1
|
Wang H, Jia Y, Bai X, Gong W, Liu G, Wang H, Xin J, Wu Y, Zheng H, Liu H, Wang J, Zou D, Zhao H. Whole-Transcriptome Profiling and Functional Prediction of Long Non-Coding RNAs Associated with Cold Tolerance in Japonica Rice Varieties. Int J Mol Sci 2024; 25:2310. [PMID: 38396991 PMCID: PMC10889138 DOI: 10.3390/ijms25042310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/07/2024] [Accepted: 02/10/2024] [Indexed: 02/25/2024] Open
Abstract
Low-temperature chilling is a major abiotic stress leading to reduced rice yield and is a significant environmental threat to food security. Low-temperature chilling studies have focused on physiological changes or coding genes. However, the competitive endogenous RNA mechanism in rice at low temperatures has not been reported. Therefore, in this study, antioxidant physiological indices were combined with whole-transcriptome data through weighted correlation network analysis, which found that the gene modules had the highest correlation with the key antioxidant enzymes superoxide dismutase and peroxidase. The hub genes of the superoxide dismutase-related module included the UDP-glucosyltransferase family protein, sesquiterpene synthase and indole-3-glycerophosphatase gene. The hub genes of the peroxidase-related module included the WRKY transcription factor, abscisic acid signal transduction pathway-related gene plasma membrane hydrogen-ATPase and receptor-like kinase. Therefore, we selected the modular hub genes and significantly enriched the metabolic pathway genes to construct the key competitive endogenous RNA networks, resulting in three competitive endogenous RNA networks of seven long non-coding RNAs regulating three co-expressed messenger RNAs via four microRNAs. Finally, the negative regulatory function of the WRKY transcription factor OsWRKY61 was determined via subcellular localization and validation of the physiological indices in the mutant.
Collapse
Affiliation(s)
| | - Yan Jia
- Correspondence: (Y.J.); (H.Z.)
| | | | | | | | | | | | | | | | | | | | | | - Hongwei Zhao
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education/College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (H.W.); (X.B.); (W.G.); (G.L.); (H.W.); (J.X.); (Y.W.); (H.Z.); (H.L.); (J.W.); (D.Z.)
| |
Collapse
|
2
|
Le TD, Gathignol F, Vu HT, Nguyen KL, Tran LH, Vu HTT, Dinh TX, Lazennec F, Pham XH, Véry AA, Gantet P, Hoang GT. Genome-Wide Association Mapping of Salinity Tolerance at the Seedling Stage in a Panel of Vietnamese Landraces Reveals New Valuable QTLs for Salinity Stress Tolerance Breeding in Rice. PLANTS 2021; 10:plants10061088. [PMID: 34071570 PMCID: PMC8228224 DOI: 10.3390/plants10061088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 01/18/2023]
Abstract
Rice tolerance to salinity stress involves diverse and complementary mechanisms, such as the regulation of genome expression, activation of specific ion-transport systems to manage excess sodium at the cell or plant level, and anatomical changes that avoid sodium penetration into the inner tissues of the plant. These complementary mechanisms can act synergistically to improve salinity tolerance in the plant, which is then interesting in breeding programs to pyramidize complementary QTLs (quantitative trait loci), to improve salinity stress tolerance of the plant at different developmental stages and in different environments. This approach presupposes the identification of salinity tolerance QTLs associated with different mechanisms involved in salinity tolerance, which requires the greatest possible genetic diversity to be explored. To contribute to this goal, we screened an original panel of 179 Vietnamese rice landraces genotyped with 21,623 SNP markers for salinity stress tolerance under 100 mM NaCl treatment, at the seedling stage, with the aim of identifying new QTLs involved in the salinity stress tolerance via a genome-wide association study (GWAS). Nine salinity tolerance-related traits, including the salt injury score, chlorophyll and water content, and K+ and Na+ contents were measured in leaves. GWAS analysis allowed the identification of 26 QTLs. Interestingly, ten of them were associated with several different traits, which indicates that these QTLs act pleiotropically to control the different levels of plant responses to salinity stress. Twenty-one identified QTLs colocalized with known QTLs. Several genes within these QTLs have functions related to salinity stress tolerance and are mainly involved in gene regulation, signal transduction or hormone signaling. Our study provides promising QTLs for breeding programs to enhance salinity tolerance and identifies candidate genes that should be further functionally studied to better understand salinity tolerance mechanisms in rice.
Collapse
Affiliation(s)
- Thao Duc Le
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
| | - Floran Gathignol
- UMR DIADE, Université de Montpellier, IRD, 34095 Montpellier, France; (F.G.); (F.L.)
| | - Huong Thi Vu
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
| | - Khanh Le Nguyen
- Faculty of Agricultural Technology, University of Engineering and Technology, Hanoi 00000, Vietnam;
| | - Linh Hien Tran
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
| | - Hien Thi Thu Vu
- Department of Genetics and Plant Breeding, Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi 00000, Vietnam;
| | - Tu Xuan Dinh
- Incubation and Support Center for Technology and Science Enterprises, Hanoi 00000, Vietnam;
| | - Françoise Lazennec
- UMR DIADE, Université de Montpellier, IRD, 34095 Montpellier, France; (F.G.); (F.L.)
| | - Xuan Hoi Pham
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
| | - Anne-Aliénor Véry
- UMR BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France;
| | - Pascal Gantet
- UMR DIADE, Université de Montpellier, IRD, 34095 Montpellier, France; (F.G.); (F.L.)
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Palacký University Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Correspondence: (P.G.); (G.T.H.); Tel.: +33-467-416-414 (P.G.); +84-397-600-496 (G.T.H.)
| | - Giang Thi Hoang
- National Key Laboratory for Plant Cell Biotechnology, Agricultural Genetics Institute, LMI RICE-2, Hanoi 00000, Vietnam; (T.D.L.); (H.T.V.); (L.H.T.); (X.H.P.)
- Correspondence: (P.G.); (G.T.H.); Tel.: +33-467-416-414 (P.G.); +84-397-600-496 (G.T.H.)
| |
Collapse
|
3
|
Li Y, Wang W, Wang T, Wouters MA, Yin Y, Jiao Z, Ma L, Zhang F. Regulation through MicroRNAs in Response to Low-Energy N + Ion Irradiation in Oryza sativa. Radiat Res 2018; 191:189-200. [PMID: 30499385 DOI: 10.1667/rr15125.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
MicroRNAs (miRNAs) are a non-coding regulatory RNAs that play significant roles in plant growth and development, especially in the stress response. Low-energy ion radiation, a type of environmental stress, can cause multiple biological effects. To understand the roles of miRNAs in response to low-energy N+ ion radiation in Oryza sativa, high-throughput sequencing of small RNAs was carried out to detect the expression of miRNAs in the shoots of the rice after 2 × 1017 N+/cm2 irradiation. The differentially expressed 28 known miRNAs were identified, 17 of these identified miRNAs were validated by real-time quantitative fluorescent PCR (q-PCR), including 9 up-regulated miRNAs (miR1320-3p, miR1320-5p, miR156b-3p, miR156c-5p, miR156c-3p/g-3p, miR1561-5p, miR398b and miR6250) and 8 down-regulated miRNAs (miR156a/e/i, miR156k, miR160f-5p, miR166j-5p, miR1846e and miR399d). In addition, 45 novel radiationresponsive miRNAs were predicted, and 8 of them were verified by q-PCR. The target genes of radiation-responsive miRNAs were predicted and gene function enrichment analysis was performed with Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of 9 targets of 4 known miRNA families (miR156, miR399, miR1320 and miR398) and 2 targets of 2 novel miRNAs were quantified by q-PCR, and a strong negative regulation relation between miRNAs and their targets were observed. Those targets including SQUAMOSA promoterbinding-like protein (SPL) genes, copper/zinc superoxide dismutase (Cu/Zn-SOD), copper chaperone for SOD (CCS1) and electron transporter/ heat-shock protein binding protein (HSP), which are involved in growth and defense against various stresses, especially associated with reactive oxygen species (ROS) scavenging. This work provides important information for understanding the ROS generation and elimination mechanisms closely related to miRNAs in rice seedlings after low-energy N+ radiation exposure.
Collapse
Affiliation(s)
- Yalin Li
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
| | - Weidong Wang
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
| | - Tao Wang
- b School of Nursing, Zhengzhou University, Zhengzhou 450000, China
| | - Merridee A Wouters
- c Olivia Newton John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Bundoora 3086, Australia
| | - Yue Yin
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
| | - Zhen Jiao
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China.,d Zhengzhou Research Base State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou 450000, China
| | - Lixia Ma
- e School of Statistics, Henan University of Finance and Economics, Zhengzhou 450000, China
| | - Fengqiu Zhang
- a Henan Key Laboratory of Ion-beam Bioengineering, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
4
|
Fu R, Zhang M, Zhao Y, He X, Ding C, Wang S, Feng Y, Song X, Li P, Wang B. Identification of Salt Tolerance-related microRNAs and Their Targets in Maize ( Zea mays L.) Using High-throughput Sequencing and Degradome Analysis. FRONTIERS IN PLANT SCIENCE 2017; 8:864. [PMID: 28603532 PMCID: PMC5445174 DOI: 10.3389/fpls.2017.00864] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 05/09/2017] [Indexed: 05/23/2023]
Abstract
To identify the known and novel microRNAs (miRNAs) and their targets that are involved in the response and adaptation of maize (Zea mays) to salt stress, miRNAs and their targets were identified by a combined analysis of the deep sequencing of small RNAs (sRNA) and degradome libraries. The identities were confirmed by a quantitative expression analysis with over 100 million raw reads of sRNA and degradome sequences. A total of 1040 previously known miRNAs were identified from four maize libraries, with 762 and 726 miRNAs derived from leaves and roots, respectively, and 448 miRNAs that were common between the leaves and roots. A total of 37 potential new miRNAs were selected based on the same criteria in response to salt stress. In addition to known miR167 and miR164 species, novel putative miR167 and miR164 species were also identified. Deep sequencing of miRNAs and the degradome [with quantitative reverse transcription polymerase chain reaction (qRT-PCR) analyses of their targets] showed that more than one species of novel miRNA may play key roles in the response to salinity in maize. Furthermore, the interaction between miRNAs and their targets may play various roles in different parts of maize in response to salinity.
Collapse
Affiliation(s)
- Rong Fu
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Mi Zhang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Yinchuan Zhao
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Xuechuan He
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Chenyun Ding
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Shuangkuai Wang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Yan Feng
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
| | - Xianliang Song
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural UniversityTai’an, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| | - Ping Li
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| | - Baohua Wang
- Scientific Observing and Experimental Station of Maize in Plains Area of Southern Region, Ministry of Agriculture and School of Life Sciences, Nantong UniversityNantong, China
- *Correspondence: Baohua Wang, Ping Li, Xianliang Song,
| |
Collapse
|
5
|
Chung PJ, Jung H, Jeong DH, Ha SH, Choi YD, Kim JK. Transcriptome profiling of drought responsive noncoding RNAs and their target genes in rice. BMC Genomics 2016; 17:563. [PMID: 27501838 PMCID: PMC4977689 DOI: 10.1186/s12864-016-2997-3] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 08/04/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Plant transcriptome profiling has provided a tool for understanding the mechanisms by which plants respond to stress conditions. Analysis of genome-wide transcriptome will provides a useful dataset of drought responsive noncoding RNAs and their candidate target genes that may be involved in drought stress responses. RESULTS Here RNA-seq analyses of leaves from drought stressed rice plants was performed, producing differential expression profiles of noncoding RNAs. We found that the transcript levels of 66 miRNAs changed significantly in response to drought conditions and that they were negatively correlated with putative target genes during the treatments. The negative correlations were further validated by qRT-PCR using total RNAs from both drought-treated leaves and various tissues at different developmental stages. The drought responsive miRNA/target pairs were confirmed by the presence of decay intermediates generated by miRNA-guided cleavages in Parallel Analysis of RNA Ends (PARE) libraries. We observed that the precursor miR171f produced two different mature miRNAs, miR171f-5p and miR171f-3p with 4 candidate target genes, the former of which was responsive to drought conditions. We found that the expression levels of the miR171f precursor negatively correlated with those of one candidate target gene, but not with the others, suggesting that miR171f-5p was drought-responsive, with Os03g0828701-00 being a likely target. Pre-miRNA expression profiling indicated that miR171f is involved in the progression of rice root development and growth, as well as the response to drought stress. Ninety-eight lncRNAs were also identified, together with their corresponding antisense transcripts, some of which were responsive to drought conditions. CONCLUSIONS We identified rice noncoding RNAs (66 miRNAs and 98 lncRNAs), whose expression was highly regulated by drought stress conditions, and whose transcript levels negatively correlated with putative target genes.
Collapse
Affiliation(s)
- Pil Joong Chung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, Korea
| | - Harin Jung
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, Korea
| | - Dong-Hoon Jeong
- Department of Life Science, Hallym University, Chuncheon, 24252, Korea
| | - Sun-Hwa Ha
- Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University, Yongin, 17104, Korea
| | - Yang Do Choi
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826, Korea
| | - Ju-Kon Kim
- Graduate School of International Agricultural Technology and Crop Biotechnology Institute/GreenBio Science & Technology, Seoul National University, Pyeongchang, 25354, Korea.
| |
Collapse
|
6
|
Tripathi A, Goswami K, Sanan-Mishra N. Role of bioinformatics in establishing microRNAs as modulators of abiotic stress responses: the new revolution. Front Physiol 2015; 6:286. [PMID: 26578966 PMCID: PMC4620411 DOI: 10.3389/fphys.2015.00286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/28/2015] [Indexed: 12/15/2022] Open
Abstract
microRNAs (miRs) are a class of 21-24 nucleotide long non-coding RNAs responsible for regulating the expression of associated genes mainly by cleavage or translational inhibition of the target transcripts. With this characteristic of silencing, miRs act as an important component in regulation of plant responses in various stress conditions. In recent years, with drastic change in environmental and soil conditions different type of stresses have emerged as a major challenge for plants growth and productivity. The identification and profiling of miRs has itself been a challenge for research workers given their small size and large number of many probable sequences in the genome. Application of computational approaches has expedited the process of identification of miRs and their expression profiling in different conditions. The development of High-Throughput Sequencing (HTS) techniques has facilitated to gain access to the global profiles of the miRs for understanding their mode of action in plants. Introduction of various bioinformatics databases and tools have revolutionized the study of miRs and other small RNAs. This review focuses the role of bioinformatics approaches in the identification and study of the regulatory roles of plant miRs in the adaptive response to stresses.
Collapse
Affiliation(s)
- Anita Tripathi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Kavita Goswami
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| | - Neeti Sanan-Mishra
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology New Delhi, India
| |
Collapse
|