1
|
Lu B, Shi J, Cheng T, Wang C, Xu M, Sun P, Zhang X, Yang L, Li P, Wu H, Kuai X. Chemokine ligand 14 correlates with immune cell infiltration in the gastric cancer microenvironment in predicting unfavorable prognosis. Front Pharmacol 2024; 15:1397656. [PMID: 38887558 PMCID: PMC11180770 DOI: 10.3389/fphar.2024.1397656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/30/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Gastric cancer (GC) is the world's third-leading cause of cancer-related mortality; the prognosis for GC patients remains poor in terms of a lack of reliable biomarkers for early diagnosis and immune therapy response prediction. Here, we aim to discover the connection between chemokine ligand 14 (CCL14) expression in the gastric tumor microenvironment (TME) and its clinical significance and investigate its correlation with immune cell infiltration. METHODS We assessed CCL14 mRNA expression and its interrelation with tumor-infiltrating immune cells (TILs) using bioinformatics analysis in gastric cancer. CCL14 protein expression, TILs, and immune checkpoints were detected by multiple immunohistochemistry analyses in gastric cancer tissue microarrays. Then, we conducted statistics analysis to determine the association between CCL14-related patient survival and immune cell infiltration (p < 0.05). RESULTS We found that the CCL14 protein was separately expressed in the carcinoma cells and TILs in stomach cancer tissues. The CCL14 protein was related to tumor differentiation and tumor depth and positively correlated with the presentation of LAG3 and PD-L1 in gastric cancer cells. In addition, the CCL14 protein in the TILs of gastric cancer tissues was related to Lauren's type cells, T cells (CD4+ and CD8+), and CD68+ macrophages in the TME. Kaplan-Meier survival and multivariate analyses showed that the CCL14 expression in gastric cancer cells was an independent prognostic factor. CONCLUSION Our study illustrated that CCL14 is a poor prognosis biomarker in gastric cancer, which may be associated with the potential for immunotherapy.
Collapse
Affiliation(s)
- Bing Lu
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Jiawen Shi
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
- Department of Pathology and Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Tong Cheng
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
- Department of Oncology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Congshuo Wang
- Department of Gastroenterology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Manyu Xu
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
- Department of Oncology, School of Medicine, Nantong University, Nantong, Jiangsu, China
| | - Pingping Sun
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Xiaojing Zhang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Lei Yang
- Department of Clinical Biobank, Nantong University Affiliated Hospital, Nantong, China
| | - Peng Li
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Han Wu
- Department of General Surgery, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Xiaoling Kuai
- Department of Gastroenterology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| |
Collapse
|
2
|
Wang T, Chen P, Li T, Li J, Zhao D, Meng F, Zhao Y, Zheng Z, Liu X. A Five-gene Signature based on MicroRNA for Predicting Prognosis and Immunotherapy in Stomach Adenocarcinoma. Curr Med Chem 2024; 31:2378-2399. [PMID: 38310388 DOI: 10.2174/0109298673281631231127051017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 02/05/2024]
Abstract
AIMS We aimed to classify molecular subtypes and establish a prognostic gene signature based on miRNAs for the prognostic prediction and therapeutic response in Stomach adenocarcinoma (STAD). BACKGROUND STAD is a common diagnosed gastrointestinal malignancy and its heterogeneity is a big challenge that influences prognosis and precision therapies. Present study was designed to classify molecular subtypes and construct a prognostic gene signature based on miRNAs for the prognostic prediction and therapeutic response in STAD. OBJECTIVE The objective of this study is to investigate the molecular subtypes and prognostic model for STAD. METHODS A STAD specific miRNA-messenger RNA (mRNA) competing endogenous RNA (ceRNA) network was generated using the RNA-Seq and miRNA expression profiles from The Cancer Genome Atlas (TCGA) database, in which miRNA-related mRNAs were screened. Molecular subtypes were then determined using miRNA-related genes. Through univariate Cox analysis and multivariate regression analysis, a prognostic model was established in GSE84437 Train dataset and validated in GSE84437 Test, TCGA, GSE84437 and GSE66229 datasets. Immunotherapy datasets were employed for assessing the performance of the risk model. Finally, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was applied to validate the expression of hub genes used for the risk score signature. RESULTS We constructed a ceRNA network containing 84 miRNAs and 907 mRNAs and determined two molecular subtypes based on 26 genes from the intersection of TCGASTAD and GSE84437 datasets. Subtype S2 had poor prognosis, lower tumor mutational burden, higher immune score and lower response to immunotherapy. Subtype S1 was more sensitive to Sorafenib, Pyrimethamine, Salubrinal, Gemcitabine, Vinorelbine and AKT inhibitor VIII. Next, a five-gene signature was generated and its robustness was validated in Test and external datasets. This risk model also had a good prediction performance in immunotherapy datasets. CONCLUSION This study promotes the underlying mechanisms of miRNA-based genes in STAD and offers directions for classification. A five-gene signature accurately predicts the prognosis and helps therapeutic options.
Collapse
Affiliation(s)
- Tianwei Wang
- Department of Radiology, China-Japan Union Hospital of Jilin University, Changchun, 13000, China
| | - Piji Chen
- Department of Clinical Laboratory, Yantian People's Hospital of Southern University of Science and Technology, Shenzhen, 518083, China
| | - Tingting Li
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
| | - Jianong Li
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
| | - Dong Zhao
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
| | - Fanfei Meng
- Department of Translational Medicine, YuceBio Technology Co., Ltd, Shenzhen, 518035, China
| | - Yujie Zhao
- Shenzhen Engineering Center for Translational Medicine of Precision Cancer Immunodiagnosis, YuceBio Technology Co., Ltd, Shenzhen, 518035, China
| | - Zhendong Zheng
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
- People's Hospital of Huzhu Tu Autonomous County, Haidong, Qinghai Province, 810500, China
| | - Xuefei Liu
- Department of Oncology, Northern Theater Command General Hospital, Shenyang, 110015, China
- People's Hospital of Huzhu Tu Autonomous County, Haidong, Qinghai Province, 810500, China
| |
Collapse
|
3
|
Mochimaru Y, Yoshida K. Functional Roles of DYRK2 as a Tumor Regulator. Curr Issues Mol Biol 2023; 45:8539-8551. [PMID: 37886981 PMCID: PMC10605165 DOI: 10.3390/cimb45100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/23/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023] Open
Abstract
The dual-specificity tyrosine phosphorylation-regulated kinase 2 (DYRK2) regulates the induction of apoptosis and DNA repair, metastasis inhibition, cell cycle G1/S transition, protein scaffold stability for E3 ligase complexes, and embryogenesis. Owing to these functions, DYRK2 is thought to regulate tumorigenesis, and its function in cancer has been investigated. Notably, DYRK2 has been reported to function as a tumor suppressor; however, it has also been reported to act as an oncogene in some cancers. This discrepancy makes it difficult to elucidate the conserved functions of DYRK2 in cancer. Here, we reviewed the functions of DYRK2 in various cancers. Patient tissue samples were evaluated for each cancer type. Although some studies have used cell lines and/or xenografts to elucidate the mechanism of DYRK2 function, these studies are not sufficient to understand the role of DYRK2 in cancers. In particular, studies using genetically modified mice would help us to understand the reported functional duality of DYRK2 in cancer.
Collapse
Affiliation(s)
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo 105-8461, Japan;
| |
Collapse
|
4
|
Kamioka H, Yogosawa S, Oikawa T, Aizawa D, Ueda K, Saeki C, Haruki K, Shimoda M, Ikegami T, Nishikawa Y, Saruta M, Yoshida K. Dyrk2 gene transfer suppresses hepatocarcinogenesis by promoting the degradation of Myc and Hras. JHEP Rep 2023; 5:100759. [PMID: 37333975 PMCID: PMC10275997 DOI: 10.1016/j.jhepr.2023.100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 03/06/2023] [Accepted: 03/21/2023] [Indexed: 06/20/2023] Open
Abstract
Background & Aims Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, and has a poor prognosis. However, the molecular mechanisms underlying hepatocarcinogenesis and progression remain unknown. In vitro gain- and loss-of-function analyses in cell lines and xenografts revealed that dual-specificity tyrosine-regulated kinase 2 (DYRK2) influences tumour growth in HCC. Methods To investigate the role of Dyrk2 during hepatocarcinogenesis, we developed liver-specific Dyrk2 conditional knockout mice and an in vivo gene delivery system with a hydrodynamic tail vein injection and the Sleeping Beauty transposon. The antitumour effects of Dyrk2 gene transfer were investigated in a murine autologous carcinogenesis model. Results Dyrk2 expression was reduced in tumours, and that its downregulation was induced before hepatocarcinogenesis. Dyrk2 gene transfer significantly suppressed carcinogenesis. It also suppresses Myc-induced de-differentiation and metabolic reprogramming, which favours proliferative, and malignant potential by altering gene profiles. Dyrk2 overexpression caused Myc and Hras degradation at the protein level rather than at the mRNA level, and this degradation mechanism was regulated by the proteasome. Immunohistochemical analyses revealed a negative correlation between DYRK2 expression and MYC and longer survival in patients with HCC with high-DYRK2 and low-MYC expressions. Conclusions Dyrk2 protects the liver from carcinogenesis by promoting Myc and Hras degradation. Our findings would pave the way for a novel therapeutic approach using DYRK2 gene transfer. Impact and Implications Hepatocellular carcinoma (HCC) is one of the most common cancers, with a poor prognosis. Hence, identifying molecules that can become promising targets for therapies is essential to improve mortality. No studies have clarified the association between DYRK2 and carcinogenesis, although DYRK2 is involved in tumour growth in various cancer cells. This is the first study to show that Dyrk2 expression decreases during hepatocarcinogenesis and that Dyrk2 gene transfer is an attractive approach with tumour suppressive activity against HCC by suppressing Myc-mediated de-differentiation and metabolic reprogramming that favours proliferative and malignant potential via Myc and Hras degradation.
Collapse
Affiliation(s)
- Hiroshi Kamioka
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Satomi Yogosawa
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| | - Tsunekazu Oikawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Daisuke Aizawa
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kaoru Ueda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Chisato Saeki
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Koichiro Haruki
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Toru Ikegami
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Kiyotsugu Yoshida
- Department of Biochemistry, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
5
|
Wu C, Sun G, Wang F, Chen J, Zhan F, Lian X, Wang J, Weng F, Li B, Tang W, Quan J, Xiang D. DYRK2 downregulation in colorectal cancer leads to epithelial-mesenchymal transition induction and chemoresistance. Sci Rep 2022; 12:22496. [PMID: 36577753 PMCID: PMC9797492 DOI: 10.1038/s41598-022-25053-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 12/29/2022] Open
Abstract
Colorectal cancer (CRC) is among the most prominent causes of cancer-associated mortality in the world, with chemoresistance representing one of the leading causes of treatment failure. However, the mechanisms governing such chemoresistance remain incompletely understood. In this study, the role of DYRK2 as a mediator of CRC cell drug resistance and the associated molecular mechanisms were assessed by evaluating human tumor tissue samples, CRC cell lines, and animal model systems. Initial analyses of The Cancer Genome Atlas database and clinical tissue microarrays revealed significant DYRK2 downregulation in CRC in a manner correlated with poor prognosis. We further generated LoVo CRC cells that were resistant to the chemotherapeutic drug 5-FU, and found that such chemoresistance was associated with the downregulation of DYRK2 and a more aggressive mesenchymal phenotype. When DYRK2 was overexpressed in these cells, their proliferative, migratory, and invasive activities were reduced and they were more prone to apoptotic death. DYRK2 overexpression was also associated with enhanced chemosensitivity and the inhibition of epithelial-mesenchymal transition (EMT) induction in these LoVo 5-FUR cells. Co-immunoprecipitation assays revealed that DYRK2 bound to Twist and promoted its proteasomal degradation. In vivo studies further confirmed that the overexpression of DYRK2 inhibited human CRC xenograft tumor growth with concomitant Twist downregulation. Overall, these results thus highlight DYRK2 as a promising therapeutic target in CRC worthy of further investigation.
Collapse
Affiliation(s)
- Chunrong Wu
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Guiyin Sun
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Fan Wang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Jiangyan Chen
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Fangbiao Zhan
- grid.190737.b0000 0001 0154 0904Department of Orthopedics, Chongqing University, Three Gorges Hospital, Wanzhou, Chongqing, 404000 China
| | - Xiaojuan Lian
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Jie Wang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Fanbin Weng
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Bo Li
- grid.190737.b0000 0001 0154 0904Department of Cardiology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China
| | - Weijun Tang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Jin Quan
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| | - Debing Xiang
- grid.190737.b0000 0001 0154 0904Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, 402260 China ,grid.452506.0Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, 402260 China
| |
Collapse
|
6
|
Cheng T, Jiang B, Xu M, Yuan C, Tai M, Wu H, Lu B, Sun P, Jiang X, Zhang X. NDUFS4 promotes tumor progression and predicts prognosis in gastric cancer. Carcinogenesis 2022; 43:980-987. [PMID: 36044738 DOI: 10.1093/carcin/bgac074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/10/2022] [Accepted: 08/30/2022] [Indexed: 01/13/2023] Open
Abstract
Gastric cancer ranked third worldwide in terms of mortality. The immediate priority is to search for new prognosticative or therapeutic targets. This research aims to examine the function of the NADH:ubiquinone oxidoreductase subunit S4 (NDUFS4) in the malignant phenotype of gastric carcinoma. We analyzed the correlation between NDUFS4 expression and gastric cancer via bioinformatics analysis and cancer tissue microarray via immunohistochemistry. Also, we detected the phenotype change in gastric cancer cells after NDUFS4 was downregulated. NDUFS4's high expression in gastric cancer tissues showed an association with terminal TNM stage and unfavorable survival. Furthermore, downregulation of NDUFS4 decreased gastric cancer cell proliferation, migration and invasion. Nude mouse models revealed that NDUFS4 promotes tumor growth. This investigation highlights the prognostic role of NDUFS4 in gastric cancer. Our results also creatively ascertained NDUFS4 as a candidate for gastric cancer therapeutic targets.
Collapse
Affiliation(s)
- Tong Cheng
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical school of Nantong University, Jiangsu 226001, China
| | - Boxuan Jiang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical school of Nantong University, Jiangsu 226001, China
| | - Manyu Xu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical school of Nantong University, Jiangsu 226001, China
| | - Chengzhe Yuan
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical school of Nantong University, Jiangsu 226001, China
| | - Mingliang Tai
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical school of Nantong University, Jiangsu 226001, China
| | - Han Wu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical school of Nantong University, Jiangsu 226001, China
| | - Bing Lu
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical school of Nantong University, Jiangsu 226001, China
| | - Pingping Sun
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical school of Nantong University, Jiangsu 226001, China
| | - Xiaohui Jiang
- Department of General Surgery, Nantong Tumor Hospital, Nantong, Jiangsu 226361, China
| | - Xiaojing Zhang
- Department of Clinical Biobank, Affiliated Hospital of Nantong University & Medical school of Nantong University, Jiangsu 226001, China
| |
Collapse
|
7
|
Ledenko M, Antwi SO, Arima S, Driscoll J, Furuse J, Klümpen HJ, Larsen FO, Lau DK, Maderer A, Markussen A, Moehler M, Nooijen LE, Shaib WL, Tebbutt NC, André T, Ueno M, Woodford R, Yoo C, Zalupski MM, Patel T. Sex-related disparities in outcomes of cholangiocarcinoma patients in treatment trials. Front Oncol 2022; 12:963753. [PMID: 36033540 PMCID: PMC9404243 DOI: 10.3389/fonc.2022.963753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/25/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Matthew Ledenko
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, United States
| | - Samuel O. Antwi
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL, United States
| | - Shiho Arima
- Department of Digestive and Lifestyle Diseases, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Julia Driscoll
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, United States
| | - Junji Furuse
- Department of Medical Oncology, Kyorin University Faculty of Medicine, Tokyo, Japan
| | - Heinz-Josef Klümpen
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam University Medical Center (UMC), Amsterdam, Netherlands
| | - Finn Ole Larsen
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark
| | - David K. Lau
- Oncogenic Transcription Laboratory, Olivia Newton-John Cancer and Research Institute, Melbourne, VIC, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, Australia
| | - Annett Maderer
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Alice Markussen
- Department of Oncology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Herlev, Denmark
| | - Markus Moehler
- First Department of Medicine, University Medical Center of the Johannes-Gutenberg University, Mainz, Germany
- Research Center for Immunotherapy (FZI), University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Lynn E. Nooijen
- Department of Surgery, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Walid L. Shaib
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Niall C. Tebbutt
- Department of Medical Oncology, Olivia Newton-John Cancer Centre at Austin Health, Heidelberg, VIC, Australia
| | - Thierry André
- Sorbonne University and Department of Medical Oncology, Hôpital Saint-Antoine, AP-HP, Paris, France
| | - Makoto Ueno
- Department of Gastroenterology, Hepatobiliary and Pancreatic Medical Oncology Division, Kanagawa Cancer Center, Kanagawa, Japan
| | - Rachel Woodford
- National Health and Medical Research Council Clinical Trials Centre (NHMRC CTC), Medical Foundation Building, University of Sydney, Camperdown, NSW, Australia
| | - Changhoon Yoo
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mark M. Zalupski
- Department of Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, United States
| | - Tushar Patel
- Department of Transplantation, Division of Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, FL, United States
| |
Collapse
|
8
|
Jiang S, Ding X, Wu Q, Cheng T, Xu M, Huang J. Identifying immune cells-related phenotype to predict immunotherapy and clinical outcome in gastric cancer. Front Immunol 2022; 13:980986. [PMID: 36032097 PMCID: PMC9402937 DOI: 10.3389/fimmu.2022.980986] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/25/2022] [Indexed: 12/09/2022] Open
Abstract
Background The tumor microenvironment is mainly composed of tumor-infiltrating immune cells (TIICs), fibroblast, extracellular matrix, and secreted factors. TIICs are often associated with sensitivity to immunotherapy and the prognosis of multiple cancers, yet the predictive role of individual cells on tumor prognosis is limited. Methods Based on single-sample gene set enrichment analysis, we combined three Gene Expression Omnibus (GEO) cohorts to build a TIIC model for risk stratification and prognosis prediction. The performance of the TIIC model was validated using our clinical cohort and the TCGA cohort. To assess the predictive power of the TIIC model for immunotherapy, we plotted the receiver operating characteristic curve with the IMvigor210 and GSE135222 cohorts. Results Chemokines, tumor-infiltrating immune cells, and immunomodulators differed between the two TIIC groups. The TIIC model was vital for predicting the outcome of immunotherapy. In our clinical samples, we verified that the expression levels of PD-1 and PD-L1 were higher in the low TIIC score group than in the high TIIC score group, both in the tumor and stroma. Conclusions Collectively, the TIIC model could provide a novel idea for immune cell targeting strategies in gastric cancer and predict the survival outcome of patients.
Collapse
Affiliation(s)
- Sutian Jiang
- Department of Clinical Biobank & The Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, China
- Department of Pathology, Lishui People’s Hospital, Lishui, China
| | - Xuzhong Ding
- Department of Clinical Biobank & The Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, China
- Department of Gastrointestinal Surgery, Lishui People’s Hospital, Lishui, China
| | - Qianqian Wu
- Department of Clinical Biobank & The Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Tong Cheng
- Department of Clinical Biobank & The Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Manyu Xu
- Department of Clinical Biobank & The Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| | - Jianfei Huang
- Department of Clinical Biobank & The Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, China
- *Correspondence: Jianfei Huang,
| |
Collapse
|