1
|
Poudel P, Miteva MA, Alexov E. Strategies for in Silico Drug Discovery to Modulate Macromolecular Interactions Altered by Mutations. FRONT BIOSCI-LANDMRK 2025; 30:26339. [PMID: 40302318 DOI: 10.31083/fbl26339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 10/09/2024] [Indexed: 05/02/2025]
Abstract
Most human diseases have genetic components, frequently single nucleotide variants (SNVs), which alter the wild type characteristics of macromolecules and their interactions. A straightforward approach for correcting such SNVs-related alterations is to seek small molecules, potential drugs, that can eliminate disease-causing effects. Certain disorders are caused by altered protein-protein interactions, for example, Snyder-Robinson syndrome, the therapy for which focuses on the development of small molecules that restore the wild type homodimerization of spermine synthase. Other disorders originate from altered protein-nucleic acid interactions, as in the case of cancer; in these cases, the elimination of disease-causing effects requires small molecules that eliminate the effect of mutation and restore wild type p53-DNA affinity. Overall, especially for complex diseases, pathogenic mutations frequently alter macromolecular interactions. This effect can be direct, i.e., the alteration of wild type affinity and specificity, or indirect via alterations in the concentration of the binding partners. Here, we outline progress made in methods and strategies to computationally identify small molecules capable of altering macromolecular interactions in a desired manner, reducing or increasing the binding affinity, and eliminating the disease-causing effect. When applicable, we provide examples of the outlined general strategy. Successful cases are presented at the end of the work.
Collapse
Affiliation(s)
- Pitambar Poudel
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| | - Maria A Miteva
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm, U1268 MCTR Paris, France
| | - Emil Alexov
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
2
|
Paidi RK, Raha S, Roy A, Pahan K. Muscle-building supplement β-hydroxy β-methylbutyrate binds to PPARα to improve hippocampal functions in mice. Cell Rep 2023; 42:112717. [PMID: 37437568 PMCID: PMC10440158 DOI: 10.1016/j.celrep.2023.112717] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 04/09/2023] [Accepted: 06/13/2023] [Indexed: 07/14/2023] Open
Abstract
This study underlines the importance of β-hydroxy β-methylbutyrate (HMB), a muscle-building supplement in human, in increasing mouse hippocampal plasticity. Detailed proteomic analyses reveal that HMB serves as a ligand of peroxisome proliferator-activated receptor α (PPARα), a nuclear hormone receptor involved in fat metabolism, via interaction with the Y314 residue. Accordingly, HMB is ineffective in increasing plasticity of PPARα-/- hippocampal neurons. While lentiviral establishment of full-length PPARα restores the plasticity-promoting effect of HMB in PPARα-/- hippocampal neurons, lentiviral transduction of Y314D-PPARα remains unable to do that, highlighting the importance of HMB's interaction with the Y314 residue. Additionally, oral HMB improves spatial learning and memory and reduces plaque load in 5X familial Alzheimer's disease (5XFAD) mice, but not in 5XFADΔPPARα mice (5XFAD lacking PPARα), indicating the involvement of PPARα in HMB-mediated neuroprotection in 5XFAD mice. These results delineate neuroprotective functions of HMB and suggest that this widely used supplement may be repurposed for AD.
Collapse
Affiliation(s)
- Ramesh K Paidi
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sumita Raha
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Avik Roy
- Simmaron Research Institute, Technology Innovation Center, 10437 W Innovation Drive, Wauwatosa, WI, USA
| | - Kalipada Pahan
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA; Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA.
| |
Collapse
|
3
|
Porter RS, Iwase S. Modulation of chromatin architecture influences the neuronal nucleus through activity-regulated gene expression. Biochem Soc Trans 2023; 51:703-713. [PMID: 36929379 PMCID: PMC10959270 DOI: 10.1042/bst20220889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/02/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023]
Abstract
The disruption of chromatin-regulating genes is associated with many neurocognitive syndromes. While most of these genes are ubiquitously expressed across various cell-types, many chromatin regulators act upon activity regulated genes (ARGs) that play central roles in synaptic development and plasticity. Recent literature suggests a link between ARG expression disruption in neurons with the human phenotypes observed in various neurocognitive syndromes. Advances in chromatin biology have demonstrated how chromatin structure, from nucleosome occupancy to higher-order structures such as topologically associated domains, impacts the kinetics of transcription. This review discusses the dynamics of these various levels of chromatin structure and their influence on the expression of ARGs.
Collapse
Affiliation(s)
| | - Shigeki Iwase
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Teague CD, Picone JA, Wright WJ, Browne CJ, Silva GM, Futamura R, Minier-Toribio A, Estill ME, Ramakrishnan A, Martinez-Rivera FJ, Godino A, Parise EM, Schmidt KH, Pulido NV, Lorsch ZS, Kim JH, Shen L, Neve RL, Dong Y, Nestler EJ, Hamilton PJ. CREB Binding at the Zfp189 Promoter Within Medium Spiny Neuron Subtypes Differentially Regulates Behavioral and Physiological Adaptations Over the Course of Cocaine Use. Biol Psychiatry 2023; 93:502-511. [PMID: 36253194 PMCID: PMC9899288 DOI: 10.1016/j.biopsych.2022.07.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/06/2022] [Accepted: 07/05/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND Over the course of chronic drug use, brain transcriptional neuroadaptation is thought to contribute to a change in drug use behavior over time. The function of the transcription factor CREB (cAMP response element binding protein) within the nucleus accumbens (NAc) has been well documented in opposing the rewarding properties of many classes of drugs, yet the gene targets through which CREB causally manifests these lasting neuroadaptations remain unknown. Here, we identify zinc finger protein 189 (Zfp189) as a CREB target gene that is transcriptionally responsive to acute and chronic cocaine use within the NAc of mice. METHODS To investigate the role of the CREB-Zfp189 interaction in cocaine use, we virally delivered modified clustered regularly interspaced short palindromic repeats (CRISPR)/dCas9 constructs capable of selectively localizing CREB to the Zfp189 gene promoter in the NAc of mice. RESULTS We observed that CREB binding to the Zfp189 promoter increased Zfp189 expression and diminished the reinforcing responses to cocaine. Furthermore, we showed that NAc Zfp189 expression increased within D1 medium spiny neurons in response to acute cocaine but increased in both D1- and D2-expressing medium spiny neurons in response to chronic cocaine. CREB-mediated induction of Zfp189 potentiated electrophysiological activity of D1- and D2-expressing medium spiny neurons, recapitulating the known effect of CREB on these neurons. Finally, targeting CREB to the Zfp189 promoter within NAc Drd2-expressing neurons, but not Drd1-expressing neurons, was sufficient to diminish cocaine-conditioned behaviors. CONCLUSIONS Together, these findings point to the CREB-Zfp189 interaction within the NAc Drd2+ neurons as a molecular signature of chronic cocaine use that is causal in counteracting the reinforcing effects of cocaine.
Collapse
Affiliation(s)
- Collin D Teague
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Joseph A Picone
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Gabriella M Silva
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Angélica Minier-Toribio
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Molly E Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Aarthi Ramakrishnan
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Freddyson J Martinez-Rivera
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Arthur Godino
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Eric M Parise
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kyra H Schmidt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nathalia V Pulido
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Zachary S Lorsch
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jee Hyun Kim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Australia
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachael L Neve
- Gene Delivery Technology Core, Massachusetts General Hospital, Cambridge, Massachusetts
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Peter J Hamilton
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia.
| |
Collapse
|
5
|
Lin W, Huang Z, Zhang W, Ren Y. Investigating the neurotoxicity of environmental pollutants using zebrafish as a model organism: A review and recommendations for future work. Neurotoxicology 2023; 94:235-244. [PMID: 36581008 DOI: 10.1016/j.neuro.2022.12.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 12/27/2022]
Abstract
With the continuous development of precise detection technology, more and more pollutants have been detected in the environment. Among them, neurotoxic pollutants have attracted extensive attention due to their serious threat to vertebrates, invertebrates, and the whole ecosystem. Compared with other model organisms, zebrafish (Danio rerio) have become an important aquatic model to study the neurotoxicity of environmental pollutants because of their excellent molecular/physiological characteristics. At present, the research on the toxicity of environmental pollutants to the zebrafish nervous system focuses on morphology and behavior regulation, oxidative stress, gene expression, synthesis and release of neurotransmitters, and neuron development. However, studies on epigenetic toxicity, blood-brain barrier damage, and regulation of the brain-gut-microbiota axis still require further research at the molecular and signaling levels to clarify the toxic mechanisms of pollutants. This paper reviews the research on the toxic effects of pollutants in the environment (heavy metals and organic compounds) on the nervous system of zebrafish, summarizes and comments on the main research findings. The discussion of the problems, hot spots in the current research, and the prospects of the contents to be further studied are also included in this paper.
Collapse
Affiliation(s)
- Wenting Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Zhishan Huang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Yuan Ren
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, China.
| |
Collapse
|
6
|
SRF depletion in early life contributes to social interaction deficits in the adulthood. Cell Mol Life Sci 2022; 79:278. [PMID: 35505150 PMCID: PMC9064851 DOI: 10.1007/s00018-022-04291-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/11/2022] [Accepted: 04/05/2022] [Indexed: 12/05/2022]
Abstract
Alterations in social behavior are core symptoms of major developmental neuropsychiatric diseases such as autism spectrum disorders or schizophrenia. Hence, understanding their molecular and cellular underpinnings constitutes the major research task. Dysregulation of the global gene expression program in the developing brain leads to modifications in a number of neuronal connections, synaptic strength and shape, causing unbalanced neuronal plasticity, which may be important substrate in the pathogenesis of neurodevelopmental disorders, contributing to their clinical outcome. Serum response factor (SRF) is a major transcription factor in the brain. The behavioral influence of SRF deletion during neuronal differentiation and maturation has never been studied because previous attempts to knock-out the gene caused premature death. Herein, we generated mice that lacked SRF from early postnatal development to precisely investigate the role of SRF starting in the specific time window before maturation of excitatory synapses that are located on dendritic spine occurs. We show that the time-controlled loss of SRF in neurons alters specific aspects of social behaviors in SRF knock-out mice, and causes deficits in developmental spine maturation at both the structural and functional levels, including downregulated expression of the AMPARs subunits GluA1 and GluA2, and increases the percentage of filopodial/immature dendritic spines. In aggregate, our study uncovers the consequences of postnatal SRF elimination for spine maturation and social interactions revealing novel mechanisms underlying developmental neuropsychiatric diseases.
Collapse
|
7
|
Farahani M, Rezaei-Tavirani M, Zali A, Zamanian-Azodi M. Systematic Analysis of Protein-Protein and Gene-Environment Interactions to Decipher the Cognitive Mechanisms of Autism Spectrum Disorder. Cell Mol Neurobiol 2022; 42:1091-1103. [PMID: 33165687 PMCID: PMC11441303 DOI: 10.1007/s10571-020-00998-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorder (ASD), a heterogeneous neurodevelopmental disorder resulting from both genetic and environmental risk factors, is manifested by deficits in cognitive function. Elucidating the cognitive disorder-relevant biological mechanisms may open up promising therapeutic approaches. In this work, we mined ASD cognitive phenotype proteins to construct and analyze protein-protein and gene-environment interaction networks. Incorporating the protein-protein interaction (PPI), human cognition proteins, and connections of autism-cognition proteins enabled us to generate an autism-cognition network (ACN). With the topological analysis of ACN, important proteins, highly clustered modules, and 3-node motifs were identified. Moreover, the impact of environmental exposures in cognitive impairment was investigated through chemicals that target the cognition-related proteins. Functional enrichment analysis of the ACN-associated modules and chemical targets revealed biological processes involved in the cognitive deficits of ASD. Among the 17 identified hub-bottlenecks in the ACN, PSD-95 was recognized as an important protein through analyzing the module and motif interactions. PSD-95 and its interacting partners constructed a cognitive-specific module. This hub-bottleneck interacted with the 89 cognition-related 3-node motifs. The identification of gene-environment interactions indicated that most of the cognitive-related proteins interact with bisphenol A (BPA) and valproic acid (VPA). Moreover, we detected significant expression changes of 56 cognitive-specific genes using four ASD microarray datasets in the GEO database, including GSE28521, GSE26415, GSE18123 and GSE29691. Our outcomes suggest future endeavors for dissecting the PSD-95 function in ASD and evaluating the various environmental conditions to discover possible mechanisms of the different levels of cognitive impairment.
Collapse
Affiliation(s)
- Masoumeh Farahani
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, 19716-53313, Tehran, Iran
| | - Mostafa Rezaei-Tavirani
- Proteomics Research Center, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, 19716-53313, Tehran, Iran.
| | - Alireza Zali
- Functional Neurosurgery Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mona Zamanian-Azodi
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, 19716-53313, Tehran, Iran
| |
Collapse
|
8
|
Rebeillard F, De Gois S, Pietrancosta N, Mai TH, Lai-Kuen R, Kieffer BL, Giros B, Massart R, Darmon M, Diaz J. The Orphan GPCR Receptor, GPR88, Interacts with Nuclear Protein Partners in the Cerebral Cortex. Cereb Cortex 2021; 32:479-489. [PMID: 34247243 DOI: 10.1093/cercor/bhab224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GPR88 is an orphan G-protein-coupled receptor (GPCR) highly expressed in striatal medium spiny neurons (MSN), also found in cortical neurons at low level. In MSN, GPR88 has a canonical GPCR plasma membrane/cytoplasmic expression, whereas in cortical neurons, we previously reported an atypical intranuclear localization. Molecular size analysis suggests that GPR88, expressed in plasma membrane of MSN or in nuclear compartment of cortical neurons, corresponds to the full-length protein. By transfection of cortical neurons, we showed that GPR88 fluorescent chimeras exhibit a nuclear localization. This localization is contingent on the third intracytoplasmic loop and C-terminus domains, even though these domains do not contain any known nuclear localization signals (NLS). Using yeast two-hybrid screening with these domains, we identified the nuclear proteins ATRX, TOP2B, and BAZ2B, all involved in chromatin remodeling, as potential protein partners of GPR88. We also validated the interaction of GPR88 with these nuclear proteins by proximity ligation assay on cortical neurons in culture and coimmunoprecipitation experiments on cortical extracts from GPR88 wild-type (WT) and knockout (KO) mice. The identification of GPR88 subcellular partners may provide novel functional insights for nonclassical modes of GPCR action that could be relevant in the maturating process of neocortical neurons.
Collapse
Affiliation(s)
- Florian Rebeillard
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France.,Université de Paris, Sorbonne Paris Cité, Paris 75005, France
| | | | - Nicolas Pietrancosta
- Laboratoire des Biomolécules, LBM, Département de chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, Paris 75005, France.,Neuroscience Paris Seine-Institut de Biologie Paris Seine (NPS-IBPS) INSERM, CNRS, Sorbonne Université, Paris 75005, France
| | - Thi Hue Mai
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France
| | - René Lai-Kuen
- Cellular and Molecular Imaging Facility, US25 Inserm-3612 CNRS, Faculté de Pharmacie de Paris, Université de Paris, Paris, France
| | | | - Bruno Giros
- Université de Paris, INCC UMR 8002, CNRS, Paris F-75006, France.,Department of Psychiatry, Douglas Hospital, Mc Gill University, Montreal, Quebec H4H 1R3, Canada
| | - Renaud Massart
- Inserm U955 Interventional NeuroPsychology Team, Ecole Normale Supérieure, Paris 75005, France
| | - Michèle Darmon
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France
| | - Jorge Diaz
- Cellular Biology and Molecular Pharmacology of Central Receptors, Institut de Psychiatrie et de Neurosciences de Paris, Inserm U1266, Paris 75014, France.,Université de Paris, INCC UMR 8002, CNRS, Paris F-75006, France
| |
Collapse
|
9
|
Wang J, Yun Q, Qian JJ, Song HR, Wang L, Inkabi SE, Xu RJ, Hu YM, Zhang WN, Einat H. Mice Lacking the Transcriptional Coactivator PGC-1α Exhibit Hyperactivity. Neuropsychobiology 2020; 78:182-188. [PMID: 31266022 DOI: 10.1159/000500738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 04/29/2019] [Indexed: 11/19/2022]
Abstract
Significant evidence from various sources suggests that structural alterations in mitochondrial function may play a role in both the pathogenesis of mood disorders and the therapeutic effects of available treatments. PGC-1α is a distinct transcriptional regulator designed to mediate the synchronous release of neurotransmitter in the brain and thereby to coordinate a number of gene expression pathways to promote mitochondrial biogenesis and oxidative phosphorylation. The role of PGC-1α in the context of affective disorder phenotypes and treatments has been suggested but not studied in depth. To further investigate the possible involvement of PGC-1α in affective disorders, we generated conditional PGC-1α null mice through transgenic expression of cre recombinase under the control of a Dlx5/6 promoter; cre-mediated excision events were limited to γ-amino-butyric-acid (GABA)-ergic specific neurons. We tested these mice in a battery of behavioral tests related to affective change including spontaneous activity, elevated plus maze, forced swim test, and tail suspension test. Results demonstrated that mice lacking PGC-1α in GABAergic neurons exhibited increased activity across tests that might be related to a mania-like phenotype. These results suggest possible relevance of PGC-1α to affective change, which corresponds with data connecting mitochondrial function and affective disorders and their treatment.
Collapse
Affiliation(s)
- Jia Wang
- Department of Neurology, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China.,School of Medicine, Jiangsu University, Zhenjiang, China
| | - Qi Yun
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Jin-Jun Qian
- Department of Neurology, Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hua-Rong Song
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Lei Wang
- School of Medicine, Jiangsu University, Zhenjiang, China
| | | | | | - Yan-Mei Hu
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Wei-Ning Zhang
- School of Medicine, Jiangsu University, Zhenjiang, China.,Mental Health Center, Zhenjiang, China
| | - Haim Einat
- School of Behavioral Sciences, Tel Aviv-Yaffo Academic College, Tel-Aviv, Israel,
| |
Collapse
|
10
|
Yap EL, Greenberg ME. Activity-Regulated Transcription: Bridging the Gap between Neural Activity and Behavior. Neuron 2019; 100:330-348. [PMID: 30359600 DOI: 10.1016/j.neuron.2018.10.013] [Citation(s) in RCA: 398] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/02/2018] [Accepted: 10/05/2018] [Indexed: 12/21/2022]
Abstract
Gene transcription is the process by which the genetic codes of organisms are read and interpreted as a set of instructions for cells to divide, differentiate, migrate, and mature. As cells function in their respective niches, transcription further allows mature cells to interact dynamically with their external environment while reliably retaining fundamental information about past experiences. In this Review, we provide an overview of the field of activity-dependent transcription in the vertebrate brain and highlight contemporary work that ranges from studies of activity-dependent chromatin modifications to plasticity mechanisms underlying adaptive behaviors. We identify key gaps in knowledge and propose integrated approaches toward a deeper understanding of how activity-dependent transcription promotes the refinement and plasticity of neural circuits for cognitive function.
Collapse
Affiliation(s)
- Ee-Lynn Yap
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Michael E Greenberg
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Liester MB, Sullivan EE. A review of epigenetics in human consciousness. COGENT PSYCHOLOGY 2019. [DOI: 10.1080/23311908.2019.1668222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- Mitchell B. Liester
- Department of Psychiatry, University of Colorado School of Medicine, P.O. Box 302 153 N. Washington Street, Suite 103, Monument, CO 80132, USA
| | - Erin E. Sullivan
- Computer Science, University of Oklahoma, P.O. Box 302, Monument, CO 80132, USA
| |
Collapse
|
12
|
Subbanna S, Joshi V, Basavarajappa BS. Activity-dependent Signaling and Epigenetic Abnormalities in Mice Exposed to Postnatal Ethanol. Neuroscience 2018; 392:230-240. [PMID: 30031835 DOI: 10.1016/j.neuroscience.2018.07.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/03/2018] [Accepted: 07/05/2018] [Indexed: 12/21/2022]
Abstract
Postnatal ethanol exposure has been shown to cause persistent defects in hippocampal synaptic plasticity and disrupt learning and memory processes. However, the mechanisms responsible for these abnormalities are less well studied. We evaluated the influence of postnatal ethanol exposure on several signaling and epigenetic changes and on expression of the activity-regulated cytoskeletal (Arc) protein in the hippocampus of adult offspring under baseline conditions and after a Y-maze spatial memory (SP) behavior (activity). Postnatal ethanol treatment impaired pCaMKIV and pCREB in naïve mice without affecting H4K8ac, H3K14ac and H3K9me2 levels. The Y-maze increased pCaMKIV, pCREB, H4K8ac and H3K14ac levels in saline-treated mice but not in ethanol-treated mice; while H3K9me2 levels were enhanced in ethanol-exposed animals compared to saline groups. Like previous observations, ethanol not only reduced Arc expression in naïve mice but also behaviorally induced Arc expression. ChIP results suggested that reduced H3K14ac and H4K8ac in the Arc gene promoter is because of impaired CBP, and increased H3K9me2 is due to the enhanced recruitment of G9a. The CB1R antagonist and a G9a/GLP inhibitor, which were shown to rescue postnatal ethanol-triggered synaptic plasticity and learning and memory deficits, were able to prevent the negative effects of ethanol on activity-dependent signaling, epigenetics and Arc expression. Together, these findings provide a molecular mechanism involving signaling and epigenetic cascades that collectively are responsible for the neurobehavioral deficits associated with an animal model of fetal alcohol spectrum disorders (FASD).
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA
| | - Balapal S Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, 10032, USA; Department of Psychiatry, New York University Langone Medical Center, New York, NY, USA.
| |
Collapse
|
13
|
Subbanna S, Nagre NN, Shivakumar M, Joshi V, Psychoyos D, Kutlar A, Umapathy NS, Basavarajappa BS. CB1R-Mediated Activation of Caspase-3 Causes Epigenetic and Neurobehavioral Abnormalities in Postnatal Ethanol-Exposed Mice. Front Mol Neurosci 2018; 11:45. [PMID: 29515368 PMCID: PMC5826222 DOI: 10.3389/fnmol.2018.00045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 02/02/2018] [Indexed: 12/15/2022] Open
Abstract
Alcohol exposure can affect brain development, leading to long-lasting behavioral problems, including cognitive impairment, which together is defined as fetal alcohol spectrum disorder (FASD). However, the fundamental mechanisms through which this occurs are largely unknown. In this study, we report that the exposure of postnatal day 7 (P7) mice to ethanol activates caspase-3 via cannabinoid receptor type-1 (CB1R) in neonatal mice and causes a reduction in methylated DNA binding protein (MeCP2) levels. The developmental expression of MeCP2 in mice is closely correlated with synaptogenesis and neuronal maturation. It was shown that ethanol treatment of P7 mice enhanced Mecp2 mRNA levels but reduced protein levels. The genetic deletion of CB1R prevented, and administration of a CB1R antagonist before ethanol treatment of P7 mice inhibited caspase-3 activation. Additionally, it reversed the loss of MeCP2 protein, cAMP response element binding protein (CREB) activation, and activity-regulated cytoskeleton-associated protein (Arc) expression. The inhibition of caspase-3 activity prior to ethanol administration prevented ethanol-induced loss of MeCP2, CREB activation, epigenetic regulation of Arc expression, long-term potentiation (LTP), spatial memory deficits and activity-dependent impairment of several signaling molecules, including MeCP2, in adult mice. Collectively, these results reveal that the ethanol-induced CB1R-mediated activation of caspase-3 degrades the MeCP2 protein in the P7 mouse brain and causes long-lasting neurobehavioral deficits in adult mice. This CB1R-mediated instability of MeCP2 during active synaptic maturation may disrupt synaptic circuit maturation and lead to neurobehavioral abnormalities, as observed in this animal model of FASD.
Collapse
Affiliation(s)
- Shivakumar Subbanna
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
| | - Nagaraja N. Nagre
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
| | - Madhu Shivakumar
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
| | - Vikram Joshi
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
| | - Delphine Psychoyos
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX, United States
| | - Abdullah Kutlar
- Center for Blood Disorders, Augusta University, Augusta, GA, United States
| | | | - Balapal S. Basavarajappa
- Division of Analytical Psychopharmacology, Nathan Kline Institute for Psychiatric Research, New York, NY, United States
- New York State Psychiatric Institute, New York, NY, United States
- Department of Psychiatry, College of Physicians & Surgeons, Columbia University, New York, NY, United States
- Department of Psychiatry, New York University Langone Medical Center, New York, NY, United States
| |
Collapse
|
14
|
Kenny K, Royer L, Moore AR, Chen X, Marr MT, Paradis S. Rem2 signaling affects neuronal structure and function in part by regulation of gene expression. Mol Cell Neurosci 2017; 85:190-201. [PMID: 29066292 DOI: 10.1016/j.mcn.2017.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 09/27/2017] [Accepted: 10/11/2017] [Indexed: 12/12/2022] Open
Abstract
The central nervous system has the remarkable ability to convert changes in the environment in the form of sensory experience into long-term alterations in synaptic connections and dendritic arborization, in part through changes in gene expression. Surprisingly, the molecular mechanisms that translate neuronal activity into changes in neuronal connectivity and morphology remain elusive. Rem2, a member of the Rad/Rem/Rem2/Gem/Kir (RGK) subfamily of small Ras-like GTPases, is a positive regulator of synapse formation and negative regulator of dendritic arborization. Here we identify that one output of Rem2 signaling is the regulation of gene expression. Specifically, we demonstrate that Rem2 signaling modulates the expression of genes required for a variety of cellular processes from neurite extension to synapse formation and synaptic function. Our results highlight Rem2 as a unique molecule that transduces changes in neuronal activity detected at the cell membrane to morphologically relevant changes in gene expression in the nucleus.
Collapse
Affiliation(s)
- Katelyn Kenny
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Leandro Royer
- Department of Biology, Brandeis University, Waltham, MA 02454, United States
| | - Anna R Moore
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States
| | - Xiao Chen
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States
| | - Michael T Marr
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, United States
| | - Suzanne Paradis
- Department of Biology, Brandeis University, Waltham, MA 02454, United States; Volen Center for Complex Systems, Brandeis University, Waltham, MA 02454, United States; National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, United States.
| |
Collapse
|
15
|
Abstract
The last decade has been marked by an increased interest in relating epigenetic mechanisms to complex human behaviors, although this interest has not been balanced, accentuating various types of affective and primarily ignoring cognitive functioning. Recent animal model data support the view that epigenetic processes play a role in learning and memory consolidation and help transmit acquired memories even across generations. In this review, we provide an overview of various types of epigenetic mechanisms in the brain (DNA methylation, histone modification, and noncoding RNA action) and discuss their impact proximally on gene transcription, protein synthesis, and synaptic plasticity and distally on learning, memory, and other cognitive functions. Of particular importance are observations that neuronal activation regulates the dynamics of the epigenome's functioning under precise timing, with subsequent alterations in the gene expression profile. In turn, epigenetic regulation impacts neuronal action, closing the circle and substantiating the signaling pathways that underlie, at least partially, learning, memory, and other cognitive processes.
Collapse
|
16
|
Berto S, Perdomo-Sabogal A, Gerighausen D, Qin J, Nowick K. A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe. Front Genet 2016; 7:31. [PMID: 27014338 PMCID: PMC4782181 DOI: 10.3389/fgene.2016.00031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/18/2016] [Indexed: 01/29/2023] Open
Abstract
Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies.
Collapse
Affiliation(s)
- Stefano Berto
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany; Paul-Flechsig Institute for Brain Research, University of LeipzigLeipzig, Germany; Department of Neuroscience, University of Texas Southwestern Medical CenterDallas, TX, USA
| | - Alvaro Perdomo-Sabogal
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig Leipzig, Germany
| | - Daniel Gerighausen
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University Leipzig Leipzig, Germany
| | - Jing Qin
- Department of Mathematics and Computer Sciences, University of Southern DenmarkOdense, Denmark; Institute for Theoretical Chemistry, University of ViennaVienna, Austria
| | - Katja Nowick
- Bioinformatics Group, Department of Computer Science, and Interdisciplinary Center for Bioinformatics, University LeipzigLeipzig, Germany; Paul-Flechsig Institute for Brain Research, University of LeipzigLeipzig, Germany
| |
Collapse
|
17
|
Varadinova M, Boyadjieva N. Epigenetic mechanisms: A possible link between autism spectrum disorders and fetal alcohol spectrum disorders. Pharmacol Res 2015; 102:71-80. [PMID: 26408203 DOI: 10.1016/j.phrs.2015.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/12/2015] [Accepted: 09/13/2015] [Indexed: 01/26/2023]
Abstract
The etiology of autism spectrum disorders (ASDs) still remains unclear and seems to involve a considerable overlap between polygenic, epigenetic and environmental factors. We have summarized the current understanding of the interplay between gene expression dysregulation via epigenetic modifications and the potential epigenetic impact of environmental factors in neurodevelopmental deficits. Furthermore, we discuss the scientific controversies of the relationship between prenatal exposure to alcohol and alcohol-induced epigenetic dysregulations, and gene expression alterations which are associated with disrupted neural plasticity and causal pathways for ASDs. The review of the literature suggests that a better understanding of developmental epigenetics should contribute to furthering our comprehension of the etiology and pathogenesis of ASDs and fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Miroslava Varadinova
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| | - Nadka Boyadjieva
- Department of Pharmacology and Toxicology, Medical Faculty, Medical University, Sofia, Bulgaria.
| |
Collapse
|
18
|
Córdova-Palomera A, Fatjó-Vilas M, Kebir O, Gastó C, Krebs MO, Fañanás L. Polymorphic variation in the epigenetic gene DNMT3B modulates the environmental impact on cognitive ability: a twin study. Eur Psychiatry 2015; 30:303-8. [PMID: 25530201 DOI: 10.1016/j.eurpsy.2014.11.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 11/19/2014] [Accepted: 11/19/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Though cognitive abilities in adulthood are largely influenced by individual genetic background, they have also been shown to be importantly influenced by environmental factors. Some of these influences are mediated by epigenetic mechanisms. Accordingly, polymorphic variants in the epigenetic gene DNMT3B have been linked to neurocognitive performance. Since monozygotic (MZ) twins may show larger or smaller intrapair phenotypic differences depending on whether their genetic background is more or less sensitive to environmental factors, a twin design was implemented to determine if particular polymorphisms in the DNMT3B gene may be linked to a better (worse) response to enriched (deprived) environmental factors. METHODS Applying the variability gene methodology in a sample of 54 healthy MZ twin pairs (108 individuals) with no lifetime history of psychopathology, two DNMT3B polymorphisms were analyzed in relation to their intrapair differences for either intellectual quotient (IQ) or working memory performance. RESULTS MZ twin pairs with the CC genotype for rs406193 SNP showed statistically significant larger intrapair differences in IQ than CT pairs. CONCLUSIONS Results suggest that DNMT3B polymorphisms may explain variability in the IQ response to either enriched or impoverished environmental conditions. Accordingly, the applied methodology is shown as a potentially valuable tool for determining genetic markers of cognitive plasticity. Further research is needed to confirm this specific result and to expand on other putative genetic markers of environmental sensitivity.
Collapse
Affiliation(s)
- A Córdova-Palomera
- Unitat d'Antropologia, Departament de Biologia Animal, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, avenue Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - M Fatjó-Vilas
- Unitat d'Antropologia, Departament de Biologia Animal, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, avenue Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - O Kebir
- Inserm, UMR 894, laboratoire de physiopathologie des maladies psychiatriques, centre de psychiatrie et neurosciences, université Paris-Descartes, PRES Paris Sorbonne Cité, 75014 Paris, France; Service hospitalo-universitaire, faculté de médecine Paris-Descartes, hôpital Sainte-Anne, 75014 Paris, France; GDR3557-institut de psychiatrie, 75014 Paris, France
| | - C Gastó
- Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Departamento de Psiquiatría, Instituto Clínico de Neurociencias (ICN), Hospital Clínico, Barcelona, Spain
| | - M O Krebs
- Inserm, UMR 894, laboratoire de physiopathologie des maladies psychiatriques, centre de psychiatrie et neurosciences, université Paris-Descartes, PRES Paris Sorbonne Cité, 75014 Paris, France; Service hospitalo-universitaire, faculté de médecine Paris-Descartes, hôpital Sainte-Anne, 75014 Paris, France; GDR3557-institut de psychiatrie, 75014 Paris, France
| | - L Fañanás
- Unitat d'Antropologia, Departament de Biologia Animal, Facultat de Biologia and Institut de Biomedicina (IBUB), Universitat de Barcelona, avenue Diagonal, 643, 08028 Barcelona, Spain; Centro de Investigaciones Biomédicas en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
19
|
S-Nitrosylation in neurogenesis and neuronal development. Biochim Biophys Acta Gen Subj 2014; 1850:1588-93. [PMID: 25527866 DOI: 10.1016/j.bbagen.2014.12.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/03/2014] [Accepted: 12/10/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND Nitric oxide (NO) is a pleiotropic messenger molecule. The multidimensional actions of NO species are, in part, mediated by their redox nature. Oxidative posttranslational modification of cysteine residues to regulate protein function, termed S-nitrosylation, constitutes a major form of redox-based signaling by NO. SCOPE OF REVIEW S-Nitrosylation directly modifies a number of cytoplasmic and nuclear proteins in neurons. S-Nitrosylation modulates neuronal development by reaction with specific proteins, including the transcription factor MEF2. This review focuses on the impact of S-nitrosylation on neurogenesis and neuronal development. MAJOR CONCLUSIONS Functional characterization of S-nitrosylated proteins that regulate neuronal development represents a rapidly emerging field. Recent studies reveal that S-nitrosylation-mediated redox signaling plays an important role in several biological processes essential for neuronal differentiation and maturation. GENERAL SIGNIFICANCE Investigation of S-nitrosylation in the nervous system has elucidated new molecular and cellular mechanisms for neuronal development. S-Nitrosylated proteins in signaling networks modulate key events in brain development. Dysregulation of this redox-signaling pathway may contribute to neurodevelopmental disabilities such as autism spectrum disorder (ASD). Thus, further elucidation of the involvement of S-nitrosylation in brain development may offer potential therapeutic avenues for neurodevelopmental disorders. This article is part of a Special Issue entitled Redox regulation of differentiation and de-differentiation.
Collapse
|
20
|
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. FRONTIERS IN PLANT SCIENCE 2014; 5:474. [PMID: 25278950 PMCID: PMC4165212 DOI: 10.3389/fpls.2014.00474] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/28/2014] [Indexed: 05/18/2023]
Abstract
Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as "plant memory." There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Qian Xing
- Institute of Genetics, Heinrich-Heine-UniversityDüsseldorf, Germany
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, The University of EdinburghEdinburgh, UK
| |
Collapse
|
21
|
The cockayne syndrome B protein is essential for neuronal differentiation and neuritogenesis. Cell Death Dis 2014; 5:e1268. [PMID: 24874740 PMCID: PMC4047889 DOI: 10.1038/cddis.2014.228] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 03/28/2014] [Accepted: 04/14/2014] [Indexed: 01/03/2023]
Abstract
Cockayne syndrome (CS) is a progressive developmental and neurodegenerative disorder resulting in premature death at childhood and cells derived from CS patients display DNA repair and transcriptional defects. CS is caused by mutations in csa and csb genes, and patients with csb mutation are more prevalent. A hallmark feature of CSB patients is neurodegeneration but the precise molecular cause for this defect remains enigmatic. Further, it is not clear whether the neurodegenerative condition is due to loss of CSB-mediated functions in adult neurogenesis. In this study, we examined the role of CSB in neurogenesis by using the human neural progenitor cells that have self-renewal and differentiation capabilities. In this model system, stable CSB knockdown dramatically reduced the differentiation potential of human neural progenitor cells revealing a key role for CSB in neurogenesis. Neurite outgrowth, a characteristic feature of differentiated neurons, was also greatly abolished in CSB-suppressed cells. In corroboration with this, expression of MAP2 (microtubule-associated protein 2), a crucial player in neuritogenesis, was also impaired in CSB-suppressed cells. Consistent with reduced MAP2 expression in CSB-depleted neural cells, tandem affinity purification and chromatin immunoprecipitation studies revealed a potential role for CSB in the assembly of transcription complex on MAP2 promoter. Altogether, our data led us to conclude that CSB has a crucial role in coordinated regulation of transcription and chromatin remodeling activities that are required during neurogenesis.
Collapse
|
22
|
Peddibhotla S, Nagamani SCS, Erez A, Hunter JV, Holder JL, Carlin ME, Bader PI, Perras HMF, Allanson JE, Newman L, Simpson G, Immken L, Powell E, Mohanty A, Kang SHL, Stankiewicz P, Bacino CA, Bi W, Patel A, Cheung SW. Delineation of candidate genes responsible for structural brain abnormalities in patients with terminal deletions of chromosome 6q27. Eur J Hum Genet 2014; 23:54-60. [PMID: 24736736 DOI: 10.1038/ejhg.2014.51] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 01/29/2014] [Accepted: 01/31/2014] [Indexed: 11/09/2022] Open
Abstract
Patients with terminal deletions of chromosome 6q present with structural brain abnormalities including agenesis of corpus callosum, hydrocephalus, periventricular nodular heterotopia, and cerebellar malformations. The 6q27 region harbors genes that are important for the normal development of brain and delineation of a critical deletion region for structural brain abnormalities may lead to a better genotype-phenotype correlation. We conducted a detailed clinical and molecular characterization of seven unrelated patients with deletions involving chromosome 6q27. All patients had structural brain abnormalities. Using array comparative genomic hybridization, we mapped the size, extent, and genomic content of these deletions. The smallest region of overlap spans 1.7 Mb and contains DLL1, THBS2, PHF10, and C6orf70 (ERMARD) that are plausible candidates for the causation of structural brain abnormalities. Our study reiterates the importance of 6q27 region in normal development of brain and helps identify putative genes in causation of structural brain anomalies.
Collapse
Affiliation(s)
- Sirisha Peddibhotla
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sandesh C S Nagamani
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ayelet Erez
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Jill V Hunter
- Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - J Lloyd Holder
- 1] Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, USA [2] Texas Children's Hospital, Houston, TX, USA
| | - Mary E Carlin
- Department of Pediatrics, University of Texas, Southwestern Medical Center, Dallas, TX, USA
| | - Patricia I Bader
- Parkview Cytogenetics and Northeast Indiana Genetic Counseling Center, Fort Wayne, IN, USA
| | - Helene M F Perras
- Regional Genetics Program, Conseillère en génétique agréée, Programme régional de Génétique, Ottawa, Ontario, Canada
| | - Judith E Allanson
- Regional Genetics Program, Conseillère en génétique agréée, Programme régional de Génétique, Ottawa, Ontario, Canada
| | | | | | | | - Erin Powell
- Department of Pediatrics, Vanderbilt School of Medicine, Nashville, TN, USA
| | - Aaron Mohanty
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, USA
| | - Sung-Hae L Kang
- 1] Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA [2] Allina Medical Laboratories, Minneapolis, MN, USA
| | - Pawel Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Carlos A Bacino
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weimin Bi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Ankita Patel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Sau W Cheung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
23
|
Müller-Xing R, Xing Q, Goodrich J. Footprints of the sun: memory of UV and light stress in plants. FRONTIERS IN PLANT SCIENCE 2014. [PMID: 25278950 DOI: 10.3389/fpls.2014.00474/abstract] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Sunlight provides the necessary energy for plant growth via photosynthesis but high light and particular its integral ultraviolet (UV) part causes stress potentially leading to serious damage to DNA, proteins, and other cellular components. Plants show adaptation to environmental stresses, sometimes referred to as "plant memory." There is growing evidence that plants memorize exposure to biotic or abiotic stresses through epigenetic mechanisms at the cellular level. UV target genes such as CHALCONE SYNTHASE (CHS) respond immediately to UV treatment and studies of the recently identified UV-B receptor UV RESISTANCE LOCUS 8 (UVR8) confirm the expedite nature of UV signaling. Considering these findings, an UV memory seems redundant. However, several lines of evidence suggest that plants may develop an epigenetic memory of UV and light stress, but in comparison to other abiotic stresses there has been relatively little investigation. Here we summarize the state of knowledge about acclimation and adaptation of plants to UV light and discuss the possibility of chromatin based epigenetic memory.
Collapse
Affiliation(s)
- Ralf Müller-Xing
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Germany
| | - Qian Xing
- Institute of Genetics, Heinrich-Heine-University Düsseldorf, Germany
| | - Justin Goodrich
- Institute for Molecular Plant Sciences, The University of Edinburgh Edinburgh, UK
| |
Collapse
|
24
|
Almenar-Queralt A, Kim SN, Benner C, Herrera CM, Kang DE, Garcia-Bassets I, Goldstein LSB. Presenilins regulate neurotrypsin gene expression and neurotrypsin-dependent agrin cleavage via cyclic AMP response element-binding protein (CREB) modulation. J Biol Chem 2013; 288:35222-36. [PMID: 24145027 DOI: 10.1074/jbc.m113.513705] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Presenilins, the catalytic components of the γ-secretase complex, are upstream regulators of multiple cellular pathways via regulation of gene transcription. However, the underlying mechanisms and the genes regulated by these pathways are poorly characterized. In this study, we identify Tequila and its mammalian ortholog Prss12 as genes negatively regulated by presenilins in Drosophila larval brains and mouse embryonic fibroblasts, respectively. Prss12 encodes the serine protease neurotrypsin, which cleaves the heparan sulfate proteoglycan agrin. Altered neurotrypsin activity causes serious synaptic and cognitive defects; despite this, the molecular processes regulating neurotrypsin expression and activity are poorly understood. Using γ-secretase drug inhibitors and presenilin mutants in mouse embryonic fibroblasts, we found that a mature γ-secretase complex was required to repress neurotrypsin expression and agrin cleavage. We also determined that PSEN1 endoproteolysis or processing of well known γ-secretase substrates was not essential for this process. At the transcriptional level, PSEN1/2 removal induced cyclic AMP response element-binding protein (CREB)/CREB-binding protein binding, accumulation of activating histone marks at the neurotrypsin promoter, and neurotrypsin transcriptional and functional up-regulation that was dependent on GSK3 activity. Upon PSEN1/2 reintroduction, this active epigenetic state was replaced by a methyl CpG-binding protein 2 (MeCP2)-containing repressive state and reduced neurotrypsin expression. Genome-wide analysis revealed hundreds of other mouse promoters in which CREB binding is similarly modulated by the presence/absence of presenilins. Our study thus identifies Tequila and neurotrypsin as new genes repressed by presenilins and reveals a novel mechanism used by presenilins to modulate CREB signaling based on controlling CREB recruitment.
Collapse
|
25
|
Lindner R, Puttagunta R, Di Giovanni S. Epigenetic regulation of axon outgrowth and regeneration in CNS injury: the first steps forward. Neurotherapeutics 2013; 10:771-81. [PMID: 23881454 PMCID: PMC3805867 DOI: 10.1007/s13311-013-0203-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Inadequate axonal sprouting and lack of regeneration limit functional recovery following neurologic injury, such as stroke, brain, and traumatic spinal cord injury. Recently, the enhancement of the neuronal regenerative program has led to promising improvements in axonal sprouting and regeneration in animal models of axonal injury. However, precise knowledge of the essential molecular determinants of this regenerative program remains elusive, thus limiting the choice of fully effective therapeutic strategies. Given that molecular regulation of axonal outgrowth and regeneration requires carefully orchestrated waves of gene expression, both temporally and spatially, epigenetic changes may be an ideal regulatory mechanism to address this unique need. While recent evidence suggests that epigenetic modifications could contribute to the regulation of axonal outgrowth and regeneration following axonal injury in models of stroke, and spinal cord and optic nerve injury, a number of unanswered questions remain. Such questions require systematic investigation of the epigenetic landscape between regenerative and non-regenerative conditions for the potential translation of this knowledge into regenerative strategies in human spinal and brain injury, as well as stroke.
Collapse
Affiliation(s)
- Ricco Lindner
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Radhika Puttagunta
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| | - Simone Di Giovanni
- Laboratory for NeuroRegeneration and Repair, Center for Neurology, Hertie Institute for Clinical Brain Research, University of Tuebingen, Otfried-Mueller Strasse 27, 72076 Tuebingen, Germany
| |
Collapse
|
26
|
Sakai Y, Ohkubo K, Matsushita Y, Akamine S, Ishizaki Y, Torisu H, Ihara K, Sanefuji M, Kim MS, Lee KU, Shaw CA, Lim J, Nakabeppu Y, Hara T. Neuroendocrine phenotypes in a boy with 5q14 deletion syndrome implicate the regulatory roles of myocyte-specific enhancer factor 2C in the postnatal hypothalamus. Eur J Med Genet 2013; 56:475-83. [DOI: 10.1016/j.ejmg.2013.06.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 06/19/2013] [Indexed: 02/07/2023]
|
27
|
Agostino PV, Cheng RK, Williams CL, West AE, Meck WH. Acquisition of response thresholds for timed performance is regulated by a calcium-responsive transcription factor, CaRF. GENES BRAIN AND BEHAVIOR 2013; 12:633-44. [DOI: 10.1111/gbb.12059] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 05/23/2013] [Accepted: 06/19/2013] [Indexed: 01/25/2023]
Affiliation(s)
- P. V. Agostino
- Laboratory of Chronobiology, Department of Science and Technology; National University of Quilmes; Buenos Aires; Argentina
| | - R.-K. Cheng
- A*STAR/Duke-NUS Neuroscience Research Partnership; Singapore; Singapore
| | | | - A. E. West
- Department of Neurobiology; Duke University; Durham; NC; USA
| | | |
Collapse
|
28
|
Salomoni P. The PML-Interacting Protein DAXX: Histone Loading Gets into the Picture. Front Oncol 2013; 3:152. [PMID: 23760585 PMCID: PMC3675705 DOI: 10.3389/fonc.2013.00152] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/24/2013] [Indexed: 12/23/2022] Open
Abstract
The promyelocytic leukemia (PML) protein has been implicated in regulation of multiple key cellular functions, from transcription to calcium homeostasis. PML pleiotropic role is in part related to its ability to localize to both the nucleus and cytoplasm. In the nucleus, PML is known to regulate gene transcription, a role linked to its ability to associate with transcription factors as well as chromatin-remodelers. A new twist came from the discovery that the PML-interacting protein death-associated protein 6 (DAXX) acts as chaperone for the histone H3.3 variant. H3.3 is found enriched at active genes, centromeric heterochromatin, and telomeres, and has been proposed to act as important carrier of epigenetic information. Our recent work has implicated DAXX in regulation of H3.3 loading and transcription in the central nervous system (CNS). Remarkably, driver mutations in H3.3 and/or its loading machinery have been identified in brain cancer, thus suggesting a role for altered H3.3 function/deposition in CNS tumorigenesis. Aberrant H3.3 deposition may also play a role in leukemia pathogenesis, given DAXX role in PML-RARα-driven transformation and the identification of a DAXX missense mutation in acute myeloid leukemia. This review aims to critically discuss the existing literature and propose new avenues for investigation.
Collapse
Affiliation(s)
- Paolo Salomoni
- Samantha Dickson Brain Cancer Unit, UCL Cancer Institute , University College London, London , UK
| |
Collapse
|
29
|
Imbrici P, Camerino DC, Tricarico D. Major channels involved in neuropsychiatric disorders and therapeutic perspectives. Front Genet 2013; 4:76. [PMID: 23675382 PMCID: PMC3646240 DOI: 10.3389/fgene.2013.00076] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Accepted: 04/16/2013] [Indexed: 12/11/2022] Open
Abstract
Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription, and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders (BPDs) or schizophrenia. Moreover, point mutations in calcium, sodium, and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium, and potassium channels in BPD, schizophrenia, and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.
Collapse
Affiliation(s)
- Paola Imbrici
- Section of Pharmacology, Department of Pharmacy - Drug Science, University of Bari Bari, Italy
| | | | | |
Collapse
|
30
|
Spooren W, Lindemann L, Ghosh A, Santarelli L. Synapse dysfunction in autism: a molecular medicine approach to drug discovery in neurodevelopmental disorders. Trends Pharmacol Sci 2012; 33:669-84. [PMID: 23084458 DOI: 10.1016/j.tips.2012.09.004] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 09/04/2012] [Accepted: 09/14/2012] [Indexed: 11/24/2022]
Abstract
Autism and autism spectrum disorders (ASDs) affect millions of individuals worldwide. Despite increased autism diagnoses over the past 30 years, therapeutic intervention is often 'trial and error'. This approach has identified some beneficial agents, but complex heterogeneous disorders require a more personalized treatment regimen. Many ASD risk factors are genetic, implicating impaired synaptic development and function. Monogenetic disorders (e.g., fragile X syndrome, Rett syndrome, and neurofibromatosis) that have phenotypic overlap with autism provide insights into ASD pathology through the identification novel drug targets (e.g., glutamatergic receptors). Encouragingly, some of these novel drug targets provide symptomatic improvement, even in patients who have lived with ASDs for protracted periods of time. Consequently, a targeted drug discovery approach is expected to deliver improved agents for the treatment and management of ASDs. Here, we review the opportunities and challenges in drug development for autism and provide insight into the neurobiology of ASDs.
Collapse
Affiliation(s)
- Will Spooren
- CNS Research and Early Clinical Development, F. Hoffmann-La Roche Ltd., Basel, Switzerland.
| | | | | | | |
Collapse
|
31
|
Ma LY, Zhang DM, Tang Y, Lu Y, Zhang Y, Gao Y, Xia L, Zhao KX, Chai LY, Xiao Q. Ghrelin-attenuated cognitive dysfunction in streptozotocin-induced diabetic rats. Alzheimer Dis Assoc Disord 2012; 25:352-63. [PMID: 22005105 DOI: 10.1097/wad.0b013e31820ce536] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Diabetic encephalopathy is clinically characterized by acquired behavior and cognitive dysfunction but its pathogenesis is not clear. This study aimed to explore the pathogenesis of diabetic encephalopathy and the mechanisms of ghrelin to ameliorate cognitive dysfunction in diabetic rats. Thirty-six streptozotocin diabetic rat models were established; 12 weeks later, all the rats were randomly divided into 3 groups [diabetic model group (D), ghrelin treatment group (T1), and ghrelin and D-lys-3-GHRP-6 treatment group (T2)] of 12 each. Twelve normoglycemic rats were classified in the normal group (N). Learning and memory behaviors were measured using a spatial version of the Morris water maze test. The brain-derived neurotrophic factor (BDNF), cAMP responsive element binding protein (CREB), phosphorylated CREB (p-CREB), phosphorylated ERK1/2 (p-ERK1/2), caspase-3, and Bcl-xl protein expressions in the hippocampi of all the rats were detected using immunohistochemistry. The mRNA expressions of BDNF, CREB, and caspase-3 were examined using reverse transcription-polymerase chain reaction. The hippocampus neuronal apoptosis was measured by terminal deoxynucleotidyl transferase dUTP nick end labeling method. We found that learning and memory level in the ghrelin treatment group improved significantly, expression of Bcl-xl, BDNF, CREB, p-CREB, and p-ERK1/2 in the hippocampus was increased in the ghrelin treatment group, and the number of apoptotic neurons in the hippocampus decreased remarkably. Our results showed that the changes of BDNF, CREB, and hippocampus neuronal apoptosis might be involved in the pathogenesis of diabetic encephalopathy. We suggested that ghrelin improved cognitive ability in streptozotocin-induced diabetic rats by improving the expressions of BDNF and CREB and by attenuating hippocampus neuronal apoptosis. The effects of ghrelin depend on the receptor of ghrelin, GHSR-1a, and ERK1/2 pathway.
Collapse
Affiliation(s)
- Lou-yan Ma
- Department of Geriatrics, the First Affiliated Hospital, Chongqing Medical University, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Study design considerations in epigenetic studies of neuropsychiatric disease. Epigenomics 2012. [DOI: 10.1017/cbo9780511777271.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
33
|
Ahmed M, Xu J, Xu PX. EYA1 and SIX1 drive the neuronal developmental program in cooperation with the SWI/SNF chromatin-remodeling complex and SOX2 in the mammalian inner ear. Development 2012; 139:1965-77. [PMID: 22513373 DOI: 10.1242/dev.071670] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Inner ear neurogenesis depends upon the function of the proneural basic helix-loop-helix (bHLH) transcription factors NEUROG1 and NEUROD1. However, the transcriptional regulation of these factors is unknown. Here, using loss- and gain-of-function models, we show that EYA1 and SIX1 are crucial otic neuronal determination factors upstream of NEUROG1 and NEUROD1. Overexpression of both Eya1 and Six1 is sufficient to convert non-neuronal epithelial cells within the otocyst and cochlea as well as the 3T3 fibroblast cells into neurons. Strikingly, all the ectopic neurons express not only Neurog1 and Neurod1 but also mature neuronal markers such as neurofilament, indicating that Eya1 and Six1 function upstream of, and in the same pathway as, Neurog1 and Neurod1 to not only induce neuronal fate but also regulate their differentiation. We demonstrate that EYA1 and SIX1 interact directly with the SWI/SNF chromatin-remodeling subunits BRG1 and BAF170 to drive neurogenesis cooperatively in 3T3 cells and cochlear nonsensory epithelial cells, and that SOX2 cooperates with these factors to mediate neuronal differentiation. Importantly, we show that the ATPase BRG1 activity is required for not only EYA1- and SIX1-induced ectopic neurogenesis but also normal neurogenesis in the otocyst. These findings indicate that EYA1 and SIX1 are key transcription factors in initiating the neuronal developmental program, probably by recruiting and interacting with the SWI/SNF chromatin-remodeling complex to specifically mediate Neurog1 and Neurod1 transcription.
Collapse
Affiliation(s)
- Mohi Ahmed
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine of NYU, New York, NY 10029, USA
| | | | | |
Collapse
|
34
|
Multiple exposures to drought 'train' transcriptional responses in Arabidopsis. Nat Commun 2012; 3:740. [PMID: 22415831 DOI: 10.1038/ncomms1732] [Citation(s) in RCA: 347] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Accepted: 02/06/2012] [Indexed: 11/08/2022] Open
Abstract
Pre-exposure to stress may alter plants' subsequent responses by producing faster and/or stronger reactions implying that plants exercise a form of 'stress memory'. The mechanisms of plants' stress memory responses are poorly understood leaving this fundamental biological question unanswered. Here we show that during recurring dehydration stresses Arabidopsis plants display transcriptional stress memory demonstrated by an increase in the rate of transcription and elevated transcript levels of a subset of the stress-response genes (trainable genes). During recovery (watered) states, trainable genes produce transcripts at basal (preinduced) levels, but remain associated with atypically high H3K4me3 and Ser5P polymerase II levels, indicating that RNA polymerase II is stalled. This is the first example of a stalled RNA polymerase II and its involvement in transcriptional memory in plants. These newly discovered phenomena might be a general feature of plant stress-response systems and could lead to novel approaches for increasing the flexibility of a plant's ability to respond to the environment.
Collapse
|
35
|
de la Torre-Ubieta L, Bonni A. Transcriptional regulation of neuronal polarity and morphogenesis in the mammalian brain. Neuron 2011; 72:22-40. [PMID: 21982366 DOI: 10.1016/j.neuron.2011.09.018] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/15/2011] [Indexed: 11/17/2022]
Abstract
The highly specialized morphology of a neuron, typically consisting of a long axon and multiple branching dendrites, lies at the core of the principle of dynamic polarization, whereby information flows from dendrites toward the soma and to the axon. For more than a century, neuroscientists have been fascinated by how shape is important for neuronal function and how neurons acquire their characteristic morphology. During the past decade, substantial progress has been made in our understanding of the molecular underpinnings of neuronal polarity and morphogenesis. In these studies, transcription factors have emerged as key players governing multiple aspects of neuronal morphogenesis from neuronal polarization and migration to axon growth and pathfinding to dendrite growth and branching to synaptogenesis. In this review, we will highlight the role of transcription factors in shaping neuronal morphology with emphasis on recent literature in mammalian systems.
Collapse
Affiliation(s)
- Luis de la Torre-Ubieta
- Department of Neurobiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
36
|
Markman TM, Quittner AL, Eisenberg LS, Tobey EA, Thal D, Niparko JK, Wang NY. Language development after cochlear implantation: an epigenetic model. J Neurodev Disord 2011; 3:388-404. [PMID: 22101809 PMCID: PMC3230757 DOI: 10.1007/s11689-011-9098-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 10/27/2011] [Indexed: 12/27/2022] Open
Abstract
Growing evidence supports the notion that dynamic gene expression, subject to epigenetic control, organizes multiple influences to enable a child to learn to listen and to talk. Here, we review neurobiological and genetic influences on spoken language development in the context of results of a longitudinal trial of cochlear implantation of young children with severe to profound sensorineural hearing loss in the Childhood Development after Cochlear Implantation study. We specifically examine the results of cochlear implantation in participants who were congenitally deaf (N = 116). Prior to intervention, these participants were subject to naturally imposed constraints in sensory (acoustic-phonologic) inputs during critical phases of development when spoken language skills are typically achieved rapidly. Their candidacy for a cochlear implant was prompted by delays (n = 20) or an essential absence of spoken language acquisition (n = 96). Observations thus present an opportunity to evaluate the impact of factors that influence the emergence of spoken language, particularly in the context of hearing restoration in sensitive periods for language acquisition. Outcomes demonstrate considerable variation in spoken language learning, although significant advantages exist for the congenitally deaf children implanted prior to 18 months of age. While age at implantation carries high predictive value in forecasting performance on measures of spoken language, several factors show significant association, particularly those related to parent-child interactions. Importantly, the significance of environmental variables in their predictive value for language development varies with age at implantation. These observations are considered in the context of an epigenetic model in which dynamic genomic expression can modulate aspects of auditory learning, offering insights into factors that can influence a child's acquisition of spoken language after cochlear implantation. Increased understanding of these interactions could lead to targeted interventions that interact with the epigenome to influence language outcomes with intervention, particularly in periods in which development is subject to time-sensitive experience.
Collapse
Affiliation(s)
| | | | | | | | - Donna Thal
- San Diego State University, San Diego, CA USA
- Center for Research on Language, University of California, San Diego, CA USA
| | - John K. Niparko
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD USA
| | - Nae-Yuh Wang
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| | - The CDaCI Investigative Team
- Johns Hopkins School of Medicine, Baltimore, MD USA
- University of Miami, Miami, FL USA
- House Ear Institute, Los Angeles, CA USA
- University of Texas at Dallas, Dallas, TX USA
- San Diego State University, San Diego, CA USA
- Center for Research on Language, University of California, San Diego, CA USA
- Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins School of Medicine, Baltimore, MD USA
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| |
Collapse
|
37
|
Hagenston AM, Bading H. Calcium signaling in synapse-to-nucleus communication. Cold Spring Harb Perspect Biol 2011; 3:a004564. [PMID: 21791697 DOI: 10.1101/cshperspect.a004564] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Changes in the intracellular concentration of calcium ions in neurons are involved in neurite growth, development, and remodeling, regulation of neuronal excitability, increases and decreases in the strength of synaptic connections, and the activation of survival and programmed cell death pathways. An important aspect of the signals that trigger these processes is that they are frequently initiated in the form of glutamatergic neurotransmission within dendritic trees, while their completion involves specific changes in the patterns of genes expressed within neuronal nuclei. Accordingly, two prominent aims of research concerned with calcium signaling in neurons are determination of the mechanisms governing information conveyance between synapse and nucleus, and discovery of the rules dictating translation of specific patterns of inputs into appropriate and specific transcriptional responses. In this article, we present an overview of the avenues by which glutamatergic excitation of dendrites may be communicated to the neuronal nucleus and the primary calcium-dependent signaling pathways by which synaptic activity can invoke changes in neuronal gene expression programs.
Collapse
Affiliation(s)
- Anna M Hagenston
- CellNetworks-Cluster of Excellence, Department of Neurobiology, Interdisciplinary Center for Neurosciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | |
Collapse
|
38
|
Lyons MR, West AE. Mechanisms of specificity in neuronal activity-regulated gene transcription. Prog Neurobiol 2011; 94:259-95. [PMID: 21620929 PMCID: PMC3134613 DOI: 10.1016/j.pneurobio.2011.05.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 02/06/2023]
Abstract
The brain is a highly adaptable organ that is capable of converting sensory information into changes in neuronal function. This plasticity allows behavior to be accommodated to the environment, providing an important evolutionary advantage. Neurons convert environmental stimuli into long-lasting changes in their physiology in part through the synaptic activity-regulated transcription of new gene products. Since the neurotransmitter-dependent regulation of Fos transcription was first discovered nearly 25 years ago, a wealth of studies have enriched our understanding of the molecular pathways that mediate activity-regulated changes in gene transcription. These findings show that a broad range of signaling pathways and transcriptional regulators can be engaged by neuronal activity to sculpt complex programs of stimulus-regulated gene transcription. However, the shear scope of the transcriptional pathways engaged by neuronal activity raises the question of how specificity in the nature of the transcriptional response is achieved in order to encode physiologically relevant responses to divergent stimuli. Here we summarize the general paradigms by which neuronal activity regulates transcription while focusing on the molecular mechanisms that confer differential stimulus-, cell-type-, and developmental-specificity upon activity-regulated programs of neuronal gene transcription. In addition, we preview some of the new technologies that will advance our future understanding of the mechanisms and consequences of activity-regulated gene transcription in the brain.
Collapse
Affiliation(s)
- Michelle R Lyons
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
39
|
Pinacho R, Villalmanzo N, Lalonde J, Haro JM, Meana JJ, Gill G, Ramos B. The transcription factor SP4 is reduced in postmortem cerebellum of bipolar disorder subjects: control by depolarization and lithium. Bipolar Disord 2011; 13:474-85. [PMID: 22017217 PMCID: PMC3202296 DOI: 10.1111/j.1399-5618.2011.00941.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Regulation of gene expression is important for the development and function of the nervous system. However, the transcriptional programs altered in psychiatric diseases are not completely characterized. Human gene association studies and analysis of mutant mice suggest that the transcription factor specificity protein 4 (SP4) may be implicated in the pathophysiology of psychiatric diseases. We hypothesized that SP4 levels may be altered in the brain of bipolar disorder (BD) subjects and regulated by neuronal activity and drug treatment. METHODS We analyzed messenger RNA (mRNA) and protein levels of SP4 and SP1 in the postmortem prefrontal cortex and cerebellum of BD subjects (n = 10) and controls (n = 10). We also examined regulation of SP4 mRNA and protein levels by neuronal activity and lithium in rat cerebellar granule neurons. RESULTS We report a reduction of SP4 and SP1 proteins, but not mRNA levels, in the cerebellum of BD subjects. SP4 protein and mRNA levels were also reduced in the prefrontal cortex. Moreover, we found in rat cerebellar granule neurons that under non-depolarizing conditions SP4, but not SP1, was polyubiquitinated and degraded by the proteasome while lithium stabilized SP4 protein. CONCLUSIONS Our study provides the first evidence of altered SP4 protein in the cerebellum and prefrontal cortex in BD subjects supporting a possible role of transcription factor SP4 in the pathogenesis of the disease. In addition, our finding that SP4 stability is regulated by depolarization and lithium provides a pathway through which neuronal activity and lithium could control gene expression suggesting that normalization of SP4 levels could contribute to treatment of affective disorders.
Collapse
Affiliation(s)
- Raquel Pinacho
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Nuria Villalmanzo
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - Jasmin Lalonde
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA
| | - Josep Maria Haro
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain
| | - J Javier Meana
- Department of Pharmacology, University of the Basque Country (UPV/EHU), Bizkaia,CIBERSAM, Bizkaia, Spain
| | - Grace Gill
- Department of Anatomy and Cellular Biology, Tufts University School of Medicine, Boston, MA, USA,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Belén Ramos
- Parc Sanitari Sant Joan de Déu, Fundació Sant Joan de Déu, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Barcelona, Spain,Department of Pathology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Kuzirian MS, Paradis S. Emerging themes in GABAergic synapse development. Prog Neurobiol 2011; 95:68-87. [PMID: 21798307 DOI: 10.1016/j.pneurobio.2011.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/30/2011] [Accepted: 07/03/2011] [Indexed: 12/25/2022]
Abstract
Glutamatergic synapse development has been rigorously investigated for the past two decades at both the molecular and cell biological level yet a comparable intensity of investigation into the cellular and molecular mechanisms of GABAergic synapse development has been lacking until relatively recently. This review will provide a detailed overview of the current understanding of GABAergic synapse development with a particular emphasis on assembly of synaptic components, molecular mechanisms of synaptic development, and a subset of human disorders which manifest when GABAergic synapse development is disrupted. An unexpected and emerging theme from these studies is that glutamatergic and GABAergic synapse development share a number of overlapping molecular and cell biological mechanisms that will be emphasized in this review.
Collapse
Affiliation(s)
- Marissa S Kuzirian
- Brandeis Univeristy, Department of Biology, National Center for Behavioral Genomics, Volen Center for Complex Systems, Waltham, MA 02453, USA
| | | |
Collapse
|
41
|
West AE, Greenberg ME. Neuronal activity-regulated gene transcription in synapse development and cognitive function. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a005744. [PMID: 21555405 DOI: 10.1101/cshperspect.a005744] [Citation(s) in RCA: 390] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Activity-dependent plasticity of vertebrate neurons allows the brain to respond to its environment. During brain development, both spontaneous and sensory-driven neural activity are essential for instructively guiding the process of synapse development. These effects of neuronal activity are transduced in part through the concerted regulation of a set of activity-dependent transcription factors that coordinate a program of gene expression required for the formation and maturation of synapses. Here we review the cellular signaling networks that regulate the activity of transcription factors during brain development and discuss the functional roles of specific activity-regulated transcription factors in specific stages of synapse formation, refinement, and maturation. Interestingly, a number of neurodevelopmental disorders have been linked to abnormalities in activity-regulated transcriptional pathways, indicating that these signaling networks are critical for cognitive development and function.
Collapse
Affiliation(s)
- Anne E West
- Department of Neurobiology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
42
|
Leslie JH, Nedivi E. Activity-regulated genes as mediators of neural circuit plasticity. Prog Neurobiol 2011; 94:223-37. [PMID: 21601615 DOI: 10.1016/j.pneurobio.2011.05.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 05/03/2011] [Accepted: 05/05/2011] [Indexed: 10/18/2022]
Abstract
Modifications of neuronal circuits allow the brain to adapt and change with experience. This plasticity manifests during development and throughout life, and can be remarkably long lasting. Evidence has linked activity-regulated gene expression to the long-term structural and electrophysiological adaptations that take place during developmental critical periods, learning and memory, and alterations to sensory map representations in the adult. In all these cases, the cellular response to neuronal activity integrates multiple tightly coordinated mechanisms to precisely orchestrate long-lasting, functional and structural changes in brain circuits. Experience-dependent plasticity is triggered when neuronal excitation activates cellular signaling pathways from the synapse to the nucleus that initiate new programs of gene expression. The protein products of activity-regulated genes then work via a diverse array of cellular mechanisms to modify neuronal functional properties. Synaptic strengthening or weakening can reweight existing circuit connections, while structural changes including synapse addition and elimination create new connections. Posttranscriptional regulatory mechanisms, often also dependent on activity, further modulate activity-regulated gene transcript and protein function. Thus, activity-regulated genes implement varied forms of structural and functional plasticity to fine-tune brain circuit wiring.
Collapse
Affiliation(s)
- Jennifer H Leslie
- Department of Biology, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | | |
Collapse
|
43
|
Ramamoorthi K, Lin Y. The contribution of GABAergic dysfunction to neurodevelopmental disorders. Trends Mol Med 2011; 17:452-62. [PMID: 21514225 DOI: 10.1016/j.molmed.2011.03.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Revised: 03/04/2011] [Accepted: 03/10/2011] [Indexed: 12/31/2022]
Abstract
GABA (γ-aminobutyric acid) is the major inhibitory neurotransmitter in the brain. The GABAergic system is indispensable for maintaining the balance between excitation and inhibition (E/I balance) required for normal neural circuit function. E/I imbalances that result from perturbations in the development of this system, ranging from the generation of inhibitory neurons to the formation of their synaptic connections, have been implicated in several neurodevelopmental disorders. In this review, we discuss how impairments at different stages in GABAergic development can lead to disease states. We also highlight recent studies which show that modulation of the GABAergic system can successfully reverse cognitive deficits in disease models and suggest that therapeutic strategies targeting the GABAergic system could be effective in treating neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kartik Ramamoorthi
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
44
|
Autism with seizures and intellectual disability: possible causative role of gain-of-function of the inwardly-rectifying K+ channel Kir4.1. Neurobiol Dis 2011; 43:239-47. [PMID: 21458570 DOI: 10.1016/j.nbd.2011.03.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2010] [Revised: 02/26/2011] [Accepted: 03/19/2011] [Indexed: 11/21/2022] Open
Abstract
The inwardly-rectifying potassium channel Kir4.1 is a major player in the astrocyte-mediated regulation of [K(+)](o) in the brain, which is essential for normal neuronal activity and synaptic functioning. KCNJ10, encoding Kir4.1, has been recently linked to seizure susceptibility in humans and mice, and is a possible candidate gene for Autism Spectrum Disorders (ASD). In this study, we performed a mutational screening of KCNJ10 in 52 patients with epilepsy of "unknown cause" associated with impairment of either cognitive or communicative abilities, or both. Among them, 14 patients fitted the diagnostic criteria for ASD. We identified two heterozygous KCNJ10 mutations (p.R18Q and p.V84M) in three children (two unrelated families) with seizures, ASD, and intellectual disability. The mutations replaced amino acid residues that are highly conserved throughout evolution and were undetected in about 500 healthy chromosomes. The effects of mutations on channel activity were functionally assayed using a heterologous expression system. These studies indicated that the molecular mechanism contributing to the disorder relates to an increase in either surface-expression or conductance of the Kir4.1 channel. Unlike previous syndromic associations of genetic variants in KCNJ10, the pure neuropsychiatric phenotype in our patients suggests that the new mutations affect K(+) homeostasis mainly in the brain, by acting through gain-of-function defects. Dysfunction in astrocytic-dependent K(+) buffering may contribute to autism/epilepsy phenotype, by altering neuronal excitability and synaptic function, and may represent a new target for novel therapeutic approaches.
Collapse
|
45
|
Greenberg ME. Signaling networks that control synapse development and cognitive function. HARVEY LECTURES 2010; 102:73-102. [PMID: 20166564 DOI: 10.1002/9780470593042.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Michael E Greenberg
- Children's Hospital Boston, Program in Neurobiology, Harvard Medical School, Department of Neurobiology, Boston, Massachusetts, USA
| |
Collapse
|
46
|
CBP/p300 double null cells reveal effect of coactivator level and diversity on CREB transactivation. EMBO J 2010; 29:3660-72. [PMID: 20859256 DOI: 10.1038/emboj.2010.235] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Accepted: 08/30/2010] [Indexed: 11/08/2022] Open
Abstract
It remains uncertain how the DNA sequence of mammalian genes influences the transcriptional response to extracellular signals. Here, we show that the number of CREB-binding sites (CREs) affects whether the related histone acetyltransferases (HATs) CREB-binding protein (CBP) and p300 are required for endogenous gene transcription. Fibroblasts with both CBP and p300 knocked-out had strongly attenuated histone H4 acetylation at CREB-target genes in response to cyclic-AMP, yet transcription was not uniformly inhibited. Interestingly, dependence on CBP/p300 was often different between reporter plasmids and endogenous genes. Transcription in the absence of CBP/p300 correlated with endogenous genes having more CREs, more bound CREB, and more CRTC2 (a non-HAT coactivator of CREB). Indeed, CRTC2 rescued cAMP-inducible expression for certain genes in CBP/p300 null cells and contributed to the CBP/p300-independent expression of other targets. Thus, endogenous genes with a greater local concentration and diversity of coactivators tend to have more resilient-inducible expression. This model suggests how gene expression patterns could be tuned by altering coactivator availability rather than by changing signal input or transcription factor levels.
Collapse
|
47
|
Genome-wide identification of calcium-response factor (CaRF) binding sites predicts a role in regulation of neuronal signaling pathways. PLoS One 2010; 5:e10870. [PMID: 20523734 PMCID: PMC2877716 DOI: 10.1371/journal.pone.0010870] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 05/07/2010] [Indexed: 11/19/2022] Open
Abstract
Calcium-Response Factor (CaRF) was first identified as a transcription factor based on its affinity for a neuronal-selective calcium-response element (CaRE1) in the gene encoding Brain-Derived Neurotrophic Factor (BDNF). However, because CaRF shares no homology with other transcription factors, its properties and gene targets have remained unknown. Here we show that the DNA binding domain of CaRF has been highly conserved across evolution and that CaRF binds DNA directly in a sequence-specific manner in the absence of other eukaryotic cofactors. Using a binding site selection screen we identify a high-affinity consensus CaRF response element (cCaRE) that shares significant homology with the CaRE1 element of Bdnf. In a genome-wide chromatin immunoprecipitation analysis (ChIP-Seq), we identified 176 sites of CaRF-specific binding (peaks) in neuronal genomic DNA. 128 of these peaks are within 10kB of an annotated gene, and 60 are within 1kB of an annotated transcriptional start site. At least 138 of the CaRF peaks contain a common 10-bp motif with strong statistical similarity to the cCaRE, and we provide evidence predicting that CaRF can bind independently to at least 64.5% of these motifs in vitro. Analysis of this set of putative CaRF targets suggests the enrichment of genes that regulate intracellular signaling cascades. Finally we demonstrate that expression of a subset of these target genes is altered in the cortex of Carf knockout (KO) mice. Together these data strongly support the characterization of CaRF as a unique transcription factor and provide the first insight into the program of CaRF-regulated transcription in neurons.
Collapse
|
48
|
Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J 2009; 28:697-710. [PMID: 19197241 PMCID: PMC2647767 DOI: 10.1038/emboj.2009.10] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Accepted: 12/23/2008] [Indexed: 01/07/2023] Open
Abstract
Neuronal activity orchestrates the proper development of the neuronal circuitry by regulating both transcriptional and post-transcriptional gene expression programmes. How these programmes are coordinated, however, is largely unknown. We found that the transcription of miR379–410, a large cluster of brain-specific microRNAs (miRNAs), is induced by increasing neuronal activity in primary rat neurons. Results from chromatin immunoprecipitation and luciferase reporter assays suggest that binding of the transcription factor myocyte enhancing factor 2 (Mef2) upstream of miR379–410 is necessary and sufficient for activity-dependent transcription of the cluster. Mef2-induced expression of at least three individual miRNAs of the miR379–410 cluster is required for activity-dependent dendritic outgrowth of hippocampal neurons. One of these miRNAs, the dendritic miR-134, promotes outgrowth by inhibiting translation of the mRNA encoding for the translational repressor Pumilio2. In summary, we have described a novel regulatory pathway that couples activity-dependent transcription to miRNA-dependent translational control of gene expression during neuronal development.
Collapse
|
49
|
Hong EJ, McCord AE, Greenberg ME. A biological function for the neuronal activity-dependent component of Bdnf transcription in the development of cortical inhibition. Neuron 2009; 60:610-24. [PMID: 19038219 DOI: 10.1016/j.neuron.2008.09.024] [Citation(s) in RCA: 287] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/20/2008] [Accepted: 09/12/2008] [Indexed: 12/16/2022]
Abstract
Neuronal activity-regulated gene expression has been suggested to be an important mediator of long-lasting, experience-dependent changes in the nervous system, but the activity-dependent component of gene transcription has never been selectively isolated and tested for its functional significance. Here, we demonstrate that introduction of a subtle knockin mutation into the mouse Bdnf gene that blocks the ability of the activity-regulated factor CREB to bind Bdnf promoter IV results in an animal in which the sensory experience-dependent induction of Bdnf expression is disrupted in the cortex. Neurons from these animals form fewer inhibitory synapses, have fewer spontaneous inhibitory quantal events, and exhibit reduced expression of inhibitory presynaptic markers in the cortex. These results indicate a specific requirement for activity-dependent Bdnf expression in the development of inhibition in the cortex and demonstrate that the activation of gene expression in response to experience-driven neuronal activity has important biological consequences in the nervous system.
Collapse
Affiliation(s)
- Elizabeth J Hong
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
50
|
Abstract
Genetic studies are refining our understanding of neurodevelopmental mechanisms in autism. Some autism-related mutations appear to disrupt genes regulated by neuronal activity, which are especially important in development of the postnatal nervous system. Gene replacement studies in mice indicate that the developmental window to ameliorate symptoms may be wider than previously anticipated.
Collapse
Affiliation(s)
- Christopher A Walsh
- Division of Genetics, Children's Hospital Boston, Department of Neurology and Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center, Boston, MA 02115, USA.
| | | | | |
Collapse
|