1
|
Gürkan Kuntalp D, Özcan N, Düzyel O, Kababulut FY, Kuntalp M. A Comparative Study of Metaheuristic Feature Selection Algorithms for Respiratory Disease Classification. Diagnostics (Basel) 2024; 14:2244. [PMID: 39410648 PMCID: PMC11475976 DOI: 10.3390/diagnostics14192244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/20/2024] Open
Abstract
The correct diagnosis and early treatment of respiratory diseases can significantly improve the health status of patients, reduce healthcare expenses, and enhance quality of life. Therefore, there has been extensive interest in developing automatic respiratory disease detection systems. Most recent methods for detecting respiratory disease use machine and deep learning algorithms. The success of these machine learning methods depends heavily on the selection of proper features to be used in the classifier. Although metaheuristic-based feature selection methods have been successful in addressing difficulties presented by high-dimensional medical data in various biomedical classification tasks, there is not much research on the utilization of metaheuristic methods in respiratory disease classification. This paper aims to conduct a detailed and comparative analysis of six widely used metaheuristic optimization methods using eight different transfer functions in respiratory disease classification. For this purpose, two different classification cases were examined: binary and multi-class. The findings demonstrate that metaheuristic algorithms using correct transfer functions could effectively reduce data dimensionality while enhancing classification accuracy.
Collapse
Affiliation(s)
- Damla Gürkan Kuntalp
- Department of Electrical and Electronics Engineering, Dokuz Eylül University, İzmir 35160, Türkiye;
| | - Nermin Özcan
- Department of Biomedical Engineering, İskenderun Technical University, İskenderun 31200, Türkiye;
| | - Okan Düzyel
- Department of Electrical and Electronics Engineering, İzmir Institute of Technology, İzmir 35433, Türkiye;
| | | | - Mehmet Kuntalp
- Department of Electrical and Electronics Engineering, Dokuz Eylül University, İzmir 35160, Türkiye;
| |
Collapse
|
2
|
Sengupta N, Begg R, Rao AS, Bajelan S, Said CM, Palaniswami M. Predicting improvement in biofeedback gait training using short-term spectral features from minimum foot clearance data. Front Bioeng Biotechnol 2024; 12:1417497. [PMID: 39262630 PMCID: PMC11387987 DOI: 10.3389/fbioe.2024.1417497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/13/2024] [Indexed: 09/13/2024] Open
Abstract
Stroke rehabilitation interventions require multiple training sessions and repeated assessments to evaluate the improvements from training. Biofeedback-based treadmill training often involves 10 or more sessions to determine its effectiveness. The training and assessment process incurs time, labor, and cost to determine whether the training produces positive outcomes. Predicting the effectiveness of gait training based on baseline minimum foot clearance (MFC) data would be highly beneficial, potentially saving resources, costs, and patient time. This work proposes novel features using the Short-term Fourier Transform (STFT)-based magnitude spectrum of MFC data to predict the effectiveness of biofeedback training. This approach enables tracking non-stationary dynamics and capturing stride-to-stride MFC value fluctuations, providing a compact representation for efficient processing compared to time-domain analysis alone. The proposed STFT-based features outperform existing wavelet, histogram, and Poincaré-based features with a maximum accuracy of 95%, F1 score of 96%, sensitivity of 93.33% and specificity of 100%. The proposed features are also statistically significant (p < 0.001) compared to the descriptive statistical features extracted from the MFC series and the tone and entropy features extracted from the MFC percentage index series. The study found that short-term spectral components and the windowed mean value (DC value) possess predictive capabilities regarding the success of biofeedback training. The higher spectral amplitude and lower variance in the lower frequency zone indicate lower chances of improvement, while the lower spectral amplitude and higher variance indicate higher chances of improvement.
Collapse
Affiliation(s)
- Nandini Sengupta
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Rezaul Begg
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Aravinda S Rao
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia
| | - Soheil Bajelan
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Catherine M Said
- Physiotherapy, Melbourne School of Health Sciences, The University of Melbourne, Parkville, VIC, Australia
- Physiotherapy Department, Western Health, St Albans, VIC, Australia
- Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
- Physiotherapy Department, Austin Health, Heidelberg, VIC, Australia
| | - Marimuthu Palaniswami
- Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
3
|
Khan R, Khan SU, Saeed U, Koo IS. Auscultation-Based Pulmonary Disease Detection through Parallel Transformation and Deep Learning. Bioengineering (Basel) 2024; 11:586. [PMID: 38927822 PMCID: PMC11200393 DOI: 10.3390/bioengineering11060586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Respiratory diseases are among the leading causes of death, with many individuals in a population frequently affected by various types of pulmonary disorders. Early diagnosis and patient monitoring (traditionally involving lung auscultation) are essential for the effective management of respiratory diseases. However, the interpretation of lung sounds is a subjective and labor-intensive process that demands considerable medical expertise, and there is a good chance of misclassification. To address this problem, we propose a hybrid deep learning technique that incorporates signal processing techniques. Parallel transformation is applied to adventitious respiratory sounds, transforming lung sound signals into two distinct time-frequency scalograms: the continuous wavelet transform and the mel spectrogram. Furthermore, parallel convolutional autoencoders are employed to extract features from scalograms, and the resulting latent space features are fused into a hybrid feature pool. Finally, leveraging a long short-term memory model, a feature from the latent space is used as input for classifying various types of respiratory diseases. Our work is evaluated using the ICBHI-2017 lung sound dataset. The experimental findings indicate that our proposed method achieves promising predictive performance, with average values for accuracy, sensitivity, specificity, and F1-score of 94.16%, 89.56%, 99.10%, and 89.56%, respectively, for eight-class respiratory diseases; 79.61%, 78.55%, 92.49%, and 78.67%, respectively, for four-class diseases; and 85.61%, 83.44%, 83.44%, and 84.21%, respectively, for binary-class (normal vs. abnormal) lung sounds.
Collapse
Affiliation(s)
- Rehan Khan
- Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (R.K.); (S.U.K.)
| | - Shafi Ullah Khan
- Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (R.K.); (S.U.K.)
| | - Umer Saeed
- Research Centre for Intelligent Healthcare, Coventry University, Coventry CV1 5FB, UK;
| | - In-Soo Koo
- Department of Electrical Electronic and Computer Engineering, University of Ulsan, Ulsan 44610, Republic of Korea; (R.K.); (S.U.K.)
| |
Collapse
|
4
|
Zhou G, Liu C, Li X, Liang S, Wang R, Huang X. An open auscultation dataset for machine learning-based respiratory diagnosis studies. JASA EXPRESS LETTERS 2024; 4:052001. [PMID: 38717466 DOI: 10.1121/10.0025851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 10/10/2024]
Abstract
Machine learning enabled auscultating diagnosis can provide promising solutions especially for prescreening purposes. The bottleneck for its potential success is that high-quality datasets for training are still scarce. An open auscultation dataset that consists of samples and annotations from patients and healthy individuals is established in this work for the respiratory diagnosis studies with machine learning, which is of both scientific importance and practical potential. A machine learning approach is examined to showcase the use of this new dataset for lung sound classifications with different diseases. The open dataset is available to the public online.
Collapse
Affiliation(s)
- Guanyu Zhou
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China
| | - Chengjian Liu
- College of Engineering, Peking University, Beijing, 100871, , , , , ,
| | - Xiaoguang Li
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, 100191, China
| | - Sicong Liang
- College of Engineering, Peking University, Beijing, 100871, , , , , ,
| | - Ruichen Wang
- College of Engineering, Peking University, Beijing, 100871, , , , , ,
| | - Xun Huang
- College of Engineering, Peking University, Beijing, 100871, , , , , ,
| |
Collapse
|
5
|
Semmad A, Bahoura M. Comparative study of respiratory sounds classification methods based on cepstral analysis and artificial neural networks. Comput Biol Med 2024; 171:108190. [PMID: 38387384 DOI: 10.1016/j.compbiomed.2024.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/30/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
In this paper, we investigated and evaluated various machine learning-based approaches for automatically detecting wheezing sounds. We conducted a comprehensive comparison of these proposed systems, assessing their classification performance through metrics such as Sensitivity, Specificity, and Accuracy. The main approach to developing a machine learning-based system for classifying respiratory sounds involved the combination of a technique for extracting features from an unknown input sound with a classification method to determine its belonging class. The characterization techniques used in this study are based on the cepstral analysis, which was extensively employed in the automatic speech recognition field. While MFCC (Mel-Frequency Cepstral Coefficients) feature extraction methods are commonly used in respiratory sounds classification, our study introduces a novelty by employing GFCC (Gammatone-Frequency Cepstral Coefficients) and BFCC (Bark-Frequency Cepstral Coefficients) for this purpose. For the classification task, we employed two types of neural networks: the MLP (Multilayer Perceptron), a feedforward neural network, and a variant of the LSTM (Long Short-Term Memory) recurrent neural network called BiLSTM (Bidirectional LSTM). The proposed classification systems are evaluated using a database consisting of 497 wheezing segments and 915 normal respiratory segments, which are recorded from individuals diagnosticated with asthma and individuals without any respiratory issues, respectively. The highest classification performance was achieved by the BFCC-BiLSTM model, which demonstrated an exceptional accuracy rate of 99.8%.
Collapse
Affiliation(s)
- Abdelkrim Semmad
- Department of Engineering, Université du Québec à Rimouski, 300, allée des Ursulines, Rimouski, Qc, Canada, G5L 3A1.
| | - Mohammed Bahoura
- Department of Engineering, Université du Québec à Rimouski, 300, allée des Ursulines, Rimouski, Qc, Canada, G5L 3A1.
| |
Collapse
|
6
|
Mavsar M, Ridge B, Pahic R, Morimoto J, Ude A. Simulation-Aided Handover Prediction From Video Using Recurrent Image-to-Motion Networks. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2024; 35:494-506. [PMID: 35635818 DOI: 10.1109/tnnls.2022.3175720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recent advances in deep neural networks have opened up new possibilities for visuomotor robot learning. In the context of human-robot or robot-robot collaboration, such networks can be trained to predict future poses and this information can be used to improve the dynamics of cooperative tasks. This is important, both in terms of realizing various cooperative behaviors, and for ensuring safety. In this article, we propose a recurrent neural architecture, capable of transforming variable-length input motion videos into a set of parameters describing a robot trajectory, where predictions can be made after receiving only a few frames. A simulation environment is utilized to expand the training database and to improve generalization capability of the network. The resulting architecture demonstrates good accuracy when predicting handover trajectories, with models trained on synthetic and real data showing better performance than when trained on real or simulated data only. The computed trajectories enable the execution of handover tasks with uncalibrated robots, which was verified in an experiment with two real robots.
Collapse
|
7
|
Kim Y, Hyon Y, Woo SD, Lee S, Lee SI, Ha T, Chung C. Evolution of the Stethoscope: Advances with the Adoption of Machine Learning and Development of Wearable Devices. Tuberc Respir Dis (Seoul) 2023; 86:251-263. [PMID: 37592751 PMCID: PMC10555525 DOI: 10.4046/trd.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/19/2023] Open
Abstract
The stethoscope has long been used for the examination of patients, but the importance of auscultation has declined due to its several limitations and the development of other diagnostic tools. However, auscultation is still recognized as a primary diagnostic device because it is non-invasive and provides valuable information in real-time. To supplement the limitations of existing stethoscopes, digital stethoscopes with machine learning (ML) algorithms have been developed. Thus, now we can record and share respiratory sounds and artificial intelligence (AI)-assisted auscultation using ML algorithms distinguishes the type of sounds. Recently, the demands for remote care and non-face-to-face treatment diseases requiring isolation such as coronavirus disease 2019 (COVID-19) infection increased. To address these problems, wireless and wearable stethoscopes are being developed with the advances in battery technology and integrated sensors. This review provides the history of the stethoscope and classification of respiratory sounds, describes ML algorithms, and introduces new auscultation methods based on AI-assisted analysis and wireless or wearable stethoscopes.
Collapse
Affiliation(s)
- Yoonjoo Kim
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - YunKyong Hyon
- Division of Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Seong-Dae Woo
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Sunju Lee
- Division of Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Song-I Lee
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taeyoung Ha
- Division of Industrial Mathematics, National Institute for Mathematical Sciences, Daejeon, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology, Department of Internal Medicine, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| |
Collapse
|
8
|
Huang DM, Huang J, Qiao K, Zhong NS, Lu HZ, Wang WJ. Deep learning-based lung sound analysis for intelligent stethoscope. Mil Med Res 2023; 10:44. [PMID: 37749643 PMCID: PMC10521503 DOI: 10.1186/s40779-023-00479-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/05/2023] [Indexed: 09/27/2023] Open
Abstract
Auscultation is crucial for the diagnosis of respiratory system diseases. However, traditional stethoscopes have inherent limitations, such as inter-listener variability and subjectivity, and they cannot record respiratory sounds for offline/retrospective diagnosis or remote prescriptions in telemedicine. The emergence of digital stethoscopes has overcome these limitations by allowing physicians to store and share respiratory sounds for consultation and education. On this basis, machine learning, particularly deep learning, enables the fully-automatic analysis of lung sounds that may pave the way for intelligent stethoscopes. This review thus aims to provide a comprehensive overview of deep learning algorithms used for lung sound analysis to emphasize the significance of artificial intelligence (AI) in this field. We focus on each component of deep learning-based lung sound analysis systems, including the task categories, public datasets, denoising methods, and, most importantly, existing deep learning methods, i.e., the state-of-the-art approaches to convert lung sounds into two-dimensional (2D) spectrograms and use convolutional neural networks for the end-to-end recognition of respiratory diseases or abnormal lung sounds. Additionally, this review highlights current challenges in this field, including the variety of devices, noise sensitivity, and poor interpretability of deep models. To address the poor reproducibility and variety of deep learning in this field, this review also provides a scalable and flexible open-source framework that aims to standardize the algorithmic workflow and provide a solid basis for replication and future extension: https://github.com/contactless-healthcare/Deep-Learning-for-Lung-Sound-Analysis .
Collapse
Affiliation(s)
- Dong-Min Huang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Jia Huang
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, Guangdong, China
| | - Kun Qiao
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, Guangdong, China
| | - Nan-Shan Zhong
- Guangzhou Institute of Respiratory Health, China State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
| | - Hong-Zhou Lu
- The Third People's Hospital of Shenzhen, Shenzhen, 518112, Guangdong, China.
| | - Wen-Jin Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
9
|
Dar JA, Srivastava KK, Mishra A. Lung anomaly detection from respiratory sound database (sound signals). Comput Biol Med 2023; 164:107311. [PMID: 37552916 DOI: 10.1016/j.compbiomed.2023.107311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 07/01/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Chest or upper body auscultation has long been considered a useful part of the physical examination going back to the time of Hippocrates. However, it did not become a prevalent practice until the invention of the stethoscope by Rene Laennec in 1816, which made the practice suitable and hygienic. Pulmonary disease is a kind of sickness that affects the lungs and various parts of the respiratory system. Lung diseases are the third largest cause of death in the world. According to the World Health Organization (WHO), the five major respiratory diseases, namely chronic obstructive pulmonary disease (COPD), tuberculosis, acute lower respiratory tract infection (LRTI), asthma, and lung cancer, cause the death of more than 3 million people each year worldwide. Respiratory sounds disclose significant information regarding the lungs of patients. Numerous methods are developed for analyzing the lung sounds. However, clinical approaches require qualified pulmonologists to diagnose such kind of signals appropriately and are also time consuming. Hence, an efficient Fractional Water Cycle Swarm Optimizer-based Deep Residual Network (Fr-WCSO-based DRN) is developed in this research for detecting the pulmonary abnormalities using respiratory sounds signals. The proposed Fr-WCSO is newly designed by the incorporation of Fractional Calculus (FC) and Water Cycle Swarm Optimizer WCSO. Meanwhile, WCSO is the combination of Water Cycle Algorithm (WCA) with Competitive Swarm Optimizer (CSO). The respiratory input sound signals are pre-processed and the important features needed for the further processing are effectively extracted. With the extracted features, data augmentation is carried out for minimizing the over fitting issues for improving the overall detection performance. Once data augmentation is done, feature selection is performed using proposed Fr-WCSO algorithm. Finally, pulmonary abnormality detection is performed using DRN where the training procedure of DRN is performed using the developed Fr-WCSO algorithm. The developed method achieved superior performance by considering the evaluation measures, namely True Positive Rate (TPR), True Negative Rate (TNR) and testing accuracy with the values of 0.963(96.3%), 0.932,(93.2%) and 0.948(94.8%), respectively.
Collapse
Affiliation(s)
- Jawad Ahmad Dar
- Department of Computer Science and Engineering, Mansarovar Global University, Madhya Pradesh, India.
| | - Kamal Kr Srivastava
- Department of Information Technology at Babu Banarasi Das Northern India Institute of Technology, Lucknow, India.
| | - Alok Mishra
- Department of Physics, Gaya College of Engineering, Gaya, India.
| |
Collapse
|
10
|
Sfayyih AH, Sabry AH, Jameel SM, Sulaiman N, Raafat SM, Humaidi AJ, Kubaiaisi YMA. Acoustic-Based Deep Learning Architectures for Lung Disease Diagnosis: A Comprehensive Overview. Diagnostics (Basel) 2023; 13:diagnostics13101748. [PMID: 37238233 DOI: 10.3390/diagnostics13101748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Lung auscultation has long been used as a valuable medical tool to assess respiratory health and has gotten a lot of attention in recent years, notably following the coronavirus epidemic. Lung auscultation is used to assess a patient's respiratory role. Modern technological progress has guided the growth of computer-based respiratory speech investigation, a valuable tool for detecting lung abnormalities and diseases. Several recent studies have reviewed this important area, but none are specific to lung sound-based analysis with deep-learning architectures from one side and the provided information was not sufficient for a good understanding of these techniques. This paper gives a complete review of prior deep-learning-based architecture lung sound analysis. Deep-learning-based respiratory sound analysis articles are found in different databases including the Plos, ACM Digital Libraries, Elsevier, PubMed, MDPI, Springer, and IEEE. More than 160 publications were extracted and submitted for assessment. This paper discusses different trends in pathology/lung sound, the common features for classifying lung sounds, several considered datasets, classification methods, signal processing techniques, and some statistical information based on previous study findings. Finally, the assessment concludes with a discussion of potential future improvements and recommendations.
Collapse
Affiliation(s)
- Alyaa Hamel Sfayyih
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Ahmad H Sabry
- Department of Computer Engineering, Al-Nahrain University Al Jadriyah Bridge, Baghdad 64074, Iraq
| | | | - Nasri Sulaiman
- Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia
| | - Safanah Mudheher Raafat
- Department of Control and Systems Engineering, University of Technology, Baghdad 10011, Iraq
| | - Amjad J Humaidi
- Department of Control and Systems Engineering, University of Technology, Baghdad 10011, Iraq
| | - Yasir Mahmood Al Kubaiaisi
- Department of Sustainability Management, Dubai Academic Health Corporation, Dubai 4545, United Arab Emirates
| |
Collapse
|
11
|
Dianat B, La Torraca P, Manfredi A, Cassone G, Vacchi C, Sebastiani M, Pancaldi F. Classification of pulmonary sounds through deep learning for the diagnosis of interstitial lung diseases secondary to connective tissue diseases. Comput Biol Med 2023; 160:106928. [PMID: 37156223 DOI: 10.1016/j.compbiomed.2023.106928] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/17/2023] [Accepted: 04/13/2023] [Indexed: 05/10/2023]
Abstract
Early diagnosis of interstitial lung diseases secondary to connective tissue diseases is critical for the treatment and survival of patients. The symptoms, like dry cough and dyspnea, appear late in the clinical history and are not specific, moreover, the current approach to confirm the diagnosis of interstitial lung disease is based on high resolution computer tomography. However, computer tomography involves x-ray exposure for patients and high costs for the Health System, therefore preventing its use for a massive screening campaign in elder people. In this work we investigate the use of deep learning techniques for the classification of pulmonary sounds acquired from patients affected by connective tissue diseases. The novelty of the work consists of a suitably developed pre-processing pipeline for de-noising and data augmentation. The proposed approach is combined with a clinical study where the ground truth is represented by high resolution computer tomography. Various convolutional neural networks have provided an overall accuracy as high as 91% in the classification of lung sounds and have led to an overwhelming diagnostic accuracy in the range 91%-93%. Modern high performance hardware for edge computing can easily support our algorithms. This solution paves the way for a vast screening campaign of interstitial lung diseases in elder people on the basis of a non-invasive and cheap thoracic auscultation.
Collapse
Affiliation(s)
- Behnood Dianat
- University of Modena and Reggio Emilia, Department of Sciences and Methods for Engineering, Via G. Amendola 2, 42122 Reggio Emilia, Italy; University of Modena and Reggio Emilia, Artificial Intelligence Research and Innovation Center (AIRI), Via Pietro Vivarelli 10, 41125 Modena, Italy
| | - Paolo La Torraca
- University of Modena and Reggio Emilia, Department of Sciences and Methods for Engineering, Via G. Amendola 2, 42122 Reggio Emilia, Italy
| | - Andreina Manfredi
- University of Modena and Reggio Emilia, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, via del Pozzo 71, 41124, Modena, Italy; Azienda Policlinico di Modena, Rheumatology Unit, via del Pozzo 71, 41124, Modena, Italy
| | - Giulia Cassone
- University of Modena and Reggio Emilia, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, via del Pozzo 71, 41124, Modena, Italy; Azienda Policlinico di Modena, Rheumatology Unit, via del Pozzo 71, 41124, Modena, Italy
| | - Caterina Vacchi
- University of Modena and Reggio Emilia, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, via del Pozzo 71, 41124, Modena, Italy; Azienda Policlinico di Modena, Rheumatology Unit, via del Pozzo 71, 41124, Modena, Italy
| | - Marco Sebastiani
- University of Modena and Reggio Emilia, Department of Surgery, Medicine, Dentistry and Morphological Sciences with Transplant Surgery, Oncology and Regenerative Medicine Relevance, via del Pozzo 71, 41124, Modena, Italy; Azienda Policlinico di Modena, Rheumatology Unit, via del Pozzo 71, 41124, Modena, Italy
| | - Fabrizio Pancaldi
- University of Modena and Reggio Emilia, Department of Sciences and Methods for Engineering, Via G. Amendola 2, 42122 Reggio Emilia, Italy; University of Modena and Reggio Emilia, Artificial Intelligence Research and Innovation Center (AIRI), Via Pietro Vivarelli 10, 41125 Modena, Italy.
| |
Collapse
|
12
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Zhang Q, Zhang J, Yuan J, Huang H, Zhang Y, Zhang B, Lv G, Lin S, Wang N, Liu X, Tang M, Wang Y, Ma H, Liu L, Yuan S, Zhou H, Zhao J, Li Y, Yin Y, Zhao L, Wang G, Lian Y. SPRSound: Open-Source SJTU Paediatric Respiratory Sound Database. IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS 2022; 16:867-881. [PMID: 36070274 DOI: 10.1109/tbcas.2022.3204910] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It has proved that the auscultation of respiratory sound has advantage in early respiratory diagnosis. Various methods have been raised to perform automatic respiratory sound analysis to reduce subjective diagnosis and physicians' workload. However, these methods highly rely on the quality of respiratory sound database. In this work, we have developed the first open-access paediatric respiratory sound database, SPRSound. The database consists of 2,683 records and 9,089 respiratory sound events from 292 participants. Accurate label is important to achieve a good prediction for adventitious respiratory sound classification problem. A custom-made sound label annotation software (SoundAnn) has been developed to perform sound editing, sound annotation, and quality assurance evaluation. A team of 11 experienced paediatric physicians is involved in the entire process to establish golden standard reference for the dataset. To verify the robustness and accuracy of the classification model, we have investigated the effects of different feature extraction methods and machine learning classifiers on the classification performance of our dataset. As such, we have achieved a score of 75.22%, 61.57%, 56.71%, and 37.84% for the four different classification challenges at the event level and record level.
Collapse
|
14
|
Alqudah AM, Qazan S, Obeidat YM. Deep learning models for detecting respiratory pathologies from raw lung auscultation sounds. Soft comput 2022; 26:13405-13429. [PMID: 36186666 PMCID: PMC9510581 DOI: 10.1007/s00500-022-07499-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2022] [Indexed: 11/23/2022]
Abstract
In recent years deep learning models improve the diagnosis performance of many diseases especially respiratory diseases. This paper will propose an evaluation for the performance of different deep learning models associated with the raw lung auscultation sounds in detecting respiratory pathologies to help in providing diagnostic of respiratory pathologies in digital recorded respiratory sounds. Also, we will find out the best deep learning model for this task. In this paper, three different deep learning models have been evaluated on non-augmented and augmented datasets, where two different datasets have been utilized to generate four different sub-datasets. The results show that all the proposed deep learning methods were successful and achieved high performance in classifying the raw lung sounds, the methods were applied on different datasets and used either augmentation or non-augmentation. Among all proposed deep learning models, the CNN–LSTM model was the best model in all datasets for both augmentation and non-augmentation cases. The accuracy of CNN–LSTM model using non-augmentation was 99.6%, 99.8%, 82.4%, and 99.4% for datasets 1, 2, 3, and 4, respectively, and using augmentation was 100%, 99.8%, 98.0%, and 99.5% for datasets 1, 2, 3, and 4, respectively. While the augmentation process successfully helps the deep learning models in enhancing their performance on the testing datasets with a notable value. Moreover, the hybrid model that combines both CNN and LSTM techniques performed better than models that are based only on one of these techniques, this mainly refers to the use of CNN for automatic deep features extraction from lung sound while LSTM is used for classification.
Collapse
Affiliation(s)
- Ali Mohammad Alqudah
- Department of Biomedical Systems and Informatics Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan
| | - Shoroq Qazan
- Department of Computer Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan
| | - Yusra M Obeidat
- Department of Electronic Engineering, Hijjawi Faculty for Engineering Technology, Yarmouk University, Irbid, Jordan
| |
Collapse
|
15
|
A temporal dependency feature in lower dimension for lung sound signal classification. Sci Rep 2022; 12:7889. [PMID: 35551232 PMCID: PMC9098886 DOI: 10.1038/s41598-022-11726-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/04/2022] [Indexed: 11/20/2022] Open
Abstract
Respiratory sounds are expressed as nonlinear and nonstationary signals, whose unpredictability makes it difficult to extract significant features for classification. Static cepstral coefficients such as Mel-frequency cepstral coefficients (MFCCs), have been used for classification of lung sound signals. However, they are modeled in high-dimensional hyperspectral space, and also lose temporal dependency information. Therefore, we propose shifted \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\delta $$\end{document}δ-cepstral coefficients in lower-subspace (SDC-L) as a novel feature for lung sound classification. It preserves temporal dependency information of multiple frames nearby same to original SDC, and improves feature extraction by reducing the hyperspectral dimension. We modified EMD algorithm by adding a stopping rule to objectively select a finite number of intrinsic mode functions (IMFs). The performances of SDC-L were evaluated with three machine learning techniques (support vector machine (SVM), k-nearest neighbor (k-NN) and random forest (RF)) and two deep learning algorithms (multilayer perceptron (MLP) and convolutional neural network (cNN)) and one hybrid deep learning algorithm combining cNN with long short term memory (LSTM) in terms of accuracy, precision, recall and F1-score. We found that the first 2 IMFs were enough to construct our feature. SVM, MLP and a hybrid deep learning algorithm (cNN plus LSTM) outperformed with SDC-L, and the other classifiers achieved equivalent results with all features. Our findings show that SDC-L is a promising feature for the classification of lung sound signals.
Collapse
|
16
|
Pham Thi Viet H, Nguyen Thi Ngoc H, Tran Anh V, Hoang Quang H. Classification of lung sounds using scalogram representation of sound segments and convolutional neural network. J Med Eng Technol 2022; 46:270-279. [PMID: 35212591 DOI: 10.1080/03091902.2022.2040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Lung auscultation is one of the most common methods for screening of lung diseases. The increasingly high rate of respiratory diseases leads to the need for robust methods to detect the abnormalities in patients' breathing sounds. Lung sounds analysis stands out as a promising approach to automatic screening of lung diseases, serving as a second opinion for doctors as a stand-alone device for preliminary screening of lung diseases in remote areas. In previous research on lung classification using ICBHI Database on Kaggle, lung audios are converted to spectral images and fed into deep neural networks for training. There are a few studies which uses the scalogram, however they focussed on classification among different lung diseases. The use of scalograms in categorising the sound types are rarely used. In this paper, we combined scalograms and neural networks for classification of lung sound types. Padding methods and augmentation are also considered to evaluate the impacts on classification score. An ensemble learning is incorporated to increase classification accuracy by utilising voting of many models. The model trained and evaluated has shown prominent improvement of this method on classification on the benchmark ICBHI database.
Collapse
Affiliation(s)
| | - Huyen Nguyen Thi Ngoc
- School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Vu Tran Anh
- School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Huy Hoang Quang
- School of Electronics and Telecommunications, Hanoi University of Science and Technology, Hanoi, Vietnam
| |
Collapse
|
17
|
Abera Tessema B, Nemomssa HD, Lamesgin Simegn G. Acquisition and Classification of Lung Sounds for Improving the Efficacy of Auscultation Diagnosis of Pulmonary Diseases. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2022; 15:89-102. [PMID: 35418786 PMCID: PMC9000552 DOI: 10.2147/mder.s362407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
Purpose Lung diseases are the third leading cause of death worldwide. Stethoscope-based auscultation is the most commonly used, non-invasive, inexpensive, and primary diagnostic approach for assessing lung conditions. However, the manual auscultation-based diagnosis procedure is prone to error, and its accuracy is dependent on the physician’s experience and hearing capacity. Moreover, the stethoscope recording is vulnerable to different noises that can mask the important features of lung sounds which may lead to misdiagnosis. In this paper, a method for the acquisition of lung sound signals and classification of the top 7 lung diseases has been proposed for improving the efficacy of auscultation diagnosis of pulmonary disease. Methods An electronic stethoscope has been constructed for signal acquisition. Lung sound signals were then collected from people with COPD, upper respiratory tract infections (URTI), lower respiratory tract infections (LRTI), pneumonia, bronchiectasis, bronchiolitis, asthma, and healthy people. Lung sounds were analyzed using a wavelet multiresolution analysis. To choose the most relevant features, feature selection using one-way ANOVA was performed. The classification accuracy of various machine learning classifiers was compared, and the Fine Gaussian SVM was chosen for final classification due to its superior performance. Model optimization was accomplished through the application of Bayesian optimization techniques. Results A test classification accuracy of 99%, specificity of 99.2%, and sensitivity of 99.04%, have been achieved for the 7 lung diseases using the optimized Fine Gaussian SVM classifier. Conclusion Our experimental results demonstrate that the proposed method has the potential to be used as a decision support system for the classification of lung diseases, especially in those areas where the expertise and the means are limited.
Collapse
Affiliation(s)
- Biruk Abera Tessema
- School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
- School of Medicine, Haramaya University College of Health and Medical Sciences, Haramaya University, Harar, Ethiopia
| | - Hundessa Daba Nemomssa
- School of Biomedical Engineering, Jimma Institute of Technology, Jimma University, Jimma, Ethiopia
- Correspondence: Hundessa Daba Nemomssa, Tel +251913763777, Email
| | | |
Collapse
|
18
|
Kim Y, Hyon Y, Lee S, Woo SD, Ha T, Chung C. The coming era of a new auscultation system for analyzing respiratory sounds. BMC Pulm Med 2022; 22:119. [PMID: 35361176 PMCID: PMC8969404 DOI: 10.1186/s12890-022-01896-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/20/2022] [Indexed: 01/28/2023] Open
Abstract
Auscultation with stethoscope has been an essential tool for diagnosing the patients with respiratory disease. Although auscultation is non-invasive, rapid, and inexpensive, it has intrinsic limitations such as inter-listener variability and subjectivity, and the examination must be performed face-to-face. Conventional stethoscope could not record the respiratory sounds, so it was impossible to share the sounds. Recent innovative digital stethoscopes have overcome the limitations and enabled clinicians to store and share the sounds for education and discussion. In particular, the recordable stethoscope made it possible to analyze breathing sounds using artificial intelligence, especially based on neural network. Deep learning-based analysis with an automatic feature extractor and convoluted neural network classifier has been applied for the accurate analysis of respiratory sounds. In addition, the current advances in battery technology, embedded processors with low power consumption, and integrated sensors make possible the development of wearable and wireless stethoscopes, which can help to examine patients living in areas of a shortage of doctors or those who need isolation. There are still challenges to overcome, such as the analysis of complex and mixed respiratory sounds and noise filtering, but continuous research and technological development will facilitate the transition to a new era of a wearable and smart stethoscope.
Collapse
Affiliation(s)
- Yoonjoo Kim
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - YunKyong Hyon
- Division of Industrial Mathematics, National Institute for Mathematical Sciences, 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, 34047, Republic of Korea
| | - Sunju Lee
- Division of Industrial Mathematics, National Institute for Mathematical Sciences, 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, 34047, Republic of Korea
| | - Seong-Dae Woo
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 34134, Korea
| | - Taeyoung Ha
- Division of Industrial Mathematics, National Institute for Mathematical Sciences, 70, Yuseong-daero 1689 beon-gil, Yuseong-gu, Daejeon, 34047, Republic of Korea.
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 34134, Korea. .,Infection Control Convergence Research Center, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
19
|
Petmezas G, Cheimariotis GA, Stefanopoulos L, Rocha B, Paiva RP, Katsaggelos AK, Maglaveras N. Automated Lung Sound Classification Using a Hybrid CNN-LSTM Network and Focal Loss Function. SENSORS (BASEL, SWITZERLAND) 2022; 22:1232. [PMID: 35161977 PMCID: PMC8838187 DOI: 10.3390/s22031232] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/16/2022]
Abstract
Respiratory diseases constitute one of the leading causes of death worldwide and directly affect the patient's quality of life. Early diagnosis and patient monitoring, which conventionally include lung auscultation, are essential for the efficient management of respiratory diseases. Manual lung sound interpretation is a subjective and time-consuming process that requires high medical expertise. The capabilities that deep learning offers could be exploited in order that robust lung sound classification models can be designed. In this paper, we propose a novel hybrid neural model that implements the focal loss (FL) function to deal with training data imbalance. Features initially extracted from short-time Fourier transform (STFT) spectrograms via a convolutional neural network (CNN) are given as input to a long short-term memory (LSTM) network that memorizes the temporal dependencies between data and classifies four types of lung sounds, including normal, crackles, wheezes, and both crackles and wheezes. The model was trained and tested on the ICBHI 2017 Respiratory Sound Database and achieved state-of-the-art results using three different data splitting strategies-namely, sensitivity 47.37%, specificity 82.46%, score 64.92% and accuracy 73.69% for the official 60/40 split, sensitivity 52.78%, specificity 84.26%, score 68.52% and accuracy 76.39% using interpatient 10-fold cross validation, and sensitivity 60.29% and accuracy 74.57% using leave-one-out cross validation.
Collapse
Affiliation(s)
- Georgios Petmezas
- Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, Medical School, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (G.P.); (G.-A.C.); (L.S.)
| | - Grigorios-Aris Cheimariotis
- Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, Medical School, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (G.P.); (G.-A.C.); (L.S.)
| | - Leandros Stefanopoulos
- Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, Medical School, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (G.P.); (G.-A.C.); (L.S.)
| | - Bruno Rocha
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, 3030-290 Coimbra, Portugal; (B.R.); (R.P.P.)
| | - Rui Pedro Paiva
- Centre for Informatics and Systems, Department of Informatics Engineering, University of Coimbra, 3030-290 Coimbra, Portugal; (B.R.); (R.P.P.)
| | - Aggelos K. Katsaggelos
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL 60208, USA;
| | - Nicos Maglaveras
- Laboratory of Computing, Medical Informatics and Biomedical—Imaging Technologies, Medical School, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece; (G.P.); (G.-A.C.); (L.S.)
| |
Collapse
|
20
|
Haider NS, Behera A. Computerized lung sound based classification of asthma and chronic obstructive pulmonary disease (COPD). Biocybern Biomed Eng 2022. [DOI: 10.1016/j.bbe.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
21
|
Zulfiqar R, Majeed F, Irfan R, Rauf HT, Benkhelifa E, Belkacem AN. Abnormal Respiratory Sounds Classification Using Deep CNN Through Artificial Noise Addition. Front Med (Lausanne) 2021; 8:714811. [PMID: 34869413 PMCID: PMC8635523 DOI: 10.3389/fmed.2021.714811] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/07/2021] [Indexed: 11/29/2022] Open
Abstract
Respiratory sound (RS) attributes and their analyses structure a fundamental piece of pneumonic pathology, and it gives symptomatic data regarding a patient's lung. A couple of decades back, doctors depended on their hearing to distinguish symptomatic signs in lung audios by utilizing the typical stethoscope, which is usually considered a cheap and secure method for examining the patients. Lung disease is the third most ordinary cause of death worldwide, so; it is essential to classify the RS abnormality accurately to overcome the death rate. In this research, we have applied Fourier analysis for the visual inspection of abnormal respiratory sounds. Spectrum analysis was done through Artificial Noise Addition (ANA) in conjunction with different deep convolutional neural networks (CNN) to classify the seven abnormal respiratory sounds-both continuous (CAS) and discontinuous (DAS). The proposed framework contains an adaptive mechanism of adding a similar type of noise to unhealthy respiratory sounds. ANA makes sound features enough reach to be identified more accurately than the respiratory sounds without ANA. The obtained results using the proposed framework are superior to previous techniques since we simultaneously considered the seven different abnormal respiratory sound classes.
Collapse
Affiliation(s)
- Rizwana Zulfiqar
- Faculty of Computing and Information Technology, University of Gujrat, Gujrat, Pakistan
| | - Fiaz Majeed
- Faculty of Computing and Information Technology, University of Gujrat, Gujrat, Pakistan
| | - Rizwana Irfan
- Department of Information Technology, College of Computing and Information Technology at Khulais, University of Jeddah, Jeddah, Saudi Arabia
| | | | - Elhadj Benkhelifa
- Cloud Computing and Applications Reseach Lab, Staffordshire University, Stoke-on-Trent, United Kingdom
| | - Abdelkader Nasreddine Belkacem
- Department of Computer and Network Engineering, College of Information Technology, UAE University, Al Ain, United Arab Emirates
| |
Collapse
|
22
|
Uyttendaele V, Guiot J, Chase JG, Desaive T. Does Facemask Impact Diagnostic During Pulmonary Auscultation? IFAC-PAPERSONLINE 2021; 54:192-197. [PMID: 38621011 PMCID: PMC8562133 DOI: 10.1016/j.ifacol.2021.10.254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Facemasks have been widely used in hospitals, especially since the emergence of the coronavirus 2019 (COVID-19) pandemic, often severely affecting respiratory functions. Masks protect patients from contagious airborne transmission, and are thus more specifically important for chronic respiratory disease (CRD) patients. However, masks also increase air resistance and thus work of breathing, which may impact pulmonary auscultation and diagnostic acuity, the primary respiratory examination. This study is the first to assess the impact of facemasks on clinical auscultation diagnostic. Lung sounds from 29 patients were digitally recorded using an electronic stethoscope. For each patient, one recording was taken wearing a surgical mask and one without. Recorded signals were segmented in breath cycles using an autocorrelation algorithm. In total, 87 breath cycles were identified from sounds with mask, and 82 without mask. Time-frequency analysis of the signals was used to extract comparison features such as peak frequency, median frequency, band power, or spectral integration. All the features extracted in frequency content, its evolution, or power did not significantly differ between respiratory cycles with or without mask. This early stage study thus suggests minor impact on clinical diagnostic outcomes in pulmonary auscultation. However, further analysis is necessary such as on adventitious sounds characteristics differences with or without mask, to determine if facemask could lead to no discernible diagnostic outcome in clinical practice.
Collapse
Affiliation(s)
| | - Julien Guiot
- Department of Pneumology, University Hospital of Liège, Belgium
| | - J Geoffrey Chase
- Department of Mechanical Engineering, University of Canterbury, Christchurch, New Zealand
| | | |
Collapse
|
23
|
Li J, Yuan J, Wang H, Liu S, Guo Q, Ma Y, Li Y, Zhao L, Wang G. LungAttn: advanced lung sound classification using attention mechanism with dual TQWT and triple STFT spectrogram. Physiol Meas 2021; 42. [PMID: 34534977 DOI: 10.1088/1361-6579/ac27b9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 09/17/2021] [Indexed: 11/12/2022]
Abstract
Objective. Auscultation of lung sound plays an important role in the early diagnosis of lung diseases. This work aims to develop an automated adventitious lung sound detection method to reduce the workload of physicians.Approach. We propose a deep learning architecture, LungAttn, which incorporates augmented attention convolution into ResNet block to improve the classification accuracy of lung sound. We adopt a feature extraction method based on dual tunableQ-factor wavelet transform and triple short-time Fourier transform to obtain a multi-channel spectrogram. Mixup method is introduced to augment adventitious lung sound recordings to address the imbalance dataset problem.Main results. Based on the ICBHI 2017 challenge dataset, we implement our framework and compare with the state-of-the-art works. Experimental results show that LungAttn has achieved theSensitivity, Se,Specificity, SpandScoreof 36.36%, 71.44% and 53.90%, respectively. Of which, our work has improved theScoreby 1.69% compared to the state-of-the-art models based on the official ICBHI 2017 dataset splitting method.Significance. Multi-channel spectrogram based on different oscillatory behavior of adventitious lung sound provides necessary information of lung sound recordings. Attention mechanism is introduced to lung sound classification methods and has proved to be effective. The proposed LungAttn model can potentially improve the speed and accuracy of lung sound classification in clinical practice.
Collapse
Affiliation(s)
- Jizuo Li
- Department of Micro-Nano Electronics and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiajun Yuan
- Pediatric AI Clinical Application and Research Center, Shanghai Children's Medical Center, and Child Health Advocacy Institute, China Hospital Development Institute of Shanghai Jiao Tong University, People's Republic of China.,School of Computer Engineering and Science, Shanghai University, Shanghai, People's Republic of China.,Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), People's Republic of China.,Sanya Maternity and Child Care Hospital, People's Republic of China
| | - Hansong Wang
- Pediatric AI Clinical Application and Research Center, Shanghai Children's Medical Center, and Child Health Advocacy Institute, China Hospital Development Institute of Shanghai Jiao Tong University, People's Republic of China.,Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), People's Republic of China
| | - Shijian Liu
- Pediatric AI Clinical Application and Research Center, Shanghai Children's Medical Center, and Child Health Advocacy Institute, China Hospital Development Institute of Shanghai Jiao Tong University, People's Republic of China.,Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), People's Republic of China
| | - Qianyu Guo
- Department of Micro-Nano Electronics and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yi Ma
- Department of Micro-Nano Electronics and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yongfu Li
- Department of Micro-Nano Electronics and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Liebin Zhao
- Shanghai Engineering Research Center of Intelligence Pediatrics (SERCIP), People's Republic of China.,Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, People's Republic of China
| | - Guoxing Wang
- Department of Micro-Nano Electronics and MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| |
Collapse
|
24
|
McLane I, Lauwers E, Stas T, Busch-Vishniac I, Ides K, Verhulst S, Steckel J. Comprehensive Analysis System for Automated Respiratory Cycle Segmentation and Crackle Peak Detection. IEEE J Biomed Health Inform 2021; 26:1847-1860. [PMID: 34705660 DOI: 10.1109/jbhi.2021.3123353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Digital auscultation is a well-known method for assessing lung sounds, but remains a subjective process in typical practice, relying on the human interpretation. Several methods have been presented for detecting or analyzing crackles but are limited in their real-world application because few have been integrated into comprehensive systems or validated on non-ideal data. This work details a complete signal analysis methodology for analyzing crackles in challenging recordings. The procedure comprises five sequential processing blocks: (1) motion artifact detection, (2) deep learning denoising network, (3) respiratory cycle segmentation, (4) separation of discontinuous adventitious sounds from vesicular sounds, and (5) crackle peak detection. This system uses a collection of new methods and robustness-focused improvements on previous methods to analyze respiratory cycles and crackles therein. To validate the accuracy, the system is tested on a database of 1000 simulated lung sounds with varying levels of motion artifacts, ambient noise, cycle lengths and crackle intensities, in which ground truths are exactly known. The system performs with average F-score of 91.07% for detecting motion artifacts and 94.43% for respiratory cycle extraction, and an overall F-score of 94.08% for detecting the locations of individual crackles. The process also successfully detects healthy recordings. Preliminary validation is also presented on a small set of 20 patient recordings, for which the system performs comparably. These methods provide quantifiable analysis of respiratory sounds to enable clinicians to distinguish between types of crackles, their timing within the respiratory cycle, and the level of occurrence. Crackles are one of the most common abnormal lung sounds, presenting in multiple cardiorespiratory diseases. These features will contribute to a better understanding of disease severity and progression in an objective, simple and non-invasive way.
Collapse
|
25
|
Li J, Wang Z, Dong H, Ghinea G. Outlier-Resistant Remote State Estimation for Recurrent Neural Networks With Mixed Time-Delays. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:2266-2273. [PMID: 32452774 DOI: 10.1109/tnnls.2020.2991151] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this brief, a new outlier-resistant state estimation (SE) problem is addressed for a class of recurrent neural networks (RNNs) with mixed time-delays. The mixed time delays comprise both discrete and distributed delays that occur frequently in signal transmissions among artificial neurons. Measurement outputs are sometimes subject to abnormal disturbances (resulting probably from sensor aging/outages/faults/failures and unpredictable environmental changes) leading to measurement outliers that would deteriorate the estimation performance if directly taken into the innovation in the estimator design. We propose to use a certain confidence-dependent saturation function to mitigate the side effects from the measurement outliers on the estimation error dynamics (EEDs). Through using a combination of Lyapunov-Krasovskii functional and inequality manipulations, a delay-dependent criterion is established for the existence of the outlier-resistant state estimator ensuring that the corresponding EED achieves the asymptotic stability with a prescribed H∞ performance index. Then, the explicit characterization of the estimator gain is obtained by solving a convex optimization problem. Finally, numerical simulation is carried out to demonstrate the usefulness of the derived theoretical results.
Collapse
|
26
|
Multi-Time-Scale Features for Accurate Respiratory Sound Classification. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10238606] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The COVID-19 pandemic has amplified the urgency of the developments in computer-assisted medicine and, in particular, the need for automated tools supporting the clinical diagnosis and assessment of respiratory symptoms. This need was already clear to the scientific community, which launched an international challenge in 2017 at the International Conference on Biomedical Health Informatics (ICBHI) for the implementation of accurate algorithms for the classification of respiratory sound. In this work, we present a framework for respiratory sound classification based on two different kinds of features: (i) short-term features which summarize sound properties on a time scale of tenths of a second and (ii) long-term features which assess sounds properties on a time scale of seconds. Using the publicly available dataset provided by ICBHI, we cross-validated the classification performance of a neural network model over 6895 respiratory cycles and 126 subjects. The proposed model reached an accuracy of 85%±3% and an precision of 80%±8%, which compare well with the body of literature. The robustness of the predictions was assessed by comparison with state-of-the-art machine learning tools, such as the support vector machine, Random Forest and deep neural networks. The model presented here is therefore suitable for large-scale applications and for adoption in clinical practice. Finally, an interesting observation is that both short-term and long-term features are necessary for accurate classification, which could be the subject of future studies related to its clinical interpretation.
Collapse
|
27
|
Naqvi SZH, Choudhry MA. An Automated System for Classification of Chronic Obstructive Pulmonary Disease and Pneumonia Patients Using Lung Sound Analysis. SENSORS 2020; 20:s20226512. [PMID: 33202613 PMCID: PMC7697014 DOI: 10.3390/s20226512] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/12/2020] [Accepted: 11/12/2020] [Indexed: 11/16/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and pneumonia are two of the few fatal lung diseases which share common adventitious lung sounds. Diagnosing the disease from lung sound analysis to design a noninvasive technique for telemedicine is a challenging task. A novel framework is presented to perform a diagnosis of COPD and Pneumonia via application of the signal processing and machine learning approach. This model will help the pulmonologist to accurately detect disease A and B. COPD, normal and pneumonia lung sound (LS) data from the ICBHI respiratory database is used in this research. The performance analysis is evidence of the improved performance of the quadratic discriminate classifier with an accuracy of 99.70% on selected fused features after experimentation. The fusion of time domain, cepstral, and spectral features are employed. Feature selection for fusion is performed through the back-elimination method whereas empirical mode decomposition (EMD) and discrete wavelet transform (DWT)-based techniques are used to denoise and segment the pulmonic signal. Class imbalance is catered with the implementation of the adaptive synthetic (ADASYN) sampling technique.
Collapse
Affiliation(s)
- Syed Zohaib Hassan Naqvi
- Department of Electronics Engineering, University of Engineering and Technology, Taxila 47080, Pakistan
- Correspondence:
| | - Mohammad Ahmad Choudhry
- Department of Electrical Engineering, University of Engineering and Technology, Taxila 47080, Pakistan;
| |
Collapse
|
28
|
Jaber MM, Abd SK, Shakeel P, Burhanuddin M, Mohammed MA, Yussof S. A telemedicine tool framework for lung sounds classification using ensemble classifier algorithms. MEASUREMENT 2020; 162:107883. [DOI: 10.1016/j.measurement.2020.107883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
29
|
Pramono RXA, Imtiaz SA, Rodriguez-Villegas E. Evaluation of Mel-Frequency Cepstrum for Wheeze Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4686-4689. [PMID: 31946908 DOI: 10.1109/embc.2019.8857848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Monitoring of wheezes is an integral part of managing Chronic Respiratory Diseases such as asthma and Chronic Obstructive Pulmonary Disease (COPD). Recently, there is a growing interest in automatic detection of wheezes and the use of Mel-Frequency Cepstral Coefficients (MFCC) have been shown to achieve encouraging detection performance. While the successful use of MFCC for identifying wheezes has been demonstrated, it is not clear which MFCC coefficients are actually useful for detecting wheezes. The objective of this paper is to characterize and study the effectiveness of individual coefficients in discriminating between wheezes and normal respiratory sounds. The coefficients have been evaluated in terms of histogram dissimilarity and linear separability. Further, a comparison between the use of single coefficient against other combinations of coefficients is also presented. The results demonstrate MFCC-2 coefficient to be significantly more effective than all the other coefficients in discriminating between wheezes and normal respiratory sounds sampled at 8000 Hz.
Collapse
|
30
|
Jayalakshmy S, Sudha GF. Scalogram based prediction model for respiratory disorders using optimized convolutional neural networks. Artif Intell Med 2020; 103:101809. [PMID: 32143805 DOI: 10.1016/j.artmed.2020.101809] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 11/26/2022]
Abstract
Auscultation of the lung is a conventional technique used for diagnosing chronic obstructive pulmonary diseases (COPDs) and lower respiratory infections and disorders in patients. In most of the earlier works, wavelet transforms or spectrograms have been used to analyze the lung sounds. However, an accurate prediction model for respiratory disorders has not been developed so far. In this paper, a pre-trained optimized Alexnet Convolutional Neural Network (CNN) architecture is proposed for predicting respiratory disorders. The proposed approach models the segmented respiratory sound signal into Bump and Morse scalograms from several intrinsic mode functions (IMFs) using empirical mode decomposition (EMD) method. From the extracted intrinsic mode functions, the percentage energy calculated for each wavelet coefficient in the form of scalograms are computed. Subsequently, these scalograms are given as input to the pre-trained optimized CNN model for training and testing. Stochastic gradient descent with momentum (SGDM) and adaptive data momentum (ADAM) optimization algorithms were examined to check the prediction accuracy on the dataset comprising of four classes of lung sounds, normal, crackles (coarse and fine), wheezes (monophonic & polyphonic) and low-pitched wheezes (Rhonchi). On comparison to the baseline method of standard Bump and Morse wavelet transform approach which produced 79.04 % and 81.27 % validation accuracy, an improved accuracy of 83.78 % is achieved by the virtue of scalogram representation of various IMFs of EMD. Hence, the proposed approach achieves significant performance improvement in accuracy compared to the existing state-of- the-art techniques in literature.
Collapse
Affiliation(s)
- S Jayalakshmy
- Department of Electronics and Communication Engineering, Pondicherry Engineering College Puducherry, 605 014, India.
| | - Gnanou Florence Sudha
- Department of Electronics and Communication Engineering, Pondicherry Engineering College Puducherry, 605 014, India.
| |
Collapse
|
31
|
Demir F, Sengur A, Bajaj V. Convolutional neural networks based efficient approach for classification of lung diseases. Health Inf Sci Syst 2019; 8:4. [PMID: 31915523 PMCID: PMC6928168 DOI: 10.1007/s13755-019-0091-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 10/28/2019] [Indexed: 11/30/2022] Open
Abstract
Treatment of lung diseases, which are the third most common cause of death in the world, is of great importance in the medical field. Many studies using lung sounds recorded with stethoscope have been conducted in the literature in order to diagnose the lung diseases with artificial intelligence-compatible devices and to assist the experts in their diagnosis. In this paper, ICBHI 2017 database which includes different sample frequencies, noise and background sounds was used for the classification of lung sounds. The lung sound signals were initially converted to spectrogram images by using time–frequency method. The short time Fourier transform (STFT) method was considered as time–frequency transformation. Two deep learning based approaches were used for lung sound classification. In the first approach, a pre-trained deep convolutional neural networks (CNN) model was used for feature extraction and a support vector machine (SVM) classifier was used in classification of the lung sounds. In the second approach, the pre-trained deep CNN model was fine-tuned (transfer learning) via spectrogram images for lung sound classification. The accuracies of the proposed methods were tested by using the ten-fold cross validation. The accuracies for the first and second proposed methods were 65.5% and 63.09%, respectively. The obtained accuracies were then compared with some of the existing results and it was seen that obtained scores were better than the other results.
Collapse
Affiliation(s)
- Fatih Demir
- 1Electrical and Electronics Engineering Dept., Technology Faculty, Firat University, Elazig, Turkey
| | - Abdulkadir Sengur
- 1Electrical and Electronics Engineering Dept., Technology Faculty, Firat University, Elazig, Turkey
| | | |
Collapse
|
32
|
Yoon Y, Hwang T, Choi H, Lee H. Classification of radiographic lung pattern based on texture analysis and machine learning. J Vet Sci 2019; 20:e44. [PMID: 31364328 PMCID: PMC6669202 DOI: 10.4142/jvs.2019.20.e44] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/08/2019] [Accepted: 07/05/2019] [Indexed: 11/20/2022] Open
Abstract
This study evaluated the feasibility of using texture analysis and machine learning to distinguish radiographic lung patterns. A total of 1200 regions of interest (ROIs) including four specific lung patterns (normal, alveolar, bronchial, and unstructured interstitial) were obtained from 512 thoracic radiographs of 252 dogs and 65 cats. Forty-four texture parameters based on eight methods of texture analysis (first-order statistics, spatial gray-level-dependence matrices, gray-level-difference statistics, gray-level run length image statistics, neighborhood gray-tone difference matrices, fractal dimension texture analysis, Fourier power spectrum, and Law's texture energy measures) were used to extract textural features from the ROIs. The texture parameters of each lung pattern were compared and used for training and testing of artificial neural networks. Classification performance was evaluated by calculating accuracy and the area under the receiver operating characteristic curve (AUC). Forty texture parameters showed significant differences between the lung patterns. The accuracy of lung pattern classification was 99.1% in the training dataset and 91.9% in the testing dataset. The AUCs were above 0.98 in the training set and above 0.92 in the testing dataset. Texture analysis and machine learning algorithms may potentially facilitate the evaluation of medical images.
Collapse
Affiliation(s)
- Youngmin Yoon
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Taesung Hwang
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea
| | - Hojung Choi
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea
| | - Heechun Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Korea.
| |
Collapse
|
33
|
Shi L, Du W, Li Z. A two stage recognition method of lung sounds based on multiple features. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2019. [DOI: 10.3233/jifs-181339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Lukui Shi
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
- Hebei Province Bigdata Computation Key Laboratory, Tianjin, China
| | - Weifang Du
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| | - Zhanru Li
- School of Artificial Intelligence, Hebei University of Technology, Tianjin, China
| |
Collapse
|
34
|
Chen H, Yuan X, Li J, Pei Z, Zheng X. Automatic Multi-Level In-Exhale Segmentation and Enhanced Generalized S-Transform for wheezing detection. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:163-173. [PMID: 31416545 DOI: 10.1016/j.cmpb.2019.06.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/09/2019] [Accepted: 06/25/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Wheezing is a common symptom of patients caused by asthma and chronic obstructive pulmonary diseases. Wheezing detection identifies wheezing lung sounds and helps physicians in diagnosis, monitoring, and treatment of pulmonary diseases. Different from the traditional way to detect wheezing sounds using digital image process methods, automatic wheezing detection uses computerized tools or algorithms to objectively and accurately assess and evaluate lung sounds. We propose an innovative machine learning-based approach for wheezing detection. The phases of the respiratory sounds are separated automatically and the wheezing features are extracted accordingly to improve the classification accuracy. METHODS To enhance the features of wheezing for classification, the Adaptive Multi-Level In-Exhale Segmentation (AMIE_SEG) is proposed to automatically and precisely segment the respiratory sounds into inspiratory and expiratory phases. Furthermore, the Enhanced Generalized S-Transform (EGST) is proposed to extract the wheezing features. The highlighted features of wheezing improve the accuracy of wheezing detection with machine learning-based classifiers. RESULTS To evaluate the novelty and superiority of the proposed AMIE_SEG and EGST for wheezing detection, we employ three machine learning-based classifiers, Support Vector Machine (SVM), Extreme Learning Machine (ELM) and K-Nearest Neighbor (KNN), with public datasets at segment level and record level respectively. According to the experimental results, the proposed method performs the best using the KNN classifier at segment level, with the measured accuracy, sensitivity, specificity as 98.62%, 95.9% and 99.3% in average respectively. On the other aspect, at record level, the three classifiers perform excellent, with the accuracy, sensitivity, specificity up to 99.52%, 100% and 99.27% respectively. We validate the method with public respiratory sounds dataset. CONCLUSION The comparison results indicate the very good performance of the proposed methods for long-term wheezing monitoring and telemedicine.
Collapse
Affiliation(s)
- Hai Chen
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau; School of Information Technology, Beijing Normal University, Zhuhai, Zhuhai, China.
| | - Xiaochen Yuan
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau.
| | - Jianqing Li
- Faculty of Information Technology, Macau University of Science and Technology, Taipa, Macau.
| | - Zhiyuan Pei
- School of Information Technology, Beijing Normal University, Zhuhai, Zhuhai, China.
| | - Xiaobin Zheng
- Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China.
| |
Collapse
|
35
|
Ghulam Nabi F, Sundaraj K, Chee Kiang L, Palaniappan R, Sundaraj S. Wheeze sound analysis using computer-based techniques: a systematic review. ACTA ACUST UNITED AC 2019; 64:1-28. [PMID: 29087951 DOI: 10.1515/bmt-2016-0219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 08/24/2017] [Indexed: 11/15/2022]
Abstract
Wheezes are high pitched continuous respiratory acoustic sounds which are produced as a result of airway obstruction. Computer-based analyses of wheeze signals have been extensively used for parametric analysis, spectral analysis, identification of airway obstruction, feature extraction and diseases or pathology classification. While this area is currently an active field of research, the available literature has not yet been reviewed. This systematic review identified articles describing wheeze analyses using computer-based techniques on the SCOPUS, IEEE Xplore, ACM, PubMed and Springer and Elsevier electronic databases. After a set of selection criteria was applied, 41 articles were selected for detailed analysis. The findings reveal that 1) computerized wheeze analysis can be used for the identification of disease severity level or pathology, 2) further research is required to achieve acceptable rates of identification on the degree of airway obstruction with normal breathing, 3) analysis using combinations of features and on subgroups of the respiratory cycle has provided a pathway to classify various diseases or pathology that stem from airway obstruction.
Collapse
Affiliation(s)
- Fizza Ghulam Nabi
- School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia, Phone: +601111519452
| | - Kenneth Sundaraj
- Faculty of Electronics and Computer Engineering, Universiti Teknikal Malaysia Melaka (UTeM), 76100 Durian Tunggal, Melaka, Malaysia
| | - Lam Chee Kiang
- School of Mechatronic Engineering, Universiti Malaysia Perlis (UniMAP), 02600 Arau, Perlis, Malaysia
| | - Rajkumar Palaniappan
- School of Electronics Engineering, Vellore Institute of Technology (VIT), Tamil Nadu 632014, India
| | - Sebastian Sundaraj
- Department of Anesthesiology, Hospital Tengku Ampuan Rahimah (HTAR), 41200 Klang, Selangor, Malaysia
| |
Collapse
|
36
|
Samanta P, Pathak A, Mandana K, Saha G. Classification of coronary artery diseased and normal subjects using multi-channel phonocardiogram signal. Biocybern Biomed Eng 2019. [DOI: 10.1016/j.bbe.2019.02.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
37
|
Shi Y, Li Y, Cai M, Zhang XD. A Lung Sound Category Recognition Method Based on Wavelet Decomposition and BP Neural Network. Int J Biol Sci 2019; 15:195-207. [PMID: 30662359 PMCID: PMC6329930 DOI: 10.7150/ijbs.29863] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/15/2018] [Indexed: 12/17/2022] Open
Abstract
In this paper, a method of characteristic extraction and recognition on lung sounds is given. Wavelet de-noised method is adopted to reduce noise of collected lung sounds and extract wavelet characteristic coefficients of the de-noised lung sounds by wavelet decomposition. Considering the problem that lung sounds characteristic vectors are of high dimensions after wavelet decomposition and reconstruction, a new method is proposed to transform the characteristic vectors from reconstructed signals into reconstructed signal energy. In addition, we use linear discriminant analysis (LDA) to reduce the dimension of characteristic vectors for comparison in order to obtain a more efficient way for recognition. Finally, we use BP neural network to carry out lung sounds recognition where comparatively high-dimensional characteristic vectors and low- dimensional vectors are set as input and lung sounds categories as output with a recognition accuracy of 82.5% and 92.5%.
Collapse
Affiliation(s)
- Yan Shi
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Yuqian Li
- School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Maolin Cai
- Faculty of Health Sciences, University of Macau, Taipa, Macau
| | | |
Collapse
|
38
|
Ulukaya S, Serbes G, Kahya YP. Wheeze type classification using non-dyadic wavelet transform based optimal energy ratio technique. Comput Biol Med 2018; 104:175-182. [PMID: 30496939 DOI: 10.1016/j.compbiomed.2018.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 11/03/2018] [Accepted: 11/05/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Wheezes in pulmonary sounds are anomalies which are often associated with obstructive type of lung diseases. The previous works on wheeze-type classification focused mainly on using fixed time-frequency/scale resolution based on Fourier and wavelet transforms. The main contribution of the proposed method, in which the time-scale resolution can be tuned according to the signal of interest, is to discriminate monophonic and polyphonic wheezes with higher accuracy than previously suggested time and time-frequency/scale based methods. METHODS An optimal Rational Dilation Wavelet Transform (RADWT) based peak energy ratio (PER) parameter selection method is proposed to discriminate wheeze types. Previously suggested Quartile Frequency Ratios, Mean Crossing Irregularity, Multiple Signal Classification, Mel-frequency Cepstrum and Dyadic Discrete Wavelet Transform approaches are also applied and the superiority of the proposed method is demonstrated in leave-one-out (LOO) and leave-one-subject-out (LOSO) cross validation schemes with support vector machine (SVM), k nearest neighbor (k-NN) and extreme learning machine (ELM) classifiers. RESULTS The results show that the proposed RADWT based method outperforms the state-of-the-art time, frequency, time-frequency and time-scale domain approaches for all classifiers in both LOO and LOSO cross validation settings. The highest accuracy values are obtained as 86% and 82.9% in LOO and LOSO respectively when the proposed PER features are fed into SVM. CONCLUSIONS It is concluded that time and frequency domain characteristics of wheezes are not steady and hence, tunable time-scale representations are more successful in discriminating polyphonic and monophonic wheezes when compared with conventional fixed resolution representations.
Collapse
Affiliation(s)
- Sezer Ulukaya
- Department of Electrical and Electronics Engineering, Boǧaziçi University, 34342, Istanbul, Turkey; Department of Electrical and Electronics Engineering, Trakya University, 22030, Edirne, Turkey.
| | - Gorkem Serbes
- Department of Biomedical Engineering, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Yasemin P Kahya
- Department of Electrical and Electronics Engineering, Boǧaziçi University, 34342, Istanbul, Turkey.
| |
Collapse
|
39
|
Characterization and classification of asthmatic wheeze sounds according to severity level using spectral integrated features. Comput Biol Med 2018; 104:52-61. [PMID: 30439599 DOI: 10.1016/j.compbiomed.2018.10.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 11/21/2022]
Abstract
OBJECTIVE This study aimed to investigate and classify wheeze sounds of asthmatic patients according to their severity level (mild, moderate and severe) using spectral integrated (SI) features. METHOD Segmented and validated wheeze sounds were obtained from auscultation recordings of the trachea and lower lung base of 55 asthmatic patients during tidal breathing manoeuvres. The segments were multi-labelled into 9 groups based on the auscultation location and/or breath phases. Bandwidths were selected based on the physiology, and a corresponding SI feature was computed for each segment. Univariate and multivariate statistical analyses were then performed to investigate the discriminatory behaviour of the features with respect to the severity levels in the various groups. The asthmatic severity levels in the groups were then classified using the ensemble (ENS), support vector machine (SVM) and k-nearest neighbour (KNN) methods. RESULTS AND CONCLUSION All statistical comparisons exhibited a significant difference (p < 0.05) among the severity levels with few exceptions. In the classification experiments, the ensemble classifier exhibited better performance in terms of sensitivity, specificity and positive predictive value (PPV). The trachea inspiratory group showed the highest classification performance compared with all the other groups. Overall, the best PPV for the mild, moderate and severe samples were 95% (ENS), 88% (ENS) and 90% (SVM), respectively. With respect to location, the tracheal related wheeze sounds were most sensitive and specific predictors of asthma severity levels. In addition, the classification performances of the inspiratory and expiratory related groups were comparable, suggesting that the samples from these locations are equally informative.
Collapse
|
40
|
Nodera H, Osaki Y, Yamazaki H, Mori A, Izumi Y, Kaji R. Classification of needle-EMG resting potentials by machine learning. Muscle Nerve 2018; 59:224-228. [PMID: 30353953 DOI: 10.1002/mus.26363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 10/14/2018] [Accepted: 10/16/2018] [Indexed: 11/10/2022]
Abstract
INTRODUCTION The diagnostic importance of audio signal characteristics in needle electromyography (EMG) is well established. Given the recent advent of audio-sound identification by artificial intelligence, we hypothesized that the extraction of characteristic resting EMG signals and application of machine learning algorithms could help classify various EMG discharges. METHODS Data files of 6 classes of resting EMG signals were divided into 2-s segments. Extraction of characteristic features (384 and 4,367 features each) was used to classify the 6 types of discharges using machine learning algorithms. RESULTS Across 841 audio files, the best overall accuracy of 90.4% was observed for the smaller feature set. Among the feature classes, mel-frequency cepstral coefficients (MFCC)-related features were useful in correct classification. CONCLUSIONS We showed that needle EMG resting signals were satisfactorily classifiable by the combination of feature extraction and machine learning, and this can be applied to clinical settings. Muscle Nerve 59:224-228, 2019.
Collapse
Affiliation(s)
- Hiroyuki Nodera
- Department of Neurology, 3-18-15 Kuramotocho, Tokushima City, 770-8503, Japan
| | - Yusuke Osaki
- Department of Neurology, 3-18-15 Kuramotocho, Tokushima City, 770-8503, Japan
| | - Hiroki Yamazaki
- Department of Neurology, 3-18-15 Kuramotocho, Tokushima City, 770-8503, Japan
| | - Atsuko Mori
- Department of Neurology, 3-18-15 Kuramotocho, Tokushima City, 770-8503, Japan
| | - Yuishin Izumi
- Department of Neurology, 3-18-15 Kuramotocho, Tokushima City, 770-8503, Japan
| | - Ryuji Kaji
- Department of Neurology, 3-18-15 Kuramotocho, Tokushima City, 770-8503, Japan
| |
Collapse
|
41
|
Hong K, Essid S, Ser W, Foo DG. A robust audio classification system for detecting pulmonary edema. Biomed Signal Process Control 2018. [DOI: 10.1016/j.bspc.2018.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
|
43
|
Islam MA, Bandyopadhyaya I, Bhattacharyya P, Saha G. Multichannel lung sound analysis for asthma detection. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 159:111-123. [PMID: 29650306 DOI: 10.1016/j.cmpb.2018.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 02/25/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Lung sound signals convey valuable information of the lung status. Auscultation is an effective technique to appreciate the condition of the respiratory system using lung sound signals. The prior works on asthma detection from lung sound signals rely on the presence of wheeze. In this paper, we have classified normal and asthmatic subjects using advanced signal processing of posterior lung sound signals, even in the absence of wheeze. METHODS We collected lung sounds of 60 subjects (30 normal and 30 asthma) using a novel 4-channel data acquisition system from four different positions over the posterior chest, as suggested by the pulmonologist. A spectral subband based feature extraction scheme is proposed that works with artificial neural network (ANN) and support vector machine (SVM) classifiers for the multichannel signal. The power spectral density (PSD) is estimated from extracted lung sound cycle using Welch's method, which then decomposed into uniform subbands. A set of statistical features is computed from each subband and applied to ANN and SVM classifiers to classify normal and asthmatic subjects. RESULTS In the first part of this study, the performances of each individual channel and four channels together are evaluated where the combined channel performance is found superior to that of individual channels. Next, the performances of all possible combinations of the channels are investigated and the best classification accuracies of 89.2( ± 3.87)% and 93.3( ± 3.10)% are achieved for 2-channel and 3-channel combinations in ANN and SVM classifiers, respectively. CONCLUSIONS The proposed multichannel asthma detection method where the presence of wheeze in lung sound is not a necessary requirement, outperforms commonly used lung sound classification methods in this field and provides significant relative improvement. The channel combination study gives insight into the contribution of respective lung sound collection areas and their combinations in asthma detection.
Collapse
Affiliation(s)
- Md Ariful Islam
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India.
| | - Irin Bandyopadhyaya
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India.
| | | | - Goutam Saha
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology, Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
44
|
Bardou D, Zhang K, Ahmad SM. Lung sounds classification using convolutional neural networks. Artif Intell Med 2018; 88:58-69. [DOI: 10.1016/j.artmed.2018.04.008] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 04/18/2018] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
|
45
|
Arora VK, Chopra KK. Inflammation plays a central role in respiratory diseases, including tuberculosis. Indian J Tuberc 2018; 65:103-105. [PMID: 29579421 DOI: 10.1016/j.ijtb.2018.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Affiliation(s)
- V K Arora
- Vice Chairman (P&R), TB Association of India, India; Executive Editor, Indian Journal of Tuberculosis, India
| | - K K Chopra
- Director, New Delhi Tuberculosis Centre, New Delhi, India; Associate Executive Editor, Indian Journal of Tuberculosis, India.
| |
Collapse
|
46
|
State estimation for delayed neural networks with stochastic communication protocol: The finite-time case. Neurocomputing 2018. [DOI: 10.1016/j.neucom.2017.11.067] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Clim A, Zota RD, TinicĂ G. The Kullback-Leibler Divergence Used in Machine Learning Algorithms for Health Care Applications and Hypertension Prediction: A Literature Review. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.procs.2018.10.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
48
|
An Automated Lung Sound Preprocessing and Classification System Based OnSpectral Analysis Methods. PRECISION MEDICINE POWERED BY PHEALTH AND CONNECTED HEALTH 2018. [DOI: 10.1007/978-981-10-7419-6_8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
49
|
Datta S, Dutta Choudhury A, Deshpande P, Bhattacharya S, Pal A. Automated lung sound analysis for detecting pulmonary abnormalities. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2017; 2017:4594-4598. [PMID: 29060920 DOI: 10.1109/embc.2017.8037879] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Identification of pulmonary diseases comprises of accurate auscultation as well as elaborate and expensive pulmonary function tests. Prior arts have shown that pulmonary diseases lead to abnormal lung sounds such as wheezes and crackles. This paper introduces novel spectral and spectrogram features, which are further refined by Maximal Information Coefficient, leading to the classification of healthy and abnormal lung sounds. A balanced lung sound dataset, consisting of publicly available data and data collected with a low-cost in-house digital stethoscope are used. The performance of the classifier is validated over several randomly selected non-overlapping training and validation samples and tested on separate subjects for two separate test cases: (a) overlapping and (b) non-overlapping data sources in training and testing. The results reveal that the proposed method sustains an accuracy of 80% even for non-overlapping data sources in training and testing.
Collapse
|
50
|
Khodabakhshi MB, Moradi MH, Sanat ZM, Jafari Moghadam Fard P. Lung sound decomposition using recurrent fuzzy wavelet network. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS 2017. [DOI: 10.3233/jifs-17684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|