1
|
Zhang C, You Y, Xie Y, Han L, Sun D, Chen S. Salt gradient enhanced sensitivity in nanopores for intracellular calcium ion detection. Talanta 2024; 276:126261. [PMID: 38761659 DOI: 10.1016/j.talanta.2024.126261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Intracellular calcium ion detection is of great significance for understanding the cell metabolism and signaling pathways. Most of the current ionic sensors either face the size issue or sensitivity limit for the intracellular solution with high background ion concentrations. In this paper, we proposed a calmodulin (CaM) functionalized nanopore for sensitive and selective Ca2+ detection inside living cells. A salt gradient was created when the nanopore sensor filled with a low concentration electrolyte was in contact with a high background concentration solution, which enhanced the surface charge-based detection sensitivity. The nanopore sensor showed a 10 × sensitivity enhancement by application of a 100-fold salt gradient, and a detection limit of sub nM. The sensor had a wide detection range from 1 nM to 1 mM, and allowed for quick calcium ion quantification in a few seconds. The sensor was demonstrated for intracellular Ca2+ detection in A549 cells in response to ionomycin.
Collapse
Affiliation(s)
- Changling Zhang
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yuru You
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Yu Xie
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Lianhuan Han
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Daoheng Sun
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China
| | - Songyue Chen
- Pen-Tung Sah Institute of Micro-Nano Science and Technology, Xiamen University, Xiamen, China.
| |
Collapse
|
2
|
Liu Y, Zhang H, Li X. Technologies for depth scanning in miniature optical imaging systems [Invited]. BIOMEDICAL OPTICS EXPRESS 2023; 14:6542-6562. [PMID: 38420321 PMCID: PMC10898578 DOI: 10.1364/boe.507078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 03/02/2024]
Abstract
Biomedical optical imaging has found numerous clinical and research applications. For achieving 3D imaging, depth scanning presents the most significant challenge, particularly in miniature imaging devices. This paper reviews the state-of-art technologies for depth scanning in miniature optical imaging systems, which include two general approaches: 1) physically shifting part of or the entire imaging device to allow imaging at different depths and 2) optically changing the focus of the imaging optics. We mainly focus on the second group of methods, introducing a wide variety of tunable microlenses, covering the underlying physics, actuation mechanisms, and imaging performance. Representative applications in clinical and neuroscience research are briefly presented. Major challenges and future perspectives of depth/focus scanning technologies for biomedical optical imaging are also discussed.
Collapse
Affiliation(s)
- Yuehan Liu
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Haolin Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | - Xingde Li
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA
| |
Collapse
|
3
|
Abstract
The genetically encoded fluorescent sensors convert chemical and physical signals into light. They are powerful tools for the visualisation of physiological processes in living cells and freely moving animals. The fluorescent protein is the reporter module of a genetically encoded biosensor. In this study, we first review the history of the fluorescent protein in full emission spectra on a structural basis. Then, we discuss the design of the genetically encoded biosensor. Finally, we briefly review several major types of genetically encoded biosensors that are currently widely used based on their design and molecular targets, which may be useful for the future design of fluorescent biosensors.
Collapse
Affiliation(s)
- Minji Wang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yifan Da
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| | - Yang Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, No. 3663 Zhong Shan Road North, Shanghai, 200062, China
| |
Collapse
|
4
|
Macias-Contreras M, Little KN, Zhu L. Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets. Methods Enzymol 2020; 638:233-257. [PMID: 32416915 DOI: 10.1016/bs.mie.2020.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
SNAP-tag belongs to a class of genetic tools of protein labeling that complements fluorescent proteins. This single-turnover enzyme is a mutant of human DNA repair protein O6-alkylguanine-DNA alkyltransferase (hAGT). It accepts, in most cases, label-carrying O6-benzylguanines or benzyl-2-chloro-6-aminopyrimidines as suitable substrates. In this article, strategies and methods to expand the scope of the labels for intracellular proteins of live cells via the actions of SNAP-tag are presented. CLIP-tag is another mutant of the hAGT that was engineered to have mutually exclusive substrate specificity from SNAP-tag. The use of complementary bioorthogonal chemical reactions in conjunction with orthogonal enzymatic SNAP/CLIP-tags for the purpose of dual-color intracellular labeling is also described.
Collapse
Affiliation(s)
- Miguel Macias-Contreras
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States
| | - Kevin N Little
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States
| | - Lei Zhu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, United States.
| |
Collapse
|
5
|
Connectal coding: discovering the structures linking cognitive phenotypes to individual histories. Curr Opin Neurobiol 2019; 55:199-212. [PMID: 31102987 DOI: 10.1016/j.conb.2019.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 04/14/2019] [Accepted: 04/16/2019] [Indexed: 01/06/2023]
Abstract
Cognitive phenotypes characterize our memories, beliefs, skills, and preferences, and arise from our ancestral, developmental, and experiential histories. These histories are written into our brain structure through the building and modification of various brain circuits. Connectal coding, by way of analogy with neural coding, is the art, study, and practice of identifying the network structures that link cognitive phenomena to individual histories. We propose a formal statistical framework for connectal coding and demonstrate its utility in several applications spanning experimental modalities and phylogeny.
Collapse
|
6
|
Abstract
Fluorescent protein-based biosensors are indispensable molecular tools for life science research. The invention and development of high-fidelity biosensors for a particular molecule or molecular event often catalyze important scientific breakthroughs. Understanding the structural and functional organization of brain activities remain a subject for which optical sensors are in desperate need and of growing interest. Here, we review genetically encoded fluorescent sensors for imaging neuronal activities with a focus on the design principles and optimizations of various sensors. New bioluminescent sensors useful for deep-tissue imaging are also discussed. By highlighting the protein engineering efforts and experimental applications of these sensors, we can consequently analyze factors influencing their performance. Finally, we remark on how future developments can fill technological gaps and lead to new discoveries.
Collapse
Affiliation(s)
- Zhijie Chen
- California Institute for Quantitative Biosciences, QB3, University of California, Berkeley, CA 94720, USA
| | - Tan M. Truong
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, and Biomedical Sciences (BIMS) Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Correspondence:
| |
Collapse
|
7
|
Zhang Z, Stickney Z, Duong N, Curley K, Lu B. AAV-based dual-reporter circuit for monitoring cell signaling in living human cells. J Biol Eng 2017; 11:18. [PMID: 28592991 PMCID: PMC5458475 DOI: 10.1186/s13036-017-0060-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/20/2017] [Indexed: 01/12/2023] Open
Abstract
Background High-throughput methods based on molecular reporters have greatly advanced our knowledge of cell signaling in mammalian cells. However, their ability to monitor various types of cells is markedly limited by the inefficiency of reporter gene delivery. Recombinant adeno-associated virus (AAV) vectors are efficient tools widely used for delivering and expressing transgenes in diverse animal cells in vitro and in vivo. Here we present the design, construction and validation of a novel AAV-based dual-reporter circuit that can be used to monitor and quantify cell signaling in living human cells. Results We first design and construct the AAV-based reporter system. We then validate the versatility and specificity of this system in monitoring and quantifying two important cell signaling pathways, inflammation (NFκB) and cell growth and differentiation (AP-1), in cultured HEK293 and MCF-7 cells. Our results demonstrate that the AAV reporter system is both specific and versatile, and it can be used in two common experimental protocols including transfection with plasmid DNA and transduction with packaged viruses. Importantly, this system is efficient, with a high signal-to-background noise ratio, and can be easily adapted to monitor other common signaling pathways. Conclusions The AAV-based system extends the dual-reporter technology to more cell types, allowing for cost-effective and high throughput applications. Electronic supplementary material The online version of this article (doi:10.1186/s13036-017-0060-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiwen Zhang
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053 USA
| | - Zachary Stickney
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053 USA
| | - Natalie Duong
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053 USA
| | - Kevin Curley
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053 USA
| | - Biao Lu
- Department of Bioengineering, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053 USA
| |
Collapse
|
8
|
Zhang P, Hu Y, Ma R, Li L, Lu J. Enhanced green fluorescence protein/layered double hydroxide composite ultrathin films: bio-hybrid assembly and potential application as a fluorescent biosensor. J Mater Chem B 2016; 5:160-166. [PMID: 32263444 DOI: 10.1039/c6tb02638a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Protein immobilization is of significant interest for applications in biosensing, drug delivery and bioconversion, and challenges still remain for the in vitro immobilization and application of proteins. Due to it being non-specific to species, easy to express in cells and able to exhibit fluorescence after expression without the need for cofactors or chaperones, green fluorescent protein (GFP), together with its differently colored mutants, has been widely studied and applied. This article reports the fabrication of enhanced green fluorescent protein (EGFP)/layered double hydroxide nanosheet (EGFP/LDH)n ultrathin films (UTFs) via a layer-by-layer assembly technique based on electrostatic and hydrogen-bond interactions, and this realized the immobilization of EGFP. The obtained UTFs show a long-range-ordered periodic layered stacking structure and strong fluorescence originating from EGFP, which also retains its predominant β-barrel structure well in the LDH laminates. The inorganic LDH laminates play an important role in protecting and improving the structure and properties of the EGFP in the UTFs. Furthermore, the UTFs exhibit a reversible fluorescence response between different pH environments or different wet or dry environments, and also could detect some small biological medicine molecules such as protoporphyrin, and thus they have the potential to be a novel type of biological fluorescence sensor.
Collapse
Affiliation(s)
- Ping Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P. Box 98, Beisanhuan East Road 15, Beijing, 100029, P. R. China.
| | | | | | | | | |
Collapse
|
9
|
Comparison of new immunofluorescence method for detection of soy protein in meat products with immunohistochemical, histochemical, and ELISA methods. ACTA VET BRNO 2015. [DOI: 10.2754/avb201483s10s65] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Soy proteins are commonly used in the food industry thanks to their technological properties. However, soy is, along with cow’s milk, eggs, wheat, peanuts, tree nuts, fish, crustaceans, and molluscs, responsible for around 90% of food allergies, and is also one of the foodstuffs that can cause anaphylaxis. The aim of this work was to compare the immunofluorescence method for the detection of soy protein in meat products purchased from the retail market with other microscopic methods (immunohistochemical and histochemical), with the ELISA reference method and with the confirmatory results. Within the research, 127 meat products purchased in the retail network were examined using the immunofluorescence method used for the detection of soy protein. The method was compared to Enzyme-Linked ImmunoSorbent Assay (ELISA), immunohistochemical, and histochemical methods. According to McNemar’s test, non-compliance between the immunofluorescence method and immunohistochemical method was low. In addition, a significant difference between the fluorescence method and ELISA (P < 0.05) and a highly significant difference between the fluorescence method and histochemical examination (P < 0.01) was found. The immunofluorescence method was also compared with confirmatory results. According to McNemar’s test, non-compliance between the immunofluorescence method and confirmatory results was low. The results showed the possibilities of this new method to detect the content of soy protein in meat products.
Collapse
|
10
|
Badura A, Sun XR, Giovannucci A, Lynch LA, Wang SSH. Fast calcium sensor proteins for monitoring neural activity. NEUROPHOTONICS 2014; 1:025008. [PMID: 25558464 PMCID: PMC4280659 DOI: 10.1117/1.nph.1.2.025008] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 09/12/2014] [Accepted: 09/23/2014] [Indexed: 05/18/2023]
Abstract
A major goal of the BRAIN Initiative is the development of technologies to monitor neuronal network activity during active information processing. Toward this goal, genetically encoded calcium indicator proteins have become widely used for reporting activity in preparations ranging from invertebrates to awake mammals. However, slow response times, the narrow sensitivity range of Ca2+ and in some cases, poor signal-to-noise ratio still limit their usefulness. Here, we review recent improvements in the field of neural activity-sensitive probe design with a focus on the GCaMP family of calcium indicator proteins. In this context, we present our newly developed Fast-GCaMPs, which have up to 4-fold accelerated off-responses compared with the next-fastest GCaMP, GCaMP6f. Fast-GCaMPs were designed by destabilizing the association of the hydrophobic pocket of calcium-bound calmodulin with the RS20 binding domain, an intramolecular interaction that protects the green fluorescent protein chromophore. Fast-GCaMP6f-RS06 and Fast-GCaMP6f-RS09 have rapid off-responses in stopped-flow fluorimetry, in neocortical brain slices, and in the intact cerebellum in vivo. Fast-GCaMP6f variants should be useful for tracking action potentials closely spaced in time, and for following neural activity in fast-changing compartments, such as axons and dendrites. Finally, we discuss strategies that may allow tracking of a wider range of neuronal firing rates and improve spike detection.
Collapse
Affiliation(s)
- Aleksandra Badura
- Princeton University, Princeton Neuroscience Institute and Department of Molecular Biology, Princeton, New Jersey 08544, United States
| | - Xiaonan Richard Sun
- Princeton University, Princeton Neuroscience Institute and Department of Molecular Biology, Princeton, New Jersey 08544, United States
| | - Andrea Giovannucci
- Princeton University, Princeton Neuroscience Institute and Department of Molecular Biology, Princeton, New Jersey 08544, United States
| | - Laura A. Lynch
- Princeton University, Princeton Neuroscience Institute and Department of Molecular Biology, Princeton, New Jersey 08544, United States
| | - Samuel S.-H. Wang
- Princeton University, Princeton Neuroscience Institute and Department of Molecular Biology, Princeton, New Jersey 08544, United States
- Address all correspondence to: Sam Wang, E-mail:
| |
Collapse
|
11
|
Kaestner L, Scholz A, Tian Q, Ruppenthal S, Tabellion W, Wiesen K, Katus HA, Müller OJ, Kotlikoff MI, Lipp P. Genetically encoded Ca2+ indicators in cardiac myocytes. Circ Res 2014; 114:1623-39. [PMID: 24812351 DOI: 10.1161/circresaha.114.303475] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Genetically encoded Ca(2+) indicators constitute a powerful set of tools to investigate functional aspects of Ca(2+) signaling in isolated cardiomyocytes, cardiac tissue, and whole hearts. Here, we provide an overview of the concepts, experiences, state of the art, and ongoing developments in the use of genetically encoded Ca(2+) indicators for cardiac cells and heart tissue. This review is supplemented with in vivo viral gene transfer experiments and comparisons of available genetically encoded Ca(2+) indicators with each other and with the small molecule dye Fura-2. In the context of cardiac myocytes, we provide guidelines for selecting a genetically encoded Ca(2+) indicator. For future developments, we discuss improvements of a broad range of properties, including photophysical properties such as spectral spread and biocompatibility, as well as cellular and in vivo applications.
Collapse
Affiliation(s)
- Lars Kaestner
- From the Institute for Molecular Cell Biology and Research Center for Molecular Imaging and Screening, School of Medicine, Saarland University, Homburg-Saar, Germany (L.K., A.S., Q.T., S.R., W.T., K.W., P.L.); Department of Internal Medicine III, University of Heidelberg, Heidelberg, Germany (H.A.K., O.J.M.); DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Germany (H.A.K., O.J.M.); and Biomedical Sciences Department, College of Veterinary Medicine, Cornell University, Ithaca, NY (M.I.K.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Chao J, Peña T, Heimann DG, Hansen C, Doyle DA, Yanala UR, Guenther TM, Carlson MA. Expression of green fluorescent protein in human foreskin fibroblasts for use in 2D and 3D culture models. Wound Repair Regen 2014; 22:134-40. [DOI: 10.1111/wrr.12121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/04/2013] [Indexed: 11/27/2022]
Affiliation(s)
- Jie Chao
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Tiffany Peña
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Dean G. Heimann
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Chris Hansen
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - David A. Doyle
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Ujwal R. Yanala
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Timothy M. Guenther
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
| | - Mark A. Carlson
- Departments of Surgery; University of Nebraska Medical Center; Omaha Nebraska USA
- VA Nebraska-Western Iowa Health Care System; Omaha Nebraska USA
| |
Collapse
|
13
|
Renninger SL, Orger MB. Two-photon imaging of neural population activity in zebrafish. Methods 2013; 62:255-67. [PMID: 23727462 DOI: 10.1016/j.ymeth.2013.05.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 02/08/2023] Open
Abstract
Rapidly developing imaging technologies including two-photon microscopy and genetically encoded calcium indicators have opened up new possibilities for recording neural population activity in awake, behaving animals. In the small, transparent zebrafish, it is even becoming possible to image the entire brain of a behaving animal with single-cell resolution, creating brain-wide functional maps. In this chapter, we comprehensively review past functional imaging studies in zebrafish, and the insights that they provide into the functional organization of neural circuits. We further offer a basic primer on state-of-the-art methods for in vivo calcium imaging in the zebrafish, including building a low-cost two-photon microscope and highlight possible challenges and technical considerations.
Collapse
Affiliation(s)
- Sabine L Renninger
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Avenida Brasília, Doca de Pedrouços, Lisbon, Portugal
| | | |
Collapse
|
14
|
Hernandez R, Orbay H, Cai W. Molecular imaging strategies for in vivo tracking of microRNAs: a comprehensive review. Curr Med Chem 2013; 20:3594-603. [PMID: 23745564 PMCID: PMC3749288 DOI: 10.2174/0929867311320290005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 03/06/2013] [Accepted: 03/06/2013] [Indexed: 12/18/2022]
Abstract
MicroRNAs (miRNAs) are single-stranded non-coding RNAs of ~22 nucleotides, which can negatively regulate gene expression through induction of mRNA degradation and/or post-transcriptional gene silencing. MiRNAs are key factors in the regulation of many biological processes such as cell proliferation, differentiation, and death. Since miRNAs are known to be in close association with cancer development, non-invasive imaging of miRNA expression and/or activity is of critical importance, for which conventional molecular biology techniques are not suitable or applicable. Over the last several years, various molecular imaging techniques have been investigated for imaging of miRNAs. In this review article, we summarize the current state-of-the-art imaging of miRNAs, which are typically based on fluorescent proteins, bioluminescent enzymes, molecular beacons, and/or various nanoparticles. Non-invasive imaging of miRNA expression and/or biological activity is still at its infancy. Future research on more clinically relevant, non-toxic techniques is required to move the field of miRNA imaging into clinical applications. Non-invasive imaging of miRNA is an invaluable method that can not only significantly advance our understandings of a wide range of human diseases, but also lead to new and more effective treatment strategies for these diseases.
Collapse
Affiliation(s)
- Reinier Hernandez
- Department of Medical Physics, University of Wisconsin - Madison, WI, USA
| | - Hakan Orbay
- Department of Radiology, University of Wisconsin - Madison, WI, USA
| | - Weibo Cai
- Department of Medical Physics, University of Wisconsin - Madison, WI, USA
- Department of Radiology, University of Wisconsin - Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
| |
Collapse
|
15
|
Minocci D, Carbognin E, Murmu MS, Martin JR. In vivo functional calcium imaging of induced or spontaneous activity in the fly brain using a GFP-apoaequorin-based bioluminescent approach. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1632-40. [PMID: 23287020 DOI: 10.1016/j.bbamcr.2012.12.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/14/2012] [Accepted: 12/19/2012] [Indexed: 11/29/2022]
Abstract
Different optical imaging techniques have been developed to study neuronal activity with the goal of deciphering the neural code underlying neurophysiological functions. Because of several constraints inherent in these techniques as well as difficulties interpreting the results, the majority of these studies have been dedicated more to sensory modalities than to the spontaneous activity of the central brain. Recently, a novel bioluminescence approach based on GFP-aequorin (GA) (GFP: Green fluorescent Protein), has been developed, allowing us to functionally record in-vivo neuronal activity. Taking advantage of the particular characteristics of GA, which does not require light excitation, we report that we can record induced and/or the spontaneous Ca(2+)-activity continuously over long periods. Targeting GA to the mushrooms-bodies (MBs), a structure implicated in learning/memory and sleep, we have shown that GA is sensitive enough to detect odor-induced Ca(2+)-activity in Kenyon cells (KCs). It has been possible to reveal two particular peaks of spontaneous activity during overnight recording in the MBs. Other peaks of spontaneous activity have been recorded in flies expressing GA pan-neurally. Similarly, expression in the glial cells has revealed that these cells exhibit a cell-autonomous Ca(2+)-activity. These results demonstrate that bioluminescence imaging is a useful tool for studying Ca(2+)-activity in neuronal and/or glial cells and for functional mapping of the neurophysiological processes in the fly brain. These findings provide a framework for investigating the biological meaning of spontaneous neuronal activity. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Daiana Minocci
- Imagerie Cérébrale Fonctionnelle et Comportements, Neurobiologie et Développement, Gif-sur-Yvette, France
| | | | | | | |
Collapse
|
16
|
Wang J, Karpus J, Zhao BS, Luo Z, Chen PR, He C. A Selective Fluorescent Probe for Carbon Monoxide Imaging in Living Cells. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201203684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
17
|
Wang J, Karpus J, Zhao BS, Luo Z, Chen PR, He C. A Selective Fluorescent Probe for Carbon Monoxide Imaging in Living Cells. Angew Chem Int Ed Engl 2012; 51:9652-6. [DOI: 10.1002/anie.201203684] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 07/26/2012] [Indexed: 01/13/2023]
|
18
|
Constantin S, Jasoni C, Romanò N, Lee K, Herbison AE. Understanding calcium homeostasis in postnatal gonadotropin-releasing hormone neurons using cell-specific Pericam transgenics. Cell Calcium 2011; 51:267-76. [PMID: 22177387 DOI: 10.1016/j.ceca.2011.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/07/2011] [Accepted: 11/17/2011] [Indexed: 12/11/2022]
Abstract
The gonadotropin-releasing hormone (GnRH) neurons are the key output cells of a complex neuronal network controlling fertility in mammals. To examine calcium homeostasis in postnatal GnRH neurons, we generated a transgenic mouse line in which the genetically encodable calcium indicator ratiometric Pericam (rPericam) was targeted to the GnRH neurons. This mouse model enabled real-time imaging of calcium concentrations in GnRH neurons in the acute brain slice preparation. Investigations in GnRH-rPericam mice revealed that GnRH neurons exhibited spontaneous, long-duration (~8s) calcium transients. Dual electrical-calcium recordings revealed that the calcium transients were correlated perfectly with burst firing in GnRH neurons and that calcium transients in GnRH neurons regulated two calcium-activated potassium channels that, in turn, determined burst firing dynamics in these cells. Curiously, the occurrence of calcium transients in GnRH neurons across puberty or through the estrous cycle did not correlate well with the assumption that GnRH neuron burst firing was contributory to changing patterns of pulsatile GnRH release at these times. The GnRH-rPericam mouse was also valuable in determining differential mechanisms of GABA and glutamate control of calcium levels in GnRH neurons as well as effects of G-protein-coupled receptors for GnRH and kisspeptin. The simultaneous measurement of calcium levels in multiple GnRH neurons was hampered by variable rPericam fluorescence in different GnRH neurons. Nevertheless, in the multiple recordings that were achieved no evidence was found for synchronous calcium transients. Together, these observations show the great utility of transgenic targeting strategies for investigating the roles of calcium with specified neuronal cell types.
Collapse
Affiliation(s)
- Stéphanie Constantin
- Centre for Neuroendocrinology and Department of Physiology, University of Otago, Dunedin 9054, New Zealand
| | | | | | | | | |
Collapse
|
19
|
Agarwal A, Dibaj P, Kassmann CM, Goebbels S, Nave KA, Schwab MH. In vivo imaging and noninvasive ablation of pyramidal neurons in adult NEX-CreERT2 mice. ACTA ACUST UNITED AC 2011; 22:1473-86. [PMID: 21880656 DOI: 10.1093/cercor/bhr214] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To study the function of individual neurons that are embedded in a complex neural network is difficult in mice. Conditional mutagenesis permits the spatiotemporal control of gene expression including the ablation of cells by toxins. To direct expression of a tamoxifen-inducible variant of Cre recombinase (CreERT2) selectively to cortical neurons, we replaced the coding region of the murine Nex1 gene by CreERT2 cDNA via homologous recombination in embryonic stem cells. When injected with tamoxifen, adult NEX-CreERT2 mice induced reporter gene expression exclusively in projection neurons of the neocortex and hippocampus. By titrating the tamoxifen dosage, we achieved recombination in single cells, which allowed multiphoton imaging of neocortical neurons in live mice. When hippocampal projection neurons were genetically ablated by induced expression of diphteria toxin, within 20 days the inflammatory response included the infiltration of CD3+ T cells. This marks a striking difference from similar studies, in which dying oligodendrocytes failed to recruit cells of the adaptive immune system.
Collapse
Affiliation(s)
- Amit Agarwal
- Department of Neurogenetics, Max Planck Institute of Experimental Medicine, 37075 Goettingen, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Green Fluorescent Protein-Based Chloride Ion Sensors for In Vivo Imaging. FLUORESCENT PROTEINS II 2011. [DOI: 10.1007/4243_2011_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Dumbrepatil AB, Lee SG, Chung SJ, Lee MG, Park BC, Kim TJ, Woo EJ. Development of a nanoparticle-based FRET sensor for ultrasensitive detection of phytoestrogen compounds. Analyst 2010; 135:2879-86. [PMID: 20877819 DOI: 10.1039/c0an00385a] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Phytoestrogens are plant compounds that mimic the actions of endogenous estrogens. The abundance of these chemicals in nature and their potential effects on health require the development of a convenient method to detect phytoestrogens. We have developed a nanoparticle (NP)-conjugated FRET probe based on the human estrogen receptor α (ER) ligand-binding domain (LBD) to detect phytoestrogens. The NP-conjugated FRET probe showed fluorescence signals for genistein, resveratrol and daidzein compounds with Δ ratios of 1.65, 2.60 and 1.37 respectively, which are approximately six times greater compared to individual FRET probes. A significantly higher signal for resveratrol versus genistein and daidzein indicates that the probe can differentiate between antagonistic phytoalexin substances and agonistic isoflavone compounds. NP-conjugated probes demonstrated a wide dynamic range, ranging from 10(-18) to 10(-1) M with EC(50) values of 9.6 × 10(-10), 9.0 × 10(-10) and 9.2 × 10(-10) M for genistein, daidzein and resveratrol respectively, whereas individual probes detected concentrations of 10(-13) to 10(-4) M for phytoestrogens compounds. The time profile revealed that the NP-conjugated probe is stable over 30 h and there is not a significant deviation in the FRET signal at room temperature. These data demonstrate that conjugation of a FRET probe to nanoparticles is able to serve as an effective FRET sensor for monitoring bioactive compounds with significantly increased sensitivity, dynamic range and stability.
Collapse
Affiliation(s)
- Arti B Dumbrepatil
- Korea Research Institute of Biosciences and Biotechnology (KRIBB), 111 Gwahangno, Yuseong-gu, Daejeon, 305-806, Korea
| | | | | | | | | | | | | |
Collapse
|
22
|
Chudakov DM, Matz MV, Lukyanov S, Lukyanov KA. Fluorescent proteins and their applications in imaging living cells and tissues. Physiol Rev 2010; 90:1103-63. [PMID: 20664080 DOI: 10.1152/physrev.00038.2009] [Citation(s) in RCA: 962] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Green fluorescent protein (GFP) from the jellyfish Aequorea victoria and its homologs from diverse marine animals are widely used as universal genetically encoded fluorescent labels. Many laboratories have focused their efforts on identification and development of fluorescent proteins with novel characteristics and enhanced properties, resulting in a powerful toolkit for visualization of structural organization and dynamic processes in living cells and organisms. The diversity of currently available fluorescent proteins covers nearly the entire visible spectrum, providing numerous alternative possibilities for multicolor labeling and studies of protein interactions. Photoactivatable fluorescent proteins enable tracking of photolabeled molecules and cells in space and time and can also be used for super-resolution imaging. Genetically encoded sensors make it possible to monitor the activity of enzymes and the concentrations of various analytes. Fast-maturing fluorescent proteins, cell clocks, and timers further expand the options for real time studies in living tissues. Here we focus on the structure, evolution, and function of GFP-like proteins and their numerous applications for in vivo imaging, with particular attention to recent techniques.
Collapse
|
23
|
Friedrich MW, Aramuni G, Mank M, Mackinnon JAG, Griesbeck O. Imaging CREB activation in living cells. J Biol Chem 2010; 285:23285-95. [PMID: 20484048 DOI: 10.1074/jbc.m110.124545] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Ca(2+)- and cAMP-responsive element-binding protein (CREB) and the related ATF-1 and CREM are stimulus-inducible transcription factors that link certain forms of cellular activity to changes in gene expression. They are attributed to complex integrative activation characteristics, but current biochemical technology does not allow dynamic imaging of CREB activation in single cells. Using fluorescence resonance energy transfer between mutants of green fluorescent protein we here develop a signal-optimized genetically encoded indicator that enables imaging activation of CREB due to phosphorylation of the critical serine 133. The indicator of CREB activation due to phosphorylation (ICAP) was used to investigate the role of the scaffold and anchoring protein AKAP79/150 in regulating signal pathways converging on CREB. We show that disruption of AKAP79/150-mediated protein kinase A anchoring or knock-down of AKAP150 dramatically reduces the ability of protein kinase A to activate CREB. In contrast, AKAP79/150 regulation of CREB via L-type channels may only have minor importance. ICAP allows dynamic and reversible imaging in living cells and may become useful in studying molecular components and cell-type specificity of activity-dependent gene expression.
Collapse
Affiliation(s)
- Michael W Friedrich
- Max-Planck-Institute of Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | |
Collapse
|
24
|
Rizzo MA, Davidson MW, Piston DW. Fluorescent protein tracking and detection: applications using fluorescent proteins in living cells. Cold Spring Harb Protoc 2010; 2009:pdb.top64. [PMID: 20150101 DOI: 10.1101/pdb.top64] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Abstract
Small, fluorescent, calcium-sensing molecules have been enormously useful in mapping intracellular calcium signals in time and space, as chapters in this volume attest. Despite their widespread adoption and utility, they suffer some disadvantages. Genetically encoded calcium sensors that can be expressed inside cells by transfection or transgenesis are desirable. The last 10 years have been marked by a rapid evolution in the laboratory of genetically encoded calcium sensors both figuratively and literally, resulting in 11 distinct configurations of fluorescent proteins and their attendant calcium sensor modules. Here, the design logic and performance of this abundant collection of sensors and their in vitro and in vivo use and performance are described. Genetically encoded calcium sensors have proved valuable in the measurement of calcium concentration in cellular organelles, for the most part in single cells in vitro. Their success as quantitative calcium sensors in tissues in vitro and in vivo is qualified, but they have proved valuable in imaging the pattern of calcium signals within tissues in whole animals. Some branches of the calcium sensor evolutionary tree continue to evolve rapidly and the steady progress in optimizing sensor parameters leads to the certain hope that these drawbacks will eventually be overcome by further genetic engineering.
Collapse
Affiliation(s)
- Michael Whitaker
- Institute of Cell and Molecular Biosciences Medical School, Newcastle University, Framlington Place Newcastle upon Tyne, United Kingdom
| |
Collapse
|
26
|
Abstract
Many fluorescent probes depend on the fluorescence resonance energy transfer (FRET) between fluorescent protein pairs. The efficiency of energy transfer becomes altered by conformational changes of a fused sensory protein in response to a cellular event. A structure-based approach can be taken to design probes better with improved dynamic ranges by computationally modeling conformational changes and predicting FRET efficiency changes of candidate biosensor constructs. FRET biosensors consist of at least three domains fused together: the donor protein, the sensory domain, and the acceptor protein. To more efficiently subclone fusion proteins containing multiple domains, a cassette-based system can be used. Generating a cassette library of commonly used domains facilitates the rapid subcloning of future fusion biosensor proteins. FRET biosensors can then be used with fluorescence microscopy for real-time monitoring of cellular events within live cells by tracking changes in FRET efficiency. Stimulants can be used to trigger a range of cellular events including Ca(2+) signaling, apoptosis, and subcellular translocations.
Collapse
Affiliation(s)
- Elizabeth Pham
- Institute of Biomaterials and Biomedical Engineering and Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
27
|
Keese M, Yagublu V, Schwenke K, Post S, Bastiaens P. Fluorescence lifetime imaging microscopy of chemotherapy-induced apoptosis resistance in a syngenic mouse tumor model. Int J Cancer 2009; 126:104-13. [PMID: 19588498 DOI: 10.1002/ijc.24730] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
During cancer therapy with DNA-damaging drug-agents, the development of secondary resistance to apoptosis can be observed. In the search for novel therapeutic approaches that can be used in these cases, we monitored chemotherapy-induced apoptosis resistance in a syngenic mouse tumor model. For this, syngenic murine colorectal carcinoma cells, which stably expressed a FRET-based caspase-3 activity sensor, were introduced into animals to induce peritoneal carcinomatosis or disseminated hepatic metastases. This syngenic system allowed in vitro, in vivo and ex vivo analysis of chemotherapy induced apoptosis induction by optically monitoring the caspase-3 sensor state in the tumor cells. Tumor tissue analysis of 5-FU treated mice showed the selection of 5-FU-induced apoptosis resistant tumor cells. These and chemo-naive fluorescent tumor cells could be re-isolated from treated and untreated mice and propagated in cell culture. Re-exposure to 5-FU and second line treatment modalities in this ex-vivo setting showed that 5-FU induced apoptosis resistance could be alleviated by imatinib mesylate (Gleevec). We thus show that syngenic mouse systems that stably express a FRET-based caspase-3 sensor can be employed to analyse the therapeutic efficiency of apoptosis inducing chemotherapy.
Collapse
Affiliation(s)
- M Keese
- Chirurgische Klinik, Universitätsklinikum Mannheim, 68167 Mannheim, Germany
| | | | | | | | | |
Collapse
|
28
|
Wiedenmann JÃ, Oswald F, Nienhaus GU. Fluorescent proteins for live cell imaging: Opportunities, limitations, and challenges. IUBMB Life 2009; 61:1029-42. [DOI: 10.1002/iub.256] [Citation(s) in RCA: 170] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
29
|
|
30
|
Plank M, Wadhams GH, Leake MC. Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr Biol (Camb) 2009; 1:602-12. [PMID: 20023777 DOI: 10.1039/b907837a] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorescence microscopy offers a minimally perturbative approach to probe biology in vivo. However, available techniques are limited both in sensitivity and temporal resolution for commonly used fluorescent proteins. Here we present a new imaging system with a diagnostic toolkit that caters for the detection and quantification of fluorescent proteins for use in fast functional imaging at the single-molecule level. It utilizes customized microscopy with a mode of illumination we call "slimfield" suitable for rapid (approximately millisecond) temporal resolution on a range of common fluorescent proteins. Slimfield is cheap and simple, allowing excitation intensities approximately 100 times greater than those of widefield imaging, permitting single-molecule detection at high speed. We demonstrate its application on several purified fluorescent proteins in standard use as genetically-encoded reporter molecules. Controlled in vitro experiments indicate single protein molecules over a field of view of approximately 30 microm(2) area, large enough to encapsulate complete prokaryotic and small eukaryotic cells. Using a novel diagnostic toolkit we demonstrate automated detection and quantification of single molecules with maximum imaging rates for a 128 x 128 pixel array of approximately 500 frames per second with a localization precision for these photophysically poor fluorophores to within 50 nm. We report for the first time the imaging of the dim enhanced cyan fluorescent protein (ECFP) and CyPet at the single-molecule level. Applying modifications, we performed simultaneous dual-colour slimfield imaging for use in co-localization and FRET. We present preliminary in vivo imaging on bacterial cells and demonstrate approximately millisecond timescale functional imaging at the single-molecule level with negligible photodamage.
Collapse
Affiliation(s)
- Michael Plank
- Clarendon Laboratory, Oxford Physics, Oxford University, Parks Road, Oxford, UK
| | | | | |
Collapse
|
31
|
Böhme I, Beck-Sickinger AG. Illuminating the life of GPCRs. Cell Commun Signal 2009; 7:16. [PMID: 19602276 PMCID: PMC2726148 DOI: 10.1186/1478-811x-7-16] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2009] [Accepted: 07/14/2009] [Indexed: 01/19/2023] Open
Abstract
The investigation of biological systems highly depends on the possibilities that allow scientists to visualize and quantify biomolecules and their related activities in real-time and non-invasively. G-protein coupled receptors represent a family of very dynamic and highly regulated transmembrane proteins that are involved in various important physiological processes. Since their localization is not confined to the cell surface they have been a very attractive "moving target" and the understanding of their intracellular pathways as well as the identified protein-protein-interactions has had implications for therapeutic interventions. Recent and ongoing advances in both the establishment of a variety of labeling methods and the improvement of measuring and analyzing instrumentation, have made fluorescence techniques to an indispensable tool for GPCR imaging. The illumination of their complex life cycle, which includes receptor biosynthesis, membrane targeting, ligand binding, signaling, internalization, recycling and degradation, will provide new insights into the relationship between spatial receptor distribution and function. This review covers the existing technologies to track GPCRs in living cells. Fluorescent ligands, antibodies, auto-fluorescent proteins as well as the evolving technologies for chemical labeling with peptide- and protein-tags are described and their major applications concerning the GPCR life cycle are presented.
Collapse
Affiliation(s)
- Ilka Böhme
- Institute of Biochemistry, Faculty of Biosciences, Pharmacy and Psychology, Leipzig University, Brüderstr, 34, 04103 Leipzig, Germany.
| | | |
Collapse
|
32
|
Nienhaus GU, Wiedenmann J. Structure, dynamics and optical properties of fluorescent proteins: perspectives for marker development. Chemphyschem 2009; 10:1369-79. [PMID: 19229892 DOI: 10.1002/cphc.200800839] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2008] [Indexed: 01/02/2023]
Abstract
GFP-like proteins, originally cloned from marine animals, are genetically encoded fluorescence markers that have become indispensable tools for the life sciences. The search for GFP-like proteins with novel and improved properties is still ongoing, however, driven by the persistent need for advanced and specialized fluorescence labels for cellular imaging. Overall, the structures of these proteins are similar, but considerable variations have been found in the covalent structures and stereochemistry of the fluorophore, which govern essential optical properties such as the absorption/emission wavelengths. Moreover, as the fluorophore-enclosing cavity forms its solvation shell, it can also have a significant effect on the absorption/emission wavelengths and the brightness of the fluorophore. Most exciting are recent developments of photoactivatable fluorescence markers which change their color and/or intensity upon irradiation with light of specific wavelengths. A detailed understanding of the structure and dynamics of GFP-like proteins greatly aids in the rational engineering of advanced fluorescence marker proteins. Herein, we review our present knowledge of the structural diversity of GFP-like proteins and discuss how structure and dynamics govern their optical properties, with an emphasis on red fluorescent proteins.
Collapse
Affiliation(s)
- G Ulrich Nienhaus
- Institute of Biophysics, University of Ulm, Albert-Einstein-Allee 11, 89081 Ulm, Germany.
| | | |
Collapse
|
33
|
Martin JR. In VivoBrain Imaging: Fluorescence or Bioluminescence, Which to Choose? J Neurogenet 2009; 22:285-307. [DOI: 10.1080/01677060802298517] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Modi S, M G S, Goswami D, Gupta GD, Mayor S, Krishnan Y. A DNA nanomachine that maps spatial and temporal pH changes inside living cells. NATURE NANOTECHNOLOGY 2009; 4:325-30. [PMID: 19421220 DOI: 10.1038/nnano.2009.83] [Citation(s) in RCA: 587] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Accepted: 03/20/2009] [Indexed: 05/18/2023]
Abstract
DNA nanomachines are synthetic assemblies that switch between defined molecular conformations upon stimulation by external triggers. Previously, the performance of DNA devices has been limited to in vitro applications. Here we report the construction of a DNA nanomachine called the I-switch, which is triggered by protons and functions as a pH sensor based on fluorescence resonance energy transfer (FRET) inside living cells. It is an efficient reporter of pH from pH 5.5 to 6.8, with a high dynamic range between pH 5.8 and 7. To demonstrate its ability to function inside living cells we use the I-switch to map spatial and temporal pH changes associated with endosome maturation. The performance of our DNA nanodevices inside living systems illustrates the potential of DNA scaffolds responsive to more complex triggers in sensing, diagnostics and targeted therapies in living systems.
Collapse
Affiliation(s)
- Souvik Modi
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK, Bellary Road, Bangalore, 560065, India
| | | | | | | | | | | |
Collapse
|
35
|
Kredel S, Oswald F, Nienhaus K, Deuschle K, Röcker C, Wolff M, Heilker R, Nienhaus GU, Wiedenmann J. mRuby, a bright monomeric red fluorescent protein for labeling of subcellular structures. PLoS One 2009; 4:e4391. [PMID: 19194514 PMCID: PMC2633614 DOI: 10.1371/journal.pone.0004391] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Accepted: 12/22/2008] [Indexed: 11/18/2022] Open
Abstract
A monomeric variant of the red fluorescent protein eqFP611, mRuby, is described. With excitation and emission maxima at 558 nm and 605 nm, respectively, and a large Stokes shift of 47 nm, mRuby appears particularly useful for imaging applications. The protein shows an exceptional resistance to denaturation at pH extremes. Moreover, mRuby is about ten-fold brighter compared to EGFP when being targeted to the endoplasmic reticulum. The engineering process of eqFP611 revealed that the C-terminal tail of the protein acts as a natural peroxisomal targeting signal (PTS). Using an mRuby variant carrying the eqFP611-PTS, we discovered that ordered inheritance of peroxisomes is widespread during mitosis of different mammalian cell types. The ordered partitioning is realized by the formation of peroxisome clusters around the poles of the mitotic spindle and ensures that equal numbers of the organelle are inherited by the daughter cells. The unique spectral properties make mRuby the marker of choice for a multitude of cell biological applications. Moreover, the use of mRuby has allowed novel insights in the biology of organelles responsible for severe human diseases.
Collapse
Affiliation(s)
- Simone Kredel
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - Karin Nienhaus
- Institute of Biophysics, University of Ulm, Ulm, Germany
| | - Karen Deuschle
- Institute of Biophysics, University of Ulm, Ulm, Germany
| | | | - Michael Wolff
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ralf Heilker
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - G. Ulrich Nienhaus
- Institute of Biophysics, University of Ulm, Ulm, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jörg Wiedenmann
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
- National Oceanography Centre, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
36
|
Vogt A, D'Angelo C, Oswald F, Denzel A, Mazel CH, Matz MV, Ivanchenko S, Nienhaus GU, Wiedenmann J. A green fluorescent protein with photoswitchable emission from the deep sea. PLoS One 2008; 3:e3766. [PMID: 19018285 PMCID: PMC2582951 DOI: 10.1371/journal.pone.0003766] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Accepted: 08/18/2008] [Indexed: 11/18/2022] Open
Abstract
A colorful variety of fluorescent proteins (FPs) from marine invertebrates are utilized as genetically encoded markers for live cell imaging. The increased demand for advanced imaging techniques drives a continuous search for FPs with new and improved properties. Many useful FPs have been isolated from species adapted to sun-flooded habitats such as tropical coral reefs. It has yet remained unknown if species expressing green fluorescent protein (GFP)-like proteins also exist in the darkness of the deep sea. Using a submarine-based and -operated fluorescence detection system in the Gulf of Mexico, we discovered ceriantharians emitting bright green fluorescence in depths between 500 and 600 m and identified a GFP, named cerFP505, with bright fluorescence emission peaking at 505 nm. Spectroscopic studies showed that ∼15% of the protein bulk feature reversible ON/OFF photoswitching that can be induced by alternating irradiation with blue und near-UV light. Despite being derived from an animal adapted to essentially complete darkness and low temperatures, cerFP505 maturation in living mammalian cells at 37°C, its brightness and photostability are comparable to those of EGFP and cmFP512 from shallow water species. Therefore, our findings disclose the deep sea as a potential source of GFP-like molecular marker proteins.
Collapse
Affiliation(s)
- Alexander Vogt
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | - Cecilia D'Angelo
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | - Franz Oswald
- Department of Internal Medicine I, University of Ulm, Ulm, Germany
| | - Andrea Denzel
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
| | | | - Mikhail V. Matz
- Integrative Biology, University of Texas in Austin, Austin, Texas, United States of America
| | | | - G. Ulrich Nienhaus
- Institute of Biophysics, University of Ulm, Ulm, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jörg Wiedenmann
- Institute of General Zoology and Endocrinology, University of Ulm, Ulm, Germany
- National Oceanography Centre, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Olsen SR, Wilson RI. Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci 2008; 31:512-20. [PMID: 18775572 PMCID: PMC2845908 DOI: 10.1016/j.tins.2008.07.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 07/25/2008] [Accepted: 07/30/2008] [Indexed: 11/17/2022]
Abstract
Genetic screens in Drosophila have identified many genes involved in neural development and function. However, until recently, it has been impossible to monitor neural signals in Drosophila central neurons, and it has been difficult to make specific perturbations to central neural circuits. This has changed in the past few years with the development of new tools for measuring and manipulating neural activity in the fly. Here we review how these new tools enable novel conceptual approaches to 'cracking circuits' in this important model organism. We discuss recent studies aimed at defining the cognitive demands on the fly brain, identifying the cellular components of specific neural circuits, mapping functional connectivity in those circuits and defining causal relationships between neural activity and behavior.
Collapse
Affiliation(s)
- Shawn R Olsen
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
38
|
A new non-disruptive strategy to target calcium indicator dyes to the endoplasmic reticulum. Cell Calcium 2008; 44:386-99. [DOI: 10.1016/j.ceca.2008.02.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
39
|
Okumoto S, Takanaga H, Frommer WB. Quantitative imaging for discovery and assembly of the metabo-regulome. THE NEW PHYTOLOGIST 2008; 180:271-295. [PMID: 19138219 PMCID: PMC2663047 DOI: 10.1111/j.1469-8137.2008.02611.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Little is known about regulatory networks that control metabolic flux in plant cells. Detailed understanding of regulation is crucial for synthetic biology. The difficulty of measuring metabolites with cellular and subcellular precision is a major roadblock. New tools have been developed for monitoring extracellular, cytosolic, organellar and vacuolar ion and metabolite concentrations with a time resolution of milliseconds to hours. Genetically encoded sensors allow quantitative measurement of steady-state concentrations of ions, signaling molecules and metabolites and their respective changes over time. Fluorescence resonance energy transfer (FRET) sensors exploit conformational changes in polypeptides as a proxy for analyte concentrations. Subtle effects of analyte binding on the conformation of the recognition element are translated into a FRET change between two fused green fluorescent protein (GFP) variants, enabling simple monitoring of analyte concentrations using fluorimetry or fluorescence microscopy. Fluorimetry provides information averaged over cell populations, while microscopy detects differences between cells or populations of cells. The genetically encoded sensors can be targeted to subcellular compartments or the cell surface. Confocal microscopy ultimately permits observation of gradients or local differences within a compartment. The FRET assays can be adapted to high-throughput analysis to screen mutant populations in order to systematically identify signaling networks that control individual steps in metabolic flux.
Collapse
Affiliation(s)
- Sakiko Okumoto
- Plant Pathology, Physiology, and Weed Science Department, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Hitomi Takanaga
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
| | - Wolf B. Frommer
- Carnegie Institution for Science, Department of Plant Biology, 260 Panama St., Stanford, CA 94305, USA
- Joint Bioenergy Institute, Feedstocks Division, Emerystation East, 5885 Hollis Street Emeryville, CA 94608, USA
| |
Collapse
|
40
|
Abstract
A photoactivatable phosphorylation sensor used in conjunction with isoform specific inhibitors of protein kinase C enables the enzyme's activity to be monitored inside cells at specific time points during mitosis. PKCbeta was found to be active before, but not after, nuclear envelope breakdown.
Collapse
Affiliation(s)
- Timothy M Dore
- Department of Chemistry, University of Georgia, Athens, GA 30602-2556, USA.
| |
Collapse
|
41
|
Flügel A, Odoardi F, Nosov M, Kawakami N. Autoaggressive effector T cells in the course of experimental autoimmune encephalomyelitis visualized in the light of two-photon microscopy. J Neuroimmunol 2007; 191:86-97. [PMID: 17976745 DOI: 10.1016/j.jneuroim.2007.09.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2007] [Accepted: 09/12/2007] [Indexed: 10/22/2022]
Abstract
Two photon microscopy (TPM) recently emerged as optical tool for the visualization of immune processes hundreds of micrometers deep in living tissue and organs. Here we summarize recent work on exploiting this technology to study brain antigen specific T cells. These cells are the cause of Experimental Autoimmune Encephalomyelitis (EAE) an autoimmune disease model of Multiple Sclerosis. TPM studies elucidated the dynamics of the autoaggressive effector T cells in peripheral immune milieus during preclinical EAE, where the cells become reprogrammed to enter their target organ. These studies revealed an unexpectedly lively locomotion behavior of the cells interrupted only by short-lasting contacts with the local immune stroma. Live T cell behavior was furthermore studied within the acutely inflamed CNS. Two distinct migratory patterns of the T cells were found: the majority of cells (60-70%) moved fast and seemingly unhindered through the compact CNS parenchyma. The motility of the other cell fraction was highly confined. The cells swung around a fixed cell pole forming long-lasting contacts to putative local antigen presenting cells.
Collapse
|
42
|
Petty HR. Fluorescence microscopy: established and emerging methods, experimental strategies, and applications in immunology. Microsc Res Tech 2007; 70:687-709. [PMID: 17393476 DOI: 10.1002/jemt.20455] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Cutting-edge biophysical technologies including total internal reflection fluorescence microscopy, single molecule fluorescence, single channel opening events, fluorescence resonance energy transfer, high-speed exposures, two-photon imaging, fluorescence lifetime imaging, and other tools are becoming increasingly important in immunology as they link molecular events to cellular physiology, a key goal of modern immunology. The primary concern in all forms of microscopy is the generation of contrast; for fluorescence microscopy contrast can be thought of as the difference in intensity between the cell and background, the signal-to-noise ratio. High information-content images can be formed by enhancing the signal, suppressing the noise, or both. As improved tools, such as ICCD and EMCCD cameras, become available for fluorescence imaging in molecular and cellular immunology, it is important to optimize other aspects of the imaging system. Numerous practical strategies to enhance fluorescence microscopy experiments are reviewed. The use of instrumentation such as light traps, cameras, objectives, improved fluorescent labels, and image filtration routines applicable to low light level experiments are discussed. New methodologies providing resolution well beyond that given by the Rayleigh criterion are outlined. Ongoing and future developments in fluorescence microscopy instrumentation and technique are reviewed. This review is intended to address situations where the signal is weak, which is important for emerging techniques stressing super-resolution or live cell dynamics, but is less important for conventional applications such as indirect immunofluorescence. This review provides a broad integrative discussion of fluorescence microscopy with selected applications in immunology.
Collapse
Affiliation(s)
- Howard R Petty
- Department of Ophthalmology and Visual Sciences, University of Michigan Medical School, Ann Arbor, Michigan 48105, USA.
| |
Collapse
|
43
|
Brumbaugh J, Schleifenbaum A, Stier G, Sattler M, Schultz C. Single- and dual-parameter FRET kinase probes based on pleckstrin. Nat Protoc 2007; 1:1044-55. [PMID: 17406341 DOI: 10.1038/nprot.2006.177] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we describe protocols for preparing and using fluorescent probes that respond to conformational changes by altered Foerster resonance energy transfer (FRET) efficiencies upon phosphorylation or, in principle, other posttranslational modifications (PTMs). The sensor protein, a truncated version of pleckstrin, is sandwiched between short-wavelength-excitation green fluorescent protein (GFP2) and yellow fluorescent protein (EYFP). As a result of complex conformational changes of the protein upon phosphorylation, the introduction of a second PTM consensus sequence bestows sensitivity to a second modification and yields a dual-parameter probe. The first phase of the protocol lays out the cloning strategy for single- and dual-parameter FRET sensors, including the construction of a versatile platform into which different consensus sequences may be inserted to create diverse probes. Protocols for fluorescence microscopy of the probes in living cells and image processing are also described. Probe preparation takes 7 d; microscopy and image processing take 2 h.
Collapse
Affiliation(s)
- Justin Brumbaugh
- European Molecular Biology Institute, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
44
|
Tay LH, Griesbeck O, Yue DT. Live-cell transforms between Ca2+ transients and FRET responses for a troponin-C-based Ca2+ sensor. Biophys J 2007; 93:4031-40. [PMID: 17704158 PMCID: PMC2084226 DOI: 10.1529/biophysj.107.109629] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically encoded Ca(2+) sensors promise sustained in vivo detection of Ca(2+) signals. However, these sensors are sometimes challenged by inconsistent performance and slow/uncertain kinetic responsiveness. The former challenge may arise because most sensors employ calmodulin (CaM) as the Ca(2+)-sensing module, such that interference via endogenous CaM may result. One class of sensors that could minimize this concern utilizes troponin C as the Ca(2+) sensor. Here, we therefore probed the reliability and kinetics of one representative of this class (cyan fluorescence protein/yellow fluorescent protein-fluorescence resonance energy transfer (FRET) sensor TN-L15) within cardiac ventricular myocytes. These cells furnished a pertinent live-cell test environment, given substantial endogenous CaM levels and fast reproducible Ca(2+) transients for testing sensor kinetics. TN-L15 was virally expressed within myocytes, and Indo-1 acutely loaded to monitor "true" Ca(2+) transients. This configuration permitted independent and simultaneous detection of TN-L15 and Indo-1 signals within individual cells. The relation between TN-L15 FRET responses and Indo-1 Ca(2+) transients appeared reproducible, though FRET signals were delayed compared to Ca(2+) transients. Nonetheless, a three-state mechanism sufficed to map between measured Ca(2+) transients and actual TN-L15 outputs. Overall, reproducibility of TN-L15 dynamics, coupled with algorithmic transforms between FRET and Ca(2+) signals, renders these sensors promising for quantitative estimation of Ca(2+) dynamics in vivo.
Collapse
Affiliation(s)
- Lai Hock Tay
- Calcium Signals Laboratory, Department of Biomedical Engineering, and Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
45
|
Single fluorescent protein-based Ca2+ sensors with increased dynamic range. BMC Biotechnol 2007; 7:37. [PMID: 17603870 PMCID: PMC1931437 DOI: 10.1186/1472-6750-7-37] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2007] [Accepted: 06/29/2007] [Indexed: 11/10/2022] Open
Abstract
Background Genetically encoded sensors developed on the basis of green fluorescent protein (GFP)-like proteins are becoming more and more popular instruments for monitoring cellular analytes and enzyme activities in living cells and transgenic organisms. In particular, a number of Ca2+ sensors have been developed, either based on FRET (Fluorescence Resonance Energy Transfer) changes between two GFP-mutants or on the change in fluorescence intensity of a single circularly permuted fluorescent protein (cpFP). Results Here we report significant progress on the development of the latter type of Ca2+ sensors. Derived from the knowledge of previously reported cpFP-based sensors, we generated a set of cpFP-based indicators with different spectral properties and fluorescent responses to changes in Ca2+ concentration. Two variants, named Case12 and Case16, were characterized by particular high brightness and superior dynamic range, up to 12-fold and 16.5-fold increase in green fluorescence between Ca2+-free and Ca2+-saturated forms. We demonstrated the high potential of these sensors on various examples, including monitoring of Ca2+ response to a prolonged glutamate treatment in cortical neurons. Conclusion We believe that expanded dynamic range, high brightness and relatively high pH-stability should make Case12 and Case16 popular research tools both in scientific studies and high throughput screening assays.
Collapse
|
46
|
Pham E, Chiang J, Li I, Shum W, Truong K. A Computational Tool for Designing FRET Protein Biosensors by Rigid-Body Sampling of Their Conformational Space. Structure 2007; 15:515-23. [PMID: 17502097 DOI: 10.1016/j.str.2007.03.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Revised: 02/23/2007] [Accepted: 03/22/2007] [Indexed: 11/19/2022]
Abstract
Biosensors relying on the fluorescence resonance energy transfer (FRET) between fluorescent proteins have been used for live-cell imaging of cellular events including Ca(2+) signaling. The efficiency of energy transfer between the donor and acceptor fluorescent proteins depends on the relative distance and orientation between them, which become altered by conformational changes of a fused sensory protein caused by a cellular event. In this way, changes in FRET efficiency of Ca(2+) biosensors can be correlated with Ca(2+) concentrations. The design of these FRET biosensors can be improved by modeling conformational changes before and after a cellular event. Hence, a computational tool called FPMOD was developed to predict FRET efficiency changes by constructing FRET biosensors and sampling their conformational space through rigid-body rotation. We showed with FPMOD that our computational modeling approach can qualitatively predict the FRET efficiencies of a range of biosensors, which had strong agreement with experimental results.
Collapse
Affiliation(s)
- Elizabeth Pham
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | | | | | | | | |
Collapse
|
47
|
Abstract
The mature brain needs to have flexible control over behavior in the face of ever-changing needs. It achieves this control through morphological and physiological changes at the level of molecules, spines, dendrites, and axons and through processes of adult neurogenesis, entire cells. The functional maturation of newly generated cells in the adult forebrain involves the expression of neurotransmitter receptors before synaptic activity and excitatory gamma-aminobutyric acid (GABAergic) influences prior to glutamatergic input. The production of new cells for incorporation into neural circuits that are already up and running gives rise to a unique situation that may require epigenetic regulation. However, once mature, new neurons must carve out a niche among more established cells to be useful. How do they survive and what are they used for? Recent studies have revealed that adult neurogenesis alters the olfactory bulb at all levels, from single cells to the network and system levels. It has also been suggested that cell turnover may be particularly beneficial for the processing of new information in dynamic networks. However, elucidating the functional meaning of adult neurogenesis must wait for the development of new paradigms to eliminate the pool of newly generated neurons but sparing the preexisting ones. Nevertheless, there is already considerable correlative evidence to indicate that adult neurogenesis is a plastic mechanism by which the performance of the brain can be optimized in a given environment.
Collapse
Affiliation(s)
- Gilles Gheusi
- Laboratory of Perception and Memory, Pasteur Institute, CNRS URA 2182, 25 rue du Docteur Roux, 75724 Paris Cedex 15, France
| | | |
Collapse
|
48
|
Abstract
The ability to sense and respond to the environment is a hallmark of living systems. These processes occur at the levels of the organism, cells and individual molecules. Sensing of extracellular changes could result in a structural or chemical alteration in a molecule, which could in turn trigger a cascade of intracellular signals or regulated trafficking of molecules at the cell surface. These and other such processes allow cells to sense and respond to environmental changes. Often, these changes and the responses to them are spatially and/or temporally localized, and visualization of such events necessitates the use of high-resolution imaging approaches. Here we discuss optical imaging approaches and tools for imaging individual events at the cell surface with improved speed and resolution.
Collapse
Affiliation(s)
- Jyoti K Jaiswal
- The Rockefeller University, 1230 York Avenue, New York, New York 10021, USA
| | | |
Collapse
|
49
|
|
50
|
Sleiman RJ, Gray PP, McCall MN, Codamo J, Sunstrom NAS. Accelerated cell line development using two-color fluorescence activated cell sorting to select highly expressing antibody-producing clones. Biotechnol Bioeng 2007; 99:578-87. [PMID: 17680677 DOI: 10.1002/bit.21612] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The success of engineered monoclonal antibodies as biopharmaceuticals has generated considerable interest in strategies designed to accelerate development of antibody expressing cell lines. Stable mammalian cell lines that express therapeutic antibodies at high levels typically take 6-12 months to develop. Here we describe a novel method to accelerate selection of cells expressing recombinant proteins (e.g., antibodies) using multiparameter fluorescence activated cell sorting (FACS) in association with dual intracellular autofluorescent reporter proteins. The method is co-factor-independent and does not require complex sample preparation. Chinese hamster ovary (CHO) clones expressing high levels of recombinant antibody were selected on the basis of a two-color FACS sorting strategy using heavy and light chain-specific fluorescent reporter proteins. We were able to establish within 12 weeks of transfection cell lines with greater than a 38-fold increase in antibody production when compared to the pool from which they were isolated, following a single round of FACS. The method provides a robust strategy to accelerate selection and characterization of clones and builds a foundation for a predictive model of specific productivity based upon on two-color fluorescence.
Collapse
Affiliation(s)
- Robert J Sleiman
- ACYTE Biotech Pty Ltd., University of New South Wales, Sydney, NSW, Australia
| | | | | | | | | |
Collapse
|