maria, Frederico Westphalen, 98400-000 Rio Grande do Sul, Brazil
| | | | - Sona Jain
- Department of Morphology, Federal University of Sergipe, São Cristóvão, 49107-230 Sergipe, Brazil
| | | | | | - Suely Moraes Alves
- Department of Chemistry, Federal University of Sergipe, Itabaiana, 49500-000 Sergipe, Brazil
| | - Marilise Brittes Rott
- Laboratory of Protozoology, Department of Microbiology, Immunology and Parasitology, Institute of Basic Health Sciences, Federal University of Rio Grande Do Sul, Porto Alegre, 90050-170 Rio Grande do Sul, Brazil
| | - Cristiane Bani Correa
- Department of Morphology, Federal University of Sergipe, São Cristóvão, 49107-230 Sergipe, Brazil
| | - Ricardo Scher
- Department of Morphology, Federal University of Sergipe, São Cristóvão, 49107-230 Sergipe, Brazil
| | | | - Silvio Santana Dolabella
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, 49107-230 Sergipe, Brazil
- Department of Morphology, Federal University of Sergipe, São Cristóvão, 49107-230 Sergipe, Brazil
| |
Collapse
|
5
|
Senarat S, Tuntarawongsa S, Lertsuphotvanit N, Rojviriya C, Phaechamud T, Chantadee T. Levofloxacin HCl-Loaded Eudragit L-Based Solvent Exchange-Induced In Situ Forming Gel Using Monopropylene Glycol as a Solvent for Periodontitis Treatment. Gels 2023; 9:583. [PMID: 37504462 PMCID: PMC10379822 DOI: 10.3390/gels9070583] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Solvent exchange-induced in situ forming gel (ISG) is currently an appealing dosage form for periodontitis treatment via localized injection into the periodontal pocket. This study aims to apply Eudragit L and Eudragit S as matrix components of ISG by using monopropylene glycol as a solvent for loading levofloxacin HCl for periodontitis treatment. The influence of Eudragit concentration was investigated in terms of apparent viscosity, rheological behavior, injectability, gel-forming behavior, and mechanical properties. Eudragit L-based formulation presented less viscosity, was easier to inject, and could form more gel than Eudragit S-based ISG. Levofloxacin HCl-loading diminished the viscosity of Eudragit L-based formulation but did not significantly change the gel formation ability. Higher polymer loading increased viscosity, force-work of injectability, and hardness. SEM photographs and µCT images revealed their scaffold formation, which had a denser topographic structure and less porosity attained owing to higher polymer loading and less in vitro degradation. By tracking with fluorescence dyes, the interface interaction study revealed crucial information such as solvent movement ability and matrix formation of ISG. They prolonged the drug release for 14 days with fickian drug diffusion kinetics and increased the release amount above the MIC against test microbes. The 1% levofloxacin HCl and 15% Eudragit L dissolved in monopropylene glycol (LLM15) was a promising ISG because of its appropriate viscosity (3674.54 ± 188.03 cP) with Newtonian flow, acceptable gel formation and injectability (21.08 ± 1.38 N), hardness (33.81 ± 2.3 N) and prolonged drug release with efficient antimicrobial activities against S. aureus (ATCC 6538, 6532, and 25923), methicillin-resistant S. aureus (MRSA) (S. aureus ATCC 4430), E. coli ATCC 8739, C. albicans ATCC 10231, P. gingivalis ATCC 33277, and A. actinomycetemcomitans ATCC 29522; thus, it is the potential ISG formulation for periodontitis treatment by localized periodontal pocket injection.
Collapse
Affiliation(s)
- Setthapong Senarat
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Sarun Tuntarawongsa
- Pharmaceutical Intellectual Center "Prachote Plengwittaya", Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nutdanai Lertsuphotvanit
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Catleya Rojviriya
- Synchrotron Light Research Institute, Mueang District, Nakhon Ratchasima 30000, Thailand
| | - Thawatchai Phaechamud
- Programme of Pharmaceutical Engineering, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Program of Pharmaceutical Technology, Department of Pharmaceutical Technology, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Takron Chantadee
- Natural Bioactive and Material for Health Promotion and Drug Delivery System Group (NBM), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Center of Excellent in Pharmaceutical Nanotechnology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
de Araujo GRS, Azevedo Lima OV, Barreto Neujahr JP, Matos SS, de Souza TA, Dos Santos AM, Chorilli M, de Souza Araujo AA, Duarte MC, da Cunha Gonsalves JKM, de Souza Nunes R, Dos Santos MRV, Vitorino Sarmento VH, Moreira Lira AA. Lyotropic liquid crystal mesophases as transdermal delivery systems for lipophilic drugs: A comparative study. Int J Pharm 2023; 636:122853. [PMID: 36931537 DOI: 10.1016/j.ijpharm.2023.122853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
The present work aimed to evaluate different Liquid Crystal Mesophases (LCM) as transdermal drug delivery systems (TDDS) for nifedipine (NFD), a lipophilic drug model. The formulations composed of water, Citrus sinensis essential oil (CSEO), PPG-5-CETETH-20, and Olive oil ester PEG-7 were obtained and characterized by polarized light microscopy (PLM), rheology, small-angle x-ray scattering (SAXS), Fourier transform infrared coupled with an attenuated total reflection accessory (FTIR-ATR) and in vitro assays: bioadhesion, drug release, skin permeation, and retention tests. As a result, changes in component proportions led to several transparent viscous systems with an anisotropic profile. PLM and SAXS proved the presence of lamellar (S1), hexagonal (S3), and lamellar + hexagonal (S2) LCM, and rheology showed a high viscoelasticity profile. LCMs were able to adhere to the skin, and S2 achieved higher adhesion strength. NFD (5 mg/mL) has not modified the organization of LCMs. Results also showed that S3 promoted higher permeation and retention and higher disorganization of stratum corneum lipids, which is the main permeation-enhancing mechanism. Thus, the formulations obtained can carry and improve drug delivery through the skin and are promising TDDS for lipophilic drug administration, such as NFD.
Collapse
Affiliation(s)
| | | | | | - Saulo Santos Matos
- Department of Pharmacy, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | - Thalisson Amorim de Souza
- Institute for Research in Pharmaceutical and Medications, Federal University of Paraíba, João Pessoa, PB, Brazil
| | | | - Marlus Chorilli
- School of Pharmaceutical Sciences, Paulista State University, Araraquara, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Martínez-Segoviano IDJ, Ganem-Rondero A. Enhancement of the transdermal delivery of zidovudine by pretreating the skin with two physical enhancers: microneedles and sonophoresis. ACTA ACUST UNITED AC 2021; 29:279-290. [PMID: 34216369 DOI: 10.1007/s40199-021-00402-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 05/25/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Zidovudine (AZT) has been the most widely used drug for antiretroviral therapy. In order to improve the therapy with this drug, different alternatives have been proposed, such as the transdermal administration. The use of permeation enhancers is necessary to favor the passage of this drug through the skin, due to its physicochemical properties and to the natural permeation barrier imposed by the skin. OBJECTIVES To evaluate the effect of two permeation enhancers, sonophoresis and microneedles, on the permeability of AZT through the skin. METHODS Permeation studies with an AZT solution were performed using pigskin clamped in Franz-type cells. Sonophoresis was applied under different conditions (i.e., amplitude, duty cycle and application time), selected according to an experimental design, where the response variables were the increase in temperature of the skin surface and the increase in transepidermal water loss. ATR-FTIR was also used to demonstrate the effect of enhancers on membrane components. RESULTS The permeability of AZT through intact skin was very poor, with a very long lag time. Pretreatment of the skin with sonophoresis increased AZT transport significantly, reducing the lag time. The maximum flux (27.52 µgcm-2 h-1) and the highest total amount permeated (about 624 µg/cm2) were obtained when applying sonophoresis in continuous mode, with an amplitude of 20%, and an application time of 2 min. Sonophoresis appears to have an impact on stratum corneum proteins. The use of microneedles further increased the flux (30.41 µgcm-2 h-1) and the total amount permeated (about 916 µg/cm2), relative to sonophoresis. CONCLUSION The results are encouraging in terms of promoting AZT transport through the skin using sonophoresis or microneedles as permeation enhancers.
Collapse
Affiliation(s)
- Irene de Jesús Martínez-Segoviano
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o de Mayo s/n, 54740, Cuautitlán Izcalli, Estado de México, Mexico
| | - Adriana Ganem-Rondero
- División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1o de Mayo s/n, 54740, Cuautitlán Izcalli, Estado de México, Mexico.
| |
Collapse
|
8
|
Rahman L, Lembang RS, Lallo S, Handayani SR, Usmanengsi, Permana AD. Bioadhesive dermal patch as promising approach for improved antibacterial activity of bioactive compound of Zingiber cassumunar Roxb in ex vivo Staphylococcus aureus skin infection model. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
|
10
|
Shewaiter MA, Hammady TM, El-Gindy A, Hammadi SH, Gad S. Formulation and characterization of leflunomide/diclofenac sodium microemulsion base-gel for the transdermal treatment of inflammatory joint diseases. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102110] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|