1
|
Ishak SNH, Saad AHM, Latip W, Rahman RNZRA, Salleh AB, Kamarudin NHA, Leow ATC, Ali MSM. Enhancing industrial biocatalyst performance and cost-efficiency through adsorption-based enzyme immobilization: A review. Int J Biol Macromol 2025; 316:144278. [PMID: 40412684 DOI: 10.1016/j.ijbiomac.2025.144278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/02/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Various enzymes such as lipases, proteases and laccases have been extracted for use in various industrial applications. However, most natural enzymes possess characteristics that make them unsuitable for the harsh conditions often associated with industrial processes. To overcome these limitations, various methods and techniques have been developed to enhance the suitability of enzymes as industrial biocatalysts, making them a viable alternative to chemical catalysts. One of the most effective approaches is enzyme immobilization, which improves enzyme properties such as thermal stability, organic solvent stability, enhanced efficiency, catalytic performance, prolonged storage, operational stability, and reusability. These improved characteristics lower manufacturing costs and provide more effective catalysts, making them essential for industrial applications. Enzyme immobilization typically involves attaching the enzyme to a solid support, and the microenvironment including the pH of the binding solution and the nature of the support often influences the immobilization rate. Immobilization techniques also play a crucial role in the success of the process. The adsorption method is being widely used due to its simplicity and minimal impact on enzyme structure. Through hydrogen bonds, ionic interactions, Van der Waals forces, and hydrophobic interactions, this method preserves the enzyme's active site, making it the preferred choice in industrial settings.
Collapse
Affiliation(s)
- Siti Nor Hasmah Ishak
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| | - Afifah Husna Mat Saad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Wahhida Latip
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Abu Bakar Salleh
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Adam Thean Chor Leow
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
2
|
Suhag S, Yadav P, Sachdeva V, Lohan K, Luhach V, Hooda V. Enhancing cellulase performance through nanomaterials and MOFs: innovations and applications. Prep Biochem Biotechnol 2025:1-22. [PMID: 40266270 DOI: 10.1080/10826068.2025.2494105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Cellulase is widely utilized in industries such as biofuel production, food processing, textiles, and waste management due to its catalytic efficiency in breaking down cellulose. However, its industrial application is limited by instability under harsh conditions. This review examines innovative methodologies for enhancing cellulase performance through immobilization on nanomaterials, including magnetic nanoparticles, carbon-based nanomaterials, and metal-organic frameworks (MOFs). Immobilization techniques, such as adsorption, covalent bonding, and cross-linking, have been shown to significantly improve cellulase stability, activity, and reusability. Key findings include a threefold increase in catalytic efficiency when cellulase is immobilized on magnetic nanoparticles, alongside notable enhancements in thermal stability when employing MOF composites. Despite these advancements, challenges such as enzyme leakage, material costs, and scalability remain. Future opportunities lie in developing more cost-effective, scalable immobilization strategies, with interdisciplinary approaches offering the potential to further enhance enzyme efficiency across diverse application.
Collapse
Affiliation(s)
- Shashi Suhag
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Poonam Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Veena Sachdeva
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Khushi Lohan
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Vijeta Luhach
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| | - Vinita Hooda
- Department of Botany, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
3
|
Zhu C, Hong T, Mou M, Chen Y, Li Z, Zheng M, Jiang Z, Ni H, Zhu Y. Enzymatic Hydrolysates of κ-Carrageenan by κ-Carrageenase-Based Magnetic Cross-Linked Nanoflowers Confers Pancreatic Lipase Inhibition Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:4740-4754. [PMID: 39949068 DOI: 10.1021/acs.jafc.4c08696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
The immobilized κ-carrageenase MCNF was developed by synergistic integration of κ-carrageenase, calcium phosphate crystals, and magnetic nanoparticles. MCNF outperformed free κ-carrageenase in terms of optimal temperature, thermostability (45-55 °C), stability (pH 6.0 and 12.0), and storage stability. Furthermore, MCNF was extremely reusable and easy to separate from the reaction system. MCNF's enzymatic breakdown of κ-carrageenan resulted in a tetrasaccharide that competitively inhibited pancreatic lipase (PL). Fluorescence titration experiments showed that κ-carrageenan tetrasaccharide altered the microenvironment of PL by causing static bursting of its intrinsic fluorescence. The circular dichroism experiment demonstrated that adding κ-carrageenan tetrasaccharide reduced α-helix content and increased β-sheet content in PL's secondary structure. Molecular docking and dynamics simulation research suggested that the κ-carrageenan tetrasaccharide could form a stable complex with PL, entering its hydrophobic cavity and occupying its active site, reducing PL's catalytic activity. κ-Carrageenan tetrasaccharide could inhibit PL, making it a promising therapeutic agent for obesity prevention and treatment.
Collapse
Affiliation(s)
- Chunhua Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tao Hong
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Mingjing Mou
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yanhong Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Zhipeng Li
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Mingjing Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Hui Ni
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| | - Yanbing Zhu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China
- Research Center of Food Biotechnology of Xiamen City, Xiamen 361021, China
| |
Collapse
|
4
|
Hu Y, Gu Y, Tan J, Ding C, Yu X, Li Z, Lin H. Effective denitrification from landfill leachate using magnetic PVA/CMC/DE carrier immobilized microorganisms. WASTE MANAGEMENT (NEW YORK, N.Y.) 2025; 194:228-237. [PMID: 39823856 DOI: 10.1016/j.wasman.2025.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025]
Abstract
Ammonia nitrogen (NH4+-N) discharge has caused eutrophication of water bodies and harm to humans and organisms. In this work, polyvinyl alcohol (PVA), sodium carboxymethyl cellulose (CMC), diatomite (DE), and Fe3O4 were used to prepare magnetic immobilized carriers by encapsulating microorganisms for the treatment of NH4+-N wastewater. The response surface methodology was used to explore the optimal ratio of the immobilized carriers. The obtained optimal raw material ratio was 99.10 %. The obtained carriers are spherical (4-5 mm in diameter) with a rich honeycombed pore structure. The magnetic carrier improves the ammonia oxidation activity, and the carrier achieved 99.0 % of NH4+-N and 86.7 % of total nitrogen (TN) removal rates from the simulated wastewater (NH4+-N concentration: 300 mg/L) through nitrification and denitrification under aerobic conditions. Upon applied for a 60 days' treatment of landfill leachate (NH4+-N concentration of 300 mg/L), the daily removal rates for NH4+-N and TN reached 93.7 % and 78.3 %, respectively. The analysis of the microbial community showed that the abundances of heterotrophic nitrifying-aerobic denitrifying bacteria including Enterobacter, Pseudomonas, and Bacillus increased with prolonging treatment days, which accelerated nitrification and denitrification, consequently promoting the nitrogen removal effect.
Collapse
Affiliation(s)
- Yunshuang Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yufei Gu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiahui Tan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Chong Ding
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xinyi Yu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zhixia Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| | - Hongfei Lin
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| |
Collapse
|
5
|
Ariaeenejad S, Motamedi E. Carboxylated nanocellulose from quinoa husk for enhanced protease immobilization and stability of protease in biotechnological applications. Sci Rep 2025; 15:256. [PMID: 39747200 PMCID: PMC11696053 DOI: 10.1038/s41598-024-77292-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 10/21/2024] [Indexed: 01/04/2025] Open
Abstract
Herein, an efficient and feasible approach was developed to oxidize low-cost agricultural waste (quinoa husk, QS) for the synthesis of carboxylated nanocellulose (CNC). The as-prepared rod-like CNCs (average diameter of 10 nm and length of 103 nm) with a high specific surface area (173 m2/g) were utilized for the immobilization of a model protease enzyme (PersiProtease1) either physically or via covalent attachment. For chemical immobilization, CNCs were firstly functionalized with N, N'-dicyclohexylcarbodiimide (DCC) to provide DCNCs nanocarrier which could covalently bond to enzyme trough nucleophilic substitution reaction and formation of the amide bond between DCNCs and enzyme. The immobilization efficiency, activity, stability, kinetic parameters, and reusability of covalently attached and physically immobilized PersiProtease1 were similar to those of the free enzyme. Enzyme immobilization resulted in higher thermal stability of the enzyme at elevated temperatures (> 80 °C), and the covalently immobilized enzyme displayed higher reusability than its physically immobilized form (56% vs. 37% activity, after 15 consecutive cycles), which would be rooted in a more tightly attached and less leached enzyme in the case of PersiProtease1/DCNCs. This study demonstrates the significance of using agricultural by-products and the enhanced performance and stability of immobilized proteases.
Collapse
Affiliation(s)
- Shohreh Ariaeenejad
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - Elaheh Motamedi
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), P. O. Box: 31535-1897, Karaj, Iran.
| |
Collapse
|
6
|
Han Y, Zhang L, Yang W. Synthesis of Mesoporous Silica Using the Sol-Gel Approach: Adjusting Architecture and Composition for Novel Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:903. [PMID: 38869528 PMCID: PMC11173812 DOI: 10.3390/nano14110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The sol-gel chemistry of silica has long been used for manipulating the size, shape, and microstructure of mesoporous silica particles. This manipulation is performed in mild conditions through controlling the hydrolysis and condensation of silicon alkoxide. Compared to amorphous silica particles, the preparation of mesoporous silica, such as MCM-41, using the sol-gel approach offers several unique advantages in the fields of catalysis, medicament, and environment, due to its ordered mesoporous structure, high specific surface area, large pore volume, and easily functionalized surface. In this review, our primary focus is on the latest research related to the manipulation of mesoporous silica architectures using the sol-gel approach. We summarize various structures, including hollow, yolk-shell, multi-shelled hollow, Janus, nanotubular, and 2D membrane structures. Additionally, we survey sol-gel strategies involving the introduction of various functional elements onto the surface of mesoporous silica to enhance its performance. Furthermore, we outline the prospects and challenges associated with mesoporous silica featuring different structures and functions in promising applications, such as high-performance catalysis, biomedicine, wastewater treatment, and CO2 capture.
Collapse
Affiliation(s)
- Yandong Han
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Lin Zhang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
| | - Wensheng Yang
- Institute of Nanoscience and Engineering, Henan University, Zhengzhou 450000, China; (Y.H.); (L.Z.)
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
7
|
Xu L, Geng X, Li Q, Li M, Chen S, Liu X, Dai X, Zhu X, Wang X, Suo H. Calcium-based MOFs as scaffolds for shielding immobilized lipase and enhancing its stability. Colloids Surf B Biointerfaces 2024; 237:113836. [PMID: 38479261 DOI: 10.1016/j.colsurfb.2024.113836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/20/2024] [Accepted: 03/08/2024] [Indexed: 04/08/2024]
Abstract
The enzyme immobilization technology has become a key tool in the field of enzyme applications; however, improving the activity recovery and stability of the immobilized enzymes is still challenging. Herein, we employed a magnetic carboxymethyl cellulose (MCMC) nanocomposite modified with ionic liquids (ILs) for covalent immobilization of lipase, and used Ca-based metal-organic frameworks (MOFs) as the support skeleton and protective layer for immobilized enzymes. The ILs contained long side chains (eight CH2 units), which not only enhanced the hydrophobicity of the carrier and its hydrophobic interaction with the enzymes, but also provided a certain buffering effect when the enzyme molecules were subjected to compression. Compared to free lipase, the obtained CaBPDC@PPL-IL-MCMC exhibited higher specific activity and enhanced stability. In addition, the biocatalyst could be easily separated using a magnetic field, which is beneficial for its reusability. After 10 cycles, the residual activity of CaBPDC@PPL-IL-MCMC could reach up to 86.9%. These features highlight the good application prospects of the present immobilization method.
Collapse
Affiliation(s)
- Lili Xu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xinyue Geng
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Qi Li
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Moju Li
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Shu Chen
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiangnan Liu
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xusheng Dai
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Xiuhuan Zhu
- Liaocheng Customs of the People's Republic of China, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China.
| | - Hongbo Suo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, Shandong 252059, China.
| |
Collapse
|
8
|
Tikhonov BB, Lisichkin DR, Sulman AM, Sidorov AI, Bykov AV, Lugovoy YV, Karpenkov AY, Bronstein LM, Matveeva VG. Magnetic Nanoparticle Support with an Ultra-Thin Chitosan Layer Preserves the Catalytic Activity of the Immobilized Glucose Oxidase. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:700. [PMID: 38668193 PMCID: PMC11054521 DOI: 10.3390/nano14080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/12/2024] [Accepted: 04/16/2024] [Indexed: 04/29/2024]
Abstract
Here, we developed magnetically recoverable biocatalysts based on magnetite nanoparticles coated with an ultra-thin layer (about 0.9 nm) of chitosan (CS) ionically cross-linked by sodium tripolyphosphate (TPP). Excessive CS amounts were removed by multiple washings combined with magnetic separation. Glucose oxidase (GOx) was attached to the magnetic support via the interaction with N-hydroxysuccinimide (NHS) in the presence of carbodiimide (EDC) leading to a covalent amide bond. These steps result in the formation of the biocatalyst for D-glucose oxidation to D-gluconic acid to be used in the preparation of pharmaceuticals due to the benign character of the biocatalyst components. To choose the catalyst with the best catalytic performance, the amounts of CS, TPP, NHS, EDC, and GOx were varied. The optimal biocatalyst allowed for 100% relative catalytic activity. The immobilization of GOx and the magnetic character of the support prevents GOx and biocatalyst loss and allows for repeated use.
Collapse
Affiliation(s)
- Boris B. Tikhonov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Daniil R. Lisichkin
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexandrina M. Sulman
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexander I. Sidorov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexey V. Bykov
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Yury V. Lugovoy
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| | - Alexey Y. Karpenkov
- Department of Condensed Matter Physics, Tver State University, Zhelyabova St., 33, 170100 Tver, Russia;
| | - Lyudmila M. Bronstein
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
- Department of Chemistry, Indiana University, 800 E. Kirkwood Av., Bloomington, IN 47405, USA
| | - Valentina G. Matveeva
- Department of Biotechnology, Chemistry and Standardization, Tver State Technical University, 22 A. Nikitina Str., 170026 Tver, Russia; (B.B.T.); (D.R.L.); (A.M.S.); (A.I.S.); (A.V.B.); (Y.V.L.)
| |
Collapse
|
9
|
Xu X, Lin X, Ma W, Huo M, Tian X, Wang H, Huang L. Biodegradation strategies of veterinary medicines in the environment: Enzymatic degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169598. [PMID: 38157911 DOI: 10.1016/j.scitotenv.2023.169598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/12/2023] [Accepted: 12/20/2023] [Indexed: 01/03/2024]
Abstract
One Health closely integrates healthy farming, human medicine, and environmental ecology. Due to the ecotoxicity and risk of transmission of drug resistance, veterinary medicines (VMs) are regarded as emerging environmental pollutants. To reduce or mitigate the environmental risk of VMs, developing friendly, safe, and effective removal technologies is an important means of environmental remediation for VMs. Many previous studies have proved that biodegradation has significant advantages in removing VMs, and biodegradation based on enzyme catalysis presents higher operability and specificity. This review focused on biodegradation strategies of environmental pollutants and reviewed the enzymatic degradation of VMs including antimicrobial drugs, insecticides, and disinfectants. We reviewed the sources and catalytic mechanisms of peroxidase, laccase, and organophosphorus hydrolases, and summarized the latest research status of immobilization methods and bioengineering techniques in improving the performance of degrading enzymes. The mechanism of enzymatic degradation for VMs was elucidated in the current research. Suggestions and prospects for researching and developing enzymatic degradation of VMs were also put forward. This review will offer new ideas for the biodegradation of VMs and have a guide significance for the risk mitigation and detoxification of VMs in the environment.
Collapse
Affiliation(s)
- Xiangyue Xu
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xvdong Lin
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Wenjin Ma
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Meixia Huo
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Xiaoyuan Tian
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China
| | - Hanyu Wang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China
| | - Lingli Huang
- National Reference Laboratory of Veterinary Drug Residues (HZAU) and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Wuhan 430070, China; National Laboratory for Veterinary Drug Safety Evaluation, Huazhong Agriculture University, Wuhan 430070, China; College of Veterinary Medicine, Huazhong Agriculture University, Wuhan 430070, China.
| |
Collapse
|
10
|
Behram T, Pervez S, Nawaz MA, Ullah R, Khan AA, Ahmad B, Alanzai AM, Ahmad A, Jan AK, Rahman HU, Jamal M, Tour jan, Mohyuddin A, Khan NM, Ahmad S. Synthesis and analysis of silica nanocarriers for pectinase immobilization: Enhancing enzymatic stability for continuous industrial applications. Heliyon 2024; 10:e23549. [PMID: 38169865 PMCID: PMC10758773 DOI: 10.1016/j.heliyon.2023.e23549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Pectinolytic enzymes are among the important group of industrial enzymes that have wide applications in different food industries. In this study, pectinase-based silica nanocarriers were synthesized using co-precipitation and cross-linking techniques. The resulting silica nanoparticles were investigated using scanning electron microscopy (SEM), energy-dispersive electron microscopy (EDEX), and X-ray diffraction (XRD) for determination of its morphology, elemental composition, and crystalline pattern. Under the optimal immobilization conditions like 1.5 % glutaraldehyde, 3000 IU/mg pectinase concentration, 90 min immobilization time and 40 °C immobilization temperature, pectinase showed maximum immobilization yield. The immobilization of pectinase onto the silica nanocarriers led to enhanced catalytic characteristics, displaying higher enzymatic activity across various temperature and pH levels compared to soluble pectinase. Moreover, the immobilization substantially improved the temperature stability of pectinase, exhibiting 100 % of its initial activity even after 120 h of pre-incubation at 50 °C. Additionally, the silica nanocarrier pectinase retained 100 % of its original activity even after being reused 10 times in a single batch of reactions. These findings indicate that the immobilization of silica nanocarriers effectively enhances pectinase's industrial capabilities, making it economically feasible for industrial use and an efficient system for various biotechnological applications.
Collapse
Affiliation(s)
- Tayyaba Behram
- Department of Biotechnology, Shaheed Benazir Bhutto University Sheringal Dir (Upper), KPK, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University Peshawar, KPK, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University Sheringal Dir (Upper), KPK, Pakistan
| | - Rahim Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University Sheringal Dir (Upper), KPK, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Bushra Ahmad
- Department of Biochemistry, Shaheed Benazir Bhutto Women University Peshawar, KPK, Pakistan
| | - Amer M. Alanzai
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Asrar Ahmad
- Center for Sickle Cell Disease, College of Medicine, Howard University Washington DC, USA
| | - Abdul Khaliq Jan
- Department of Chemistry, Shaheed Benzir Bhutto University Sheringal Dir (Upper), Pakistan
| | - Haneef Ur Rahman
- Department of Chemistry, University of Turbat, Kech Baluchistan, Pakistan
| | - Muhsin Jamal
- Department of Microbiology, Abdul Wali Khan University Mardan, Pakistan
| | - Tour jan
- Department of Botany, University of Malakand, Chakdara, Pakistan
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Pakistan
| | - Nasir Mehmood Khan
- Department of Agriculture, Shaheed Benazir Bhutto University Sheringal Dir (Upper), KPK, Pakistan
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University Sheringal Dir (Upper), KPK, Pakistan
| |
Collapse
|
11
|
Azzouz A, Arus VA, Platon N. Role of Clay Substrate Molecular Interactions in Some Dairy Technology Applications. Int J Mol Sci 2024; 25:808. [PMID: 38255881 PMCID: PMC10815404 DOI: 10.3390/ijms25020808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
The use of clay materials in dairy technology requires a multidisciplinary approach that allows correlating clay efficiency in the targeted application to its interactions with milk components. For profitability reasons, natural clays and clay minerals can be used as low-cost and harmless food-compatible materials for improving key processes such as fermentation and coagulation. Under chemical stability conditions, clay materials can act as adsorbents, since anionic clay minerals such as hydrotalcite already showed effectiveness in the continuous removal of lactic acid via in situ anion exchange during fermentation and ex situ regeneration by ozone. Raw and modified bentonites and smectites have also been used as adsorbents in aflatoxin retention and as acidic species in milk acidification and coagulation. Aflatoxins and organophilic milk components, particularly non-charged caseins around their isoelectric points, are expected to display high affinity towards high silica regions on the clay surface. Here, clay interactions with milk components are key factors that govern adsorption and surface physicochemical processes. Knowledge about these interactions and changes in clay behavior according to the pH and chemical composition of the liquid media and, more importantly, clay chemical stability is an essential requirement for understanding process improvements in dairy technology, both upstream and downstream of milk production. The present paper provides a comprehensive review with deep analysis and synthesis of the main findings of studies in this area. This may be greatly useful for mastering milk processing efficiency and envisaging new prospects in dairy technology.
Collapse
Affiliation(s)
- Abdelkrim Azzouz
- NanoQam, Department of Chemistry, University of Quebec, Montréal, QC H3C 3P8, Canada
- Station Expérimentale des Procédés Pilotes Environnementaux (STEPPE), École de Technologie Supérieure, Montréal, QC H3C 1K3, Canada
| | - Vasilica Alisa Arus
- Catalysis and Microporous Materials Laboratory, Vasile-Alecsandri University of Bacau, 600115 Bacău, Romania; (V.A.A.); (N.P.)
| | - Nicoleta Platon
- Catalysis and Microporous Materials Laboratory, Vasile-Alecsandri University of Bacau, 600115 Bacău, Romania; (V.A.A.); (N.P.)
| |
Collapse
|
12
|
Huang M, Luo Z, Zhang Q, Zeng Q, Sun B, Li H, Zhang P, Tang K. Encapsulation of lipase in zeolitic imidazolate framework-8 induced by polyethyleneimine to form a honeycomb structure with enhanced activity. Int J Biol Macromol 2024; 254:127787. [PMID: 37924919 DOI: 10.1016/j.ijbiomac.2023.127787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/21/2023] [Accepted: 10/28/2023] [Indexed: 11/06/2023]
Abstract
Embedding an enzyme in the metal-organic frameworks (MOFs) gives good protection to the fragile enzyme. However, this may also restrain the enzyme activity because of the decreased substrate accessibility. Encapsulation of lipase AK from Pseudomonas fluorescens for preparing the enzyme-MOF composite (AK@ZIF-8-PEI) was performed through a new strategy based on polyethyleneimine and enzyme induced in-situ growth of zeolitic imidazolate framework-8 (ZIF-8). Characterizations indicate that AK@ZIF-8-PEI has a honeycomb structure and the hierarchical porosity formed during the preparation, which provides adequate mass transfer channels for catalytic applications. Activity evaluation shows that specific activity of AK@ZIF-8-PEI is 8-fold than the commercial lipase powder. AK@ZIF-8-PEI is demonstrated as an efficient catalyst in kinetic resolution of α-naphthol enantiomers through enantioselective transesterification. Within 12 h, the conversion and substrate enantiomeric excess (ees) reaches 49.8 % and 96.4 %, achieving an improved resolution than previous researches.
Collapse
Affiliation(s)
- Meiai Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Zhuolin Luo
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Qian Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Quan Zeng
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Bizhu Sun
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| | - Hao Li
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
| | - Panliang Zhang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China.
| | - Kewen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, Hunan, China
| |
Collapse
|
13
|
Wang F, Xu H, Wang M, Yu X, Cui Y, Xu L, Ma A, Ding Z, Huo S, Zou B, Qian J. Application of Immobilized Enzymes in Juice Clarification. Foods 2023; 12:4258. [PMID: 38231709 DOI: 10.3390/foods12234258] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 11/23/2023] [Indexed: 01/19/2024] Open
Abstract
Immobilized enzymes are currently being rapidly developed and are widely used in juice clarification. Immobilized enzymes have many advantages, and they show great advantages in juice clarification. The commonly used methods for immobilizing enzymes include adsorption, entrapment, covalent bonding, and cross-linking. Different immobilization methods are adopted for different enzymes to accommodate their different characteristics. This article systematically reviews the methods of enzyme immobilization and the use of immobilized supports in juice clarification. In addition, the mechanisms and effects of clarification with immobilized pectinase, immobilized laccase, and immobilized xylanase in fruit juice are elaborated upon. Furthermore, suggestions and prospects are provided for future studies in this area.
Collapse
Affiliation(s)
- Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Miaomiao Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaolei Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- Institute of Agricultural Products Processing Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Anzhou Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Bin Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
14
|
Zheng L, Jin W, Xiong K, Zhen H, Li M, Hu Y. Nanomaterial-based biosensors for the detection of foodborne bacteria: a review. Analyst 2023; 148:5790-5804. [PMID: 37855707 DOI: 10.1039/d3an01554h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Ensuring food safety is a critical concern for the development and well-being of humanity, as foodborne illnesses caused by foodborne bacteria have increasingly become a major public health concern worldwide. Traditional food safety monitoring systems are expensive and time-consuming, relying heavily on specialized equipment and operations. Therefore, there is an urgent need to develop low-cost, user-friendly and highly sensitive biosensors for detecting foodborne bacteria. In recent years, the combination of nanomaterials with optical biosensors has provided a prospective future platform for the detection of foodborne bacteria. By harnessing the unique properties of nanomaterials, such as their high surface area-to-volume ratio and exceptional sensitivity, in tandem with the precision of optical biosensing techniques, a new prospect has opened up for the rapid and accurate identification of potential bacterial contaminants in food. This review focuses on recent advances and new trends of nanomaterial-based biosensors for the detection of foodborne pathogens, which mainly include noble metal nanoparticles (NMPs), metal organic frameworks (MOFs), graphene nanomaterials, quantum dot (QD) nanomaterials, upconversion fluorescent nanomaterials (UCNPs) and carbon dots (CDs). Additionally, we summarized the research progress of color indicators, nanozymes, natural enzyme vectors and fluorescent dye biosensors, focusing on the advantages and disadvantages of nanomaterial-based biosensors and their development prospects. This review provides an outlook on future technological directions and potential applications to help identify the most promising areas of development in this field.
Collapse
Affiliation(s)
- Lingyan Zheng
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Wen Jin
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Ke Xiong
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Hongmin Zhen
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
- Beijing Laboratory for Food Quality and Safety, Beijing Technology & Business University (BTBU), Beijing, 100048, China
- Beijing Innovation Centre for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - Mengmeng Li
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| | - Yumeng Hu
- Beijing Engineering and Technology Research Centre of Food Additives, Beijing Technology & Business University (BTBU), Beijing, 100048, China.
| |
Collapse
|
15
|
Zhang W, Zhang Z, Ji L, Lu Z, Liu R, Nian B, Hu Y. Laccase immobilized on nanocomposites for wastewater pollutants degradation: current status and future prospects. Bioprocess Biosyst Eng 2023; 46:1513-1531. [PMID: 37458833 DOI: 10.1007/s00449-023-02907-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/06/2023] [Indexed: 11/01/2023]
Abstract
The bio-enzyme degradation technology is a promising approach to sustainably remove pollution in the water and laccase is one of the most widely used enzymes in this area. Nevertheless, the further industrial application of laccase is limited by low stability, short service, low reusability and high price. The immobilization technology can significantly improve the stability and reusability of enzymes and thus promoting their industrial applications. Nanocomposite materials have been developed and applied in the efficient immobilization of laccase due to their superior physical, chemical, and biological performance. This paper presents a comprehensive review of various nanocomposite immobilization methods for laccase and the consequent changes in enzymatic properties post-immobilization. Additionally, a comprehensive analysis is conducted on the factors that impact laccase immobilization and its water removal efficiency. Furthermore, this review examines the effectiveness of common contaminants' removal mechanisms while summarizing and discussing issues related to laccase immobilization on nanocomposite carriers. This review aims to provide valuable guidance for enhancing laccase immobilization efficiency and enzymatic water pollutant removal.
Collapse
Affiliation(s)
- Wei Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zhen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Liran Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Zeping Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Runtang Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China
| | - Binbin Nian
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
16
|
Yang L, Wei J, Feng W. Co-immobilization of galactose oxidase, catalase, and Mn-superoxide dismutase for efficient conversion of 5-hydroxymethylfurfural to 2,5-diformylfuran in water. Colloids Surf B Biointerfaces 2023; 231:113541. [PMID: 37722253 DOI: 10.1016/j.colsurfb.2023.113541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/02/2023] [Accepted: 09/10/2023] [Indexed: 09/20/2023]
Abstract
The three enzymes galactose oxidase (GO), catalase (CAT), and Mn-superoxide dismutase (SOD) were simultaneously immobilized by coordinating to CuII in phosphate buffer saline. The biocatalyst GO&CAT&SOD@CuII was used for the conversion of 5-hydroxymethylfurfural (HMF). The immobilized GO catalyzes the oxidation of HMF to 2,5-diformylfuran (DFF), concomitantly the co-substrate O2 is reduced to hydrogen peroxide (H2O2). A portion of the byproduct H2O2 is broken down to O2 and H2O by the co-immobilized CAT, and the evolved O2 can be recycled and used as the co-substrate. A portion of the byproduct H2O2 is broken down to produce hydroxyl radicals •OH under the synergistic catalysis of the immobilized SOD and coordinated CuII, and the produced •OH can reactivate the immobilized galactose oxidase. Two aspects contribute to the high catalytic efficiency by GO&CAT&SOD@CuII: the reactivation of the immobilized galactose oxidase by producing •OH and the enrichment of the co-substate O2 by recycling the produced O2. For the conversion of 10 mM HMF, GO&CAT&SOD@CuII (with encapsulated GO 0.2 mg/mL) achieved 97% HMF conversion within 2 h reaction. In contrast, free galactose oxidase M3-5 variant (ACS Catalysis 2018, 8, 4025) (0.2 mg/mL) achieved 25.3% HMF conversion within 2 h reaction. All the reactions were carried out in pure water, not in PBS.
Collapse
Affiliation(s)
- Lu Yang
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jiaxing Wei
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Wei Feng
- Department of Biological Engineering, Beijing University of Chemical Technology, Beijing, China.
| |
Collapse
|
17
|
Bai Y, Jing Z, Ma R, Wan X, Liu J, Huang W. A critical review of enzymes immobilized on chitosan composites: characterization and applications. Bioprocess Biosyst Eng 2023; 46:1539-1567. [PMID: 37540309 DOI: 10.1007/s00449-023-02914-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/21/2023] [Indexed: 08/05/2023]
Abstract
Enzymes with industrial significance are typically used in biological processes. However, instability, high sensitivity, and impractical recovery are the major drawbacks of enzymes in practical applications. In recent years, the immobilization technology has attracted wide attention to overcoming these restrictions and improving the efficiency of enzyme applications. Chitosan (CS) is a unique functional substance with biocompatibility, biodegradability, non-toxicity, and antibacterial properties. Chitosan composites are anticipated to be widely used in the near future for a variety of purposes, including as supports for enzyme immobilization, because of their advantages. Therefor this review explores the effects of the chitosan's structure, molecular weight, degree of deacetylation on the enzyme immobilized, effect of key factors, and the enzymes immobilized on chitosan based composites for numerous applications, including the fields of biosensor, biomedical science, food industry, environmental protection, and industrial production. Moreover, this study carefully investigates the advantages and disadvantages of using these composites as well as their potential in the future.
Collapse
Affiliation(s)
- Yuan Bai
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
- Key Laboratory of Yellow River Water Environment in Gansu Province, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China.
| | - Zongxian Jing
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Rui Ma
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Xinwen Wan
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Jie Liu
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| | - Weiting Huang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, People's Republic of China
| |
Collapse
|
18
|
Sha Y, Tang T, Zhao Y, Li M, Rao Y, Zhuang W, Ying H. Construction of co-immobilized multienzyme systems using DNA-directed immobilization technology and multifunctionalized nanoparticles. Colloids Surf B Biointerfaces 2023; 229:113443. [PMID: 37437412 DOI: 10.1016/j.colsurfb.2023.113443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/14/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
The multienzyme co-immobilization systems with high cascade catalytic efficiency and selectivity have attracted considerable attention. In this study, through DNA-directed immobilization (DDI) technology, two model enzymes, glucose oxidase (GOD) and horseradish peroxide (HRP) were co-immobilized on the multifunctional silica nanoparticles (DDI enzyme). In addition to the directional distribution promoted by DNA complementary chains, the multienzyme system allowed the control of the stoichiometric ratio of the enzymes by adjusting the ratio of amino/carboxyl groups. The optimal mole ratio of GOD/HRP was 1:2, while the protein loading amount could reach 8.06 mg·g-1. Compared with the conventional direct adsorption, the catalytic activity of the DDI enzyme was 2.49 times higher. Moreover, with the enhancement of thermal and mechanical stability, the DDI enzyme could still retain at least 50% of its initial activity after 12 cycles. Accompanied by an excellent response and good selectivity, the constructed multienzyme systems simultaneously showed the potential as a glucose detector. Therefore, based on the DDI technology, the highly efficient multienzyme co-immobilization system could be further extended for a wider range of research fields.
Collapse
Affiliation(s)
- Yu Sha
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China
| | - Ting Tang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ye Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyu Li
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yuan Rao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wei Zhuang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China; State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Technique Research Center for Biotechnology, Nanjing Tech University, No. 30, Puzhu South Road, Nanjing 211816, China.
| |
Collapse
|
19
|
Farhan BA, Zhihe L, Ali S, Shah TA, Zhiyu L, Zhang A, Javed S, Asad M. Multiple strategies for the development of multienzyme complex for one-pot reactions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:64904-64931. [PMID: 37097560 DOI: 10.1007/s11356-023-27098-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/13/2023] [Indexed: 05/17/2023]
Abstract
The main intention in the modern era is to make life and activities on earth more comfortable by adding necessary products through biological machinery. Millions of tons of biological raw materials and lignocellulosic biomass are wasted by burning each year without providing benefits to living organisms. Instead of being the cause of disturbing the natural environment by increasing global warming and pollutants worldwide, now, it is the need of the hour to develop an advanced strategy to utilize these biological raw materials to produce renewable energy resources to meet the energy crisis. The review presents the idea of multiple enzymes in one step to hydrolyze complex biomaterials into useful products. The paper discusses how multiple enzymes are arranged in a cascade for complete hydrolysis of raw material in one-pot to prevent multistep, time consuming, and expensive methods. Furthermore, there was the immobilization of multiple enzymes in a cascade system with in vitro and in vivo conditions for reusability of enzymes. The role of genetic engineering, metabolic engineering, and random mutation techniques is described for the development of multiple enzyme cascades. Techniques that are involved in the improvement of native strain to recombinant strain for the enhancement of hydrolytic capacity were used. The preparative steps, before enzymatic hydrolysis like acid, and base treatment methods are more effective for improving the hydrolysis of biomass by multiple enzymes in a one-pot system. Finally, the applications of one-pot multienzyme complexes in biofuel production from lignocellulosic biomass, biosensor production, medicine, food industry, and the conversion of biopolymers into useful products are described.
Collapse
Affiliation(s)
- Bahzad Ahmad Farhan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, Pakistan
| | - Li Zhihe
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China
| | - Shehbaz Ali
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China.
| | - Li Zhiyu
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China
| | - Andong Zhang
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, 255000, China
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad, Pakistan
| | - Muhammad Asad
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Arvizu I, García-Reyes R, Pech-Canul M, García-González A. Evaluating the role of laccase immobilized TiO2 for potential use as biocathode in microbial electrolysis cell. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
21
|
Zheng Z, Liu W, Zhou Q, Li J, Zeb A, Wang Q, Lian Y, Shi R, Wang J. Effects of co-modified biochar immobilized laccase on remediation and bacterial community of PAHs-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130372. [PMID: 36444066 DOI: 10.1016/j.jhazmat.2022.130372] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/27/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Considering the stability and economy of immobilized enzymes, this study prepared co-modified biochar immobilized laccase product named Fe3O4@NaBC@GA@LC via orthogonal experimental design and explored its possibility of remediating polycyclic aromatic hydrocarbons (PAHs) contaminated soil in steel plants. Compared with the free laccase treatment, the relative activity of Fe3O4@NaBC@GA@LC remained 60 % after 50 days of incubation at room temperature. The relative activity of Fe3O4@NaBC@GA@LC could still retain nearly 80 % after five reuses. In the process of simulating the PAHs-contaminated site treatment experiment in Hangzhou Iron and steel plant, immobilized laccase exhibited efficient adsorption and degradation performances and even the removal rate of 5-ring PAHs reached more than 90 % in 40 days, resulting in improving urease activity and dehydrogenase in the soil and promoted the growth of a PAH degrading bacteria (Massilia). Our results further explained the efficient degradation effects of Fe3O4@NaBC@GA@LC on PAHs, which make it a promising candidate for PAHs-contaminated soil remediation.
Collapse
Affiliation(s)
- Zeqi Zheng
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Weitao Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jiantao Li
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Aurang Zeb
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qi Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yuhang Lian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Ruiying Shi
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Jianlin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education (MOE), College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Tianjin Key Laboratory of Urban Ecology Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
22
|
Immobilized Enzyme-based Novel Biosensing System for Recognition of Toxic Elements in the Aqueous Environment. Top Catal 2023. [DOI: 10.1007/s11244-023-01786-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
23
|
In-situ growth of enzyme/copper phosphate hybrids on carbon cloth surface as self-powered electrochemical glucose biosensor. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
24
|
Behram T, Pervez S, Nawaz MA, Ahmad S, Jan AU, Rehman HU, Ahmad S, Khan NM, Khan FA. Development of Pectinase Based Nanocatalyst by Immobilization of Pectinase on Magnetic Iron Oxide Nanoparticles Using Glutaraldehyde as Crosslinking Agent. Molecules 2023; 28:molecules28010404. [PMID: 36615596 PMCID: PMC9823745 DOI: 10.3390/molecules28010404] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
To increase its operational stability and ongoing reusability, B. subtilis pectinase was immobilized on iron oxide nanocarrier. Through co-precipitation, magnetic iron oxide nanoparticles were synthesized. Scanning electron microscopy (SEM) and energy dispersive electron microscopy (EDEX) were used to analyze the nanoparticles. Pectinase was immobilized using glutaraldehyde as a crosslinking agent on iron oxide nanocarrier. In comparison to free pectinase, immobilized pectinase demonstrated higher enzymatic activity at a variety of temperatures and pH levels. Immobilization also boosted pectinase's catalytic stability. After 120 h of pre-incubation at 50 °C, immobilized pectinase maintained more than 90% of its initial activity due to the iron oxide nanocarrier, which improved the thermal stability of pectinase at various temperatures. Following 15 repetitions of enzymatic reactions, immobilized pectinase still exhibited 90% of its initial activity. According to the results, pectinase's catalytic capabilities were enhanced by its immobilization on iron oxide nanocarrier, making it economically suitable for industrial use.
Collapse
Affiliation(s)
- Tayyaba Behram
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| | - Sidra Pervez
- Department of Biochemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Muhammad Asif Nawaz
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
- Correspondence: or
| | - Shujaat Ahmad
- Department of Pharmacy, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| | - Amin Ullah Jan
- Department of Biotechnology, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| | - Haneef Ur Rehman
- Department of Natural and Basic Sciences, University of Turbat, Kech, Turbat 92600, Pakistan
| | - Shahbaz Ahmad
- Department of Biological Science and Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Nasir Mehmood Khan
- Department of Agriculture, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| | - Farman Ali Khan
- Department of Chemistry, Shaheed Benazir Bhutto University, Sheringal Dir Upper 18000, Pakistan
| |
Collapse
|
25
|
Magnetic Polyethyleneimine Nanoparticles Fabricated via Ionic Liquid as Bridging Agents for Laccase Immobilization and Its Application in Phenolic Pollutants Removal. Molecules 2022; 27:molecules27238522. [PMID: 36500612 PMCID: PMC9738685 DOI: 10.3390/molecules27238522] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, polyethyleneimine was combined with magnetic Fe3O4 nanoparticles through the bridging of carboxyl-functionalized ionic liquid, and laccase was loaded onto the carrier by Cu2+ chelation to achieve laccase immobilization (MCIL-PEI-Cu-lac). The carrier was characterized by Fourier transform infrared spectroscopy, scanning electron microscope, thermogravimetric analysis, X-ray diffraction analysis, magnetic hysteresis loop and so on. MCIL-PEI-Cu-lac has good immobilization ability; its loading and activity retention could reach 52.19 mg/g and 91.65%, respectively. Compared with free laccase, its thermal stability and storage stability have been significantly improved, as well. After 6 h of storage at 60 °C, 51.45% of the laccase activity could still be retained, and 81.13% of the laccase activity remained after 1 month of storage at 3 °C. In the pollutants removal test, the removal rate of 2,4-dichlorophenol (10 mg/L) by MCIL-PEI-Cu-lac could reach 100% within 10 h, and the removal efficiency could still be maintained 60.21% after repeated use for 8 times. In addition, MCIL-PEI-Cu-lac also has a good removal effect on other phenolic pollutants (such as bisphenol A, phenol, 4-chlorophenol, etc.). Research results indicated that an efficient strategy for laccase immobilization to biodegrade phenolic pollutants was developed.
Collapse
|
26
|
Jansen CU, Yan X, Ulstrup J, Xiao X, Qvortrup K. Structural design of anthraquinone bridges in direct electron transfer of fructose dehydrogenase. Colloids Surf B Biointerfaces 2022; 220:112941. [PMID: 36270138 DOI: 10.1016/j.colsurfb.2022.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/30/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
Abstract
Multi-functional small molecules attached to an electrode surface can bind non-covalently to the redox enzyme fructose dehydrogenase (FDH) to ensure efficient electrochemical electron transfer (ET) and electrocatalysis of the enzyme in both mediated (MET) and direct (DET) ET modes. The present work investigates the potential of exploiting secondary, electrostatic and hydrophobic interactions between substituents on a small molecular bridge and the local FDH surfaces. Such interactions ensure alignment of the enzyme in an orientation favourable for both MET and DET. We have used a group of novel synthesized anthraquinones as the small molecule bridge, functionalised with electrostatically neutral, anionic, or cationic substituents. Particularly, we investigated the immobilisation of FDH on a nanoporous gold (NPG) electrode decorated with the novel synthesised anthraquinones using electrochemical methods. The best DET-capable fraction out of four anthraquinone derivatives tested is achieved for an anthraquinone functionalised with an anionic sulphonate group. Our study demonstrates, how the combination of chemical design and bioelectrochemistry can be brought to control alignment of enzymes in productive orientations on electrodes, a paradigm for thiol modified surfaces in biosensors and bioelectronics.
Collapse
Affiliation(s)
| | - Xiaomei Yan
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Jens Ulstrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| | - Xinxin Xiao
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark; Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kongens Lyngby 2800, Denmark.
| |
Collapse
|
27
|
Zurier HS, Goddard JM. Directed Immobilization of PETase on Mesoporous Silica Enables Sustained Depolymerase Activity in Synthetic Wastewater Conditions. ACS APPLIED BIO MATERIALS 2022; 5:4981-4992. [PMID: 36194455 DOI: 10.1021/acsabm.2c00700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Microplastic accumulation in terrestrial and aquatic environments is a growing environmental challenge. Biodegradation has shown promise as an intervention strategy for reducing the spread of microplastics. The wastewater treatment system is a key intervention point in microplastic biodegradation due to its pivotal role in the water cycle at the interface between human activity and the environmental. However, the best characterized microplastic degradation enzyme, PETase, lacks the stability to perform at scale in wastewater treatment. In this work, we show that genetic fusion of PETase to a silica binding peptide enables directed immobilization of the enzyme onto silica nanoparticles. PETase activity in simulated wastewater conditions is quantified by linear regression from time zero to the time of maximum fluorescence of a fluorescent oxidized product of PETase degradation of PET microfibers. Mesoporous silica is shown to be a superior support material to nonporous silica. The resulting biocatalytic nanomaterial has up to 2.5-fold enhanced stability and 6.2-fold increased activity compared to free enzyme in unbuffered, 40 °C simulated influent (ionic strength ∼15 mM). In unbuffered, 40 °C simulated effluent (ionic strength ∼700 μM), reaction velocity and overall catalytic activity were increased by the biocatalytic material 2.1-fold relative to free PETase. All reactions were performed in 0.2 mL volumes, and enzyme concentrations were normalized across both free and immobilized samples to 9 μg/mL. Site-directed mutagenesis is shown to be a complementary technique to directed immobilization, which may aid in optimization of the biomaterial for wastewater applications. PETase stabilization in application-relevant environments as shown here enables progress toward application of PETase for microplastic biodegradation in wastewater treatment.
Collapse
Affiliation(s)
- Hannah S Zurier
- Department of Food Science and Technology, Cornell University, Ithaca, New York14853, United States
| | - Julie M Goddard
- Department of Food Science and Technology, Cornell University, Ithaca, New York14853, United States
| |
Collapse
|
28
|
Tailoring Lignin-Based Spherical Particles as a Support for Lipase Immobilization. Catalysts 2022. [DOI: 10.3390/catal12091031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Lignin-based spherical particles have recently gained popularity due to their characteristic and the usage of biopolymeric material. In this study, lignin-based spherical particles were prepared using choline chloride at different pH values, ranging from 2 to 10. Their dispersive, microstructural, and physicochemical properties were studied by a variety of techniques, including scanning electron microscopy, Fourier transform infrared spectroscopy, and zeta potential analysis. The best results were obtained for the particles prepared at pH 5 and 7, which had a spherical shape without a tendency to form aggregates and agglomerates. The lignin-based spherical particles were used for the immobilization of lipase, a model enzyme capable of catalyzing a wide range of transformations. It was shown that the highest relative activity of immobilized lipase was obtained after 24 h of immobilization at 30 °C and pH 7, using 100 mg of the support. Moreover, the immobilized lipase exhibited enhanced stability under harsh process conditions, and demonstrated high reusability, up to 87% after 10 cycles, depending on the support used. In the future, the described approach to enzyme immobilization based on lignin spheres may play a significant role in the catalytic synthesis of organic and fine chemicals, with high utility value.
Collapse
|