1
|
Mendes M, António M, Daniel-da-Silva AL, Sereno J, Oliveira R, Arnaut LG, Gomes C, Ramos ML, Castelo-Branco M, Sousa J, Pais A, Vitorino C. A switch-on chemo-photothermal nanotherapy impairs glioblastoma. MATERIALS HORIZONS 2025. [PMID: 40202681 DOI: 10.1039/d5mh00351b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Judiciously combined modality approaches have proved highly effective for treating most forms of cancer, including glioblastoma. This study introduces a hybrid nanoparticle-based treatment designed to induce a synergistic effect. It employs repurposed celecoxib-loaded hybrid nanoparticles (HNPs) that are thermally activated by near-infrared laser irradiation to damage glioblastoma cells. The HNPs are constructed by covalently binding organic (ultra-small nanostructured lipid carriers, usNLCs) and inorganic nanoparticles (gold nanorods, AuNRs, with photothermal therapy capability), using c(RGDfK) that serves the dual purpose of a biolinker and a tumor-targeting peptide. The HNPs are further functionalized with transferrin (Tf) as a blood-brain barrier ligand denoted as HNPsTf. Our comprehensive in vitro and in vivo studies have unveiled the remarkable capability of HNPsTf to safely and specifically increase blood-brain barrier permeability through transferrin receptor interactions, facilitating precise nanoparticle accumulation in the tumor region within orthotopic tumor-bearing mice. Furthermore, the orchestrated combination of chemo- and photothermal therapy has exhibited a substantial therapeutic impact on glioblastoma, showcasing a noteworthy 78% inhibition in tumor volume growth and an impressive 98% delay in tumor growth. Notably, this treatment approach has resulted in prolonged survival rates among tumor-bearing mice, accompanied by a favorable side effect profile. Overall, our findings unequivocally demonstrate that celecoxib-loaded HNPsTf offer a game-changing, chemo-photothermal combination, unleashing a synergistic effect that significantly enhances both brain drug delivery and the efficacy of anti-glioblastoma treatments.
Collapse
Affiliation(s)
- Maria Mendes
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Maria António
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- CICECO-Aveiro Institute of Materials, Chemistry Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - José Sereno
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Rui Oliveira
- Coimbra Institute for Clinical and Biomedical Research (iCBR)/Center of Environmental Genetics of Oncobiology (CIMAGO), Faculty of Medicine (FMUC), University of Coimbra, 3000-548 Coimbra, Portugal
- Biophysics Institute, Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Germano de Sousa Pathological Anatomy Center, Quinta de Voimarães, Rua de S. Teotónio, 3000-377 Coimbra, Portugal
| | - Luís G Arnaut
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Célia Gomes
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
- Germano de Sousa Pathological Anatomy Center, Quinta de Voimarães, Rua de S. Teotónio, 3000-377 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology Consortium (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal
| | - Maria Luísa Ramos
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, 3000-548 Coimbra, Portugal
- Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, 3000-548 Coimbra, Portugal
| | - João Sousa
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Alberto Pais
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| | - Carla Vitorino
- Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal.
- Coimbra Chemistry Centre, Institute of Molecular Sciences - IMS, Department of Chemistry, University of Coimbra, 3000-535 Coimbra, Portugal
| |
Collapse
|
2
|
Rai A, Seena S, Gagliardi T, Palma PJ. Advances in the design of amino acid and peptide synthesized gold nanoparticles for their applications. Adv Colloid Interface Sci 2023; 318:102951. [PMID: 37392665 DOI: 10.1016/j.cis.2023.102951] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/31/2023] [Accepted: 06/14/2023] [Indexed: 07/03/2023]
Abstract
The field of therapeutics and diagnostics is advanced by nanotechnology-based approaches including the spatial-temporal release of drugs, targeted delivery, enhanced accumulation of drugs, immunomodulation, antimicrobial action, and high-resolution bioimaging, sensors and detection. Various compositions of nanoparticles (NPs) have been developed for biomedical applications; however, gold NPs (Au NPs) have attracted tremendous attention due to their biocompatibility, easy surface functionalization and quantification. Amino acids and peptides have natural biological activities as such, their activities enhance several folds in combination with NPs. Although peptides are extensively used to produce various functionalities of Au NPs, amino acids have also gained similar interests in producing amino acid-capped Au NPs due to the availability of amine, carboxyl and thiol functional groups. Henceforth, a comprehensive review is needed to timely bridge the synthesis and the applications of amino acid and peptide-capped Au NPs. This review aims to describe the synthesis mechanism of Au NPs using amino acids and peptides along with their applications in antimicrobial, bio/chemo-sensors, bioimaging, cancer therapy, catalysis, and skin regeneration. Moreover, the mechanisms of various activities of amino acid and peptide capped-Au NPs are presented. We believe this review will motivate researchers to better understand the interactions and long-term activities of amino acid and peptide-capped Au NPs for their success in various applications.
Collapse
Affiliation(s)
- Akhilesh Rai
- CNC- Center for Neuroscience and Cell Biology and Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; Faculty of Medicine, University of Coimbra, Portugal.
| | - Sahadevan Seena
- MARE - Marine and Environmental Sciences Centre, ARNET-Aquatic Research Network, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | | | - Paulo J Palma
- Faculty of Medicine, University of Coimbra, Portugal
| |
Collapse
|
3
|
Foudah AI, Alqarni MH, Ross SA, Alam A, Salkini MA, Kumar P. Site-Specific Evaluation of Bioactive Coumarin-Loaded Dendrimer G4 Nanoparticles against Methicillin Resistant Staphylococcus aureus. ACS OMEGA 2022; 7:34990-34996. [PMID: 36211083 PMCID: PMC9535722 DOI: 10.1021/acsomega.2c03659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a foremost treatment challenge in today's clinical practice. Natural coumarins contain a variety of bioactivities and have the ability to alter resistance in several ways. In developing effective drug delivery methods, the goal is to maximize biocompatibility while minimizing toxicity. With this in mind, this work investigated the site-specific potential of dendrimer G4 poloxamer nanoparticles loaded with bioactive coumarin. The goal of the current work is to deliver a complete evaluation of dendrimer G4 poloxamer nanoparticles against MRSA. Coumarin-loaded dendrimer G4 poloxamer nanoparticles were thoroughly investigated and characterized using various techniques, including particle size, shape, entrapment efficiency, in vitro drug release, hemolysis assay, cytotoxicity, antibacterial activity, and bactericidal kinetics. Studies showed that the newly developed dendrimer G4 poloxamer nanoparticles exhibited significantly lower levels of hemolysis and cytotoxicity. The results showed that the in vitro drug release of coumarin from dendrimer G4 poloxamer nanoparticles was slower compared to coumarin in its free form. This innovative therapeutic delivery technology may enhance the defense of coumarin against MRSA.
Collapse
Affiliation(s)
- Ahmed I. Foudah
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammed H. Alqarni
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Samir A. Ross
- National
Center for Natural Products Research, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi 38677, United States
- Department
of Biomolecular Sciences, School of Pharmacy, The University of Mississippi, University, Oxford, Mississippi 38677, United States
| | - Aftab Alam
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mohammad Ayman Salkini
- Department
of Pharmacognosy, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, PO Box 173, Al-Kharj 11942, Saudi Arabia
| | - Piyush Kumar
- Department
of Chemistry, Indian Institute of Technology, NH-44, PO Nagrota, Jagti, Jammu 181221, India
| |
Collapse
|
4
|
Linklater DP, Le Guével X, Bryant G, Baulin VA, Pereiro E, Perera PGT, Wandiyanto JV, Juodkazis S, Ivanova EP. Lethal Interactions of Atomically Precise Gold Nanoclusters and Pseudomonas aeruginosa and Staphylococcus aureus Bacterial Cells. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32634-32645. [PMID: 35758190 DOI: 10.1021/acsami.2c04410] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ultrasmall metal nanoclusters (NCs) are employed in an array of diagnostic and therapeutic applications due to their tunable photoluminescence, high biocompatibility, polyvalent effect, ease of modification, and photothermal stability. However, gold nanoclusters' (AuNCs') intrinsically antimicrobial properties remain poorly explored and are not well understood. Here, we share an insight into the antimicrobial action of atomically precise AuNCs based on their ability to passively translocate across the bacterial membrane. Functionalized by a hydrophilic modified-bidentate sulfobetaine zwitterionic molecule (AuNC-ZwBuEt) or a more hydrophobic monodentate-thiolate, mercaptohexanoic acid (AuNC-MHA) molecule, 2 nm AuNCs were lethal to both Gram-negative Pseudomonas aeruginosa and Gram-positive Staphylococcus aureus bacteria. The bactericidal efficiency was found to be bacterial strain-, time-, and concentration-dependent. The direct visualizations of the translocation of AuNCs and AuNC-cell and subcellular interactions were investigated using cryo-soft X-ray nano-tomography, transmission electron microscopy (TEM), and scanning TEM energy-dispersive spectroscopy analyses. AuNC-MHA were identified in the bacterial cytoplasm within 30 min, without evidence of the loss of membrane integrity. It is proposed that the bactericidal effect of AuNCs is attributed to their size, which allows for efficient energy-independent translocation across the cell membrane. The internalization of both AuNCs caused massive internal damage to the cells, including collapsed subcellular structures and altered cell morphology, leading to the eventual loss of cellular integrity.
Collapse
Affiliation(s)
- Denver P Linklater
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Xavier Le Guével
- Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences, University of Grenoble Alpes, Site Santé─Allée des Alpes, La Tronche 38700, France
| | - Gary Bryant
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| | - Vladimir A Baulin
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/ Marcel.lí Domingo s/n, Tarragona 43007, Spain
| | - Eva Pereiro
- MISTRAL Beamline-Experiments Division, ALBA Synchrotron Light Source, Cerdanyola del Vallès 08290, Barcelona, Spain
| | | | - Jason V Wandiyanto
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Saulius Juodkazis
- Optical Sciences Centre, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia
| | - Elena P Ivanova
- STEM College, School of Science, RMIT University, Melbourne, Victoria 3001, Australia
| |
Collapse
|
5
|
Mohammadi F, Gholami A, Omidifar N, Amini A, Kianpour S, Taghizadeh SM. The potential of surface nano-engineering in characteristics of cobalt-based nanoparticles and biointerface interaction with prokaryotic and human cells. Colloids Surf B Biointerfaces 2022; 215:112485. [PMID: 35367746 DOI: 10.1016/j.colsurfb.2022.112485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/01/2022] [Accepted: 03/24/2022] [Indexed: 01/07/2023]
Abstract
Cobalt-based nanoparticles (CBNPs) have recently received great attention in biomedical studies; however, the possible biotoxicity of these nanoparticles (NPs) has remained a foremost concern that should be addressed. As surface functionalization is one of the helpful proposed solutions, we aimed to apply Lipoamino acids (LAAs) as a coating agent to improve biocompatibility. To this purpose, cobalt oxide, cobalt ferrite, and iron oxide nanoparticles (IONs) were synthesized with and without 2-amino-hexadecanoic acid coating to assess the impacts of LAA coating on characteristics and biocompatibility of CBNPs in human cells and compare with IONs, a widely used magnetic NPs in biomedicine. Antibacterial activities of NPs were evaluated against four Gram-negative and Gram-positive bacteria species to assess their biointerface interaction with prokaryotic cells. In addition, the antibacterial activities of synthesized NPs were compared to silver NPs, one of the widely used antimicrobial NPs and standard antibiotics (ampicillin). The structural characteristics properties of NPs were analyzed using TEM, FE-SEM, EDS, FTIR, XRD, and VSM. These NPs exhibited sphere-like to polygon-like morphology with desirable mean size. CBNPs displayed dose-dependent cytotoxicity and antimicrobial activities against human cell lines and all tested microbial species, as well as more cytotoxicity and bacterial inhibition compared to IONs. Besides, the results revealed that LAA coating could significantly improve the biocompatibility and antibacterial activity of NPs while impacting magnetic properties. To sum up, it seems that surface functionalization could provide more potent tools for bioapplications with improving biocompatibility and bacterial inhibition of CBNPs, though; further studies are needed in this regard.
Collapse
Affiliation(s)
- Fatemeh Mohammadi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Navid Omidifar
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Pathology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Amini
- Centre for Infrastructure Engineering, Western Sydney University, Penrith 2751, NSW, Australia; Department of Mechanical Engineering, Australian University-Kuwait, Mishref, Safat 13015, Kuwait
| | - Sedigheh Kianpour
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran; Biotechnology Incubator, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
6
|
Yu C, Sui S, Yu X, Huang W, Wu Y, Zeng X, Chen Q, Wang J, Peng Q. Ti 3C 2T x MXene loaded with indocyanine green for synergistic photothermal and photodynamic therapy for drug-resistant bacterium. Colloids Surf B Biointerfaces 2022; 217:112663. [PMID: 35785716 DOI: 10.1016/j.colsurfb.2022.112663] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/08/2022] [Accepted: 06/24/2022] [Indexed: 02/08/2023]
Abstract
Infections caused by antibiotic-resistant bacteria are a critical threat to human health. Considering the difficulties and time-consuming nature of synthesizing new antibiotics, it is of great significance and importance to develop the antibiotic-independent antibacterial approaches against drug-resistant bacteria. Nanomaterials-based photothermal therapy (PTT) and photodynamic therapy (PDT) have attracted much attention due to their broad-spectrum bactericidal activity, low toxicity, and drug-free feature. In this work, we loaded indocyanine green (ICG) on the Ti3C2Tx MXene nanosheets (454 nm) so as to combine the photothermal effect of MXene with the photodynamic effect of ICG. Without near-infrared (NIR) irradiation, MXene (20 μg/mL), ICG (5 μg/mL) or ICG-loaded MXene (ICG-MXene) showed no significant antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Under NIR, however, the viability loss of MRSA remarkably increased to 45% for MXene, 66% for ICG and 100% for ICG-MXene. We further found that the great anti-MRSA activity of ICG-MXene under NIR was attributed to the combination of photothermal effect of MXene (high temperature) and photodynamic effect of ICG (high level of reactive oxygen species). Our findings indicate that MXene can be used as both the photothermal agent and the carrier of photosensitizers to achieve the synergistic PTT/PDT therapy for bacterial infections.
Collapse
Affiliation(s)
- Chenhao Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shangyan Sui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiaotong Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenlong Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xin Zeng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Ko WC, Wang SJ, Hsiao CY, Hung CT, Hsu YJ, Chang DC, Hung CF. Pharmacological Role of Functionalized Gold Nanoparticles in Disease Applications. Molecules 2022; 27:1551. [PMID: 35268651 PMCID: PMC8911979 DOI: 10.3390/molecules27051551] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Gold has always been regarded as a symbol of nobility, and its shiny golden appearance has always attracted the attention of many people. Gold has good ductility, molecular recognition properties, and good biocompatibility. At present, gold is being used in many fields. When gold particles are as small as several nanometers, their physical and chemical properties vary with their size in nanometers. The surface area of a nano-sized gold surface has a special effect. Therefore, gold nanoparticles can, directly and indirectly, give rise to different biological activities. For example, if the surface of the gold is sulfided. Various substances have a strong chemical reactivity and are easy to combine with sulfhydryl groups; hence, nanogold is often used in biomedical testing, disease diagnosis, and gene detection. Nanogold is easy to bind to proteins, such as antibodies, enzymes, or cytokines. In fact, scientists use nanogold to bind special antibodies, as a tool for targeting cancer cells. Gold nanoparticles are also directly cytotoxic to cancer cells. For diseases caused by inflammation and oxidative damage, gold nanoparticles also have antioxidant and anti-inflammatory effects. Based on these unique properties, gold nanoparticles have become the most widely studied metal nanomaterials. Many recent studies have further demonstrated that gold nanoparticles are beneficial for humans, due to their functional pharmacological properties in a variety of diseases. The content of this review will be the application of gold nanoparticles in treating or diagnosing pressing diseases, such as cancers, retinopathy, neurological diseases, skin disorders, bowel diseases, bone cartilage disorders, cardiovascular diseases, infections, and metabolic syndrome. Gold nanoparticles have shown very obvious therapeutic and application potential.
Collapse
Affiliation(s)
- Wen-Chin Ko
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (W.-C.K.); (S.-J.W.)
- Division of Cardiac Electrophysiology, Department of Cardiovascular Center, Cathay General Hospital, Taipei 10630, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (W.-C.K.); (S.-J.W.)
| | - Chien-Yu Hsiao
- Department of Nutrition and Health Science, Chang Guang University of Science and Technology, Taoyuan 33303, Taiwan;
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| | - Chen-Ting Hung
- Graduate Institute and Department of Pharmacology, National Taiwan University College of Medicine, Taipei 10051, Taiwan;
| | - Yu-Jou Hsu
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Der-Chen Chang
- Department of Mathematics and Statistics and Department of Computer Science, Georgetown University, Washington, DC 20057, USA;
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan; (W.-C.K.); (S.-J.W.)
- PhD Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|