1
|
Li G, Pu Z, Guo S, Liu Z, Deng M, Liu N, Li Z. Durable and biocompatible low adhesion wound dressing material based on interfacial behaviors for wound management. Colloids Surf B Biointerfaces 2025; 247:114413. [PMID: 39613500 DOI: 10.1016/j.colsurfb.2024.114413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Wound-dressing adhesion is a problem that has not been effectively addressed in the field of wound care for bleeding or burn wounds. Design of low adhesion wound dressing materials by leveraging interfacial behaviors has been an effective solution to this problem. However, previously reported superhydrophobic low adhesion materials either had durability or biocompatibility issue. To bridge this gap, this study presents a durable and biocompatible superhydrophobic low adhesion wound dressing material, which is designed on a normal gauze substrate with biocompatible components using a hybrid coating strategy. Outstanding low adhesion properties have been verified in vivo with bleeding wound or burn wound, with a peeling force that is only 0.3 %-14.5 % of the conventional non-woven gauze. Prepared low adhesion materials can robustly retain their superhydrophobicity and blood-repelling properties against harsh tests. Moreover, their biocompatibility has been confirmed through a series of tests including cell biocompatibility, hemolysis and skin irritation tests. With these demonstrated merits, the durable and biocompatible low adhesion material developed in this study will provide an effective solution to the wound adhesion problem in the practice of wound management.
Collapse
Affiliation(s)
- Guohao Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Zuo Pu
- Department of Vascular Surgery, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; Peripheral vascular ward (Cardiac Surgery Ward 1), Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, China
| | - Shuang Guo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Zhuopeng Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Maosen Deng
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Na Liu
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China
| | - Zhe Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China; Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Sun Yat-Sen University, Guangzhou, Shenzhen 510006, China.
| |
Collapse
|
2
|
Chen Q, Xu Y, Feng J, Lv X, Fu X, Yuan S, Li Z. Hyperbranched Poly-L-Lysine-Based Water-Insoluble Complexes as Antibacterial Agents with Efficient Antibacterial Activity And Cytocompatibility. Macromol Biosci 2024; 24:e2300388. [PMID: 37950916 DOI: 10.1002/mabi.202300388] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Indexed: 11/13/2023]
Abstract
Despite the advances in technology, bacterial infection associated with biomedical devices is still one of the most challenging issues in clinical practice. Incorporation of antimicrobial agents is regarded as an efficient way to combat medical device associated infectious. However, most of antimicrobial agents have high toxicity to host cells. Thus, fabrication of novel antimicrobial agents that simultaneously fulfill the requirements of antibacterial activity as well as biocompatibility is urgently needed. Herein, a series of water-insoluble antibacterial complexes based on hyperbranched poly-L-lysine (HBPL) and four different surfactants through non-covalent interactions are developed. Such kinds of surfactants have great effects on the antibacterial property of poly(ɛ-caprolactone) (PCL) films that incorporate with the HBPL-based complexes. The results reveal that the PCL films that doped with HBPL/phosphate ester surfactant complexes showed the highest bacterial killing efficiency. Moreover, the cytocompatibility of the composite films is also investigated. Hemolysis experiments indicate that all the films had low hemolytic activities. Considering the excellent antimicrobial and cytocompatibility properties, this work believes that the optimized complexes have great potential to be used as antimicrobial agents in biomedical field.
Collapse
Affiliation(s)
- Qi Chen
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Yuanjing Xu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jingyi Feng
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xingshuang Lv
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiaohui Fu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
3
|
Teng X, Yao C, McCoy CP, Zhang S. Comparison of Superhydrophilic, Liquid-Like, Liquid-Infused, and Superhydrophobic Surfaces in Preventing Catheter-Associated Urinary Tract Infection and Encrustation. ACS Biomater Sci Eng 2024; 10:1162-1172. [PMID: 38183269 PMCID: PMC10865292 DOI: 10.1021/acsbiomaterials.3c01577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Over the past decade, superhydrophilic zwitterionic surfaces, slippery liquid-infused porous surfaces, covalently attached liquid-like surfaces, and superhydrophobic surfaces have emerged as the most promising strategies to prevent biofouling on biomedical devices. Despite working through different mechanisms, they have demonstrated superior efficacy in preventing the adhesion of biomolecules (e.g., proteins and bacteria) compared with conventional material surfaces. However, their potential in combating catheter-associated urinary tract infection (CAUTI) remains uncertain. In this research, we present the fabrication of these four coatings for urinary catheters and conduct a comparative assessment of their antifouling properties through a stepwise approach. Notably, the superhydrophilic zwitterionic coating demonstrated the highest antifouling activity, reducing 72.3% of fibrinogen deposition and over 75% of bacterial adhesion (Escherichia coli and Staphylococcus aureus) when compared with an uncoated polyvinyl chloride (PVC) surface. The zwitterionic coating also exhibited robust repellence against blood and improved surface lubricity, decreasing the dynamic coefficient of friction from 0.63 to 0.35 as compared with the PVC surface. Despite the fact that the superhydrophilic zwitterionic and hydrophobic liquid-like surfaces showed great promise in retarding crystalline biofilm formation in the presence of Proteus mirabilis, it is worth noting that their long-term antifouling efficacy may be compromised by the proliferation and migration of colonized bacteria as they are unable to kill them or inhibit their swarming. These findings underscore both the potential and limitations of these ultralow fouling materials as urinary catheter coatings for preventing CAUTI.
Collapse
Affiliation(s)
- Xiao Teng
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Chenghao Yao
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Colin P. McCoy
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| | - Shuai Zhang
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, U.K.
| |
Collapse
|
4
|
Xu Y, Chen Q, Xia L, Yuan S, Li Z. Fabrication of Oleophilic Polypeptide Nanoparticle from Complexing of Cross-Linked Epsilon-poly-l-lysine with Docusate Sodium for Preparation of Bactericidal Thermoplastic Polyurethanes. ACS Biomater Sci Eng 2024; 10:599-606. [PMID: 38153378 DOI: 10.1021/acsbiomaterials.3c01644] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Thermoplastic polyurethanes (TPUs) are extensively utilized in the biomedical field due to their exceptional mechanical properties and biocompatibility. However, the lack of antibacterial activity limits their application ranges. Nanoscopic particle-based additives with inherent antibacterial characteristics are regarded as promising strategies to prevent biomaterials-associated infection. Herein, a novel polymeric nanoparticle is prepared, which integrates chemically cross-linked epsilon-poly-l-lysine (CPL) and anionic surfactant-docusate sodium (DS). The cross-linked epsilon-poly-l-lysine/docusate sodium (CPL/DS) nanoparticle can be well dispersed in organic solvent and a polymer matrix, which is beneficial to endowing TPUs with synergistic miscibility and antibacterial properties. An antibacterial test showed that the CPL/DS nanoparticles have strong antibacterial activity against S. aureus. Moreover, the results of antibacterial experiments in vitro revealed that almost 100% of S. aureus could be killed by CPL/DS nanoparticle-embedded TPU film with a content of 0.5 wt %. In addition, all of the CPL/DS modified TPU films showed good cytocompatibility in vitro. Consequently, this kind of CPL/DS nanoplatform has great potential to serve as a safe and high-efficient bactericidal agent for endowing biomedical devices with bactericidal property.
Collapse
Affiliation(s)
- Yuanjing Xu
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Qi Chen
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Lin Xia
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, People's Republic of China
| |
Collapse
|
5
|
Wang S, Ren K, Zhang M, Shen L, Zhou G, Ding Y, Xin Q, Luo J, Xie J, Li J. Self-Adhesive, Strong Antifouling, and Mechanically Reinforced Methacrylate Hyaluronic Acid Cross-Linked Carboxybetaine Zwitterionic Hydrogels. Biomacromolecules 2024; 25:474-485. [PMID: 38114427 DOI: 10.1021/acs.biomac.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Hyaluronic acid and zwitterionic hydrogels are soft materials with poor mechanical properties. The unique structures and physiological properties make them attractive candidates for ideal hydrogel dressings, but the crux of lacking satisfying mechanical strengths and adhesive properties is still pendent. In this study, the physical cross-linking of dipole-dipole interactions of zwitterionic pairs was utilized to enhance the mechanical properties of hydrogels. The hydrogels have been prepared by copolymerizing methacrylate hyaluronic (HAGMA) with carboxybetaine methacrylamide (CBMAA) (the mass ratio of [HAGMA]/[CBMAA] is 2:5, 1:5, 1:10, or 1:20), obtaining HA-CB2.5, HA-CB5.0, HA-CB10.0, or HA-CB20.0 hydrogel. Therein, the HA-CB20.0 hydrogel with a high CBMAA content can generate a strong dipole-dipole interaction to form internal physical cross-links, exhibit stretchability and low elastic modulus, and withstand 99% compressive deformation and cyclic compression under strain at 90%. Moreover, the HA-CB20.0 hydrogel is adhesive to diverse substrates, including skin, glass, stainless steel, and plastic. The synergistic effect of HAGMA and CBMAA shows strong anti-biofouling, high water absorption, biodegradability under hyaluronidase, and biocompatibility.
Collapse
Affiliation(s)
- Shuaibing Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Kai Ren
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Miao Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Luxuan Shen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Guangwu Zhou
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, P. R. China
| | - Yuan Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Qiangwei Xin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jing Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P.R. China
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, P.R. China
- Med-X Center for Materials, Sichuan University, Chengdu 610041, P.R. China
| |
Collapse
|
6
|
Sun X, Chen Q, Guan AA, Yuan S, Li Z. Multifunctional Fluorinated Lubricant-Infused Poly(4-Hydroxybutyrate) (P4HB) Membranes for Full-Thickness Abdominal Wall Defect Repair. Macromol Biosci 2023; 23:e2300146. [PMID: 37243394 DOI: 10.1002/mabi.202300146] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/23/2023] [Indexed: 05/28/2023]
Abstract
Abdominal wall defect caused by surgical trauma, congenital rupture, or tumor resection may result in hernia formation or even death. Tension-free abdominal wall defect repair by using patches is the gold standard to solve such problems. However, adhesions following patch implantation remain one of the most challenging issues in surgical practice. The development of new kinds of barriers is key to addressing peritoneal adhesions and repairing abdominal wall defects. It is already well recognized that ideal barrier materials need to have good resistance to nonspecific protein adsorption, cell adhesion, and bacterial colonization for preventing the initial development of adhesion. Herein, electrospun poly(4-hydroxybutyrate) (P4HB) membranes infused with perfluorocarbon oil are used as physical barriers. The oil-infused P4HB membranes can greatly prevent protein attachment and reduce blood cell adhesion in vitro. It is further shown that the perfluorocarbon oil-infused P4HB membranes can reduce bacterial colonization. The in vivo study reveals that perfluoro(decahydronaphthalene)-infused P4HB membranes can significantly prevent peritoneal adhesions in the classic abdominal wall defects' model and accelerate defect repair, as evidenced by gross examination and histological evaluation. This work provides a safe fluorinated lubricant-impregnated P4HB physical barrier to inhibit the formation of postoperative peritoneal adhesions and efficiently repair soft-tissue defects.
Collapse
Affiliation(s)
- Xiuxia Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qi Chen
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Angelique A Guan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210, P. R. China
| | - Zhibo Li
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
7
|
Yang Y, Zhu Q, Xu LP, Zhang X. Bioinspired liquid-infused surface for biomedical and biosensing applications. Front Bioeng Biotechnol 2022; 10:1032640. [PMID: 36246360 PMCID: PMC9557121 DOI: 10.3389/fbioe.2022.1032640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/13/2022] [Indexed: 11/18/2022] Open
Abstract
Nature always inspires us to develop advanced materials for diverse applications. The liquid-infused surface (LIS) inspired by Nepenthes pitcher plants has aroused broad interest in fabricating anti-biofouling materials over the past decade. The infused liquid layer on the solid substrate repels immiscible fluids and displays ultralow adhesion to various biomolecules. Due to these fascinating features, bioinspired LIS has been applied in biomedical-related fields. Here, we review the recent progress of LIS in bioengineering, medical devices, and biosensing, and highlight how the infused liquid layer affects the performance of medical materials. The prospects for the future trend of LIS are also presented.
Collapse
Affiliation(s)
- Yuemeng Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Qinglin Zhu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Li-Ping Xu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
- *Correspondence: Li-Ping Xu, ; Xueji Zhang,
| | - Xueji Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
- *Correspondence: Li-Ping Xu, ; Xueji Zhang,
| |
Collapse
|
8
|
Yuan S, Sun X, Shen Y, Li Z. Bioactive Poly(4-hydroxybutyrate)/Poly(ethylene glycol) Fibrous Dressings Incorporated with Zinc Oxide Nanoparticles for Efficient Antibacterial Therapy and Rapid Clotting. Macromol Biosci 2022; 22:e2100524. [PMID: 35358371 DOI: 10.1002/mabi.202100524] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/09/2022] [Indexed: 11/08/2022]
Abstract
Antibacterial and hemostatic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shuaishuai Yuan
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.,National Engineering Laboratory of Medical Implantable Devices & Key Laboratory for Medical Implantable Devices of Shandong Province, WEGO Holding Company Limited, Weihai, 264210, P. R. China
| | - Xiuxia Sun
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Yong Shen
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| | - Zhibo Li
- Key Lab of Biobased Polymer Materials of Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China.,College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P.R. China
| |
Collapse
|