1
|
Guaya D, Debut A, Campoverde J. A Novel Approach to Waste Recycling and Dye Removal: Lithium-Functionalized Nanoparticle Zeolites. Molecules 2024; 29:4643. [PMID: 39407573 PMCID: PMC11478182 DOI: 10.3390/molecules29194643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
A zeolitic sample, named MT-ZLSH, was synthesized using mining tailings (MT) as the precursor material, resulting in a structure comprising: Linde type A (LTA) and sodalite-hydroxysodalite (ZLSH). This naming convention reflects the material's origin and its structural characteristics. The material was further modified by incorporating lithium, producing MT-ZLSH-Li+. Physicochemical characterizations were performed, and the material was evaluated for its potential to remove methylene blue (MB) from synthetic wastewater through adsorption and photocatalysis. Efficient adsorption was observed under typical wastewater pH conditions, with a maximum adsorption capacity of 23.4 mg·g-1, which fit well with the Langmuir isotherm model. The key mechanisms governing MB adsorption were identified as ion exchange, electrostatic attraction, and hydrogen bonding. The adsorption process was exothermic, with kinetic data fitting both the pseudo-second order and intraparticle diffusion models, achieving 82% removal and a maximum adsorption capacity of 40 mg·g-1 over 12 h. MB adsorption followed a two-step process, initially involving film diffusion, followed by intraparticle diffusion. Additionally, photocatalytic degradation of MB achieved 77% degradation within 180 min. However, a decrease in reusability was observed during a second cycle of MB adsorption and photodegradation, highlighting the need for further optimization to enhance the material's long-term performance.
Collapse
Affiliation(s)
- Diana Guaya
- Departmento de Química, Universidad Técnica Particular de Loja, Loja 110107, Ecuador;
| | - Alexis Debut
- Centro de Nanociencia Nanotechnología, Universidad de las Fuerzas Armadas ESPE, Sangolquí 171103, Ecuador;
| | - Jhuliana Campoverde
- Departmento de Química, Universidad Técnica Particular de Loja, Loja 110107, Ecuador;
| |
Collapse
|
2
|
Xu Y, Mou J, Dai J. VMT/ACP/Dextran composite nanosheets against dental caries through promoting mineralization of dentin tubules, pH buffering, and antibacterial. J Nanobiotechnology 2024; 22:490. [PMID: 39153990 PMCID: PMC11330022 DOI: 10.1186/s12951-024-02709-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/05/2024] [Indexed: 08/19/2024] Open
Abstract
Dental caries is a worldwide public healthcare concern, and is closely related to the acidic environment that caused by bacterial decomposition of food. In this study, a two-step ion exchange liquid-phase stripping method was applied to strip out vermiculite (VMT) nanosheets, then amorphous calcium phosphate (ACP) and dextran were inserted between the VMT nanosheets interlayer to obtain a composite two-dimension nanosheets (VMT/ACP/Dextran). VMT/ACP/Dextran composite nanosheets exhibited excellent biocompatibility and could provide exogenous Ca2+and PO43- from ACP, provide SiO44-, Mg2+, Fe2+ and obtain buffering pH and antibacterial properties from VMT, as well as improve suspension stability and targeting Streptococcus mutans through glucan. The in vitro study showed that the composite materials could promote the mineralization and sealing of dentin tubules by releasing active ions, buffer pH 4.5 (a value close to the pH in the dental plaque environment) to pH 6.6-7.1 (values close to the pH in human saliva) through ion exchange, and exert antibacterial effects by targeting Streptococcus mutans and exerting oxidase like and peroxidase like activities to produce reactive oxygen species (ROS). The in vivo animal study showed that daily cleaning teeth using VMT/ACP/Dextran composite nanosheets could effectively reduce the incidence rate and severity of dental caries in rats. Taking together, the developed VMT/ACP/Dextran composite nanosheets, which integrated the excellent properties of VMT, ACP and dextran, can effectively prevent dental caries through a combination of factors such as buffering acids, antibacterial properties, and promoting calcification, and may be used as an active ingredient for daily oral hygiene or filling materials to prevent and treat dental caries.
Collapse
Affiliation(s)
- Yanting Xu
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China
| | - Juan Mou
- The Key Laboratory of Resource Chemistry of Ministry of Education, Shanghai Key College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, China.
| | - Jiewen Dai
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, National Center for Stomatology, Shanghai Key Laboratory of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, National Clinical Research Center for Oral Diseases, No.639 Zhizaoju Road, Shanghai, 200011, China.
| |
Collapse
|
3
|
Boucherdoud A, Dahmani K, Seghier A, Douinat O, Kherroub DE, Bestani B. Experimental exploration and DFT analysis of the kinetics and mechanism of malachite green photodegradation catalyzed by polyaniline-copper oxide nanocomposite. J Mol Model 2024; 30:235. [PMID: 38951276 DOI: 10.1007/s00894-024-06039-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/21/2024] [Indexed: 07/03/2024]
Abstract
CONTEXT AND RESULTS A nanocomposite photocatalyst consisting of polyaniline (PANI) and copper oxide (CuO) was successfully synthesized through an in-situ polymerization approach using aniline as the precursor. The synthesized nanocomposite was characterized using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), UV-visible spectroscopy (UV-Vis), determination of the point of zero charge (pHPZC), and scanning electron microscopy (SEM). The photocatalytic efficiency of the PANI-CuO nanocomposite was evaluated in the context of photodegrading Malachite Green (MG) dye under visible light. Malachite Green, a synthetic dye commonly used in the textile and aquaculture industries, is a significant contaminant due to its toxic, mutagenic, and carcinogenic properties, making its removal from water resources crucial for environmental and human health. Distilled water artificially contaminated with MG dye was used as the medium for testing. The parameters influencing the photodegradation efficiency were comprehensively investigated. These parameters included catalyst dosage, reaction time, initial dye concentration, and pH. The results of this study indicate that the degradation efficiency of MG dye displayed an upward trend with time, catalyst dosage, and pH while exhibiting a converse relationship with the initial dye concentration. A degradation rate of 97% was achieved with an initial concentration of 20 mg L-1, employing a catalyst dose of 1.6 g L-1 at pH 6 for a reaction time of 180 min. Furthermore, the reusability of the catalyst was assessed, revealing consistent performance over five consecutive cycles. COMPUTATIONAL AND THEORETICAL TECHNIQUES Density functional theory (DFT) was employed to optimize the structures of PANI, PANI-CuO, and their respective complexes formed through dye interaction, employing Gaussian software. These calculations employed the B3LYP/6-311G + + (d,p) basis set in an aqueous environment with water serving as the solvent. The kinetics of Malachite Green degradation were analyzed using both first and second-order kinetic models.
Collapse
Affiliation(s)
- Ahmed Boucherdoud
- Laboratory of Environment and Sustainable Development, Faculty of Science and Technology, University of Relizane, 48000, Bourmadia, Algeria.
- Laboratory of Structure, Elaboration, and Application of Molecular Materials (SEA2M), Abdelhamid Ibn Badis University, Mostaganem, Algeria.
| | - Khedidja Dahmani
- Department of Process Engineering, Faculty of Science and Technology, University of Relizane, 48000, Bourmadia, Algeria
| | - Abdelkarim Seghier
- Laboratory of Environment and Sustainable Development, Faculty of Science and Technology, University of Relizane, 48000, Bourmadia, Algeria
| | - Oukacha Douinat
- Laboratory of Environment and Sustainable Development, Faculty of Science and Technology, University of Relizane, 48000, Bourmadia, Algeria
- Laboratory of Structure, Elaboration, and Application of Molecular Materials (SEA2M), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| | - Djamal Eddine Kherroub
- Laboratoire de Chimie des Polymères (LCP), Université d'Oran, 1 Ahmed Ben Bella, Oran, Algeria
| | - Benaouda Bestani
- Laboratory of Structure, Elaboration, and Application of Molecular Materials (SEA2M), Abdelhamid Ibn Badis University, Mostaganem, Algeria
| |
Collapse
|
4
|
Ayach J, Duma L, Badran A, Hijazi A, Martinez A, Bechelany M, Baydoun E, Hamad H. Enhancing Wastewater Depollution: Sustainable Biosorption Using Chemically Modified Chitosan Derivatives for Efficient Removal of Heavy Metals and Dyes. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2724. [PMID: 38893988 PMCID: PMC11173971 DOI: 10.3390/ma17112724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024]
Abstract
Driven by concerns over polluted industrial wastewater, particularly heavy metals and dyes, this study explores biosorption using chemically cross-link chitosan derivatives as a sustainable and cost-effective depollution method. Chitosan cross-linking employs either water-soluble polymers and agents like glutaraldehyde or copolymerization of hydrophilic monomers with a cross-linker. Chemical cross-linking of polymers has emerged as a promising approach to enhance the wet-strength properties of materials. The chitosan thus extracted, as powder or gel, was used to adsorb heavy metals (lead (Pb2+) and copper (Cu2+)) and dyes (methylene blue (MB) and crystal violet (CV)). Extensive analysis of the physicochemical properties of both the powder and hydrogel adsorbents was conducted using a range of analytical techniques, including Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and scanning electron microscopy (SEM), as well as 1H and 13C nuclear magnetic resonance (NMR). To gain a comprehensive understanding of the sorption process, the effect of contact time, pH, concentration, and temperature was investigated. The adsorption capacity of chitosan powder for Cu(II), Pb(II), methylene blue (MB), and crystal violet (CV) was subsequently determined as follows: 99, 75, 98, and 80%, respectively. In addition, the adsorption capacity of chitosan hydrogel for Cu(II), Pb(II), MB, and CV was as follows: 85, 95, 85, and 98%, respectively. The experimental data obtained were analyzed using the Langmuir, Freundlich, and Dubinin-Radushkevich isotherm models. The isotherm study revealed that the adsorption equilibrium is well fitted to the Freundlich isotherm (R2 = 0.998), and the sorption capacity of both chitosan powder and hydrogel was found to be exceptionally high (approximately 98%) with the adsorbent favoring multilayer adsorption. Besides, Dubinin has given an indication that the sorption process was dominated by Van der Waals physical forces at all studied temperatures.
Collapse
Affiliation(s)
- Jana Ayach
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 657314, Lebanon; (J.A.); (A.H.); (H.H.)
- CNRS, ICMR UMR 7312, University of Reims Champagne-Ardenne, 51687 Reims, France;
| | - Luminita Duma
- CNRS, ICMR UMR 7312, University of Reims Champagne-Ardenne, 51687 Reims, France;
| | - Adnan Badran
- Department of Nutrition, University of Petra, Amman P.O Box 961343, Jordan;
| | - Akram Hijazi
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 657314, Lebanon; (J.A.); (A.H.); (H.H.)
| | - Agathe Martinez
- CNRS, ICMR UMR 7312, University of Reims Champagne-Ardenne, 51687 Reims, France;
| | - Mikhael Bechelany
- Institut Européen des Membranes (IEM), UMR-5635, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), École Nationale Supérieure de Chimie de Montpellier (ENSCM), Place Eugène Bataillon, 34095 Montpellier, France
- Functional Materials Group, Gulf University for Science and Technology (GUST), Mubarak Al-Abdullah 32093, Kuwait
| | - Elias Baydoun
- Department of Biology, American University of Beirut, Beirut P.O. Box 110236, Lebanon;
| | - Hussein Hamad
- Research Platform for Environmental Science (PRASE), Doctoral School of Science and Technology, Lebanese University, Beirut P.O. Box 657314, Lebanon; (J.A.); (A.H.); (H.H.)
| |
Collapse
|
5
|
Ain QU, Rasheed U, Liu K, Chen Z, Tong Z. Synthesis of 2-amino-terephthalic acid crosslinked chitosan/bentonite hydrogel; an efficient adsorbent for anionic dyes and laccase. Int J Biol Macromol 2024; 258:128865. [PMID: 38154712 DOI: 10.1016/j.ijbiomac.2023.128865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/06/2023] [Accepted: 12/15/2023] [Indexed: 12/30/2023]
Abstract
This research article presents the fabrication of NH2-terephthalic acid crosslinked chitosan-bentonite composite, which adopted a facile synthesis approach and offered efficient adsorption capacity for organic dyes. A novel hydrogel material named CB 5:1 demonstrated remarkable adsorption for anionic dyes (Congo red (CR) and brilliant blue (BB)) while showing a negligible affinity for cationic dyes. Adsorption isotherm studies revealed the adsorption capacity of 4950 mg/g and 2053 mg/g (per g of composite's dry weight) for CR and BB following the Langmuir adsorption model. Kinetics and thermodynamic studies were also conducted while the adsorption of anionic dyes in the presence of metal ions, cationic dyes, anionic dyes, and in simulated water remained unaffected. Laccase, an industrially important enzyme, was also immobilized on CB 5:1 to achieve enzyme stability and reusability, resulting in a staggering immobilization capacity (4782 mg/g) at pH 6.0. Laccase immobilized product was employed to perform dye degradation (> 90 % for CR and > 75 % for BB), and the reusability was tested. Overall, our crosslinked product proved appealing for removing high concentrations of anionic organic dyes from polluted water and could be envisaged for practical use.
Collapse
Affiliation(s)
- Qurat Ul Ain
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, China; Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Usman Rasheed
- Institute of Applied Microbiology, College of Agriculture, Guangxi University, Nanning 530005, China
| | - Kun Liu
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China
| | - Zheng Chen
- Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, School of Civil Engineering and Architecture, Guangxi University, China
| | - Zhangfa Tong
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, China.
| |
Collapse
|
6
|
Wu R, Abdulhameed AS, Jawad AH, Yong SK, Li H, ALOthman ZA, Wilson LD, Algburi S. Development of a chitosan/nanosilica biocomposite with arene functionalization via hydrothermal synthesis for acid red 88 dye removal. Int J Biol Macromol 2023; 252:126342. [PMID: 37591432 DOI: 10.1016/j.ijbiomac.2023.126342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Herein, the polymer nanomatrix of chitosan/SiO2 (CHI/n-SiO2) was enriched with a π-π electron donor-acceptor system using diaromatic rings of benzil (BEZ) assisted via a hydrothermal process to obtain an effective adsorbent of chitosan-benzil/SiO2 (CHI-BEZ/n-SiO2). The polymer nanomatrix (CHI/n-SiO2) and the resulting adsorbent (CHI-BEZ/n-SiO2) were applied to remove the anionic acid red 88 (AR88) dye from aqueous media in a comparative mode. Box-Behnken design (BBD) was adopted to optimize AR88 adsorption onto CHI/n-SiO2 and CHI-BEZ/n-SiO2 with respect to variables that influence AR88 adsorption (adsorbent dose: 0.02-0.1 g/100 mL; pH: 4-10; and time: 10-90). The adsorption studies at equilibrium were conducted with a variety of initial AR88 dye concentrations (20-200 mg/L). The adsorption isotherm results reveal that the AR88 adsorption by CHI/n-SiO2 and CHI-BEZ/n-SiO2 are described by the Langmuir model. The kinetic adsorption profiles of AR88 with CHI/n-SiO2 and CHI-BEZ/n-SiO2 reveal that the pseudo-first-order model provides the best fit results. Interestingly, CHI-BEZ/n-SiO2 has a high adsorption capacity (261.2 mg/g), which exceeds the adsorption capacity of CHI/n-SiO2 (215.1 mg/g) that relates to the surface effects of SiO2 and the functionalization of chitosan with BEZ. These findings show that CHI-BEZ/n-SiO2 represents a highly efficient adsorbent for the removal of harmful pollutants from water, which outperforming the CHI/n-SiO2 system.
Collapse
Affiliation(s)
- Ruihong Wu
- Department of Chemistry, Hengshui University, 053500, Hebei Province, Hengshui, China; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Ali H Jawad
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Soon Kong Yong
- Soil Assessment and Remediation Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - He Li
- Department of Chemistry, Hengshui University, 053500, Hebei Province, Hengshui, China
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N5C9, Canada
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
7
|
Zhu H, Chen S, Duan H, He J, Luo Y. Removal of anionic and cationic dyes using porous chitosan/carboxymethyl cellulose-PEG hydrogels: Optimization, adsorption kinetics, isotherm and thermodynamics studies. Int J Biol Macromol 2023; 231:123213. [PMID: 36641019 DOI: 10.1016/j.ijbiomac.2023.123213] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023]
Abstract
Chitosan (CS)/carboxymethyl cellulose (CMC) porous hydrogels chemically crosslinked by epichlorohydrin were synthesized using polyethylene glycol (PEG) as a pore-forming agent for anionic (Congo red, CR) and cationic (methylene blue, MB) dyes removal from aqueous solutions. The swelling ratio of hydrogels prepared with 2 % CS and 2 % CMC (CS2/CMC2) exhibited optimal performance at different pHs. The addition of PEG into hydrogels (denoted as CS2/CMC2-PEG1.25) exhibited a significantly higher adsorption for CR and MB, increasing from 117.83 to 159.12 mg/g and 110.2 to 136 mg/g, respectively. The comprehensive analyses of Fourier transform infrared spectroscopy, thermalgravimetric study and scanning electron microscopy showed that CS2/CMC2-PEG1.25 hydrogels became more porous with no significant changes in intermolecular and intramolecular interactions, compared with CS2/CMC2 hydrogels. The adsorption process for CR and MB conformed to the pseudo-second-order and pseudo-first-order kinetics models, respectively. The results of adsorption isotherm for CR followed both Freundlich and Langmuir models with the maximum adsorption capacities of 1053.88 mg/g, whereas the isotherm for MB fitted the Langmuir model better with the maximum adsorption capacities of 331.72 mg/g. The thermodynamic study results proved that the CR and MB adsorption by hydrogels was spontaneous, but the CR adsorption was endothermic and the MB adsorption was exothermic.
Collapse
Affiliation(s)
- Honglin Zhu
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Sunni Chen
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States
| | - Hanyi Duan
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, CT 06269, United States
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
8
|
Zhong ZR, Jiang HL, Shi N, Lv HW, Liu ZJ, He FA. A novel tetrafluoroterephthalonitrile-crosslinked quercetin/chitosan adsorbent and its adsorption properties for dyes. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Pandey S, Makhado E, Kim S, Kang M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater - A review. ENVIRONMENTAL RESEARCH 2023; 217:114909. [PMID: 36455632 DOI: 10.1016/j.envres.2022.114909] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
One of the main problems with water pollution is dye contamination of rivers, industrial effluents, and water sources. It has endangered the world's sources of drinking water. Several remediation strategies have been carefully developed and tested to minimize this ominous picture. Due to their appealing practical and financial benefits, adsorption methods in particular are often listed as one of the most popular solutions to remediate dye-contaminated water. Biopolymer-based hydrogel nanocomposites are a cutting-edge class of materials with a wide range of applications that are effective in removing organic dyes from the environment. Since the incorporation of various materials into hydrogel matrices generated composite materials with distinct characteristics, these unique materials were often alluded to as ideal adsorbents. The fundamental emphasis of the conceptual and critical review of the literature in this research is the significant potential of hydrogel nanocomposites (HNCs) to remediate dye-contaminated water (especially for articles from the previous five years). The review also provides knowledge for the development of biopolymer-based HNCs, prospects, and opportunities for future research. It is also focused on optimum conditions for dye adsorption processes along with their adsorption kinetics and isotherm models. In summary, the information gained in this review research may contribute to a strengthened scientific rationale for the practical and efficient application of these novel adsorbent materials.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, 0727, Polokwane, South Africa
| | - Sujeong Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
10
|
Wan X, Rong Z, Zhu K, Wu Y. Chitosan-based dual network composite hydrogel for efficient adsorption of methylene blue dye. Int J Biol Macromol 2022; 222:725-735. [PMID: 36174861 DOI: 10.1016/j.ijbiomac.2022.09.213] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/19/2022] [Accepted: 09/24/2022] [Indexed: 11/24/2022]
Abstract
With the rapid development of the textile industry, a large amount of dyeing wastewater discharge has caused great harm to the ecological environment. In this work, a dual-network, composite hydrogel adsorbent with excellent mechanical properties, good reusability, and large adsorption capacity was prepared by introducing chitosan cross-linked polyvinylamine into the N,N'-methylenebisacrylamide cross-linked polyacrylic acid network. The dual cross-linking network gave the hydrogel excellent mechanical properties with maximum tensile stress and strain up to 1.9 MPa and 920 %. The adsorption capacity of methylene blue on hydrogel was up to 596.14 mg/g. In addition, the prepared hydrogel exhibited good reusability, and their adsorption efficiency remained above 85 % in five consecutive cycles. The adsorption behavior was well fitted by Pseudo-second-order kinetics and the Langmuir equation, indicating that the hydrogel was chemisorbed to the dye as a monolayer. The adsorption mechanism analysis showed that the electrostatic interactions and hydrogen bonding between the functional groups of the hydrogels and methylene blue molecules contributed to the good adsorption capacity. Overall, the synthesized composite hydrogels could be used as an efficient adsorbent for the removal of methylene blue dye, particularly from textile industry wastewater.
Collapse
Affiliation(s)
- Xiaoxiao Wan
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhihao Rong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Kaixuan Zhu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yumin Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|