1
|
Massart R, Mignon V, Stanic J, Munoz-Tello P, Becker JAJ, Kieffer BL, Darmon M, Sokoloff P, Diaz J. Developmental and adult expression patterns of the G-protein-coupled receptor GPR88 in the rat: Establishment of a dual nuclear-cytoplasmic localization. J Comp Neurol 2016; 524:2776-802. [PMID: 26918661 DOI: 10.1002/cne.23991] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/31/2023]
Abstract
GPR88 is a neuronal cerebral orphan G-protein-coupled receptor (GPCR) that has been linked to various psychiatric disorders. However, no extensive description of its localization has been provided so far. Here, we investigate the spatiotemporal expression of the GPR88 in prenatal and postnatal rat tissues by using in situ hybridization and immunohistochemistry. GPR88 protein was initially detected at embryonic day 16 (E16) in the striatal primordium. From E16-E20 to adulthood, the highest expression levels of both protein and mRNA were observed in striatum, olfactory tubercle, nucleus accumbens, amygdala, and neocortex, whereas in spinal cord, pons, and medulla GPR88 expression remains discrete. We observed an intracellular redistribution of GPR88 during cortical lamination. In the cortical plate of the developing cortex, GPR88 presents a classical GPCR plasma membrane/cytoplasmic localization that shifts, on the day of birth, to nuclei of neurons progressively settling in layers V to II. This intranuclear localization remains throughout adulthood and was also detected in monkey and human cortex as well as in the amygdala and hypothalamus of rats. Apart from the central nervous system, GPR88 was transiently expressed at high levels in peripheral tissues, including adrenal cortex (E16-E21) and cochlear ganglia (E19-P3), and also at moderate levels in retina (E18-E19) and spleen (E21-P7). The description of the GPR88 anatomical expression pattern may provide precious functional insights into this novel receptor. Furthermore, the GRP88 nuclear localization suggests nonclassical GPCR modes of action of the protein that could be relevant for cortical development and psychiatric disorders. J. Comp. Neurol. 524:2776-2802, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Renaud Massart
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Neurology-Psychiatry Department, Pierre Fabre Research Institute, 81100, Castres, France
| | - Virginie Mignon
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| | - Jennifer Stanic
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Paola Munoz-Tello
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Jerôme A J Becker
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 67400, Illkirch-Graffenstaden, France
| | - Brigitte L Kieffer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, 67400, Illkirch-Graffenstaden, France
| | - Michèle Darmon
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France
| | - Pierre Sokoloff
- Neurology-Psychiatry Department, Pierre Fabre Research Institute, 81100, Castres, France
| | - Jorge Diaz
- INSERM UMR894, Centre de Psychiatrie et Neurosciences, Université Paris Descartes, 75014, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, 75006, Paris, France
| |
Collapse
|
2
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
3
|
Li YF, Cheng YF, Huang Y, Conti M, Wilson SP, O'Donnell JM, Zhang HT. Phosphodiesterase-4D knock-out and RNA interference-mediated knock-down enhance memory and increase hippocampal neurogenesis via increased cAMP signaling. J Neurosci 2011; 31:172-83. [PMID: 21209202 PMCID: PMC3079568 DOI: 10.1523/jneurosci.5236-10.2011] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Accepted: 10/24/2010] [Indexed: 01/19/2023] Open
Abstract
Phosphodiesterase-4 (PDE4) plays an important role in mediating memory via the control of intracellular cAMP signaling; inhibition of PDE4 enhances memory. However, development of PDE4 inhibitors as memory enhancers has been hampered by their major side effect of emesis. PDE4 has four subtypes (PDE4A-D) consisting of 25 splice variants. Mice deficient in PDE4D displayed memory enhancement in radial arm maze, water maze, and object recognition tests. These effects were mimicked by repeated treatment with rolipram in wild-type mice. In addition, similarly as rolipram-treated wild-type mice, PDE4D-deficient mice also displayed increased hippocampal neurogenesis and phosphorylated cAMP response element-binding protein (pCREB). Furthermore, microinfusion of lentiviral vectors that contained microRNAs (miRNAs) targeting long-form PDE4D isoforms into bilateral dentate gyri of the mouse hippocampus downregulated PDE4D4 and PDE4D5, enhanced memory, and increased hippocampal neurogenesis and pCREB. Finally, while rolipram and PDE4D deficiency shortened α2 adrenergic receptor-mediated anesthesia, a surrogate measure of emesis, miRNA-mediated PDE4D knock-down in the hippocampus did not. The present results suggest that PDE4D, in particular long-form PDE4D, plays a critical role in the mediation of memory and hippocampal neurogenesis, which are mediated by cAMP/CREB signaling; reduced expression of PDE4D, or at least PDE4D4 and PDE4D5, in the hippocampus enhances memory but appears not to cause emesis. These novel findings will aid in the development of PDE4 subtype- or variant-selective inhibitors for treatment of disorders involving impaired cognition, including Alzheimer's disease.
Collapse
Affiliation(s)
- Yun-Feng Li
- Departments of Behavioral Medicine and Psychiatry
- Physiology and Pharmacology, and
| | - Yu-Fang Cheng
- Departments of Behavioral Medicine and Psychiatry
- Physiology and Pharmacology, and
| | - Ying Huang
- Departments of Behavioral Medicine and Psychiatry
- Neurobiology and Anatomy, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506
| | - Marco Conti
- Division of Reproductive Biology, Department of Obstetrics and Gynecology, University of California, San Francisco, California 94143, and
| | - Steven P. Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina 29208
| | - James M. O'Donnell
- Departments of Behavioral Medicine and Psychiatry
- Neurobiology and Anatomy, West Virginia University Health Sciences Center, Morgantown, West Virginia 26506
| | - Han-Ting Zhang
- Departments of Behavioral Medicine and Psychiatry
- Physiology and Pharmacology, and
| |
Collapse
|
4
|
Manrique C, Compan V, Rosselet C, Duflo SGD. Specific knock-down of GAD67 in the striatum using naked small interfering RNAs. J Biotechnol 2009; 142:185-92. [PMID: 19497341 DOI: 10.1016/j.jbiotec.2009.05.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 05/18/2009] [Accepted: 05/26/2009] [Indexed: 10/20/2022]
Abstract
Small interfering RNAs (siRNA) are double-stranded RNAs of 9-29 nucleotides designed to reduce the expression of homologous genes by a process known as RNA interference (RNAi). Most studies using siRNA in neurons have been performed in mammalian cell cultures. Only few reports have reported the effects of in vivo infusion of siRNA into the brain. In the present study, we performed local intracerebral infusions of naked siRNA against glutamic acid decarboxylase 67 (GAD67) mRNA to engineer specific knock-down of GAD67 protein in the striatum of adult rats. Directly injecting a mix of GAD67 siRNAs into the striatum decreased the levels of corresponding mRNA, evaluated by quantitative real-time PCR. In particular, we show that GAD67 mRNA expression is reduced in the striatum for 3, 6, and 24h following intrastriatal injection of GAD67 siRNA and is restored at 72h. Relative to controls, the levels of GAD67 protein were also lower in the striatum for 6 and 24h after injection. No changes in GAD65 expression, one of the two isoforms of GAD, were detected in the striatum, which further validates the specificity of the siRNA. We demonstrate the efficiency of the RNAi strategy for producing a specific and selective down-regulation of GAD67 in the adult rat brain. This suggests that siRNA-mediated gene knock-down constitute a valid methodological approach for studying the functional consequences of a transient decrease of a gene expression in a brain structure.
Collapse
|
5
|
Yu W, Jiang M, Miralles CP, Li RW, Chen G, De Blas AL. Gephyrin clustering is required for the stability of GABAergic synapses. Mol Cell Neurosci 2007; 36:484-500. [PMID: 17916433 PMCID: PMC2464357 DOI: 10.1016/j.mcn.2007.08.008] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2007] [Revised: 08/10/2007] [Accepted: 08/16/2007] [Indexed: 12/30/2022] Open
Abstract
Although gephyrin is an important postsynaptic scaffolding protein at GABAergic synapses, the role of gephyrin for GABAergic synapse formation and/or maintenance is still under debate. We report here that knocking down gephyrin expression with small hairpin RNAs (shRNAs) in cultured hippocampal pyramidal cells decreased both the number of gephyrin and GABA(A) receptor clusters. Similar results were obtained by disrupting the clustering of endogenous gephyrin by overexpressing a gephyrin-EGFP fusion protein that formed aggregates with the endogenous gephyrin. Disrupting postsynaptic gephyrin clusters also had transsynaptic effects leading to a significant reduction of GABAergic presynaptic boutons contacting the transfected pyramidal cells. Consistent with the morphological decrease of GABAergic synapses, electrophysiological analysis revealed a significant reduction in both the amplitude and frequency of the spontaneous inhibitory postsynaptic currents (sIPSCs). However, no change in the whole-cell GABA currents was detected, suggesting a selective effect of gephyrin on GABA(A) receptor clustering at postsynaptic sites. It is concluded that gephyrin plays a critical role for the stability of GABAergic synapses.
Collapse
Affiliation(s)
- Wendou Yu
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Min Jiang
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Celia P. Miralles
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Rong-wen Li
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| | - Gong Chen
- Department of Biology, Huck Institutes of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | - Angel L. De Blas
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut, 06269, USA
| |
Collapse
|
6
|
Zeitelhofer M, Vessey JP, Xie Y, Tübing F, Thomas S, Kiebler M, Dahm R. High-efficiency transfection of mammalian neurons via nucleofection. Nat Protoc 2007; 2:1692-704. [PMID: 17641634 DOI: 10.1038/nprot.2007.226] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Transfection of foreign DNA is widely used to study gene function. However, despite the development of numerous methods, the transfer of DNA into postmitotic cells, such as neurons, remains unsatisfactory with regard to either transfection efficiency or cytotoxicity. Nucleofection overcomes these limitations. Direct electroporation of expression plasmids or oligonucleotides into the nucleus ensures both good cell viability and consistently high transfection rates. This allows biochemical analyses of transfected neurons, for example, western blot analyses of protein levels after RNA interference (RNAi) knockdown or microRNA transfection. We provide comprehensive protocols for performing nucleofection with high efficiency on primary neurons. The focus is on the recently developed 96-well shuttle system, which allows the simultaneous testing of up to 96 different plasmids or experimental conditions. Using this system, reproducible high-throughput expression of various transgenes is now feasible on primary neurons, for example large-scale RNAi analyses to downregulate gene expression. The protocol typically takes between 2 and 3 h.
Collapse
Affiliation(s)
- Manuel Zeitelhofer
- Division of Neuronal Cell Biology, Center for Brain Research, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
7
|
Stott SRW, Kirik D. Targetedin uterodelivery of a retroviral vector for gene transfer in the rodent brain. Eur J Neurosci 2006; 24:1897-906. [PMID: 17067293 DOI: 10.1111/j.1460-9568.2006.05095.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
In vivo application of viral vectors for gene transfer is a commonly used tool in anatomical and functional studies, as well as in development of neuroprotective and restorative strategies for therapy. Although the most common route of administration is via direct injection into the brain parenchyma in adult animals, a number of short-term studies have been performed in the developing central nervous system. Here we investigated the long-term transgene expression following in utero delivery of a retroviral vector encoding for the green fluorescent protein (GFP) marker gene at embryonic days 14.5-17.5 using an ultrasound-guided injection system. Intraparenchymal injections of the ganglionic eminence were compared with vector delivery to the intracerebroventricular space. Injections into the ganglionic eminences resulted in a predominantly unilateral transduction localized to the forebrain, giving rise to GFP-positive (GFP+) neurons and astrocytes in the striatum, olfactory bulb, cortex and hippocampus. When the vector was injected into the lateral ventricle, on the other hand, widespread expression of GFP was seen throughout the brain. The total number of GFP+ cells in the striatum was estimated to be between 20,000 and 50,000 cells using a computerized stereological quantification tool. Phenotypic characterization of these transduced cells using confocal microscopical analysis showed that 64% were NeuN+ neurons, 14% APC+ oligodendrocytes and 15% glial cells labelled with GFAP, S100beta and Iba1, when the vector injection was performed at E14.5. Delivery into later embryos resulted in a reduction in neuronal profiles with a reciprocal increase in glial cells.
Collapse
Affiliation(s)
- Simon R W Stott
- CNS Disease Modelling Unit, Section of Neuroscience, Department of Experimental Medical Science, Lund University, Sweden.
| | | |
Collapse
|
8
|
Abstract
Background Neuronal communication is tightly regulated in time and in space. The neuronal transmission takes place in the nerve terminal, at a specialized structure called the synapse. Following neuronal activation, an electrical signal triggers neurotransmitter (NT) release at the active zone. The process starts by the signal reaching the synapse followed by a fusion of the synaptic vesicle and diffusion of the released NT in the synaptic cleft; the NT then binds to the appropriate receptor, and as a result, a potential change at the target cell membrane is induced. The entire process lasts for only a fraction of a millisecond. An essential property of the synapse is its capacity to undergo biochemical and morphological changes, a phenomenon that is referred to as synaptic plasticity. Results In this survey, we consider the mammalian brain synapse as our model. We take a cell biological and a molecular perspective to present fundamental properties of the synapse:(i) the accurate and efficient delivery of organelles and material to and from the synapse; (ii) the coordination of gene expression that underlies a particular NT phenotype; (iii) the induction of local protein expression in a subset of stimulated synapses. We describe the computational facet and the formulation of the problem for each of these topics. Conclusion Predicting the behavior of a synapse under changing conditions must incorporate genomics and proteomics information with new approaches in computational biology.
Collapse
Affiliation(s)
- Michal Linial
- Dept of Biological Chemistry, The Hebrew University of Jerusalem, 91904, Israel.
| |
Collapse
|