1
|
Wang M, He Y, Peng L, Song X, Dong S, Gong Y. Cross-Domain Invariant Feature Absorption and Domain-Specific Feature Retention for Domain Incremental Chest X-Ray Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2025; 44:2041-2055. [PMID: 40030951 DOI: 10.1109/tmi.2025.3525902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Chest X-ray (CXR) images have been widely adopted in clinical care and pathological diagnosis in recent years. Some advanced methods on CXR classification task achieve impressive performance by training the model statically. However, in the real clinical environment, the model needs to learn continually and this can be viewed as a domain incremental learning (DIL) problem. Due to large domain gaps, DIL is faced with catastrophic forgetting. Therefore, in this paper, we propose a Cross-domain invariant feature absorption and Domain-specific feature retention (CaD) framework. To be specific, we adopt a Cross-domain Invariant Feature Absorption (CIFA) module to learn the domain invariant knowledge and a Domain-Specific Feature Retention (DSFR) module to learn the domain-specific knowledge. The CIFA module contains the C(lass)-adapter and an absorbing strategy is used to fuse the common features among different domains. The DSFR module contains the D(omain)-adapter for each domain and it connects to the network in parallel independently to prevent forgetting. A multi-label contrastive loss (MLCL) is used in the training process and improves the class distinctiveness within each domain. We leverage publicly available large-scale datasets to simulate domain incremental learning scenarios, extensive experimental results substantiate the effectiveness of our proposed methods and it has reached state-of-the-art performance.
Collapse
|
2
|
Hassan SU, Abdulkadir SJ, Zahid MSM, Al-Selwi SM. Local interpretable model-agnostic explanation approach for medical imaging analysis: A systematic literature review. Comput Biol Med 2025; 185:109569. [PMID: 39705792 DOI: 10.1016/j.compbiomed.2024.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/30/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
BACKGROUND The interpretability and explainability of machine learning (ML) and artificial intelligence systems are critical for generating trust in their outcomes in fields such as medicine and healthcare. Errors generated by these systems, such as inaccurate diagnoses or treatments, can have serious and even life-threatening effects on patients. Explainable Artificial Intelligence (XAI) is emerging as an increasingly significant area of research nowadays, focusing on the black-box aspect of sophisticated and difficult-to-interpret ML algorithms. XAI techniques such as Local Interpretable Model-Agnostic Explanations (LIME) can give explanations for these models, raising confidence in the systems and improving trust in their predictions. Numerous works have been published that respond to medical problems through the use of ML models in conjunction with XAI algorithms to give interpretability and explainability. The primary objective of the study is to evaluate the performance of the newly emerging LIME techniques within healthcare domains that require more attention in the realm of XAI research. METHOD A systematic search was conducted in numerous databases (Scopus, Web of Science, IEEE Xplore, ScienceDirect, MDPI, and PubMed) that identified 1614 peer-reviewed articles published between 2019 and 2023. RESULTS 52 articles were selected for detailed analysis that showed a growing trend in the application of LIME techniques in healthcare, with significant improvements in the interpretability of ML models used for diagnostic and prognostic purposes. CONCLUSION The findings suggest that the integration of XAI techniques, particularly LIME, enhances the transparency and trustworthiness of AI systems in healthcare, thereby potentially improving patient outcomes and fostering greater acceptance of AI-driven solutions among medical professionals.
Collapse
Affiliation(s)
- Shahab Ul Hassan
- Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Centre for Intelligent Signal & Imaging Research (CISIR), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia.
| | - Said Jadid Abdulkadir
- Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia.
| | - M Soperi Mohd Zahid
- Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Centre for Intelligent Signal & Imaging Research (CISIR), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia.
| | - Safwan Mahmood Al-Selwi
- Department of Computer and Information Sciences, Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia; Center for Research in Data Science (CeRDaS), Universiti Teknologi PETRONAS, Seri Iskandar, 32610, Perak, Malaysia.
| |
Collapse
|
3
|
Ilesanmi AE, Ilesanmi T, Ajayi B, Gbotoso GA, Belhaouari SB. Unlocking the Power of 3D Convolutional Neural Networks for COVID-19 Detection: A Comprehensive Review. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01393-x. [PMID: 39849202 DOI: 10.1007/s10278-025-01393-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/11/2024] [Accepted: 12/23/2024] [Indexed: 01/25/2025]
Abstract
The advent of three-dimensional convolutional neural networks (3D CNNs) has revolutionized the detection and analysis of COVID-19 cases. As imaging technologies have advanced, 3D CNNs have emerged as a powerful tool for segmenting and classifying COVID-19 in medical images. These networks have demonstrated both high accuracy and rapid detection capabilities, making them crucial for effective COVID-19 diagnostics. This study offers a thorough review of various 3D CNN algorithms, evaluating their efficacy in segmenting and classifying COVID-19 across a range of medical imaging modalities. This review systematically examines recent advancements in 3D CNN methodologies. The process involved a comprehensive screening of abstracts and titles to ensure relevance, followed by a meticulous selection and analysis of research papers from academic repositories. The study evaluates these papers based on specific criteria and provides detailed insights into the network architectures and algorithms used for COVID-19 detection. The review reveals significant trends in the use of 3D CNNs for COVID-19 segmentation and classification. It highlights key findings, including the diverse range of networks employed for COVID-19 detection compared to other diseases, which predominantly utilize encoder/decoder frameworks. The study provides an in-depth analysis of these methods, discussing their strengths, limitations, and potential areas for future research. The study reviewed a total of 60 papers published across various repositories, including Springer and Elsevier. The insights from this study have implications for clinical diagnosis and treatment strategies. Despite some limitations, the accuracy and efficiency of 3D CNN algorithms underscore their potential for advancing medical image segmentation and classification. The findings suggest that 3D CNNs could significantly enhance the detection and management of COVID-19, contributing to improved healthcare outcomes.
Collapse
Affiliation(s)
| | | | | | - Gbenga A Gbotoso
- Lagos State University of Science and Technology, Ikorodu, Nigeria
| | | |
Collapse
|
4
|
Yang J, Henao JAG, Dvornek N, He J, Bower DV, Depotter A, Bajercius H, de Mortanges AP, You C, Gange C, Ledda RE, Silva M, Dela Cruz CS, Hautz W, Bonel HM, Reyes M, Staib LH, Poellinger A, Duncan JS. Prior knowledge-guided vision-transformer-based unsupervised domain adaptation for intubation prediction in lung disease at one week. Comput Med Imaging Graph 2024; 118:102442. [PMID: 39515190 DOI: 10.1016/j.compmedimag.2024.102442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/05/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Data-driven approaches have achieved great success in various medical image analysis tasks. However, fully-supervised data-driven approaches require unprecedentedly large amounts of labeled data and often suffer from poor generalization to unseen new data due to domain shifts. Various unsupervised domain adaptation (UDA) methods have been actively explored to solve these problems. Anatomical and spatial priors in medical imaging are common and have been incorporated into data-driven approaches to ease the need for labeled data as well as to achieve better generalization and interpretation. Inspired by the effectiveness of recent transformer-based methods in medical image analysis, the adaptability of transformer-based models has been investigated. How to incorporate prior knowledge for transformer-based UDA models remains under-explored. In this paper, we introduce a prior knowledge-guided and transformer-based unsupervised domain adaptation (PUDA) pipeline. It regularizes the vision transformer attention heads using anatomical and spatial prior information that is shared by both the source and target domain, which provides additional insight into the similarity between the underlying data distribution across domains. Besides the global alignment of class tokens, it assigns local weights to guide the token distribution alignment via adversarial training. We evaluate our proposed method on a clinical outcome prediction task, where Computed Tomography (CT) and Chest X-ray (CXR) data are collected and used to predict the intubation status of patients in a week. Abnormal lesions are regarded as anatomical and spatial prior information for this task and are annotated in the source domain scans. Extensive experiments show the effectiveness of the proposed PUDA method.
Collapse
Affiliation(s)
- Junlin Yang
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | | | - Nicha Dvornek
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Jianchun He
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Danielle V Bower
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Arno Depotter
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Herkus Bajercius
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Aurélie Pahud de Mortanges
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital Bern, University of Bern, Bern, Switzerland
| | - Chenyu You
- Department of Electrical Engineering, Yale University, New Haven, CT, USA
| | - Christopher Gange
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | | | - Mario Silva
- Section of "Scienze Radiologiche," Diagnostic Department, University Hospital of Parma, Parma, Italy; Department of Medicine and Surgery, University of Parma, Italy
| | - Charles S Dela Cruz
- Section of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wolf Hautz
- Department of Emergency Medicine, Inselspital University Hospital, University of Bern, Bern, Switzerland
| | - Harald M Bonel
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital Bern, University of Bern, Bern, Switzerland; Campusradiologie, Department of Radiological Diagnostics, Lindenhofspital Bern, Bern, Switzerland; Campus Stiftung Lindenhof Bern, Bern, Switzerland
| | - Mauricio Reyes
- The ARTORG Center for Biomedical Research, University of Bern, Bern, Switzerland; Department of Radiation Oncology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Lawrence H Staib
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Electrical Engineering, Yale University, New Haven, CT, USA
| | - Alexander Poellinger
- Department of Diagnostic, Interventional, and Pediatric Radiology, Inselspital Bern, University of Bern, Bern, Switzerland.
| | - James S Duncan
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA; Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA; Department of Electrical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Sannasi Chakravarthy SR, Bharanidharan N, Vinothini C, Vinoth Kumar V, Mahesh TR, Guluwadi S. Adaptive Mish activation and ranger optimizer-based SEA-ResNet50 model with explainable AI for multiclass classification of COVID-19 chest X-ray images. BMC Med Imaging 2024; 24:206. [PMID: 39123118 PMCID: PMC11313131 DOI: 10.1186/s12880-024-01394-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
A recent global health crisis, COVID-19 is a significant global health crisis that has profoundly affected lifestyles. The detection of such diseases from similar thoracic anomalies using medical images is a challenging task. Thus, the requirement of an end-to-end automated system is vastly necessary in clinical treatments. In this way, the work proposes a Squeeze-and-Excitation Attention-based ResNet50 (SEA-ResNet50) model for detecting COVID-19 utilizing chest X-ray data. Here, the idea lies in improving the residual units of ResNet50 using the squeeze-and-excitation attention mechanism. For further enhancement, the Ranger optimizer and adaptive Mish activation function are employed to improve the feature learning of the SEA-ResNet50 model. For evaluation, two publicly available COVID-19 radiographic datasets are utilized. The chest X-ray input images are augmented during experimentation for robust evaluation against four output classes namely normal, pneumonia, lung opacity, and COVID-19. Then a comparative study is done for the SEA-ResNet50 model against VGG-16, Xception, ResNet18, ResNet50, and DenseNet121 architectures. The proposed framework of SEA-ResNet50 together with the Ranger optimizer and adaptive Mish activation provided maximum classification accuracies of 98.38% (multiclass) and 99.29% (binary classification) as compared with the existing CNN architectures. The proposed method achieved the highest Kappa validation scores of 0.975 (multiclass) and 0.98 (binary classification) over others. Furthermore, the visualization of the saliency maps of the abnormal regions is represented using the explainable artificial intelligence (XAI) model, thereby enhancing interpretability in disease diagnosis.
Collapse
Affiliation(s)
- S R Sannasi Chakravarthy
- Department of Electronics and Communication Engineering, Bannari Amman Institute of Technology, Sathyamangalam, India
| | - N Bharanidharan
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, 632014, India
| | - C Vinothini
- Department of Computer Science and Engineering, Dayananda Sagar College of Engineering, Bangalore, India
| | - Venkatesan Vinoth Kumar
- School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, 632014, India
| | - T R Mahesh
- Department of Computer Science and Engineering, JAIN (Deemed-to-Be University), Bengaluru, 562112, India
| | - Suresh Guluwadi
- Adama Science and Technology University, Adama, 302120, Ethiopia.
| |
Collapse
|
6
|
Hiremath A, Viswanathan VS, Bera K, Shiradkar R, Yuan L, Armitage K, Gilkeson R, Ji M, Fu P, Gupta A, Lu C, Madabhushi A. Deep learning reveals lung shape differences on baseline chest CT between mild and severe COVID-19: A multi-site retrospective study. Comput Biol Med 2024; 177:108643. [PMID: 38815485 PMCID: PMC11188049 DOI: 10.1016/j.compbiomed.2024.108643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Severe COVID-19 can lead to extensive lung disease causing lung architectural distortion. In this study we employed machine learning and statistical atlas-based approaches to explore possible changes in lung shape among COVID-19 patients and evaluated whether the extent of these changes was associated with COVID-19 severity. On a large multi-institutional dataset (N = 3443), three different populations were defined; a) healthy (no COVID-19), b) mild COVID-19 (no ventilator required), c) severe COVID-19 (ventilator required), and the presence of lung shape differences between them were explored using baseline chest CT. Significant lung shape differences were observed along mediastinal surfaces of the lungs across all severity of COVID-19 disease. Additionally, differences were seen on basal surfaces of the lung when compared between healthy and severe COVID-19 patients. Finally, an AI model (a 3D residual convolutional network) characterizing these shape differences coupled with lung infiltrates (ground-glass opacities and consolidation regions) was found to be associated with COVID-19 severity.
Collapse
Affiliation(s)
- Amogh Hiremath
- Case Western Reserve University, Department of Biomedical Engineering, Cleveland, OH, USA; Picture Health, Cleveland, OH, USA
| | | | - Kaustav Bera
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | | | - Lei Yuan
- Renmin Hospital of Wuhan University, Department of Information Center, Wuhan, Hubei, China
| | - Keith Armitage
- University Hospitals Cleveland Medical Center, Department of Infectious Diseases, Cleveland, OH, USA
| | - Robert Gilkeson
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Mengyao Ji
- Renmin Hospital of Wuhan University, Department of Gastroenterology, Wuhan, Hubei, China
| | - Pingfu Fu
- Case Western Reserve University, Department of Population and Quantitative Health Sciences, Cleveland, OH, USA
| | - Amit Gupta
- University Hospitals Cleveland Medical Center, Department of Radiology, Cleveland, OH, USA
| | - Cheng Lu
- Guangdong Provincial People's Hospital, Department of Radiology, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong Provincial People's Hospital, Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangdong Academy of Medical Sciences, Guangzhou, China; Guangdong Provincial People's Hospital, Medical Research Center, Guangdong Academy of Medical Sciences, China
| | - Anant Madabhushi
- Georgia Institute of Technology and Emory University, Radiology and Imaging Sciences, Biomedical Informatics (BMI) and Pathology, GA, USA; Atlanta Veterans Administration Medical Center, GA, USA.
| |
Collapse
|
7
|
Das S, Nayak SP, Sahoo B, Nayak SC. Machine Learning in Healthcare Analytics: A State-of-the-Art Review. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING 2024. [DOI: 10.1007/s11831-024-10098-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/23/2024] [Indexed: 01/06/2025]
|
8
|
Garg A, Alag S, Duncan D. CoSev: Data-Driven Optimizations for COVID-19 Severity Assessment in Low-Sample Regimes. Diagnostics (Basel) 2024; 14:337. [PMID: 38337853 PMCID: PMC10855975 DOI: 10.3390/diagnostics14030337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/06/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Given the pronounced impact COVID-19 continues to have on society-infecting 700 million reported individuals and causing 6.96 million deaths-many deep learning works have recently focused on the virus's diagnosis. However, assessing severity has remained an open and challenging problem due to a lack of large datasets, the large dimensionality of images for which to find weights, and the compute limitations of modern graphics processing units (GPUs). In this paper, a new, iterative application of transfer learning is demonstrated on the understudied field of 3D CT scans for COVID-19 severity analysis. This methodology allows for enhanced performance on the MosMed Dataset, which is a small and challenging dataset containing 1130 images of patients for five levels of COVID-19 severity (Zero, Mild, Moderate, Severe, and Critical). Specifically, given the large dimensionality of the input images, we create several custom shallow convolutional neural network (CNN) architectures and iteratively refine and optimize them, paying attention to learning rates, layer types, normalization types, filter sizes, dropout values, and more. After a preliminary architecture design, the models are systematically trained on a simplified version of the dataset-building models for two-class, then three-class, then four-class, and finally five-class classification. The simplified problem structure allows the model to start learning preliminary features, which can then be further modified for more difficult classification tasks. Our final model CoSev boosts classification accuracies from below 60% at first to 81.57% with the optimizations, reaching similar performance to the state-of-the-art on the dataset, with much simpler setup procedures. In addition to COVID-19 severity diagnosis, the explored methodology can be applied to general image-based disease detection. Overall, this work highlights innovative methodologies that advance current computer vision practices for high-dimension, low-sample data as well as the practicality of data-driven machine learning and the importance of feature design for training, which can then be implemented for improvements in clinical practices.
Collapse
Affiliation(s)
- Aksh Garg
- Computer Science Department, Stanford University, Stanford, CA 94305, USA; (A.G.); (S.A.)
| | - Shray Alag
- Computer Science Department, Stanford University, Stanford, CA 94305, USA; (A.G.); (S.A.)
| | - Dominique Duncan
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
9
|
Zhou J, Zhou L, Wang D, Xu X, Li H, Chu Y, Han W, Gao X. Personalized and privacy-preserving federated heterogeneous medical image analysis with PPPML-HMI. Comput Biol Med 2024; 169:107861. [PMID: 38141449 DOI: 10.1016/j.compbiomed.2023.107861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
Heterogeneous data is endemic due to the use of diverse models and settings of devices by hospitals in the field of medical imaging. However, there are few open-source frameworks for federated heterogeneous medical image analysis with personalization and privacy protection without the demand to modify the existing model structures or to share any private data. Here, we proposed PPPML-HMI, a novel open-source learning paradigm for personalized and privacy-preserving federated heterogeneous medical image analysis. To our best knowledge, personalization and privacy protection were discussed simultaneously for the first time under the federated scenario by integrating the PerFedAvg algorithm and designing the novel cyclic secure aggregation with the homomorphic encryption algorithm. To show the utility of PPPML-HMI, we applied it to a simulated classification task namely the classification of healthy people and patients from the RAD-ChestCT Dataset, and one real-world segmentation task namely the segmentation of lung infections from COVID-19 CT scans. Meanwhile, we applied the improved deep leakage from gradients to simulate adversarial attacks and showed the strong privacy-preserving capability of PPPML-HMI. By applying PPPML-HMI to both tasks with different neural networks, a varied number of users, and sample sizes, we demonstrated the strong generalizability of PPPML-HMI in privacy-preserving federated learning on heterogeneous medical images.
Collapse
Affiliation(s)
- Juexiao Zhou
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Longxi Zhou
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Di Wang
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xiaopeng Xu
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Haoyang Li
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Yuetan Chu
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Wenkai Han
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Xin Gao
- Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia; Computational Bioscience Research Center, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
10
|
Zolya MA, Baltag C, Bratu DV, Coman S, Moraru SA. COVID-19 Detection and Diagnosis Model on CT Scans Based on AI Techniques. Bioengineering (Basel) 2024; 11:79. [PMID: 38247956 PMCID: PMC10813639 DOI: 10.3390/bioengineering11010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 12/31/2023] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
The end of 2019 could be mounted in a rudimentary framing of a new medical problem, which globally introduces into the discussion a fulminant outbreak of coronavirus, consequently spreading COVID-19 that conducted long-lived and persistent repercussions. Hence, the theme proposed to be solved arises from the field of medical imaging, where a pulmonary CT-based standardized reporting system could be addressed as a solution. The core of it focuses on certain impediments such as the overworking of doctors, aiming essentially to solve a classification problem using deep learning techniques, namely, if a patient suffers from COVID-19, viral pneumonia, or is healthy from a pulmonary point of view. The methodology's approach was a meticulous one, denoting an empirical character in which the initial stage, given using data processing, performs an extraction of the lung cavity from the CT scans, which is a less explored approach, followed by data augmentation. The next step is comprehended by developing a CNN in two scenarios, one in which there is a binary classification (COVID and non-COVID patients), and the other one is represented by a three-class classification. Moreover, viral pneumonia is addressed. To obtain an efficient version, architectural changes were gradually made, involving four databases during this process. Furthermore, given the availability of pre-trained models, the transfer learning technique was employed by incorporating the linear classifier from our own convolutional network into an existing model, with the result being much more promising. The experimentation encompassed several models including MobileNetV1, ResNet50, DenseNet201, VGG16, and VGG19. Through a more in-depth analysis, using the CAM technique, MobilneNetV1 differentiated itself via the detection accuracy of possible pulmonary anomalies. Interestingly, this model stood out as not being among the most used in the literature. As a result, the following values of evaluation metrics were reached: loss (0.0751), accuracy (0.9744), precision (0.9758), recall (0.9742), AUC (0.9902), and F1 score (0.9750), from 1161 samples allocated for each of the three individual classes.
Collapse
Affiliation(s)
- Maria-Alexandra Zolya
- Department of Automatics and Information Technology, Transilvania University of Brasov, 500036 Brașov, Romania; (C.B.); (D.-V.B.); (S.C.); (S.-A.M.)
| | | | | | | | | |
Collapse
|
11
|
Sadeghi A, Sadeghi M, Sharifpour A, Fakhar M, Zakariaei Z, Sadeghi M, Rokni M, Zakariaei A, Banimostafavi ES, Hajati F. Potential diagnostic application of a novel deep learning- based approach for COVID-19. Sci Rep 2024; 14:280. [PMID: 38167985 PMCID: PMC10762017 DOI: 10.1038/s41598-023-50742-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024] Open
Abstract
COVID-19 is a highly communicable respiratory illness caused by the novel coronavirus SARS-CoV-2, which has had a significant impact on global public health and the economy. Detecting COVID-19 patients during a pandemic with limited medical facilities can be challenging, resulting in errors and further complications. Therefore, this study aims to develop deep learning models to facilitate automated diagnosis of COVID-19 from CT scan records of patients. The study also introduced COVID-MAH-CT, a new dataset that contains 4442 CT scan images from 133 COVID-19 patients, as well as 133 CT scan 3D volumes. We proposed and evaluated six different transfer learning models for slide-level analysis that are responsible for detecting COVID-19 in multi-slice spiral CT. Additionally, multi-head attention squeeze and excitation residual (MASERes) neural network, a novel 3D deep model was developed for patient-level analysis, which analyzes all the CT slides of a given patient as a whole and can accurately diagnose COVID-19. The codes and dataset developed in this study are available at https://github.com/alrzsdgh/COVID . The proposed transfer learning models for slide-level analysis were able to detect COVID-19 CT slides with an accuracy of more than 99%, while MASERes was able to detect COVID-19 patients from 3D CT volumes with an accuracy of 100%. These achievements demonstrate that the proposed models in this study can be useful for automatically detecting COVID-19 in both slide-level and patient-level from patients' CT scan records, and can be applied for real-world utilization, particularly in diagnosing COVID-19 cases in areas with limited medical facilities.
Collapse
Affiliation(s)
- Alireza Sadeghi
- Intelligent Mobile Robot Lab (IMRL), Department of Mechatronics Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Mahdieh Sadeghi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ali Sharifpour
- Pulmonary and Critical Care Division, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O Box: 48166-33131, Sari, Iran.
| | - Zakaria Zakariaei
- Toxicology and Forensic Medicine Division, Mazandaran Registry Center for Opioids Poisoning, Anti-microbial Resistance Research Center, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, P.O box: 48166-33131, Sari, Iran.
| | - Mohammadreza Sadeghi
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mojtaba Rokni
- Department of Radiology, Qaemshahr Razi Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Atousa Zakariaei
- MSC in Civil Engineering, European University of Lefke, Nicosia, Cyprus
| | - Elham Sadat Banimostafavi
- Department of Radiology, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farshid Hajati
- Intelligent Technology Innovation Lab (ITIL) Group, Institute for Sustainable Industries and Liveable Cities, Victoria University, Footscray, Australia
| |
Collapse
|
12
|
Moitra M, Alafeef M, Narasimhan A, Kakaria V, Moitra P, Pan D. Diagnosis of COVID-19 with simultaneous accurate prediction of cardiac abnormalities from chest computed tomographic images. PLoS One 2023; 18:e0290494. [PMID: 38096254 PMCID: PMC10721010 DOI: 10.1371/journal.pone.0290494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 12/17/2023] Open
Abstract
COVID-19 has potential consequences on the pulmonary and cardiovascular health of millions of infected people worldwide. Chest computed tomographic (CT) imaging has remained the first line of diagnosis for individuals infected with SARS-CoV-2. However, differentiating COVID-19 from other types of pneumonia and predicting associated cardiovascular complications from the same chest-CT images have remained challenging. In this study, we have first used transfer learning method to distinguish COVID-19 from other pneumonia and healthy cases with 99.2% accuracy. Next, we have developed another CNN-based deep learning approach to automatically predict the risk of cardiovascular disease (CVD) in COVID-19 patients compared to the normal subjects with 97.97% accuracy. Our model was further validated against cardiac CT-based markers including cardiac thoracic ratio (CTR), pulmonary artery to aorta ratio (PA/A), and presence of calcified plaque. Thus, we successfully demonstrate that CT-based deep learning algorithms can be employed as a dual screening diagnostic tool to diagnose COVID-19 and differentiate it from other pneumonia, and also predicts CVD risk associated with COVID-19 infection.
Collapse
Affiliation(s)
- Moumita Moitra
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
| | - Maha Alafeef
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, Jordan
- Department of Nuclear Engineering, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Arjun Narasimhan
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Vikram Kakaria
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
| | - Parikshit Moitra
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- Department of Nuclear Engineering, The Pennsylvania State University, State College, Pennsylvania, United States of America
| | - Dipanjan Pan
- Center for Blood Oxygen Transport and Hemostasis, Department of Pediatrics, University of Maryland Baltimore School of Medicine, Baltimore, Maryland, United States of America
- Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, Maryland, United States of America
- Department of Nuclear Engineering, The Pennsylvania State University, State College, Pennsylvania, United States of America
- Department of Materials Science & Engineering, The Pennsylvania State University, State College, Pennsylvania, United States of America
- Huck Institutes of the Life Sciences, State College, Pennsylvania, United States of America
| |
Collapse
|
13
|
John Joseph S, Gandhi Raj R. Hybrid optimized feature selection and deep learning based COVID-19 disease prediction. Comput Methods Biomech Biomed Engin 2023; 26:2070-2088. [PMID: 37018029 DOI: 10.1080/10255842.2023.2194476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/07/2023] [Accepted: 03/19/2023] [Indexed: 04/06/2023]
Abstract
The COVID-19 virus has affected many people around the globe with several issues. Moreover, it causes a worldwide pandemic, and it makes more than one million deaths. Countries around the globe had to announce a complete lockdown when the corona virus causes the community to spread. In real-time, Polymerase Chain Reaction (RT-PCR) test is conducted to detect COVID-19, which is not effective and sensitive. Hence, this research presents the proposed Caviar-MFFO-assisted Deep LSTM scheme for COVID-19 detection. In this research, the COVID-19 cases data is utilized to process the COVID-19 detection. This method extracts the various technical indicators that improve the efficiency of COVID-19 detection. Moreover, the significant features fit for COVID-19 detection are selected using proposed mayfly with fruit fly optimization (MFFO). In addition, COVID-19 is detected by Deep Long Short Term Memory (Deep LSTM), and the Conditional Autoregressive Value at Risk MFFO (Caviar-MFFO) is modeled to train the weight of Deep LSTM. The experimental analysis reveals that the proposed Caviar-MFFO assisted Deep LSTM method provided efficient performance based on the Mean Squared Error (MSE) and Root Mean Squared Error (RMSE), and achieved the recovered cases with the minimal values of 1.438 and 1.199, whereas the developed model achieved the death cases with the values of 4.582 and 2.140 for MSE and RMSE. In addition, 6.127 and 2.475 are achieved by the developed model based on infected cases.
Collapse
Affiliation(s)
- S John Joseph
- Department of Computer Science and Engineering, Sudharsan Engineering College, Pudukkottai, Tamilnadu, India
| | - R Gandhi Raj
- Department of Electrical and Electronics Engineering, University College of Engineering (BIT Campus), Anna University, Tiruchirappalli, Tamilnadu, India
| |
Collapse
|
14
|
Zhang Q, Shu J, Chen C, Teng Z, Gu Z, Li F, Kan J. Optimization of pneumonia CT classification model using RepVGG and spatial attention features. Front Med (Lausanne) 2023; 10:1233724. [PMID: 37795420 PMCID: PMC10546926 DOI: 10.3389/fmed.2023.1233724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023] Open
Abstract
Introduction Pneumonia is a common and widespread infectious disease that seriously affects the life and health of patients. Especially in recent years, the outbreak of COVID-19 has caused a sharp rise in the number of confirmed cases of epidemic spread. Therefore, early detection and treatment of pneumonia are very important. However, the uneven gray distribution and structural intricacy of pneumonia images substantially impair the classification accuracy of pneumonia. In this classification task of COVID-19 and other pneumonia, because there are some commonalities between this pneumonia, even a small gap will lead to the risk of prediction deviation, it is difficult to achieve high classification accuracy by directly using the current network model to optimize the classification model. Methods Consequently, an optimization method for the CT classification model of COVID-19 based on RepVGG was proposed. In detail, it is made up of two essential modules, feature extraction backbone and spatial attention block, which allows it to extract spatial attention features while retaining the benefits of RepVGG. Results The model's inference time is significantly reduced, and it shows better learning ability than RepVGG on both the training and validation sets. Compared with the existing advanced network models VGG-16, ResNet-50, GoogleNet, ViT, AlexNet, MobileViT, ConvNeXt, ShuffleNet, and RepVGG_b0, our model has demonstrated the best performance in a lot of indicators. In testing, it achieved an accuracy of 0.951, an F1 score of 0.952, and a Youden index of 0.902. Discussion Overall, multiple experiments on the large dataset of SARS-CoV-2 CT-scan dataset reveal that this method outperforms most basic models in terms of classification and screening of COVID-19 CT, and has a significant reference value. Simultaneously, in the inspection experiment, this method outperformed other networks with residual structures.
Collapse
Affiliation(s)
| | - Jianhua Shu
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| | | | | | | | | | - Junling Kan
- School of Medical Information Engineering, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
15
|
Zhang J, Liu Y, Lei B, Sun D, Wang S, Zhou C, Ding X, Chen Y, Chen F, Wang T, Huang R, Chen K. GIONet: Global information optimized network for multi-center COVID-19 diagnosis via COVID-GAN and domain adversarial strategy. Comput Biol Med 2023; 163:107113. [PMID: 37307643 PMCID: PMC10242645 DOI: 10.1016/j.compbiomed.2023.107113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/14/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023]
Abstract
The outbreak of coronavirus disease (COVID-19) in 2019 has highlighted the need for automatic diagnosis of the disease, which can develop rapidly into a severe condition. Nevertheless, distinguishing between COVID-19 pneumonia and community-acquired pneumonia (CAP) through computed tomography scans can be challenging due to their similar characteristics. The existing methods often perform poorly in the 3-class classification task of healthy, CAP, and COVID-19 pneumonia, and they have poor ability to handle the heterogeneity of multi-centers data. To address these challenges, we design a COVID-19 classification model using global information optimized network (GIONet) and cross-centers domain adversarial learning strategy. Our approach includes proposing a 3D convolutional neural network with graph enhanced aggregation unit and multi-scale self-attention fusion unit to improve the global feature extraction capability. We also verified that domain adversarial training can effectively reduce feature distance between different centers to address the heterogeneity of multi-center data, and used specialized generative adversarial networks to balance data distribution and improve diagnostic performance. Our experiments demonstrate satisfying diagnosis results, with a mixed dataset accuracy of 99.17% and cross-centers task accuracies of 86.73% and 89.61%.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Yiyao Liu
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Baiying Lei
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Dandan Sun
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Siqi Wang
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Changning Zhou
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Xing Ding
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Yang Chen
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Fen Chen
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Tianfu Wang
- National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Ruidong Huang
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China
| | - Kuntao Chen
- Department of Radiology, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai, 518000, China.
| |
Collapse
|
16
|
Zhang J, Liu Y, Lei B, Sun D, Huang R, Wang T, Chen S, Chen K. Graph Convolution and Self-attention Enhanced CNN with Domain Adaptation for Multi-site COVID-19 Diagnosis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083611 DOI: 10.1109/embc40787.2023.10340851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
In 2019, coronavirus disease (COVID-19) is an acute disease that can rapidly develop into a very serious state. Therefore, it is of great significance to realize automatic COVID-19 diagnosis. However, due to the small difference in the characteristics of computed tomography (CT) between community acquire pneumonia (CP) and COVID-19, the existing model is unsuitable for the three-class classifications of healthy control, CP and COVID-19. The current model rarely optimizes the data from multiple centers. Therefore, we propose a diagnosis model for COVID-19 patients based on graph enhanced 3D convolution neural network (CNN) and cross-center domain feature adaptation. Specifically, we first design a 3D CNN with graph convolution module to enhance the global feature extraction capability of the CNN. Meanwhile, we use the domain adaptive feature alignment method to optimize the feature distance between different centers, which can effectively realize multi-center COVID-19 diagnosis. Our experimental results achieve quite promising COVID-19 diagnosis results, which show that the accuracy in the mixed dataset is 98.05%, and the accuracy in cross-center tasks are 85.29% and 87.53%.
Collapse
|
17
|
Yuan J, Wu F, Li Y, Li J, Huang G, Huang Q. DPDH-CapNet: A Novel Lightweight Capsule Network with Non-routing for COVID-19 Diagnosis Using X-ray Images. J Digit Imaging 2023; 36:988-1000. [PMID: 36813978 PMCID: PMC9946284 DOI: 10.1007/s10278-023-00791-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/24/2023] Open
Abstract
COVID-19 has claimed millions of lives since its outbreak in December 2019, and the damage continues, so it is urgent to develop new technologies to aid its diagnosis. However, the state-of-the-art deep learning methods often rely on large-scale labeled data, limiting their clinical application in COVID-19 identification. Recently, capsule networks have achieved highly competitive performance for COVID-19 detection, but they require expensive routing computation or traditional matrix multiplication to deal with the capsule dimensional entanglement. A more lightweight capsule network is developed to effectively address these problems, namely DPDH-CapNet, which aims to enhance the technology of automated diagnosis for COVID-19 chest X-ray images. It adopts depthwise convolution (D), point convolution (P), and dilated convolution (D) to construct a new feature extractor, thus successfully capturing the local and global dependencies of COVID-19 pathological features. Simultaneously, it constructs the classification layer by homogeneous (H) vector capsules with an adaptive, non-iterative, and non-routing mechanism. We conduct experiments on two publicly available combined datasets, including normal, pneumonia, and COVID-19 images. With a limited number of samples, the parameters of the proposed model are reduced by 9x compared to the state-of-the-art capsule network. Moreover, our model has faster convergence speed and better generalization, and its accuracy, precision, recall, and F-measure are improved to 97.99%, 98.05%, 98.02%, and 98.03%, respectively. In addition, experimental results demonstrate that, contrary to the transfer learning method, the proposed model does not require pre-training and a large number of training samples.
Collapse
Affiliation(s)
- Jianjun Yuan
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China.
| | - Fujun Wu
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China
| | - Yuxi Li
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China
| | - Jinyi Li
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China
| | - Guojun Huang
- College of Artificial Intelligence, Southwest University, Chongqing, 40075, China
| | - Quanyong Huang
- College of Machinery and Automation, Wuhan University of Science and Technology, Heping Avenue No. 947, Wuhan, Hubei Province, 430091, China.
| |
Collapse
|
18
|
Lee MH, Shomanov A, Kudaibergenova M, Viderman D. Deep Learning Methods for Interpretation of Pulmonary CT and X-ray Images in Patients with COVID-19-Related Lung Involvement: A Systematic Review. J Clin Med 2023; 12:jcm12103446. [PMID: 37240552 DOI: 10.3390/jcm12103446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
SARS-CoV-2 is a novel virus that has been affecting the global population by spreading rapidly and causing severe complications, which require prompt and elaborate emergency treatment. Automatic tools to diagnose COVID-19 could potentially be an important and useful aid. Radiologists and clinicians could potentially rely on interpretable AI technologies to address the diagnosis and monitoring of COVID-19 patients. This paper aims to provide a comprehensive analysis of the state-of-the-art deep learning techniques for COVID-19 classification. The previous studies are methodically evaluated, and a summary of the proposed convolutional neural network (CNN)-based classification approaches is presented. The reviewed papers have presented a variety of CNN models and architectures that were developed to provide an accurate and quick automatic tool to diagnose the COVID-19 virus based on presented CT scan or X-ray images. In this systematic review, we focused on the critical components of the deep learning approach, such as network architecture, model complexity, parameter optimization, explainability, and dataset/code availability. The literature search yielded a large number of studies over the past period of the virus spread, and we summarized their past efforts. State-of-the-art CNN architectures, with their strengths and weaknesses, are discussed with respect to diverse technical and clinical evaluation metrics to safely implement current AI studies in medical practice.
Collapse
Affiliation(s)
- Min-Ho Lee
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Adai Shomanov
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Madina Kudaibergenova
- School of Engineering and Digital Sciences, Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan
| | - Dmitriy Viderman
- School of Medicine, Nazarbayev University, 5/1 Kerey and Zhanibek Khandar Str., Astana 010000, Kazakhstan
| |
Collapse
|
19
|
Sunnetci KM, Alkan A. Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images. EXPERT SYSTEMS WITH APPLICATIONS 2023; 216:119430. [PMID: 36570382 PMCID: PMC9767662 DOI: 10.1016/j.eswa.2022.119430] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 05/27/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic has been affecting the world since December 2019, and nowadays, the number of infected is increasing rapidly. Chest X-ray images are clinical adjuncts that can be used in the diagnosis of COVID-19 disease. Because of the rapid spread of COVID-19 disease worldwide and the limited number of expert radiologists, the proposed method uses the automatic diagnosis method rather than a manual diagnosis method. In the paper, COVID-19 Positive/Negative (2275 Positive, 4626 Negative) and Normal/Pneumonia (2313 Normal, 2313 Pneumonia) are diagnosed using chest X-ray images. Herein, 80 % and 20 % of the images are used in the training and validation set, respectively. In the proposed method, six different classifiers are trained using chest X-ray images, and the five most successful classifiers are used in both phases. In Phase-1 and Phase-2, image features are extracted using the Bag of Features method for Cosine K-Nearest Neighbor (KNN), Linear Discriminant, Logistic Regression, Bagged Trees Ensemble, Medium Gaussian Support Vector Machine (SVM), excluding SqueezeNet Deep Learning (K = 2000 and K = 1500 for Phase-1 and Phase-2, respectively). In both phases, the five most successful classifiers are determined, and images classify with the help of the Majority Voting (Mathematical Evaluation) method. The application of the proposed method is designed for users to diagnose COVID-19 Positive, Normal, and Pneumonia. The results show that accuracy values obtained by Majority Voting (Mathematical Evaluation) method for Phase-1 and Phase-2 are equal to 99.86 % and 99.28 %, respectively. Thus, it indicates that the accuracy of the whole system is 99.63 %. When we analyze the classification performance metrics for Phase-1 and Phase-2, Specificity (%), Precision (%), Recall (%), F1 Score (%), Area Under Curve (AUC), and Matthews Correlation Coefficient (MCC) are equal to 99.98-99.83-99.07-99.51-0.9974-0.9855 and 99.73-99.69-98.63-99.23-0.9928-0.9518, respectively. Moreover, if the classification performance metrics of the whole system are examined, it is seen that Specificity (%), Precision (%), Recall (%), F1 Score (%), AUC, and MCC are 99.88, 99.78, 98.90, 99.40, 0.9956, and 0.9720, respectively. When the studies in the literature are examined, the results show that the proposed model is better than its counterparts. Because the best performance metrics for the dataset used were obtained in this study. In addition, since the biphasic majority voting technique is used in the study, it is seen that the proposed model is more reliable. On the other hand, although there are tens of thousands of studies on this subject, the usability of these models is debatable since most of them do not have graphical user interface applications. Already, in artificial intelligence technologies, besides the performance of the developed models, their usability is also important. Because the developed models can generally be used by people who are less knowledgeable about artificial intelligence.
Collapse
Affiliation(s)
- Kubilay Muhammed Sunnetci
- Department of Electrical and Electronics Engineering, Osmaniye Korkut Ata University, Osmaniye, Turkey
- Department of Electrical and Electronics Engineering, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Ahmet Alkan
- Department of Electrical and Electronics Engineering, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| |
Collapse
|
20
|
Chauhan J, Bedi J. EffViT-COVID: A dual-path network for COVID-19 percentage estimation. EXPERT SYSTEMS WITH APPLICATIONS 2023; 213:118939. [PMID: 36210962 PMCID: PMC9527203 DOI: 10.1016/j.eswa.2022.118939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The first case of novel Coronavirus (COVID-19) was reported in December 2019 in Wuhan City, China and led to an international outbreak. This virus causes serious respiratory illness and affects several other organs of the body differently for different patient. Worldwide, several waves of this infection have been reported, and researchers/doctors are working hard to develop novel solutions for the COVID diagnosis. Imaging and vision-based techniques are widely explored for the prediction of COVID-19; however, COVID infection percentage estimation is under explored. In this work, we propose a novel framework for the estimation of COVID-19 infection percentage based on deep learning techniques. The proposed network utilizes the features from vision transformers and CNN (Convolutional Neural Networks), specifically EfficientNet-B7. The features of both are fused together for preparing an information-rich feature vector that contributes to a more precise estimation of infection percentage. We evaluate our model on the Per-COVID-19 dataset (Bougourzi et al., 2021b) which comprises labeled CT data of COVID-19 patients. For the evaluation of the model on this dataset, we employ the most widely-used slice-level metrics, i.e., Pearson correlation coefficient (PC), Mean absolute error (MAE), and Root mean square error (RMSE). The network outperforms the other state-of-the-art methods and achieves 0 . 9886 ± 0 . 009 , 1 . 23 ± 0 . 378 , and 3 . 12 ± 1 . 56 , PC, MAE, and RMSE, respectively, using a 5-fold cross-validation technique. In addition, the overall average difference in the actual and predicted infection percentage is observed to be < 2 % . In conclusion, the detailed experimental results reveal the robustness and efficiency of the proposed network.
Collapse
Affiliation(s)
- Joohi Chauhan
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Jatin Bedi
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
21
|
Attallah O. RADIC:A tool for diagnosing COVID-19 from chest CT and X-ray scans using deep learning and quad-radiomics. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS : AN INTERNATIONAL JOURNAL SPONSORED BY THE CHEMOMETRICS SOCIETY 2023; 233:104750. [PMID: 36619376 PMCID: PMC9807270 DOI: 10.1016/j.chemolab.2022.104750] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 05/28/2023]
Abstract
Deep learning (DL) algorithms have demonstrated a high ability to perform speedy and accurate COVID-19 diagnosis utilizing computed tomography (CT) and X-Ray scans. The spatial information in these images was used to train DL models in the majority of relevant studies. However, training these models with images generated by radiomics approaches could enhance diagnostic accuracy. Furthermore, combining information from several radiomics approaches with time-frequency representations of the COVID-19 patterns can increase performance even further. This study introduces "RADIC", an automated tool that uses three DL models that are trained using radiomics-generated images to detect COVID-19. First, four radiomics approaches are used to analyze the original CT and X-ray images. Next, each of the three DL models is trained on a different set of radiomics, X-ray, and CT images. Then, for each DL model, deep features are obtained, and their dimensions are decreased using the Fast Walsh Hadamard Transform, yielding a time-frequency representation of the COVID-19 patterns. The tool then uses the discrete cosine transform to combine these deep features. Four classification models are then used to achieve classification. In order to validate the performance of RADIC, two benchmark datasets (CT and X-Ray) for COVID-19 are employed. The final accuracy attained using RADIC is 99.4% and 99% for the first and second datasets respectively. To prove the competing ability of RADIC, its performance is compared with related studies in the literature. The results reflect that RADIC achieve superior performance compared to other studies. The results of the proposed tool prove that a DL model can be trained more effectively with images generated by radiomics techniques than the original X-Ray and CT images. Besides, the incorporation of deep features extracted from DL models trained with multiple radiomics approaches will improve diagnostic accuracy.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering & Technology, Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| |
Collapse
|
22
|
Comparison of the Diagnostic Performance of Deep Learning Algorithms for Reducing the Time Required for COVID-19 RT-PCR Testing. Viruses 2023; 15:v15020304. [PMID: 36851519 PMCID: PMC9966023 DOI: 10.3390/v15020304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
(1) Background: Rapid and accurate negative discrimination enables efficient management of scarce isolated bed resources and adequate patient accommodation in the majority of areas experiencing an explosion of confirmed cases due to Omicron mutations. Until now, methods for artificial intelligence or deep learning to replace time-consuming RT-PCR have relied on CXR, chest CT, blood test results, or clinical information. (2) Methods: We proposed and compared five different types of deep learning algorithms (RNN, LSTM, Bi-LSTM, GRU, and transformer) for reducing the time required for RT-PCR diagnosis by learning the change in fluorescence value derived over time during the RT-PCR process. (3) Results: Among the five deep learning algorithms capable of training time series data, Bi-LSTM and GRU were shown to be able to decrease the time required for RT-PCR diagnosis by half or by 25% without significantly impairing the diagnostic performance of the COVID-19 RT-PCR test. (4) Conclusions: The diagnostic performance of the model developed in this study when 40 cycles of RT-PCR are used for diagnosis shows the possibility of nearly halving the time required for RT-PCR diagnosis.
Collapse
|
23
|
Ornob TR, Roy G, Hassan E. CovidExpert: A Triplet Siamese Neural Network framework for the detection of COVID-19. INFORMATICS IN MEDICINE UNLOCKED 2023; 37:101156. [PMID: 36686559 PMCID: PMC9837208 DOI: 10.1016/j.imu.2022.101156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Patients with the COVID-19 infection may have pneumonia-like symptoms as well as respiratory problems which may harm the lungs. From medical images, coronavirus illness may be accurately identified and predicted using a variety of machine learning methods. Most of the published machine learning methods may need extensive hyperparameter adjustment and are unsuitable for small datasets. By leveraging the data in a comparatively small dataset, few-shot learning algorithms aim to reduce the requirement of large datasets. This inspired us to develop a few-shot learning model for early detection of COVID-19 to reduce the post-effect of this dangerous disease. The proposed architecture combines few-shot learning with an ensemble of pre-trained convolutional neural networks to extract feature vectors from CT scan images for similarity learning. The proposed Triplet Siamese Network as the few-shot learning model classified CT scan images into Normal, COVID-19, and Community-Acquired Pneumonia. The suggested model achieved an overall accuracy of 98.719%, a specificity of 99.36%, a sensitivity of 98.72%, and a ROC score of 99.9% with only 200 CT scans per category for training data.
Collapse
|
24
|
Deepak G, Madiajagan M, Kulkarni S, Ahmed AN, Gopatoti A, Ammisetty V. MCSC-Net: COVID-19 detection using deep-Q-neural network classification with RFNN-based hybrid whale optimization. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2023; 31:483-509. [PMID: 36872839 DOI: 10.3233/xst-221360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND COVID-19 is the most dangerous virus, and its accurate diagnosis saves lives and slows its spread. However, COVID-19 diagnosis takes time and requires trained professionals. Therefore, developing a deep learning (DL) model on low-radiated imaging modalities like chest X-rays (CXRs) is needed. OBJECTIVE The existing DL models failed to diagnose COVID-19 and other lung diseases accurately. This study implements a multi-class CXR segmentation and classification network (MCSC-Net) to detect COVID-19 using CXR images. METHODS Initially, a hybrid median bilateral filter (HMBF) is applied to CXR images to reduce image noise and enhance the COVID-19 infected regions. Then, a skip connection-based residual network-50 (SC-ResNet50) is used to segment (localize) COVID-19 regions. The features from CXRs are further extracted using a robust feature neural network (RFNN). Since the initial features contain joint COVID-19, normal, pneumonia bacterial, and viral properties, the conventional methods fail to separate the class of each disease-based feature. To extract the distinct features of each class, RFNN includes a disease-specific feature separate attention mechanism (DSFSAM). Furthermore, the hunting nature of the Hybrid whale optimization algorithm (HWOA) is used to select the best features in each class. Finally, the deep-Q-neural network (DQNN) classifies CXRs into multiple disease classes. RESULTS The proposed MCSC-Net shows the enhanced accuracy of 99.09% for 2-class, 99.16% for 3-class, and 99.25% for 4-class classification of CXR images compared to other state-of-art approaches. CONCLUSION The proposed MCSC-Net enables to conduct multi-class segmentation and classification tasks applying to CXR images with high accuracy. Thus, together with gold-standard clinical and laboratory tests, this new method is promising to be used in future clinical practice to evaluate patients.
Collapse
Affiliation(s)
- Gerard Deepak
- Department of Computer Science and Engineering, Manipal Institute of Technology Bengaluru, Manipal Academy of Higher Education, Manipal, India
| | - M Madiajagan
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Sanjeev Kulkarni
- Department of Information Science and Engineering, Yenepoya Institute of Technology, Mangalore, Karnataka, India
| | - Ahmed Najat Ahmed
- Department of Computer Engineering, Lebanese French University, Erbil, Iraq
| | - Anandbabu Gopatoti
- Department of Electronics and Communication Engineering, Hindusthan College of Engineering and Technology, Coimbatore, Tamil Nadu, India
| | - Veeraswamy Ammisetty
- Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Guntur, Andhra Pradesh, India
| |
Collapse
|
25
|
Bhatele KR, Jha A, Tiwari D, Bhatele M, Sharma S, Mithora MR, Singhal S. COVID-19 Detection: A Systematic Review of Machine and Deep Learning-Based Approaches Utilizing Chest X-Rays and CT Scans. Cognit Comput 2022; 16:1-38. [PMID: 36593991 PMCID: PMC9797382 DOI: 10.1007/s12559-022-10076-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
This review study presents the state-of-the-art machine and deep learning-based COVID-19 detection approaches utilizing the chest X-rays or computed tomography (CT) scans. This study aims to systematically scrutinize as well as to discourse challenges and limitations of the existing state-of-the-art research published in this domain from March 2020 to August 2021. This study also presents a comparative analysis of the performance of four majorly used deep transfer learning (DTL) models like VGG16, VGG19, ResNet50, and DenseNet over the COVID-19 local CT scans dataset and global chest X-ray dataset. A brief illustration of the majorly used chest X-ray and CT scan datasets of COVID-19 patients utilized in state-of-the-art COVID-19 detection approaches are also presented for future research. The research databases like IEEE Xplore, PubMed, and Web of Science are searched exhaustively for carrying out this survey. For the comparison analysis, four deep transfer learning models like VGG16, VGG19, ResNet50, and DenseNet are initially fine-tuned and trained using the augmented local CT scans and global chest X-ray dataset in order to observe their performance. This review study summarizes major findings like AI technique employed, type of classification performed, used datasets, results in terms of accuracy, specificity, sensitivity, F1 score, etc., along with the limitations, and future work for COVID-19 detection in tabular manner for conciseness. The performance analysis of the four majorly used deep transfer learning models affirms that Visual Geometry Group 19 (VGG19) model delivered the best performance over both COVID-19 local CT scans dataset and global chest X-ray dataset.
Collapse
Affiliation(s)
| | - Anand Jha
- RJIT BSF Academy, Tekanpur, Gwalior India
| | | | | | | | | | | |
Collapse
|
26
|
Preliminary Stages for COVID-19 Detection Using Image Processing. Diagnostics (Basel) 2022; 12:diagnostics12123171. [PMID: 36553177 PMCID: PMC9777505 DOI: 10.3390/diagnostics12123171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 was first discovered in December 2019 in Wuhan. There have been reports of thousands of illnesses and hundreds of deaths in almost every region of the world. Medical images, when combined with cutting-edge technology such as artificial intelligence, have the potential to improve the efficiency of the public health system and deliver faster and more reliable findings in the detection of COVID-19. The process of developing the COVID-19 diagnostic system begins with image accusation and proceeds via preprocessing, feature extraction, and classification. According to literature review, several attempts to develop taxonomies for COVID-19 detection using image processing methods have been introduced. However, most of these adhere to a standard category that exclusively considers classification methods. Therefore, in this study a new taxonomy for the early stages of COVID-19 detection is proposed. It attempts to offer a full grasp of image processing in COVID-19 while considering all phases required prior to classification. The survey concludes with a discussion of outstanding concerns and future directions.
Collapse
|
27
|
Wu S, Nakao M, Imanishi K, Nakamura M, Mizowaki T, Matsuda T. Computed Tomography slice interpolation in the longitudinal direction based on deep learning techniques: To reduce slice thickness or slice increment without dose increase. PLoS One 2022; 17:e0279005. [PMID: 36520814 PMCID: PMC9754169 DOI: 10.1371/journal.pone.0279005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Large slice thickness or slice increment causes information insufficiency of Computed Tomography (CT) data in the longitudinal direction, which degrades the quality of CT-based diagnosis. Traditional approaches such as high-resolution computed tomography (HRCT) and linear interpolation can solve this problem. However, HRCT suffers from dose increase, and linear interpolation causes artifacts. In this study, we propose a deep-learning-based approach to reconstruct densely sliced CT from sparsely sliced CT data without any dose increase. The proposed method reconstructs CT images from neighboring slices using a U-net architecture. To prevent multiple reconstructed slices from influencing one another, we propose a parallel architecture in which multiple U-net architectures work independently. Moreover, for a specific organ (i.e., the liver), we propose a range-clip technique to improve reconstruction quality, which enhances the learning of CT values within this organ by enlarging the range of the training data. CT data from 130 patients were collected, with 80% used for training and the remaining 20% used for testing. Experiments showed that our parallel U-net architecture reduced the mean absolute error of CT values in the reconstructed slices by 22.05%, and also reduced the incidence of artifacts around the boundaries of target organs, compared with linear interpolation. Further improvements of 15.12%, 11.04%, 10.94%, and 10.63% were achieved for the liver, left kidney, right kidney, and stomach, respectively, using the proposed range-clip algorithm. Also, we compared the proposed architecture with original U-net method, and the experimental results demonstrated the superiority of our approach.
Collapse
Affiliation(s)
- Shuqiong Wu
- The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka, Japan
- * E-mail:
| | - Megumi Nakao
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| | | | - Mitsuhiro Nakamura
- Division of Medical Physics, Department of Information Technology and Medical Engineering, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-applied Therapy, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tetsuya Matsuda
- Graduate School of Informatics, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Ahuja S, Panigrahi BK, Dey N, Taneja A, Gandhi TK. McS-Net: Multi-class Siamese network for severity of COVID-19 infection classification from lung CT scan slices. Appl Soft Comput 2022; 131:109683. [PMID: 36277300 PMCID: PMC9573862 DOI: 10.1016/j.asoc.2022.109683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 08/25/2022] [Accepted: 09/22/2022] [Indexed: 11/29/2022]
Abstract
Worldwide COVID-19 is a highly infectious and rapidly spreading disease in almost all age groups. The Computed Tomography (CT) scans of lungs are found to be accurate for the timely diagnosis of COVID-19 infection. In the proposed work, a deep learning-based P-shot N-ways Siamese network along with prototypical nearest neighbor classifiers is implemented for the classification of COVID-19 infection from lung CT scan slices. For this, a Siamese network with an identical sub-network (weight sharing) is used for image classification with a limited dataset for each class. The feature vectors are obtained from the pre-trained sub-networks having weight sharing. The performance of the proposed methodology is evaluated on the benchmark MosMed dataset having categories zero (healthy control) and numerous COVID-19 infections. The proposed methodology is evaluated on (a) chest CT scans provided by medical hospitals in Moscow, Russia for 1110 patients, and (b) case study of low-dose CT scans of 42 patients provided by Avtaran healthcare in India. The deep learning-based Siamese network (15-shot 5-ways) obtained an accuracy of 98.07%, the sensitivity of 95.66%, specificity of 98.83%, and F1-score of 95.10%. The proposed work outperforms the COVID-19 infection severity classification with limited scans availability for numerous infection categories.
Collapse
Affiliation(s)
- Sakshi Ahuja
- Electrical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Bijaya Ketan Panigrahi
- Electrical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Nilanjan Dey
- Department of Computer Science and Engineering, Techno International New Town, Kolkata, 700156, India
| | - Arpit Taneja
- Department of Radiology, Avtaran Healthcare LLP, Kurukshetra, 136118, India
| | - Tapan Kumar Gandhi
- Electrical Engineering Department, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
29
|
Lasker A, Obaidullah SM, Chakraborty C, Roy K. Application of Machine Learning and Deep Learning Techniques for COVID-19 Screening Using Radiological Imaging: A Comprehensive Review. SN COMPUTER SCIENCE 2022; 4:65. [PMID: 36467853 PMCID: PMC9702883 DOI: 10.1007/s42979-022-01464-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 10/18/2022] [Indexed: 11/26/2022]
Abstract
Lung, being one of the most important organs in human body, is often affected by various SARS diseases, among which COVID-19 has been found to be the most fatal disease in recent times. In fact, SARS-COVID 19 led to pandemic that spreads fast among the community causing respiratory problems. Under such situation, radiological imaging-based screening [mostly chest X-ray and computer tomography (CT) modalities] has been performed for rapid screening of the disease as it is a non-invasive approach. Due to scarcity of physician/chest specialist/expert doctors, technology-enabled disease screening techniques have been developed by several researchers with the help of artificial intelligence and machine learning (AI/ML). It can be remarkably observed that the researchers have introduced several AI/ML/DL (deep learning) algorithms for computer-assisted detection of COVID-19 using chest X-ray and CT images. In this paper, a comprehensive review has been conducted to summarize the works related to applications of AI/ML/DL for diagnostic prediction of COVID-19, mainly using X-ray and CT images. Following the PRISMA guidelines, total 265 articles have been selected out of 1715 published articles till the third quarter of 2021. Furthermore, this review summarizes and compares varieties of ML/DL techniques, various datasets, and their results using X-ray and CT imaging. A detailed discussion has been made on the novelty of the published works, along with advantages and limitations.
Collapse
Affiliation(s)
- Asifuzzaman Lasker
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Sk Md Obaidullah
- Department of Computer Science & Engineering, Aliah University, Kolkata, India
| | - Chandan Chakraborty
- Department of Computer Science & Engineering, National Institute of Technical Teachers’ Training & Research Kolkata, Kolkata, India
| | - Kaushik Roy
- Department of Computer Science, West Bengal State University, Barasat, India
| |
Collapse
|
30
|
Hassan MM, AlQahtani SA, Alelaiwi A, Papa JP. Explaining COVID-19 diagnosis with Taylor decompositions. Neural Comput Appl 2022; 35:1-14. [PMID: 36415284 PMCID: PMC9672580 DOI: 10.1007/s00521-022-08021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
The COVID-19 pandemic has devastated the entire globe since its first appearance at the end of 2019. Although vaccines are now in production, the number of contaminations remains high, thus increasing the number of specialized personnel that can analyze clinical exams and points out the final diagnosis. Computed tomography and X-ray images are the primary sources for computer-aided COVID-19 diagnosis, but we still lack better interpretability of such automated decision-making mechanisms. This manuscript presents an insightful comparison of three approaches based on explainable artificial intelligence (XAI) to light up interpretability in the context of COVID-19 diagnosis using deep networks: Composite Layer-wise Propagation, Single Taylor Decomposition, and Deep Taylor Decomposition. Two deep networks have been used as the backbones to assess the explanation skills of the XAI approaches mentioned above: VGG11 and VGG16. We hope that such work can be used as a basis for further research on XAI and COVID-19 diagnosis for each approach figures its own positive and negative points.
Collapse
Affiliation(s)
- Mohammad Mehedi Hassan
- College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| | - Salman A. AlQahtani
- College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| | - Abdulhameed Alelaiwi
- College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| | - João P. Papa
- Department of Computing, São Paulo State University, Bauru, Brazil
| |
Collapse
|
31
|
Ahila T, Subhajini AC. E-GCS: Detection of COVID-19 through classification by attention bottleneck residual network. ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 2022; 116:105398. [PMID: 36158870 PMCID: PMC9485443 DOI: 10.1016/j.engappai.2022.105398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/30/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Background Recently, the coronavirus disease 2019 (COVID-19) has caused mortality of many people globally. Thus, there existed a need to detect this disease to prevent its further spread. Hence, the study aims to predict COVID-19 infected patients based on deep learning (DL) and image processing. Objectives The study intends to classify the normal and abnormal cases of COVID-19 by considering three different medical imaging modalities namely ultrasound imaging, X-ray images and CT scan images through introduced attention bottleneck residual network (AB-ResNet). It also aims to segment the abnormal infected area from normal images for localizing localising the disease infected area through the proposed edge based graph cut segmentation (E-GCS). Methodology AB-ResNet is used for classifying images whereas E-GCS segment the abnormal images. The study possess various advantages as it rely on DL and possess capability for accelerating the training speed of deep networks. It also enhance the network depth leading to minimum parameters, minimising the impact of vanishing gradient issue and attaining effective network performance with respect to better accuracy. Results/Conclusion Performance and comparative analysis is undertaken to evaluate the efficiency of the introduced system and results explores the efficiency of the proposed system in COVID-19 detection with high accuracy (99%).
Collapse
Affiliation(s)
- T Ahila
- Department of Computer Applications, Noorul Islam Centre For Higher Education, Kumaracoil, 629180, India
| | - A C Subhajini
- Department of Computer Applications, Noorul Islam Centre For Higher Education, Kumaracoil, 629180, India
| |
Collapse
|
32
|
Jalali Moghaddam M, Ghavipour M. Towards smart diagnostic methods for COVID-19: Review of deep learning for medical imaging. IPEM-TRANSLATION 2022; 3:100008. [PMID: 36312890 PMCID: PMC9597575 DOI: 10.1016/j.ipemt.2022.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
The infectious disease known as COVID-19 has spread dramatically all over the world since December 2019. The fast diagnosis and isolation of infected patients are key factors in slowing down the spread of this virus and better management of the pandemic. Although the CT and X-ray modalities are commonly used for the diagnosis of COVID-19, identifying COVID-19 patients from medical images is a time-consuming and error-prone task. Artificial intelligence has shown to have great potential to speed up and optimize the prognosis and diagnosis process of COVID-19. Herein, we review publications on the application of deep learning (DL) techniques for diagnostics of patients with COVID-19 using CT and X-ray chest images for a period from January 2020 to October 2021. Our review focuses solely on peer-reviewed, well-documented articles. It provides a comprehensive summary of the technical details of models developed in these articles and discusses the challenges in the smart diagnosis of COVID-19 using DL techniques. Based on these challenges, it seems that the effectiveness of the developed models in clinical use needs to be further investigated. This review provides some recommendations to help researchers develop more accurate prediction models.
Collapse
Affiliation(s)
- Marjan Jalali Moghaddam
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mina Ghavipour
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
33
|
Zhang S, Yuan GC. Deep Transfer Learning for COVID-19 Detection and Lesion Recognition Using Chest CT Images. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4509394. [PMID: 36285284 PMCID: PMC9588382 DOI: 10.1155/2022/4509394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/11/2022] [Accepted: 09/24/2022] [Indexed: 12/15/2022]
Abstract
Starting from December 2019, the global pandemic of coronavirus disease 2019 (COVID-19) is continuously expanding and has caused several millions of deaths worldwide. Fast and accurate diagnostic methods for COVID-19 detection play a vital role in containing the plague. Chest computed tomography (CT) is one of the most commonly used diagnosis methods. However, a complete CT-scan has hundreds of slices, and it is time-consuming for radiologists to check each slice to diagnose COVID-19. This study introduces a novel method for fast and automated COVID-19 diagnosis using the chest CT scans. The proposed models are based on the state-of-the-art deep convolutional neural network (CNN) architecture, and a 2D global max pooling (globalMaxPool2D) layer is used to improve the performance. We compare the proposed models to the existing state-of-the-art deep learning models such as CNN based models and vision transformer (ViT) models. Based off of metric such as area under curve (AUC), sensitivity, specificity, accuracy, and false discovery rate (FDR), experimental results show that the proposed models outperform the previous methods, and the best model achieves an area under curve of 0.9744 and accuracy 94.12% on our test datasets. It is also shown that the accuracy is improved by around 1% by using the 2D global max pooling layer. Moreover, a heatmap method to highlight the lesion area on COVID-19 chest CT images is introduced in the paper. This heatmap method is helpful for a radiologist to identify the abnormal pattern of COVID-19 on chest CT images. In addition, we also developed a freely accessible online simulation software for automated COVID-19 detection using CT images. The proposed deep learning models and software tool can be used by radiologist to diagnose COVID-19 more accurately and efficiently.
Collapse
Affiliation(s)
- Sai Zhang
- Qualcomm Inc., 5775 Morehouse Drive, San Diego, CA 92121, USA
| | - Guo-Chang Yuan
- Department of Emergency Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
34
|
Murillo-González A, González D, Jaramillo L, Galeano C, Tavera F, Mejía M, Hernández A, Rivera DR, Paniagua JG, Ariza-Jiménez L, Garcés Echeverri JJ, Diaz León CA, Serna-Higuita DL, Barrios W, Arrázola W, Mejía MÁ, Arango S, Marín Ramírez D, Salinas-Miranda E, Quintero OL. Medical decision support system using weakly-labeled lung CT scans. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 4:980735. [PMID: 36248019 PMCID: PMC9554434 DOI: 10.3389/fmedt.2022.980735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/12/2022] [Indexed: 11/25/2022] Open
Abstract
Purpose Determination and development of an effective set of models leveraging Artificial Intelligence techniques to generate a system able to support clinical practitioners working with COVID-19 patients. It involves a pipeline including classification, lung and lesion segmentation, as well as lesion quantification of axial lung CT studies. Approach A deep neural network architecture based on DenseNet is introduced for the classification of weakly-labeled, variable-sized (and possibly sparse) axial lung CT scans. The models are trained and tested on aggregated, publicly available data sets with over 10 categories. To further assess the models, a data set was collected from multiple medical institutions in Colombia, which includes healthy, COVID-19 and patients with other diseases. It is composed of 1,322 CT studies from a diverse set of CT machines and institutions that make over 550,000 slices. Each CT study was labeled based on a clinical test, and no per-slice annotation took place. This enabled a classification into Normal vs. Abnormal patients, and for those that were considered abnormal, an extra classification step into Abnormal (other diseases) vs. COVID-19. Additionally, the pipeline features a methodology to segment and quantify lesions of COVID-19 patients on the complete CT study, enabling easier localization and progress tracking. Moreover, multiple ablation studies were performed to appropriately assess the elements composing the classification pipeline. Results The best performing lung CT study classification models achieved 0.83 accuracy, 0.79 sensitivity, 0.87 specificity, 0.82 F1 score and 0.85 precision for the Normal vs. Abnormal task. For the Abnormal vs COVID-19 task, the model obtained 0.86 accuracy, 0.81 sensitivity, 0.91 specificity, 0.84 F1 score and 0.88 precision. The ablation studies showed that using the complete CT study in the pipeline resulted in greater classification performance, restating that relevant COVID-19 patterns cannot be ignored towards the top and bottom of the lung volume. Discussion The lung CT classification architecture introduced has shown that it can handle weakly-labeled, variable-sized and possibly sparse axial lung studies, reducing the need for expert annotations at a per-slice level. Conclusions This work presents a working methodology that can guide the development of decision support systems for clinical reasoning in future interventionist or prospective studies.
Collapse
Affiliation(s)
| | - David González
- Radiology Department, Universidad CES, Medellín, Colombia
| | | | - Carlos Galeano
- Radiology Department, Universidad CES, Medellín, Colombia
| | - Fabby Tavera
- Radiology Department, Universidad de Antioquia, Medellín, Colombia
| | - Marcia Mejía
- Radiology Department, Universidad de Antioquia, Medellín, Colombia
| | - Alejandro Hernández
- Institución Prestadora de Servicios de Salud IPS Universitaria, Medellín, Colombia
| | | | | | | | | | | | | | | | - Wiston Arrázola
- Department of Mathematical Sciences, Universidad EAFIT, Medellín, Colombia
| | - Miguel Ángel Mejía
- Department of Mathematical Sciences, Universidad EAFIT, Medellín, Colombia
| | - Sebastián Arango
- Department of Mathematical Sciences, Universidad EAFIT, Medellín, Colombia
| | | | | | - O. L. Quintero
- Department of Mathematical Sciences, Universidad EAFIT, Medellín, Colombia
| |
Collapse
|
35
|
Habib M, Ramzan M, Khan SA. A Deep Learning and Handcrafted Based Computationally Intelligent Technique for Effective COVID-19 Detection from X-ray/CT-scan Imaging. JOURNAL OF GRID COMPUTING 2022; 20:23. [PMID: 35874855 PMCID: PMC9294765 DOI: 10.1007/s10723-022-09615-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The world has witnessed dramatic changes because of the advent of COVID19 in the last few days of 2019. During the last more than two years, COVID-19 has badly affected the world in diverse ways. It has not only affected human health and mortality rate but also the economic condition on a global scale. There is an urgent need today to cope with this pandemic and its diverse effects. Medical imaging has revolutionized the treatment of various diseases during the last four decades. Automated detection and classification systems have proven to be of great assistance to the doctors and scientific community for the treatment of various diseases. In this paper, a novel framework for an efficient COVID-19 classification system is proposed which uses the hybrid feature extraction approach. After preprocessing image data, two types of features i.e., deep learning and handcrafted, are extracted. For Deep learning features, two pre-trained models namely ResNet101 and DenseNet201 are used. Handcrafted features are extracted using Weber Local Descriptor (WLD). The Excitation component of WLD is utilized and features are reduced using DCT. Features are extracted from both models, handcrafted features are fused, and significant features are selected using entropy. Experiments have proven the effectiveness of the proposed model. A comprehensive set of experiments have been performed and results are compared with the existing well-known methods. The proposed technique has performed better in terms of accuracy and time.
Collapse
Affiliation(s)
- Mohammed Habib
- Department of Computer Science, College of Computing and Informatics, Saudi Electronic University, 11673 Riyadh, Saudi Arabia
- Department of Electrical Engineering, Faculty of Engineering, PortSaid University, Port Said, 42526 Egypt
| | - Muhammad Ramzan
- Department of Computer Science, College of Computing and Informatics, Saudi Electronic University, 11673 Riyadh, Saudi Arabia
| | - Sajid Ali Khan
- Department of Software Engineering, Foundation University Islamabad, 44000 Islamabad, Pakistan
| |
Collapse
|
36
|
Attallah O, Samir A. A wavelet-based deep learning pipeline for efficient COVID-19 diagnosis via CT slices. Appl Soft Comput 2022; 128:109401. [PMID: 35919069 PMCID: PMC9335861 DOI: 10.1016/j.asoc.2022.109401] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/20/2022] [Accepted: 07/25/2022] [Indexed: 12/30/2022]
Abstract
The quick diagnosis of the novel coronavirus (COVID-19) disease is vital to prevent its propagation and improve therapeutic outcomes. Computed tomography (CT) is believed to be an effective tool for diagnosing COVID-19, however, the CT scan contains hundreds of slices that are complex to be analyzed and could cause delays in diagnosis. Artificial intelligence (AI) especially deep learning (DL), could facilitate and speed up COVID-19 diagnosis from such scans. Several studies employed DL approaches based on 2D CT images from a single view, nevertheless, 3D multiview CT slices demonstrated an excellent ability to enhance the efficiency of COVID-19 diagnosis. The majority of DL-based studies utilized the spatial information of the original CT images to train their models, though, using spectral–temporal information could improve the detection of COVID-19. This article proposes a DL-based pipeline called CoviWavNet for the automatic diagnosis of COVID-19. CoviWavNet uses a 3D multiview dataset called OMNIAHCOV. Initially, it analyzes the CT slices using multilevel discrete wavelet decomposition (DWT) and then uses the heatmaps of the approximation levels to train three ResNet CNN models. These ResNets use the spectral–temporal information of such images to perform classification. Subsequently, it investigates whether the combination of spatial information with spectral–temporal information could improve the diagnostic accuracy of COVID-19. For this purpose, it extracts deep spectral–temporal features from such ResNets using transfer learning and integrates them with deep spatial features extracted from the same ResNets trained with the original CT slices. Then, it utilizes a feature selection step to reduce the dimension of such integrated features and use them as inputs to three support vector machine (SVM) classifiers. To further validate the performance of CoviWavNet, a publicly available benchmark dataset called SARS-COV-2-CT-Scan is employed. The results of CoviWavNet have demonstrated that using the spectral–temporal information of the DWT heatmap images to train the ResNets is superior to utilizing the spatial information of the original CT images. Furthermore, integrating deep spectral–temporal features with deep spatial features has enhanced the classification accuracy of the three SVM classifiers reaching a final accuracy of 99.33% and 99.7% for the OMNIAHCOV and SARS-COV-2-CT-Scan datasets respectively. These accuracies verify the outstanding performance of CoviWavNet compared to other related studies. Thus, CoviWavNet can help radiologists in the rapid and accurate diagnosis of COVID-19 diagnosis.
Collapse
Affiliation(s)
- Omneya Attallah
- Department of Electronics and Communications Engineering, College of Engineering and Technology, Arab Academy for Science, Technology and Maritime Transport, Alexandria 1029, Egypt
| | - Ahmed Samir
- Department of Radiodiagnosis, Faculty of Medicine, University of Alexandria, Egypt
| |
Collapse
|
37
|
Heidari A, Toumaj S, Navimipour NJ, Unal M. A privacy-aware method for COVID-19 detection in chest CT images using lightweight deep conventional neural network and blockchain. Comput Biol Med 2022; 145:105461. [PMID: 35366470 PMCID: PMC8958272 DOI: 10.1016/j.compbiomed.2022.105461] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/13/2022] [Accepted: 03/24/2022] [Indexed: 12/16/2022]
Abstract
With the global spread of the COVID-19 epidemic, a reliable method is required for identifying COVID-19 victims. The biggest issue in detecting the virus is a lack of testing kits that are both reliable and affordable. Due to the virus's rapid dissemination, medical professionals have trouble finding positive patients. However, the next real-life issue is sharing data with hospitals around the world while considering the organizations' privacy concerns. The primary worries for training a global Deep Learning (DL) model are creating a collaborative platform and personal confidentiality. Another challenge is exchanging data with health care institutions while protecting the organizations' confidentiality. The primary concerns for training a universal DL model are creating a collaborative platform and preserving privacy. This paper provides a model that receives a small quantity of data from various sources, like organizations or sections of hospitals, and trains a global DL model utilizing blockchain-based Convolutional Neural Networks (CNNs). In addition, we use the Transfer Learning (TL) technique to initialize layers rather than initialize randomly and discover which layers should be removed before selection. Besides, the blockchain system verifies the data, and the DL method trains the model globally while keeping the institution's confidentiality. Furthermore, we gather the actual and novel COVID-19 patients. Finally, we run extensive experiments utilizing Python and its libraries, such as Scikit-Learn and TensorFlow, to assess the proposed method. We evaluated works using five different datasets, including Boukan Dr. Shahid Gholipour hospital, Tabriz Emam Reza hospital, Mahabad Emam Khomeini hospital, Maragheh Dr.Beheshti hospital, and Miandoab Abbasi hospital datasets, and our technique outperform state-of-the-art methods on average in terms of precision (2.7%), recall (3.1%), F1 (2.9%), and accuracy (2.8%).
Collapse
Affiliation(s)
- Arash Heidari
- Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran; Department of Computer Engineering, Shabestar Branch, Islamic Azad University, Shabestar, Iran
| | - Shiva Toumaj
- Urmia University of Medical Sciences, Urmia, Iran
| | | | - Mehmet Unal
- Department of Computer Engineering, Nisantasi University, Istanbul, Turkey
| |
Collapse
|
38
|
Qu Y, Meng Y, Fan H, Xu RX. Low-cost thermal imaging with machine learning for non-invasive diagnosis and therapeutic monitoring of pneumonia. INFRARED PHYSICS & TECHNOLOGY 2022; 123:104201. [PMID: 35599723 PMCID: PMC9106596 DOI: 10.1016/j.infrared.2022.104201] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/01/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid screening and early treatment of lung infection are essential for effective control of many epidemics such as Coronavirus Disease 2019 (COVID-19). Recent studies have demonstrated the potential correlation between lung infection and the change of back skin temperature distribution. Based on these findings, we propose to use low-cost, portable and rapid thermal imaging in combination with image-processing algorithms and machine learning analysis for non-invasive and safe detection of pneumonia. The proposed method was tested in 69 subjects (30 normal adults, 11 cases of fever without pneumonia, 19 cases of general pneumonia and 9 cases of COVID-19) where both RGB and thermal images were acquired from the back of each subject. The acquired images were processed automatically in order to extract multiple location and shape features that distinguish normal subjects from pneumonia patients at a high accuracy of 93 % . Furthermore, daily assessment of two pneumonia patients by the proposed method accurately predicted the clinical outcomes, coincident with those of laboratory tests. Our pilot study demonstrated the technical feasibility of portable and intelligent thermal imaging for screening and therapeutic assessment of pneumonia. The method can be potentially implemented in under-resourced regions for more effective control of respiratory epidemics.
Collapse
Affiliation(s)
- Yingjie Qu
- Department of Intelligence Science and Technology, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Yuquan Meng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Hua Fan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Ronald X Xu
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangshu 215009, China
| |
Collapse
|
39
|
M. V. MK, Atalla S, Almuraqab N, Moonesar IA. Detection of COVID-19 Using Deep Learning Techniques and Cost Effectiveness Evaluation: A Survey. Front Artif Intell 2022; 5:912022. [PMID: 35692941 PMCID: PMC9184735 DOI: 10.3389/frai.2022.912022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 04/26/2022] [Indexed: 12/03/2022] Open
Abstract
Graphical-design-based symptomatic techniques in pandemics perform a quintessential purpose in screening hit causes that comparatively render better outcomes amongst the principal radioscopy mechanisms in recognizing and diagnosing COVID-19 cases. The deep learning paradigm has been applied vastly to investigate radiographic images such as Chest X-Rays (CXR) and CT scan images. These radiographic images are rich in information such as patterns and clusters like structures, which are evident in conformance and detection of COVID-19 like pandemics. This paper aims to comprehensively study and analyze detection methodology based on Deep learning techniques for COVID-19 diagnosis. Deep learning technology is a good, practical, and affordable modality that can be deemed a reliable technique for adequately diagnosing the COVID-19 virus. Furthermore, the research determines the potential to enhance image character through artificial intelligence and distinguishes the most inexpensive and most trustworthy imaging method to anticipate dreadful viruses. This paper further discusses the cost-effectiveness of the surveyed methods for detecting COVID-19, in contrast with the other methods. Several finance-related aspects of COVID-19 detection effectiveness of different methods used for COVID-19 detection have been discussed. Overall, this study presents an overview of COVID-19 detection using deep learning methods and their cost-effectiveness and financial implications from the perspective of insurance claim settlement.
Collapse
Affiliation(s)
- Manoj Kumar M. V.
- Department of Information Science and Engineering, Nitte Meenakshi Institute of Technology, Bangalore, India
- *Correspondence: Manoj Kumar M. V.
| | - Shadi Atalla
- College of Engineering & Information Technology, University of Dubai, Dubai, United Arab Emirates
- Shadi Atalla
| | - Nasser Almuraqab
- Dubai Business School, University of Dubai, Dubai, United Arab Emirates
- Nasser Almuraqab
| | - Immanuel Azaad Moonesar
- Health Adminstration & Policy – Academic Affairs, Mohammed Bin Rashid School of Government (MBRSG), Dubai, United Arab Emirates
- Immanuel Azaad Moonesar
| |
Collapse
|
40
|
Abstract
Healthcare is one of the crucial aspects of the Internet of things. Connected machine learning-based systems provide faster healthcare services. Doctors and radiologists can also use these systems for collaboration to provide better help to patients. The recently emerged Coronavirus (COVID-19) is known to have strong infectious ability. Reverse transcription-polymerase chain reaction (RT-PCR) is recognised as being one of the primary diagnostic tools. However, RT-PCR tests might not be accurate. In contrast, doctors can employ artificial intelligence techniques on X-ray and CT scans for analysis. Artificial intelligent methods need a large number of images; however, this might not be possible during a pandemic. In this paper, a novel data-efficient deep network is proposed for the identification of COVID-19 on CT images. This method increases the small number of available CT scans by generating synthetic versions of CT scans using the generative adversarial network (GAN). Then, we estimate the parameters of convolutional and fully connected layers of the deep networks using synthetic and augmented data. The method shows that the GAN-based deep learning model provides higher performance than classic deep learning models for COVID-19 detection. The performance evaluation is performed on COVID19-CT and Mosmed datasets. The best performing models are ResNet-18 and MobileNetV2 on COVID19-CT and Mosmed, respectively. The area under curve values of ResNet-18 and MobileNetV2 are 0.89% and 0.84%, respectively.
Collapse
|
41
|
High predictive QSAR models for predicting the SARS coronavirus main protease inhibition activity of ketone-based covalent inhibitors. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2022. [PMCID: PMC8547569 DOI: 10.1007/s13738-021-02426-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this research, a dataset including 29 ketone-based covalent inhibitors with SARS-CoV-1 3CLpro inhibition activity was used to develop high predictive QSAR models. Twenty-two molecules were put in train set and seven molecules in test set. By using stepwise MLR method for molecules in train set, four molecular descriptors including Mor26p, Hy, GATS7p and Mor04v were selected to build QSAR models. MLR and ANN methods were used to create QSAR models for predicting the activity of molecules in both train and test sets. Both QSAR models were validated by calculating several statistical parameters. R2 values for the test set of MLR and ANN models were 0.93 and 0.95, respectively, and RMSE values for their test sets were 0.24 and 0.17, respectively. Other calculated statistical parameters (especially \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$Q_{F3}^{2}$$\end{document}QF32 parameter) show that created ANN model has more predictive power with respect to developed MLR model (with four descriptor). Calculated leverages for all molecules show that predicted pIC50 (by both QSAR models) for all molecules is acceptable, and drawn residuals plots show that there is no systematic error in building both QSAR modes. Also, based on developed MLR model, used molecular descriptors were interpreted.
Collapse
|
42
|
Aggarwal P, Mishra NK, Fatimah B, Singh P, Gupta A, Joshi SD. COVID-19 image classification using deep learning: Advances, challenges and opportunities. Comput Biol Med 2022; 144:105350. [PMID: 35305501 PMCID: PMC8890789 DOI: 10.1016/j.compbiomed.2022.105350] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/10/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
Abstract
Corona Virus Disease-2019 (COVID-19), caused by Severe Acute Respiratory Syndrome-Corona Virus-2 (SARS-CoV-2), is a highly contagious disease that has affected the lives of millions around the world. Chest X-Ray (CXR) and Computed Tomography (CT) imaging modalities are widely used to obtain a fast and accurate diagnosis of COVID-19. However, manual identification of the infection through radio images is extremely challenging because it is time-consuming and highly prone to human errors. Artificial Intelligence (AI)-techniques have shown potential and are being exploited further in the development of automated and accurate solutions for COVID-19 detection. Among AI methodologies, Deep Learning (DL) algorithms, particularly Convolutional Neural Networks (CNN), have gained significant popularity for the classification of COVID-19. This paper summarizes and reviews a number of significant research publications on the DL-based classification of COVID-19 through CXR and CT images. We also present an outline of the current state-of-the-art advances and a critical discussion of open challenges. We conclude our study by enumerating some future directions of research in COVID-19 imaging classification.
Collapse
Affiliation(s)
| | | | - Binish Fatimah
- The Department of ECE, CMR Institute of Technology, Bengaluru, India.
| | - Pushpendra Singh
- The Department of ECE, National Institute of Technology Hamirpur, HP, India.
| | - Anubha Gupta
- The Department of ECE, IIIT-Delhi, Delhi, 110020, India.
| | - Shiv Dutt Joshi
- The Department of EE, Indian Institute of Technology Delhi, Delhi 110016, India.
| |
Collapse
|
43
|
Hassan H, Ren Z, Zhou C, Khan MA, Pan Y, Zhao J, Huang B. Supervised and weakly supervised deep learning models for COVID-19 CT diagnosis: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 218:106731. [PMID: 35286874 PMCID: PMC8897838 DOI: 10.1016/j.cmpb.2022.106731] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 05/05/2023]
Abstract
Artificial intelligence (AI) and computer vision (CV) methods become reliable to extract features from radiological images, aiding COVID-19 diagnosis ahead of the pathogenic tests and saving critical time for disease management and control. Thus, this review article focuses on cascading numerous deep learning-based COVID-19 computerized tomography (CT) imaging diagnosis research, providing a baseline for future research. Compared to previous review articles on the topic, this study pigeon-holes the collected literature very differently (i.e., its multi-level arrangement). For this purpose, 71 relevant studies were found using a variety of trustworthy databases and search engines, including Google Scholar, IEEE Xplore, Web of Science, PubMed, Science Direct, and Scopus. We classify the selected literature in multi-level machine learning groups, such as supervised and weakly supervised learning. Our review article reveals that weak supervision has been adopted extensively for COVID-19 CT diagnosis compared to supervised learning. Weakly supervised (conventional transfer learning) techniques can be utilized effectively for real-time clinical practices by reusing the sophisticated features rather than over-parameterizing the standard models. Few-shot and self-supervised learning are the recent trends to address data scarcity and model efficacy. The deep learning (artificial intelligence) based models are mainly utilized for disease management and control. Therefore, it is more appropriate for readers to comprehend the related perceptive of deep learning approaches for the in-progress COVID-19 CT diagnosis research.
Collapse
Affiliation(s)
- Haseeb Hassan
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China; College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
| | - Zhaoyu Ren
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Chengmin Zhou
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China
| | - Muazzam A Khan
- Department of Computer Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Yi Pan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China
| | - Jian Zhao
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| | - Bingding Huang
- College of Big data and Internet, Shenzhen Technology University, Shenzhen, 518118, China.
| |
Collapse
|
44
|
Subramanian N, Elharrouss O, Al-Maadeed S, Chowdhury M. A review of deep learning-based detection methods for COVID-19. Comput Biol Med 2022; 143:105233. [PMID: 35180499 PMCID: PMC8798789 DOI: 10.1016/j.compbiomed.2022.105233] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/16/2022]
Abstract
COVID-19 is a fast-spreading pandemic, and early detection is crucial for stopping the spread of infection. Lung images are used in the detection of coronavirus infection. Chest X-ray (CXR) and computed tomography (CT) images are available for the detection of COVID-19. Deep learning methods have been proven efficient and better performing in many computer vision and medical imaging applications. In the rise of the COVID pandemic, researchers are using deep learning methods to detect coronavirus infection in lung images. In this paper, the currently available deep learning methods that are used to detect coronavirus infection in lung images are surveyed. The available methodologies, public datasets, datasets that are used by each method and evaluation metrics are summarized in this paper to help future researchers. The evaluation metrics that are used by the methods are comprehensively compared.
Collapse
Affiliation(s)
- Nandhini Subramanian
- Qatar University College of Engineering, Computer Science and Engineering, Qatar.
| | - Omar Elharrouss
- Qatar University College of Engineering, Computer Science and Engineering, Qatar.
| | - Somaya Al-Maadeed
- Qatar University College of Engineering, Computer Science and Engineering, Qatar.
| | - Muhammed Chowdhury
- Qatar University College of Engineering, Computer Science and Engineering, Qatar.
| |
Collapse
|
45
|
Automatic Detection of Age-Related Macular Degeneration Based on Deep Learning and Local Outlier Factor Algorithm. Diagnostics (Basel) 2022; 12:diagnostics12020532. [PMID: 35204621 PMCID: PMC8871377 DOI: 10.3390/diagnostics12020532] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/06/2023] Open
Abstract
Age-related macular degeneration (AMD) is a retinal disorder affecting the elderly, and society’s aging population means that the disease is becoming increasingly prevalent. The vision in patients with early AMD is usually unaffected or nearly normal but central vision may be weakened or even lost if timely treatment is not performed. Therefore, early diagnosis is particularly important to prevent the further exacerbation of AMD. This paper proposed a novel automatic detection method of AMD from optical coherence tomography (OCT) images based on deep learning and a local outlier factor (LOF) algorithm. A ResNet-50 model with L2-constrained softmax loss was retrained to extract features from OCT images and the LOF algorithm was used as the classifier. The proposed method was trained on the UCSD dataset and tested on both the UCSD dataset and Duke dataset, with an accuracy of 99.87% and 97.56%, respectively. Even though the model was only trained on the UCSD dataset, it obtained good detection accuracy when tested on another dataset. Comparison with other methods also indicates the efficiency of the proposed method in detecting AMD.
Collapse
|
46
|
Hassan H, Ren Z, Zhao H, Huang S, Li D, Xiang S, Kang Y, Chen S, Huang B. Review and classification of AI-enabled COVID-19 CT imaging models based on computer vision tasks. Comput Biol Med 2022; 141:105123. [PMID: 34953356 PMCID: PMC8684223 DOI: 10.1016/j.compbiomed.2021.105123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/12/2023]
Abstract
This article presents a systematic overview of artificial intelligence (AI) and computer vision strategies for diagnosing the coronavirus disease of 2019 (COVID-19) using computerized tomography (CT) medical images. We analyzed the previous review works and found that all of them ignored classifying and categorizing COVID-19 literature based on computer vision tasks, such as classification, segmentation, and detection. Most of the COVID-19 CT diagnosis methods comprehensively use segmentation and classification tasks. Moreover, most of the review articles are diverse and cover CT as well as X-ray images. Therefore, we focused on the COVID-19 diagnostic methods based on CT images. Well-known search engines and databases such as Google, Google Scholar, Kaggle, Baidu, IEEE Xplore, Web of Science, PubMed, ScienceDirect, and Scopus were utilized to collect relevant studies. After deep analysis, we collected 114 studies and reported highly enriched information for each selected research. According to our analysis, AI and computer vision have substantial potential for rapid COVID-19 diagnosis as they could significantly assist in automating the diagnosis process. Accurate and efficient models will have real-time clinical implications, though further research is still required. Categorization of literature based on computer vision tasks could be helpful for future research; therefore, this review article will provide a good foundation for conducting such research.
Collapse
Affiliation(s)
- Haseeb Hassan
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China
| | - Zhaoyu Ren
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Huishi Zhao
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Shoujin Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Dan Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Shaohua Xiang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Yan Kang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China; Medical Device Innovation Research Center, Shenzhen Technology University, Shenzhen, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China.
| |
Collapse
|
47
|
Kogilavani SV, Prabhu J, Sandhiya R, Kumar MS, Subramaniam U, Karthick A, Muhibbullah M, Imam SBS. COVID-19 Detection Based on Lung Ct Scan Using Deep Learning Techniques. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:7672196. [PMID: 35116074 PMCID: PMC8805449 DOI: 10.1155/2022/7672196] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/07/2022] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 is a novel virus, responsible for causing the COVID-19 pandemic that has emerged as a pandemic in recent years. Humans are becoming infected with the virus. In 2019, the city of Wuhan reported the first-ever incidence of COVID-19. COVID-19 infected people have symptoms that are related to pneumonia, and the virus affects the body's respiratory organs, making breathing difficult. A real-time reverse transcriptase-polymerase chain reaction (RT-PCR) kit is used to diagnose the disease. Due to a shortage of kits, suspected patients cannot be treated promptly, resulting in disease spread. To develop an alternative, radiologists looked at the changes in radiological imaging, like CT scans, that produce comprehensive pictures of the body of excellent quality. The suspected patient's computed tomography (CT) scan is used to distinguish between a healthy individual and a COVID-19 patient using deep learning algorithms. A lot of deep learning methods have been proposed for COVID-19. The proposed work utilizes CNN architectures like VGG16, DeseNet121, MobileNet, NASNet, Xception, and EfficientNet. The dataset contains 3873 total CT scan images with "COVID" and "Non-COVID." The dataset is divided into train, test, and validation. Accuracies obtained for VGG16 are 97.68%, DenseNet121 is 97.53%, MobileNet is 96.38%, NASNet is 89.51%, Xception is 92.47%, and EfficientNet is 80.19%, respectively. From the obtained analysis, the results show that the VGG16 architecture gives better accuracy compared to other architectures.
Collapse
Affiliation(s)
- S. V. Kogilavani
- . Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Erode 638060, Tamil Nadu, India
| | - J. Prabhu
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R. Sandhiya
- . Department of Computer Science and Engineering, Kongu Engineering College, Perundurai, Erode 638060, Tamil Nadu, India
| | - M. Sandeep Kumar
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - UmaShankar Subramaniam
- Renewable Energy Lab, College of Engineering, Prince Sultan University, Riyadh, Saudi Arabia 11586
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Saveetha Nagar, Thandalam, Chennai-602105, Tamilnadu, India
| | - Alagar Karthick
- Renewable Energy Lab, Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore, 641407 Tamilnadu, India
| | - M. Muhibbullah
- Department of Electrical and Electronic Engineering, Bangladesh University, Dhaka 1207, Bangladesh
| | - Sharmila Banu Sheik Imam
- College of Computer Science & Information Technology (CCSIT), King Faisal University, Alahsa, Saudi Arabia 31982
| |
Collapse
|
48
|
The application of a deep learning system developed to reduce the time for RT-PCR in COVID-19 detection. Sci Rep 2022; 12:1234. [PMID: 35075153 PMCID: PMC8786863 DOI: 10.1038/s41598-022-05069-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 01/06/2022] [Indexed: 01/02/2023] Open
Abstract
Reducing the time to diagnose COVID-19 helps to manage insufficient isolation-bed resources and adequately accommodate critically ill patients. There is currently no alternative method to real-time reverse transcriptase polymerase chain reaction (RT-PCR), which requires 40 cycles to diagnose COVID-19. We propose a deep learning (DL) model to improve the speed of COVID-19 RT-PCR diagnosis. We developed and tested a DL model using the long short-term memory method with a dataset of fluorescence values measured in each cycle of 5810 RT-PCR tests. Among the DL models developed here, the diagnostic performance of the 21st model showed an area under the receiver operating characteristic (AUROC), sensitivity, and specificity of 84.55%, 93.33%, and 75.72%, respectively. The diagnostic performance of the 24th model showed an AUROC, sensitivity, and specificity of 91.27%, 90.00%, and 92.54%, respectively.
Collapse
|
49
|
Sheela MS, Arun CA. Hybrid PSO-SVM algorithm for Covid-19 screening and quantification. INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY : AN OFFICIAL JOURNAL OF BHARATI VIDYAPEETH'S INSTITUTE OF COMPUTER APPLICATIONS AND MANAGEMENT 2022; 14:2049-2056. [PMID: 35036828 PMCID: PMC8752331 DOI: 10.1007/s41870-021-00856-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022]
Abstract
Corona Virus Disease (COVID) 19 has shaken the earth at its root and the devastation has increased the diagnostic burden of radiologists by large. At this crucial juncture, Artificial Intelligence (AI) will go a long way in decreasing the workload of physicians working in the outbreak zone, aiding them to accurately diagnose the new disease. In this work, a hybrid Particle Swarm Optimization-Support Vector Machine based AI algorithm is deployed to analyze the Computed Tomography images automatically providing a high probability in determining the presence of pneumonia due to COVID19. This paper presents a model for training the system to segregate and classify the presence of pneumonia which will in turn save around 50% of the time frame for physicians. This will be especially useful in places of outbreaks where a team of people are working together with the aid of artificial intelligence and/or medical background. The AI incorporated system was distributed in all areas of across the globe. It has been observed that challenges such as data security, testing time effectiveness of model, data discrepancy etc. were positively handled using the deployed system. Moreover, since the AI integrated system identifies the infected patients immediately physicians can confirm the infection and segregate the patients at the right period. A total of 200 training cases have been observed of which 150 were identified to be infected. The proposed work shows specificity of 0.85, a sensitivity of 0.956 and an accuracy of 95.78%.
Collapse
Affiliation(s)
| | - C. A. Arun
- Vel Tech Rangarajan Dr.Sagunthala R&D Institute of Science and Technology, Avadi, India
| |
Collapse
|
50
|
Saeed U, Shah SY, Ahmad J, Imran MA, Abbasi QH, Shah SA. Machine learning empowered COVID-19 patient monitoring using non-contact sensing: An extensive review. J Pharm Anal 2022; 12:193-204. [PMID: 35003825 PMCID: PMC8724017 DOI: 10.1016/j.jpha.2021.12.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/20/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which caused the coronavirus disease 2019 (COVID-19) pandemic, has affected more than 400 million people worldwide. With the recent rise of new Delta and Omicron variants, the efficacy of the vaccines has become an important question. The goal of various studies has been to limit the spread of the virus by utilizing wireless sensing technologies to prevent human-to-human interactions, particularly for healthcare workers. In this paper, we discuss the current literature on invasive/contact and non-invasive/non-contact technologies (including Wi-Fi, radar, and software-defined radio) that have been effectively used to detect, diagnose, and monitor human activities and COVID-19 related symptoms, such as irregular respiration. In addition, we focused on cutting-edge machine learning algorithms (such as generative adversarial networks, random forest, multilayer perceptron, support vector machine, extremely randomized trees, and k-nearest neighbors) and their essential role in intelligent healthcare systems. Furthermore, this study highlights the limitations related to non-invasive techniques and prospective research directions. This article describes cutting-edge technology (invasive/non-invasive) and its role in the recognition of COVID-19 symptoms. This article summarizes state-of-art machine-learning algorithms and their roles in modern healthcare systems. This article presents the challenges associated with wireless sensing techniques and potential future research directions.
Collapse
Affiliation(s)
- Umer Saeed
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| | - Syed Yaseen Shah
- School of Computing, Engineering and Built Environment, Glasgow Caledonian University, Glasgow, G4 0BA, UK
| | - Jawad Ahmad
- School of Computing, Edinburgh Napier University, Edinburgh, EH11 4BN, UK
| | - Muhammad Ali Imran
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Qammer H Abbasi
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Syed Aziz Shah
- Research Centre for Intelligent Healthcare, Coventry University, Coventry, CV1 5FB, UK
| |
Collapse
|