1
|
Nguyen QN, Michon KJ, Vesia M, Lee TG. Dissociable Causal Roles of Dorsolateral Prefrontal Cortex and Primary Motor Cortex over the Course of Motor Skill Development. J Neurosci 2025; 45:e2015232025. [PMID: 40169264 PMCID: PMC12079722 DOI: 10.1523/jneurosci.2015-23.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2024] [Accepted: 03/11/2025] [Indexed: 04/03/2025] Open
Abstract
Established models of motor skill learning posit that early stages of learning are dominated by an attentionally demanding, effortful mode of control supported by associative corticostriatal circuits involving the dorsolateral prefrontal cortex (DLPFC). As skill develops, automatic and "effortless" performance coincides with a transition to a reliance on sensorimotor circuits that include primary motor cortex (M1). However, the dynamics of how control evolves during the transition from novice to expert are currently unclear. This lack of clarity is due, in part, to the fact that most motor learning studies comprise a limited number of training sessions and rely on correlative techniques such as neuroimaging. Here, we train human participants (both sexes) on a discrete motor sequencing task over the course of 6 weeks, followed by an assessment of the causal roles of DLPFC and M1 at varying levels of expertise. We use repetitive transcranial magnetic stimulation to transiently disrupt activity in these regions immediately prior to performance in separate sessions. Our results confirm the dissociable importance of DLPFC and M1 as training progresses. DLPFC stimulation leads to larger behavioral deficits for novice skills than more highly trained skills, while M1 stimulation leads to relatively larger deficits as training progresses. However, our results also reveal that prefrontal disruption causes performance deficits at all levels of training. These findings challenge existing models and indicate an evolving rather than a strictly diminishing role for DLPFC throughout learning.
Collapse
Affiliation(s)
- Quynh N Nguyen
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Katherine J Michon
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael Vesia
- School of Kinesiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Taraz G Lee
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
2
|
Presbrey KN, Wozny TA, Louie KH, Little S, Starr PA, Abbasi-Asl R, Wang DD. Motor learning leverages coordinated low-frequency cortico-basal ganglia activity to optimize motor preparation in humans with Parkinson's disease. Front Neurosci 2025; 19:1542493. [PMID: 40433500 PMCID: PMC12106502 DOI: 10.3389/fnins.2025.1542493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Learning dexterous motor sequences is crucial to autonomy and quality of life but can be altered in Parkinson's disease (PD). Learning involves optimizing pre-movement planning (preplanning) of multiple sequence elements to reduce computational overhead during active movement. However, it is unclear which brain regions mediate preplanning or how this process evolves with learning. Recording cortico-basal ganglia field potentials during a multi-day typing task in four individuals with PD, we found evidence for network-wide multi-element preplanning that improved with learning, facilitated by functional connectivity. In both cortex and basal ganglia, pre-movement gamma (γ, 30-250 Hz) activity, historically linked to population spiking, distinguished between future action sequences and became increasingly predictive with learning. For motor cortex γ, this increase was tied to learning-related cross-frequency coupling led by cortically-driven network delta (δ, 0.5-4 Hz) synchrony. More generally, coordinated network δ supported a complex pattern of learning-driven cross-frequency couplings within and between cortex and basal ganglia, including striatal lead of cortical beta (β, 12-30 Hz) activity, reflecting the specialized roles of these brain regions in motor preparation. In contrast, impaired learning was characterized by practice-driven decreases in γ's predictive value, limited cross-frequency coupling and absent network δ synchrony, with network dynamics possibly altered by pathologically high inter-basal ganglia δ synchrony. These results suggest that cortically-led δ phase coordination optimized cortico-basal ganglia multi-element preplanning through enhanced recruitment of higher-frequency neural activity. Neurostimulation that enhances cortico-basal ganglia δ synchrony may thus hold potential for improving skilled fine motor control in PD.
Collapse
Affiliation(s)
- Kara N. Presbrey
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Thomas A. Wozny
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Kenneth H. Louie
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Simon Little
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Philip A. Starr
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Reza Abbasi-Asl
- Department of Neurology, University of California San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Doris D. Wang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, United States
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
3
|
Martin E, Seiwert S, Fautrelle L, Tisseyre J, Gasq D, Lemay M, Amarantini D, Tallet J. From lab to real life: Is there a link between lab-based and ecological assessment of Procedural Perceptual-Motor Learning tasks? PLoS One 2025; 20:e0319715. [PMID: 40193338 PMCID: PMC11975140 DOI: 10.1371/journal.pone.0319715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 02/05/2025] [Indexed: 04/09/2025] Open
Abstract
Procedural Perceptual-Motor Learning (PPML) refers to the process leading to the acquisition of new motor skills through repeated practice. It is crucial to (re-)acquire skills needed in daily life and rehabilitation. It can be divided in two processes: motor sequence learning (SL) and sensorimotor adaptation (SA). SL refers to the acquisition of a sequence of actions that follows a precise order, while SA involves continuously adjusting motor outputs to compensate for environmental or internal disturbances. These two processes are typically measured using different lab-based tasks and are presumed to play a role in ecological/ naturalistic tasks. However, to our knowledge, no study examined the relationship between performance on lab-based tasks and ecological/ naturalistic tasks. To address this gap, we designed two lab-based tasks and six ecological tasks assessing SL and SA in an original research including 42 participants (young adults). After ensuring with non-parametric repeated measures ANOVA that all the tasks presented features of learning (all 15.1 <χ² < 142; p < 0.5), Spearman's rank correlation tests were performed between each lab-based task measuring SL and SA and the six ecological tasks. Our findings reveal low to moderate correlations between lab-based and ecological tasks measuring SL and SA (0.265 < rho < 0.395; p < 0.05). This suggests that the lab-based tasks partially reflect PPML as it occurs in everyday life. We believe that the partial ecological validity of these lab-based tasks is essential for their use, especially in the context of clinical evaluation prior to rehabilitation.
Collapse
Affiliation(s)
- Elodie Martin
- ToNIC, Université de Toulouse, INSERM, UT3 Paul Sabatier University, Toulouse, France
- Department of Functional Physiological Explorations, Motion Analyses Center, University Hospital of Toulouse, Hopital de Purpan, Toulouse, France
- Institut de Formation en Psychomotricité, Faculté de santé, Paul Sabatier University (UT3), Toulouse, France
| | - Sarah Seiwert
- ToNIC, Université de Toulouse, INSERM, UT3 Paul Sabatier University, Toulouse, France
| | - Lilian Fautrelle
- ToNIC, Université de Toulouse, INSERM, UT3 Paul Sabatier University, Toulouse, France
| | - Joseph Tisseyre
- ToNIC, Université de Toulouse, INSERM, UT3 Paul Sabatier University, Toulouse, France
| | - David Gasq
- ToNIC, Université de Toulouse, INSERM, UT3 Paul Sabatier University, Toulouse, France
- Department of Functional Physiological Explorations, Motion Analyses Center, University Hospital of Toulouse, Hopital de Purpan, Toulouse, France
| | - Martin Lemay
- CHU Sainte-Justine, Research Center, Université du Québec à Montréal, Montréal, Quebec, Canada
- Department of Physical Activity Sciences, Université du Québec à Montréal, Montréal, Quebec, Canada
| | - David Amarantini
- ToNIC, Université de Toulouse, INSERM, UT3 Paul Sabatier University, Toulouse, France
| | - Jessica Tallet
- ToNIC, Université de Toulouse, INSERM, UT3 Paul Sabatier University, Toulouse, France
| |
Collapse
|
4
|
Filho JMVM, de Oliveira AAR, de Bruin VMS, Viana RB, de Bruin PFC. Influence of sleep on motor skill acquisition in children: a systematic review. J Sleep Res 2025; 34:e14309. [PMID: 39205321 DOI: 10.1111/jsr.14309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Effects of sleep on procedural (implicit) memory consolidation in children remain controversial. The aim of this systematic review was to synthesise the evidence on the influence of sleep on motor skills acquisition in children. Four electronic databases were searched: PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Excerpta Medica Database (Embase), and Biblioteca Virtual em Saúde (BVS). Original studies, published until October 17, 2023, on motor skill acquisition in children aged ≤12 years, in which the intervention group slept after motor skill training, while the control group remained awake, were considered for inclusion. Risk of bias was evaluated using the Cochrane's Risk of Bias 2 tool. The review protocol was pre-registered at the International Prospective Register of Systematic Reviews (PROSPERO protocol number: CRD42022363868) and all reported items followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Of the 7241 articles initially retrieved, nine met the primary criteria and were included in this review. Of these, six studies reported that daytime or night-time sleep intervention improved motor skill acquisition, as compared to wakefulness. All studies presented a high risk of bias. In conclusion, the evidence summarised suggests that sleep may enhance motor skills acquisition and could be important for motor development in childhood. However, due to the high risk of bias in the included studies, future randomised controlled trials with high methodological quality are necessary to better clarify this topic.
Collapse
Affiliation(s)
| | | | | | - Ricardo Borges Viana
- Human Anatomy Laboratory, Institute of Physical Education and Sports, Federal University of Ceará, Fortaleza, Brazil
| | | |
Collapse
|
5
|
Ke Y, Bao M, Qu X, Yan Y, Li L, Wang Y, Wu Y, Li X, Liu Y. The effect of diverse sports skills interventions on physical fitness and brain development among Chinese high school students: a cluster randomized controlled trial study protocol. Trials 2025; 26:102. [PMID: 40128900 PMCID: PMC11931799 DOI: 10.1186/s13063-025-08788-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/04/2025] [Indexed: 03/26/2025] Open
Abstract
BACKGROUND During adolescence, research concerning physical fitness and brain development has become a focal point in health and neuroscience. Academic debates on the precise impact of different sports skills on adolescent physical fitness lack consensus. While exercise's positive effects on brain development in children and older adults are well-documented, its specific impact on adolescents remains unexplored. A year-long trial explores how diverse sports skills affect adolescents' physical fitness and brain development. The study has a dual focus: first, to examine the potential correlation between sports skills acquisition and indicators of adolescent physical fitness; and second, to investigate the mechanisms of brain plasticity in adolescents. This comprehensive study is poised to fill knowledge gaps, providing a scientific basis for targeted health interventions in adolescent populations. METHODS This study will employ a randomized controlled cluster design involving senior high school students in Shanghai. The expected sample size is approximately 450 students, divided into four experimental groups and a control group. The experimental groups will undergo 1 year of sports skills training in basketball, football, tennis, and martial arts, while the control group will receive regular physical education classes. Prior to intervention, data will be collected on students' physical fitness, sports skills, levels of physical activity, and functional magnetic resonance imaging (fMRI) measurements. Rigorous control of variables will ensure comparability and experimental validity. For data analysis, specialized software tools, including SPSS 18.0, AMOS 18.0, Matlab R2013b, and EXCEL, will be employed for comprehensive analysis and interpretation, validating potential differences between experimental and control groups in various aspects of physical fitness and sports skills. DISCUSSION This experiment aims to provide substantial scientific evidence on the impact of sports skills learning on diverse indicators of adolescent physical fitness. In addition, it aims to elucidate the effects of exercise on adolescent brain plasticity and its specific underlying mechanisms. This comprehensive evidence base is poised to serve as a basis for more effective interventions in the future, providing enhanced scientific guidance for promoting holistic adolescent development. It also provides scholars and practitioners with fresh perspectives on adolescent health development. TRIAL REGISTRATION The study was registered at the China Clinical Trial Registry (ChiCTR2300070942). https://www.chictr.org.cn . Registered on April 10, 2023.
Collapse
Affiliation(s)
- Youzhi Ke
- School of Physical Education, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438, China
| | - Menghan Bao
- Xinjiangwan Experimental School affiliated to Tongji University, Shanghai, 200433, China
| | - Xuliang Qu
- High School Affiliated to Fudan University, Pudong Campus, Shanghai, 201209, China
| | - Yiping Yan
- School of Physical Education, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438, China
| | - Li Li
- Educational Institute of Yangpu District Shanghai, Shanghai, 200093, China
| | - Yemei Wang
- Educational Institute of Minhang District Shanghai, Shanghai, 200241, China
| | - Yeli Wu
- Educational Institute of Xuhui District Shanghai, Shanghai, 200032, China
| | - Xiaokai Li
- School of Exercise and Health, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438, China.
| | - Yang Liu
- School of Physical Education, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438, China.
- Shanghai Research Center for Physical Fitness and Health of Children and Adolescents, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438, China.
- Physical Education National Experimental Teaching Demonstration Center, Shanghai University of Sport, 650 Qingyuanhuan Road, Shanghai, 200438, China.
| |
Collapse
|
6
|
Tagliabue L, Cerroni F, Salatiello R, Ricci C, Zanchi S, Monaco E, Nacinovich R, Carotenuto M, Purpura G. Neuro-Psychomotor intervention in children with neurodevelopmental disorders: An exploratory study by using parent-report tools. JOURNAL OF INTELLECTUAL DISABILITIES : JOID 2025; 29:86-99. [PMID: 38228568 DOI: 10.1177/17446295241228635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Neurodevelopmental disorders are a group of complex conditions with onset in the developmental period, that produce impairments of global functioning. For these features, the rehabilitative approaches should be flexible, tailored to the individual characteristics of each patient, and characterized by a standardized multidimensional view, for taking into consideration all the several areas of neurodevelopment. This single-arm clinical trial aims to investigate the features, feasibility, and limitations of Neuro-Psychomotor (NPM) intervention, an Italian naturalistic model for children with Neurodevelopmental Disorders. 30 children (16 with Mixed Specific Developmental Disorder vs 14 with Intellectual Disability) were recruited and their parents filled out two validated tools questionnaires (Developmental Profile-3 and Sensory Processing Measure), before and after 6 months of NPM intervention. Although with some limitations, findings showed that NPM intervention is reliable, flexible, and helpful for children with different neurodevelopmental disorders. Further studies are necessary to investigate its efficacy on a larger sample.
Collapse
Affiliation(s)
- Luca Tagliabue
- Child and Adolescent Health Department, Fondazione IRCCS San Gerardo dei Tintori, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Italy
| | - Francesco Cerroni
- Clinic of Child and Adolescent Neuropsychiatry, University of Campania "Luigi Vanvitelli", Italy
| | - Raffaella Salatiello
- Clinic of Child and Adolescent Neuropsychiatry, University of Campania "Luigi Vanvitelli", Italy
| | - Chiara Ricci
- Child and Adolescent Health Department, Fondazione IRCCS San Gerardo dei Tintori, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Italy
| | - Stefania Zanchi
- Child and Adolescent Health Department, Fondazione IRCCS San Gerardo dei Tintori, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Italy
| | - Elide Monaco
- Child and Adolescent Health Department, Fondazione IRCCS San Gerardo dei Tintori, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Italy
| | - Renata Nacinovich
- Child and Adolescent Health Department, Fondazione IRCCS San Gerardo dei Tintori, Italy
- School of Medicine and Surgery, University of Milano Bicocca, Italy
| | - Marco Carotenuto
- Clinic of Child and Adolescent Neuropsychiatry, University of Campania "Luigi Vanvitelli", Italy
| | - Giulia Purpura
- School of Medicine and Surgery, University of Milano Bicocca, Italy
| |
Collapse
|
7
|
Rossi Sebastiano D, Muscio C, Duran D, Bonfoco D, Dotta S, Anversa P, Pellencin E, Tiraboschi P, Visani E. Crochet increases attention through a requiring motor skill learning. Sci Rep 2025; 15:4141. [PMID: 39900664 PMCID: PMC11790931 DOI: 10.1038/s41598-025-88777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/30/2025] [Indexed: 02/05/2025] Open
Abstract
In this study, we compared the effects promoted by a brief single session of crochet in a group of skilled knitters (CRO) and a control group (CRT) on the Attentional Network Test (ANT) and the whole brain Functional Connectivity (FC) revealed by Magnetoencephalography (MEG). Data revealed that crochet determined a significant effect (before, T0, vs after, T1, the crochet session) on reaction times (for all cue and stimulus types), improving alertness and orienting networks (but not executive control) only in the CRO group. Data of FC are coherent with the behavioural ones. We observed that the Betweenness Centrality maximum (BCmax) index in the beta band significantly increased, and global FC in the alpha band significantly increased at T1 for the CRO group but not for the CTR group. Increased global BCmax in the beta band after the crochet activity correlated with better performance (reduced reaction times), suggesting that the brain has become more efficiently integrated, thus increasing the information exchange between different brain areas. Decreased global FC in the alpha band may reflect a transition from a quiet, global rest to a condition of increased alertness and readiness to stimuli. Finally, we discuss the hypothesis that these results could be the reinforcement of connections between motor and attentional networks promoted by learning the complex motor skills of crochet.
Collapse
Affiliation(s)
- Davide Rossi Sebastiano
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy.
| | - Cristina Muscio
- Azienda Socio-Sanitaria Territoriale- Bergamo Ovest, 24047, Bergamo, Italy
| | - Dunja Duran
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Deborah Bonfoco
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Sara Dotta
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Paola Anversa
- Neurophysiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Elisa Pellencin
- Unit of Neurology V and Neuropathology, Fondazione-IRCCS-Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Pietro Tiraboschi
- Unit of Neurology V and Neuropathology, Fondazione-IRCCS-Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Elisa Visani
- Epilepsy Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| |
Collapse
|
8
|
Zachariou V, Pappas C, Bauer CE, Seago ER, Gold BT. Exploring the links among brain iron accumulation, cognitive performance, and dietary intake in older adults: A longitudinal MRI study. Neurobiol Aging 2025; 145:1-12. [PMID: 39447489 PMCID: PMC11578767 DOI: 10.1016/j.neurobiolaging.2024.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 10/09/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
This study evaluated longitudinal brain iron accumulation in older adults, its association with cognition, and the role of specific nutrients in mitigating iron accumulation. MRI-based, quantitative susceptibility mapping estimates of brain iron concentration were acquired from seventy-two healthy older adults (47 women, ages 60-86) at a baseline timepoint (TP1) and a follow-up timepoint (TP2) 2.5-3.0 years later. Dietary intake was evaluated at baseline using a validated questionnaire. Cognitive performance was assessed at TP2 using the uniform data set (Version 3) neuropsychological tests of episodic memory (MEM) and executive function (EF). Voxel-wise, linear mixed-effects models, adjusted for longitudinal gray matter volume alterations, age, and several non-dietary lifestyle factors revealed brain iron accumulation in multiple subcortical and cortical brain regions, which was negatively associated with both MEM and EF performance at T2. However, consumption of specific dietary nutrients at TP1 was associated with reduced brain iron accumulation. Our study provides a map of brain regions showing iron accumulation in older adults over a short 2.5-year follow-up and indicates that certain dietary nutrients may slow brain iron accumulation.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Behavioral Science, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Elayna R Seago
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA; Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA.
| |
Collapse
|
9
|
Bastias E, Otte FW, Vaughan J, Swainston S, O' Sullivan M. An ecological approach for skill development and performance in soccer goalkeeper training: Empirical evidence and coaching applications. J Sports Sci 2025; 43:71-82. [PMID: 38293847 DOI: 10.1080/02640414.2024.2306449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 01/10/2024] [Indexed: 02/01/2024]
Abstract
Ecological approaches in sport consider that athletes adapt to properties of the task and the surrounding environment. Thus, task and environment are key constraints of performance. Yet, the influence of task and environmental constraints on athletes' performance needs empirical examination, especially in sport-specific contexts such as soccer goalkeeping. This study aimed to examine if and how task and environmental constraints influenced goalkeepers (GKs') performances. We monitored performance coefficients of two professional female GKs across 13 training tasks that varied based on 9 constraints, referring to both interactions among athletes and properties of the surrounding landscape. Results showed that constraints explain ~ 47% of the observed variability in GKs' performances. Numerical complexity (i.e., the potential interactions between athletes) showed a major influence on performance, which indicates that number of interactions among athletes may constrain GKs' perceived opportunities for action. Field dimensions and landscape representativity (including elements such as penalty area(s), target goal(s) and constraints for shooting) showed positive relationships with performance, supporting that training designs retaining closer proximity to the game may benefit GKs' performances. Overall, results supported that athlete-environment couplings could be understood as a multifactorial model and hence, a combination of task constraints are necessary for designing effective learning environments.
Collapse
Affiliation(s)
- Elliot Bastias
- Research and Development Department, AIK Fotboll, Stockholm, Sweden
| | | | - James Vaughan
- Research and Development Department, AIK Fotboll, Stockholm, Sweden
| | - Scott Swainston
- Department of Sport and Health Sciences, University of Exeter, Exeter, UK
| | - Mark O' Sullivan
- Department of Sport and Social Sciences, Norwegian School of Sport Sciences, Oslo, Norway
| |
Collapse
|
10
|
Foray K, Zhou W, Fitzgerald J, Gianferrara PG, Joiner WM. Applied Motor Noise Affects Specific Learning Mechanisms during Short-Term Adaptation to Novel Movement Dynamics. eNeuro 2025; 12:ENEURO.0100-24.2024. [PMID: 39592225 PMCID: PMC11747976 DOI: 10.1523/eneuro.0100-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Short-term motor adaptation to novel movement dynamics has been shown to involve at least two concurrent learning processes: a slow process that responds weakly to error but retains information well and a fast process that responds strongly to error but has poor retention. This modeling framework can explain several properties of motion-dependent motor adaptation (e.g., 24 h retention). An important assumption of this computational framework is that learning is only based on the experienced movement error, and the effect of noise (either internally generated or externally applied) is not considered. We examined the respective error sensitivity by quantifying adaptation in three subject groups distinguished by the noise added to the motion-dependent perturbation. We assessed the feedforward adaptive changes in motor output and examined the adaptation rate, retention, and decay of learning. Applying a two-state modeling framework showed that the applied noise during training mainly affected the fast learning process, with the slow process largely unaffected; participants in the higher noise groups demonstrated a reduced force profile following training, but the decay rate across groups was similar, suggesting that the slow process was unimpaired across conditions. Collectively, our results provide evidence that noise significantly decreases motor adaptation, but this reduction may be due to its influence over specific learning mechanisms. Importantly, this may have implications for how the motor system compensates for random fluctuations, especially when affected by brain disorders that result in movement tremor (e.g., essential tremor).
Collapse
Affiliation(s)
- Katherine Foray
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95616
| | - Weiwei Zhou
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95616
| | - Justin Fitzgerald
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95616
| | - Pierre G Gianferrara
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95616
| | - Wilsaan M Joiner
- Departments of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, California 95616
- Neurology, University of California, Davis, Davis, California 95616
| |
Collapse
|
11
|
Firouzi M, Baetens K, Duta C, Baeken C, Van Overwalle F, Swinnen E, Deroost N. The cerebellum is involved in implicit motor sequence learning. Front Neurosci 2024; 18:1433867. [PMID: 39712223 PMCID: PMC11659296 DOI: 10.3389/fnins.2024.1433867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024] Open
Abstract
Background Implicit motor sequence learning (IMSL) is a cognitive function that allows us to execute multiple movements in a specific sequential order and plays a crucial role in our daily functional activities. Although the role of the basal ganglia network in IMSL is well-established, the exact involvement of the cerebellar network is less clear. Aim Here, we aimed to address this issue by investigating the effects of cerebellar transcranial direct-current stimulation (tDCS) on IMSL. Methods In this sham-controlled, crossover study in 45 healthy young adults, we used mixed-effects models to analyze sequence-specific (primary outcome) and general learning effects (secondary outcome) in the acquisition (during tDCS), short- (five minutes post-tDCS) and long-term consolidation (one week post-tDCS) phases of IMSL, as measured by the serial reaction time (SRT) task. Results Analyses based on response times (RTs) revealed that anodal tDCS over the cerebellum significantly increased sequence-specific learning during acquisition, compared to sham (anodal: M = 38.24 ms, sham: M = 26.78 ms, p = 0.032); did not affect general learning; and significantly slowed overall RTs (anodal: M = 362.03 ms, sham: M = 356.37 ms, p = 0.049). Accuracy-based analyses revealed that anodal tDCS reduced the probability of correct responses occurring in random trials versus sequential trials by 1.17%, p = 0.009, whereas sham tDCS had no effect, p = 0.999. Conclusion Our finding of enhanced sequence-specific learning, but not general learning, suggests that the cerebellar network not only plays a role in error correction processes, but also serves a sequence-specific function within the integrated motor learning network that connects the basal ganglia and cerebellum.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Jette, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Catalina Duta
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel (VUB), University Hospital Brussel (UZ Brussel), Jette, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Brussels Human Robotic Research Center (BruBotics), Vrije Universiteit Brussel, Jette, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
12
|
Sugata H, Iwane F, Hayward W, Azzollini V, Dash D, Salamanca-Giron RF, Bönstrup M, Buch ER, Cohen LG. Cingulate and striatal hubs are linked to early skill learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624544. [PMID: 39803559 PMCID: PMC11722315 DOI: 10.1101/2024.11.20.624544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Early skill learning develops in the context of activity changes in distributed cortico-subcortical regions. Here, we investigated network hubs-centers of information integration and transmission-within the brain network supporting early skill learning. We recorded magnetoencephalographic (MEG) brain activity in healthy human subjects who learned a moderately difficult sequence skill with their non-dominant left hand. We then computed network hub strength by summing top 10% functional connectivity over 86 parcellated brain regions (AAL3 atlas) and five brain oscillatory frequency bands (alpha, low-, high-beta, low- and high-gamma). Virtually all skill gains developed during rest intervals of early learning (micro-offline gains). MEG hub strength in the alpha band (8-13Hz) in bilateral anterior cingulate (ACC) and caudate and in the low-beta band (13-16Hz) in bilateral caudate and right putamen correlated with micro-offline gains. These regions linked strongly with the hippocampus, parahippocampal cortex, and lingual and fusiform gyri. Thus, alpha and low-beta brain oscillatory activity in cingulate and striatal regions appear to contribute as hubs of information integration and transmission during early skill learning.
Collapse
Affiliation(s)
- Hisato Sugata
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Faculty of Welfare and Health Science, Oita University, Oita, Japan
- Equal Contribution
- Lead Contact
| | - Fumiaki Iwane
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Equal Contribution
| | - William Hayward
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Valentina Azzollini
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Debadatta Dash
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | | | - Marlene Bönstrup
- Department of Neurology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Ethan R Buch
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Leonardo G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
- Lead Contact
| |
Collapse
|
13
|
DeVeney SL, Dotan S, Weberman I, Julius MS, Adi-Japha E. Dynamics of Motor Skill Learning in American and Israeli Toddlers With Varied Language Proficiency. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:2855-2870. [PMID: 39392908 DOI: 10.1044/2024_ajslp-24-00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
PURPOSE The aim of the present study was twofold: to determine if deficits in motor skill proficiency and learning were present in 2-year-old children identified with early expressive language delay compared to peers without the delay, and to distinguish how motor skill proficiency and learning behaviors may manifest differently across culturally and linguistically diverse backgrounds. METHOD The study involved 54 children (24-36 months of age), 23 of whom were identified as having an expressive language delay. Furthermore, 16 participants were American and English-speaking and 38 were Israeli and Hebrew-speaking. After motor and language skill proficiency was assessed using a variety of measures, each child and participating parent were introduced to a nonsymmetrical-shaped insertion task so that motor learning skills could be observed. This block insertion task was observed for each child at three time points and included a transfer task (same task, new nonsymmetrical shape). RESULTS Children with early expressive language delay were statistically significantly more likely to exhibit deficits in fine-motor proficiency than peers without language delay, regardless of country of origin or language spoken. Furthermore, participants with language delay demonstrated significantly higher error rates in transfer task completion compared with peers. Finally, participants in the U.S. sample indicated lower fine-motor skills and higher error rates than those in the Israeli sample. CONCLUSION Differences in motor skill proficiency were universally associated with language delay status, indicating support for the notion that language acquisition deficits may extend beyond the linguistic system even in young children identified as late talkers.
Collapse
Affiliation(s)
| | - Shirly Dotan
- Faculty of Education, Bar-Ilan University, Ramat Gan, Israel
| | - Inbal Weberman
- Faculty of Education, Bar-Ilan University, Ramat Gan, Israel
| | - Mona S Julius
- Faculty of Education, Bar-Ilan University, Ramat Gan, Israel
- The Academic College Levinsky-Wingate, Tel-Aviv, Israel
- The Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| | - Esther Adi-Japha
- Faculty of Education, Bar-Ilan University, Ramat Gan, Israel
- The Gonda (Goldschmied) Multidisciplinary Brain Research Center, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
14
|
Popescu BO, Batzu L, Ruiz PJG, Tulbă D, Moro E, Santens P. Neuroplasticity in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1329-1339. [PMID: 39102007 PMCID: PMC11502561 DOI: 10.1007/s00702-024-02813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, affecting millions of people and rapidly increasing over the last decades. Even though there is no intervention yet to stop the neurodegenerative pathology, many efficient treatment methods are available, including for patients with advanced PD. Neuroplasticity is a fundamental property of the human brain to adapt both to external changes and internal insults and pathological processes. In this paper we examine the current knowledge and concepts concerning changes at network level, cellular level and molecular level as parts of the neuroplastic response to protein aggregation pathology, synapse loss and neuronal loss in PD. We analyse the beneficial, compensatory effects, such as augmentation of nigral neurons efficacy, as well as negative, maladaptive effects, such as levodopa-induced dyskinesia. Effects of physical activity and different treatments on neuroplasticity are considered and the opportunity of biomarkers identification and use is discussed.
Collapse
Affiliation(s)
- Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania.
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.
| | - Lucia Batzu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | | | - Delia Tulbă
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Alpes University, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Patrick Santens
- Department of Neurology, University Hospital Ghent, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Impellizzeri F, Maggio MG, De Pasquale P, Bonanno M, Bonanno L, De Luca R, Paladina G, Alibrandi A, Milardi D, Thaut M, Hurt C, Quartarone A, Calabrò RS. Coupling neurologic music therapy with immersive virtual reality to improve executive functions in individuals with Parkinson's disease: A Quasi-Randomized Clinical Trial. Clin Park Relat Disord 2024; 11:100277. [PMID: 39507632 PMCID: PMC11539655 DOI: 10.1016/j.prdoa.2024.100277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/09/2024] [Accepted: 10/19/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction Parkinson's disease (PD) is one the most common neurodegenerative movement disorder, leading to motor and non-motor symptoms, including deficits in executive functions (EF), memory, visuospatial abilities, and psychomotor speed. Current treatments are primarily symptomatic, involving pharmacological, surgical strategies. Neurologic Music Therapy (NMT) has gained recognition for its effectiveness in neurorehabilitation of PD patients and improving motor and cognitive domains, such as EF. This study combines NMT with the virtual reality (VR) platform Computer-Assisted Rehabilitation Environment (CAREN), offering customizable environments for rhythmic cue practice to provide an innovative approach to Parkinson's rehabilitation. Methods In our single-blind quasi-randomized controlled trial, forty patients were assigned to either an experimental group (EG = 20) or a control group (CG = 20). Both groups underwent two months of training with CAREN scenarios (three times a week for 24 sessions). The experimental group additionally received NMT applied to the selected scenarios. Participants were evaluated by a neuropsychologist at baseline and immediately after training. Results Intra-group analysis showed significant improvements in the EG for MOCA (p = 0.007), FAB (p = 0.008), Stroop Error (p = 0.003), Stroop Time (p < 0.001), and Visual Search (p < 0.001). The CG showed a significant difference only in Stroop Error (p = 0.02). Conclusions This pilot study is the first to combine NMT with CAREN in PD patients. Our findings suggest that NMT, within an immersive VR environment, effectively improves cognitive and EF in PD. Music structured within NMT techniques, coupled with advanced audio-visual feedback from VR, offers an innovative and potentially more effective approach for managing cognitive and executive deficits associated with PD.
Collapse
Affiliation(s)
| | | | | | - Mirjam Bonanno
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy
| | - Lilla Bonanno
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy
| | | | | | - Angela Alibrandi
- Department of Economics, Unit of Statistical and Mathematical Sciences, University of Messina, Messina, Italy
| | - Demetrio Milardi
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, Messina, Italy
| | - Michael Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, Faculty of Medicine, Institute of Medical Sciences and Rehabilitation Science Institute, University of Toronto, Toronto, ON, Canada
| | - Corene Hurt
- Music and Health Science Research Collaboratory, Faculty of Music, Faculty of Medicine, Institute of Medical Sciences and Rehabilitation Science Institute, University of Toronto, Toronto, ON, Canada
| | | | | |
Collapse
|
16
|
Ricci S, Torrigino D, Minuto M, Casadio M. A Visuo-Haptic System for Nodule Detection Training: Insights From EEG and Behavioral Analysis. IEEE TRANSACTIONS ON HAPTICS 2024; 17:946-956. [PMID: 39499593 DOI: 10.1109/toh.2024.3487522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Medical palpation is a key skill for clinicians. It is typically trained using animal and synthetic models, which however raise ethical concerns and produce high volumes of consumables. An alternative could be visuo-haptic simulations, despite their training efficacy has not been proved yet. The assessment of palpatory skills requires objective methods, that can be achieved by combining performance metrics with electroencephalography (EEG). The goals of this study were to: (i) develop a visuo-haptic system to train nodule detection, combining a Geomagic Touch haptic device with a visuo-haptic simulation of a skin patch and a nodule, implemented using SOFA framework; (ii) assess whether this system could be used for training and evaluation. To do so, we collected performance and EEG data of 19 subjects performing multiple repetitions of a nodule detection task. Results revealed that participants could be divided in low and high performers; the former applied a greater pressure when looking for the nodule and showed a higher EEG alpha (8.5 - 13 ) peak at rest; The latter explored the skin remaining on its surface and were characterized by low alpha power. Furthermore, alpha power positively correlated with error and negatively with palpation depth. Altogether, these results suggest that alpha power might be an indicator of performance, denoting an increase in vigilance, attention, information processing, cognitive processes, and engagement, ultimately affecting strategy and performance. Also, the combination of EEG with performance data can provide an objective measure of the user's palpation ability.
Collapse
|
17
|
Truong C, Papaxanthis C, Ruffino C. Unraveling the time-of-day influences on motor consolidation through the motor-declarative memory conflict. Sci Rep 2024; 14:22195. [PMID: 39333514 PMCID: PMC11437201 DOI: 10.1038/s41598-024-69336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 08/02/2024] [Indexed: 09/29/2024] Open
Abstract
Competition between motor and declarative memory systems, both involved simultaneously in motor learning, has been shown to reduce motor consolidation. Here, we investigated this conflict during the learning of a sequential finger-tapping task (SFTT) scheduled for either the morning or the afternoon. Sixty participants, divided into four groups, trained on SFTT at either 10 a.m. or 3 p.m., and retested five hours later. To disrupt the conflict between the two memories, two groups underwent declarative learning immediately after SFTT training, involving word list training (G10DL and G3DL), while the two other groups (G10CTR and G3CTR) experienced no additional learning. The results revealed that after morning training without additional learning (C10CTR), skill consolidation deteriorated, while the addition of declarative learning (G10DL) significantly attenuated this decay, stabilizing consolidation. Afternoon training showed skill stabilization for both groups (G3CTR and G3DL). These results suggest that weaker consolidation after morning training may be due to an important competition between motor and declarative memories within the same motor task.
Collapse
Affiliation(s)
- Charlène Truong
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, Campus Universitaire, BP 27877, 21000, Dijon, France.
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université de Bourgogne, UFR des Sciences du Sport, Campus Universitaire, BP 27877, 21000, Dijon, France
- Pôle Recherche et Santé Publique, CHU Dijon Bourgogne, 21000, Dijon, France
| | - Célia Ruffino
- EA4660, C3S Laboratory, C3S Culture Sport Health Society, Université de Bourgogne Franche-Comté, UPFR Sports, 25000, Besançon, France
| |
Collapse
|
18
|
Debarnot U, Metais A, Legrand M, Blache Y, Saimpont A. Interlimb transfer of sequential motor learning between upper and lower effectors. Gait Posture 2024; 113:412-418. [PMID: 39094235 DOI: 10.1016/j.gaitpost.2024.07.294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Interlimb transfer of sequential motor learning (SML) refers to the positive influence of prior experiences in performing the same sequential movements using different effectors. Despite evidence from intermanual SML, and while most daily living activities involve interlimb cooperation and coordination between the four limbs, nothing is known about bilateral SML transfer between the upper and lower limbs. RESEARCH QUESTION We examined the transfer of bilateral SML from the upper to the lower limbs and vice versa. METHODS Twenty-four participants had to learn an initial bilateral SML task using the upper limbs and then performed the same sequence using the lower limbs during a transfer SML task. They performed the reversed situation 1 month apart. The performance was evaluated at the beginning and the end of both initial and transfer SML practice phases. RESULTS Significant and reciprocal transfer gains in performance were observed regardless of the effectors. Greater transfer gains in performance were observed at the beginning of the transfer SML from the lower to the upper limbs (44 %) but these gains vanished after practice with the transfer effectors (5 %). Although smaller gains were initially achieved in the transfer of SML from the upper to the lower limbs (15 %), these gains persisted and remained significant (9 %) after practice with the transfer effectors. SIGNIFICANCE Our results provide evidence of a reciprocal and asymmetrical interlimb transfer of bilateral SML between the upper and lower limbs. These findings could be leveraged as a relevant strategy in the context of sports and functional rehabilitation.
Collapse
Affiliation(s)
- Ursula Debarnot
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France; Institut Universitaire de France.
| | - Angèle Metais
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Marion Legrand
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Yoann Blache
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Arnaud Saimpont
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| |
Collapse
|
19
|
Cienfuegos M, Maycock J, Naceri A, Düsterhus T, Kõiva R, Schack T, Ritter H. Exploring motor skill acquisition in bimanual coordination: insights from navigating a novel maze task. Sci Rep 2024; 14:18887. [PMID: 39143119 PMCID: PMC11324764 DOI: 10.1038/s41598-024-69200-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
In this study, we introduce a novel maze task designed to investigate naturalistic motor learning in bimanual coordination. We developed and validated an extended set of movement primitives tailored to capture the full spectrum of scenarios encountered in a maze game. Over a 3-day training period, we evaluated participants' performance using these primitives and a custom-developed software, enabling precise quantification of performance. Our methodology integrated the primitives with in-depth kinematic analyses and thorough thumb pressure assessments, charting the trajectory of participants' progression from novice to proficient stages. Results demonstrated consistent improvement in maze performance and significant adaptive changes in joint behaviors and strategic recalibrations in thumb pressure distribution. These findings highlight the central nervous system's adaptability in orchestrating sophisticated motor strategies and the crucial role of tactile feedback in precision tasks. The maze platform and setup emerge as a valuable foundation for future experiments, providing a tool for the exploration of motor learning and coordination dynamics. This research underscores the complexity of bimanual motor learning in naturalistic environments, enhancing our understanding of skill acquisition and task efficiency while emphasizing the necessity for further exploration and deeper investigation into these adaptive mechanisms.
Collapse
Affiliation(s)
- Miguel Cienfuegos
- Neurocognition and Action - Biomechanics Group, Bielefeld University, 33615, Bielefeld, Germany.
| | | | - Abdeldjallil Naceri
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992, Munich, Germany
| | - Tobias Düsterhus
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| | - Risto Kõiva
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| | - Thomas Schack
- Neurocognition and Action - Biomechanics Group, Bielefeld University, 33615, Bielefeld, Germany
| | - Helge Ritter
- Neuroinformatics Group, Bielefeld University, 33619, Bielefeld, Germany
| |
Collapse
|
20
|
Errante A, Beccani L, Verzelloni J, Maggi I, Filippi M, Bressi B, Ziccarelli S, Bozzetti F, Costi S, Ferrari A, Fogassi L. Effectiveness of action observation treatment based on pathological model in hemiplegic children: a randomized-controlled trial. Eur J Phys Rehabil Med 2024; 60:643-655. [PMID: 38814197 PMCID: PMC11391395 DOI: 10.23736/s1973-9087.24.08413-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
BACKGROUND Action observation treatment (AOT) is an innovative therapeutic approach consisting in the observation of actions followed by their subsequent repetition. The standard version of AOT consists in the observation/imitation of a typically developed individual, which is proposed as model (TDM-AOT). AIM This study aims to compare the effectiveness of AOT based on a pathological ameliorative model (PAM-AOT) versus TDM-AOT in improving upper limb ability in children with unilateral cerebral palsy (UCP). DESIGN The study consists in a prospective randomized controlled, evaluator-blinded trial (RCT), with two active arms, designed to evaluate the effectiveness of AOT based on pathological model (PAM-AOT) as compared to a standard AOT based on TDM (TDM-AOT). SETTING The 3-week AOT program was administered in a clinical setting. For some patients, the treatment was delivered at participant's home with the remote support of the physiotherapist (tele-rehabilitation). POPULATION Twenty-six children with UCP (mean age 10.5±3.09 years; 14 females) participated in the study, with the experimental group observing a pathological model and the control group observing a typically developed model. METHODS Motor assessments included unimanual and bimanual ability measures conducted at T0 (baseline, before the treatment), T1 (3 weeks after T0), T2 (8-12 weeks after treatment) and T3 (24-28 weeks after treatment); a subset of 16 patients also underwent fMRI motor assessment. Generalized Estimating Equations models were used for statistical analysis. RESULTS Both groups showed significant improvement in bimanual function (GEE, Wald 106.16; P<0.001) at T1 (P<0.001), T2 (P<0.001), and T3 (P<0.001). Noteworthy, the experimental group showed greater improvement than the control group immediately after treatment (P<0.013). Both groups exhibited similar improvement in unimanual ability (GEE, Wald 25.49; P<0.001). The fMRI assessments revealed increased activation of ventral premotor cortex after treatment in the experimental compared with control group (GEE, Wald 6.26; P<0.012). CONCLUSIONS Overall, this study highlights the effectiveness of PAM-AOT in achieving short-term improvement of upper limb ability in children with UCP. CLINICAL REHABILITATION IMPACT These findings have significant implications for rehabilitative interventions based on AOT in hemiplegic children, by proposing a non-traditional approach focused on the most functional improvement achievable by imitating a pathological model.
Collapse
Affiliation(s)
- Antonino Errante
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Laura Beccani
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Jessica Verzelloni
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Irene Maggi
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Mariacristina Filippi
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Barbara Bressi
- Physical Medicine and Rehabilitation Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | | | - Stefania Costi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Scientific Directorate, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Adriano Ferrari
- Unit of Severe Disabilities of Developmental Age (UDGEE), Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Surgery, Medicine, Dentistry and Morphological Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, University of Parma, Parma, Italy -
| |
Collapse
|
21
|
Meek AW, Greenwell DR, Nishio H, Poston B, Riley ZA. Anodal M1 tDCS enhances online learning of rhythmic timing videogame skill. PLoS One 2024; 19:e0295373. [PMID: 38870202 PMCID: PMC11175489 DOI: 10.1371/journal.pone.0295373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Transcranial direct current stimulation (tDCS) has been shown to modify excitability of the primary motor cortex (M1) and influence online motor learning. However, research on the effects of tDCS on motor learning has focused predominantly on simplified motor tasks. The purpose of the present study was to investigate whether anodal stimulation of M1 over a single session of practice influences online learning of a relatively complex rhythmic timing video game. Fifty-eight healthy young adults were randomized to either a-tDCS or SHAM conditions and performed 2 familiarization blocks, a 20-minute 5 block practice period while receiving their assigned stimulation, and a post-test block with their non-dominant hand. To assess performance, a performance index was calculated that incorporated timing accuracy elements and incorrect key inputs. The results showed that M1 a-tDCS enhanced the learning of the video game based skill more than SHAM stimulation during practice, as well as overall learning at the post-test. These results provide evidence that M1 a-tDCS can enhance acquisition of skills where quality or success of performance depends on optimized timing between component motions of the skill, which could have implications for the application of tDCS in many real-world contexts.
Collapse
Affiliation(s)
- Anthony W. Meek
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Davin R. Greenwell
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| | - Hayami Nishio
- Department of Human Physiology, University of Oregon, Eugene, WA, United States of America
| | - Brach Poston
- Department of Kinesiology and Nutrition Sciences, University of Nevada Las Vegas, Las Vegas, NV, United States of America
| | - Zachary A. Riley
- School of Health and Human Sciences, Indiana University Indianapolis, Indianapolis, IN, United States of America
| |
Collapse
|
22
|
Le Cong D, Sato D, Ikarashi K, Ochi G, Fujimoto T, Yamashiro K. No effect of whole-hand water flow stimulation on skill acquisition and retention during sensorimotor adaptation. Front Hum Neurosci 2024; 18:1398164. [PMID: 38911224 PMCID: PMC11190340 DOI: 10.3389/fnhum.2024.1398164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Repetitive somatosensory stimulation (RSS) is a conventional approach to modulate the neural states of both the primary somatosensory cortex (S1) and the primary motor cortex (M1). However, the impact of RSS on skill acquisition and retention in sensorimotor adaptation remains debated. This study aimed to investigate whether whole-hand water flow (WF), a unique RSS-induced M1 disinhibition, influences sensorimotor adaptation by examining the hypothesis that whole-hand WF leads to M1 disinhibition; thereby, enhancing motor memory retention. Methods Sixty-eight young healthy participants were randomly allocated to three groups based on the preconditioning received before motor learning: control, whole-hand water immersion (WI), and whole-hand WF. The experimental protocol for all the participants spanned two consecutive days. On the initial day (day 1), baseline transcranial magnetic stimulation (TMS) assessments (T0) were executed before any preconditioning. Subsequently, each group underwent their respective 30 min preconditioning protocol. To ascertain the influence of each preconditioning on the excitability of the M1, subsequent TMS assessments were conducted (T1). Following this, all participants engaged in the motor learning (ML) of a visuomotor tracking task, wherein they were instructed to align a cursor with a target trajectory by modulating the pinch force. Upon completion of the ML session, final TMS assessments (T2) were conducted. All participants were required to perform the same motor learning 24 h later on day 2. Results The results revealed that whole-hand WF did not significantly influence skill acquisition during sensorimotor adaptation, although it did reduce intracortical inhibition. This phenomenon is consistent with the idea that S1, rather than M1, is involved in skill acquisition during the early stages of sensorimotor adaptation. Moreover, memory retention 24 h after skill acquisition did not differ significantly across the three groups, challenging our initial hypothesis that whole-hand WF enhances memory retention throughout sensorimotor adaptation. This could be due to the inability of whole-hand WF to alter sensorimotor connectivity and integration, as well as the nature of the plastic response elicited by the preconditioning. Discussion In conclusion, these findings suggest that although whole-hand WF attenuates intracortical inhibition, it does not modulate skill acquisition or motor memory retention during sensorimotor adaptation.
Collapse
Affiliation(s)
- Dat Le Cong
- Major in Health and Welfare, Graduate School of Niigata University of Health and Welfare, Niigata, Japan
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Daisuke Sato
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koyuki Ikarashi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Genta Ochi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Tomomi Fujimoto
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| | - Koya Yamashiro
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
- Sports Physiology Laboratory, Department of Health and Sports, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
23
|
Muñoz-García D, Serrano JI, Ferrer-Peña R, d'Eudeville V, Brero M, Boisson M, Del Castillo MD. Visually-Induced Motor Imagery Effects on Motor Adaptation to Reverse Steering Cycling. A Randomized Controlled Trial. RESEARCH QUARTERLY FOR EXERCISE AND SPORT 2024; 95:458-465. [PMID: 37826855 DOI: 10.1080/02701367.2023.2252479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 08/02/2023] [Indexed: 10/14/2023]
Abstract
Purpose: First, testing an intervention of neuromodulation based on motor imagery and action observation as a promoter of motor adaptation of a complex motor task involving balance. Second, determining what prior balance factors can affect the motor adaptation task. Methods: A double-blind randomized controlled trial was performed. Forty-eight healthy subjects were recruited. The balance of all participants during gait and standing was assessed before adapting to the complex, multi-limb motor task of riding an inverse steering bicycle (ISB). Two interventions were carried out interleaved among trials of adaptation to the motor task: the experimental group (n = 24) was asked to perform neuromodulation (EN) by watching first-person ISB riding through immersive VR glasses and, simultaneously, mentally mimicking the movements. The control group (CG) was asked to watch a slideshow video of steady landscape images. Results: The results showed that the EN group did not improve the motor adaptation rate and induced higher adaptation times with respect to the CG. However, while the motor adaptation success showed a significant dependence on the prior proprioceptive participation in balance in the CG, the EN group did not present any relationship between the prior balance profile and motor adaptation outcome. Conclusions: Results point to a benefit of the visually guided neuromodulation for the motor adaptation of the subjects with low participation of proprioception in balance. Moreover, the results from the control group would allow to disclose prognostic factors about the success of the motor adaptation, and also prescription criteria for the proposed neuromodulation based on the balance profile.
Collapse
|
24
|
Gathy E, Cadiat N, Gerardin E, Lambert J, Herman B, Leeuwerck M, Bihin B, Vandermeeren Y. Bimanual coordinated motor skill learning in patients with a chronic cerebellar stroke. Exp Brain Res 2024; 242:1517-1531. [PMID: 38722346 DOI: 10.1007/s00221-024-06830-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/01/2024] [Indexed: 05/23/2024]
Abstract
Cerebellar strokes induce coordination disorders that can affect activities of daily living. Evidence-based neurorehabilitation programs are founded on motor learning principles. The cerebellum is a key neural structure in motor learning. It is unknown whether and how well chronic cerebellar stroke individuals (CCSIs) can learn to coordinate their upper limbs through bimanual motor skill learning. The aim was to determine whether CCSIs could achieve bimanual skill learning through a serious game with the REAplan® robot and to compare CCSIs with healthy individuals (HIs). Over three consecutive days, sixteen CCSIs and eighteen HIs were trained on an asymmetric bimanual coordination task ("CIRCUIT" game) with the REAplan® robot, allowing quantification of speed, accuracy and coordination. The primary outcomes were the bimanual speed/accuracy trade-off (BiSAT) and bimanual coordination factor (BiCo). They were also evaluated on a bimanual REACHING task on Days 1 and 3. Correlation analyses between the robotic outcomes and clinical scale scores were computed. Throughout the sessions, BiSAT and BiCo improved during the CIRCUIT task in both HIs and CCSIs. On Day 3, HIs and CCSIs showed generalization of BiSAT, BiCo and transferred to the REACHING task. There was no significant between-group difference in progression. Four CCSIs and two HIs were categorized as "poor learners" according to BiSAT and/or BiCo. Increasing age correlated with reduced BiSAT but not BiCo progression. Over three days of training, HIs and CCSIs improved, retained, generalized and transferred a coordinated bimanual skill. There was no between-group difference, suggesting plastic compensation in CCSIs. Clinical trial NCT04642599 approved the 24th of November 2020.
Collapse
Affiliation(s)
- Estelle Gathy
- Stroke Unit, Motor Learning Lab, Neurology Department, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-La-Neuve, Belgium
- NEUR Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
- COSY Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Ninon Cadiat
- Stroke Unit, Motor Learning Lab, Neurology Department, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
| | - Eloïse Gerardin
- Stroke Unit, Motor Learning Lab, Neurology Department, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
- Louvain Bionics, UCLouvain, Louvain-La-Neuve, Belgium
- NEUR Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Julien Lambert
- COSY Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium
| | - Benoît Herman
- Louvain Bionics, UCLouvain, Louvain-La-Neuve, Belgium
- Institute of Mechanics, Materials and Civil Engineering (iMMC), UCLouvain, Louvain-La-Neuve, Belgium
| | - Mie Leeuwerck
- Department of Physical Medicine and Rehabilitation, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
| | - Benoît Bihin
- Scientific Support Unit (USS), CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium
| | - Yves Vandermeeren
- Stroke Unit, Motor Learning Lab, Neurology Department, CHU UCL Namur (Godinne)/UCLouvain, Yvoir, Belgium.
- Louvain Bionics, UCLouvain, Louvain-La-Neuve, Belgium.
- NEUR Division, Institute of NeuroScience (IoNS), UCLouvain, Brussels, Belgium.
| |
Collapse
|
25
|
Yamamoto S, Miyaguchi S, Ogawa T, Inukai Y, Otsuru N, Onishi H. Effects of transcranial alternating current stimulation to the supplementary motor area on motor learning. Front Behav Neurosci 2024; 18:1378059. [PMID: 38741685 PMCID: PMC11089168 DOI: 10.3389/fnbeh.2024.1378059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 05/16/2024] Open
Abstract
Transcranial alternating current stimulation (tACS) is a noninvasive method for brain stimulation that artificially modulates oscillatory brain activity in the cortical region directly beneath the electrodes by applying a weak alternating current. Beta (β) oscillatory activity in the supplementary motor area (SMA) is involved in motor planning and maintenance, whereas gamma (γ) oscillatory activity is involved in the updating of motor plans. However, the effect of applying tACS to the SMA on motor learning has not yet been investigated. This study assessed the effects of applying tACS to the SMA on motor learning. Forty-two right-handed healthy adults (age 20.6 ± 0.5 years, 24 men and 18 women) were included. Motor learning was assessed using a visuomotor tracking task with pinch tension of the right thumb and right forefinger. Each trial lasted 60 s, and the error rates were measured. Conductive rubber electrodes were attached to the SMA and the left shoulder for tACS. Stimulation was applied at an intensity of 1.0 mA and frequencies of 70 and 20 Hz in the γ-tACS and β-tACS treatment groups, respectively. The sham group was only administered a fade-in/out. The visuomotor tracking task was performed for 10 trials before tACS and 10 trials after tACS. Two trials were conducted on the following day to determine motor skill retention. The average deviation measured during 60 s was considered the error value. Pre-stimulation learning rate was calculated as the change in error rate. Post-stimulation learning rate and retention rate were calculated as the change in error rate after stimulation and on the day after stimulation, respectively. In both the stimulation groups, differences in pre-stimulation learning, post-stimulation learning, and retention rates were not significant. However, in the γ-tACS group, baseline performance and pre-stimulation learning rate were positively correlated with post-stimulation learning rate. Therefore, applying γ-tACS to the SMA can increase post-stimulation learning rate in participants exhibiting low baseline performance and high pre-stimulation learning rate. Our findings suggest that motor learning can be effectively enhanced by applying γ-tACS to the SMA based on an individual's motor and learning abilities.
Collapse
Affiliation(s)
- Shunpei Yamamoto
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Shota Miyaguchi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Takuma Ogawa
- Graduate School, Niigata University of Health and Welfare, Niigata, Japan
| | - Yasuto Inukai
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata, Japan
| |
Collapse
|
26
|
Hashemirad F, Zoghi M, Fitzgerald PB, Hashemirad M, Jaberzadeh S. Site Dependency of Anodal Transcranial Direct-Current Stimulation on Reaction Time and Transfer of Learning during a Sequential Visual Isometric Pinch Task. Brain Sci 2024; 14:408. [PMID: 38672057 PMCID: PMC11048073 DOI: 10.3390/brainsci14040408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Considering the advantages of brain stimulation techniques in detecting the role of different areas of the brain in human sensorimotor behaviors, we used anodal transcranial direct-current stimulation (a-tDCS) over three different brain sites of the frontoparietal cortex (FPC) in healthy participants to elucidate the role of these three brain areas of the FPC on reaction time (RT) during a sequential visual isometric pinch task (SVIPT). We also aimed to assess if the stimulation of these cortical sites affects the transfer of learning during SVIPT. A total of 48 right-handed healthy participants were randomly assigned to one of the four a-tDCS groups: (1) left primary motor cortex (M1), (2) left dorsolateral prefrontal cortex (DLPFC), (3) left posterior parietal cortex (PPC), and (4) sham. A-tDCS (0.3 mA, 20 min) was applied concurrently with the SVIPT, in which the participants precisely controlled their forces to reach seven different target forces from 10 to 40% of the maximum voluntary contraction (MVC) presented on a computer screen with the right dominant hand. Four test blocks were randomly performed at the baseline and 15 min after the intervention, including sequence and random blocks with either hand. Our results showed significant elongations in the ratio of RTs between the M1 and sham groups in the sequence blocks of both the right-trained and left-untrained hands. No significant differences were found between the DLPFC and sham groups and the PPC and sham groups in RT measurements within the SVIPT. Our findings suggest that RT improvement within implicit learning of an SVIPT is not mediated by single-session a-tDCS over M1, DLPFC, or PPC. Further research is needed to understand the optimal characteristics of tDCS and stimulation sites to modulate reaction time in a precision control task such as an SVIPT.
Collapse
Affiliation(s)
- Fahimeh Hashemirad
- Department of Physical Therapy, University of Social Welfare and Rehabilitation Sciences, Tehran 1985713871, Iran
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3199, Australia;
| | - Maryam Zoghi
- Discipline of Physiotherapy, Institute of Health and Wellbeing, Federation University, Ballart, VIC 3199, Australia;
| | - Paul B. Fitzgerald
- School of Medicine and Psychology, Australian National University, Canberra, NSW 2601, Australia;
| | | | - Shapour Jaberzadeh
- Monash Neuromodulation Research Unit, Department of Physiotherapy, School of Primary and Allied Health Care, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3199, Australia;
| |
Collapse
|
27
|
Worschech F, Passarotto E, Losch H, Oku T, Lee A, Altenmüller E. What Does It Take to Play the Piano? Cognito-Motor Functions Underlying Motor Learning in Older Adults. Brain Sci 2024; 14:405. [PMID: 38672054 PMCID: PMC11048694 DOI: 10.3390/brainsci14040405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
The acquisition of skills, such as learning to play a musical instrument, involves various phases that make specific demands on the learner. Knowledge of the cognitive and motor contributions during learning phases can be helpful in developing effective and targeted interventions for healthy aging. Eighty-six healthy older participants underwent an extensive cognitive, motoric, and musical test battery. Within one session, one piano-related and one music-independent movement sequence were both learned. We tested the associations between skill performance and cognito-motor abilities with Bayesian mixed models accounting for individual learning rates. Results showed that performance was positively associated with all cognito-motor abilities. Learning a piano-related task was characterized by relatively strong initial associations between performance and abilities. These associations then weakened considerably before increasing exponentially from the second trial onwards, approaching a plateau. Similar performance-ability relationships were detected in the course of learning a music-unrelated motor task. Positive performance-ability associations emphasize the potential of learning new skills to produce positive cognitive and motor transfer effects. Consistent high-performance tasks that demand maximum effort from the participants could be very effective. However, interventions should be sufficiently long so that the transfer potential can be fully exploited.
Collapse
Affiliation(s)
- Florian Worschech
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
| | - Edoardo Passarotto
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Department of Neuroscience, University of Padova, 35121 Padova, Italy
| | - Hannah Losch
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Institute for Music Education Research, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
| | - Takanori Oku
- NeuroPiano Institute, Kyoto 600-8086, Japan
- College of Engineering and Design, Shibaura Institute of Technology, Tokyo 135-8548, Japan
| | - André Lee
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
- Department of Neurology, Klinikum Rechts der Isar Technische Universität München, 80333 Munich, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musician’s Medicine, Hanover University of Music, Drama and Media, 30175 Hanover, Germany
- Center for Systems Neuroscience, 30559 Hanover, Germany
| |
Collapse
|
28
|
Fleischer P, Abbasi A, Gulati T. Modulation of neural spiking in motor cortex-cerebellar networks during sleep spindles. eNeuro 2024; 11:ENEURO.0150-23.2024. [PMID: 38641414 DOI: 10.1523/eneuro.0150-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 03/21/2024] [Accepted: 03/28/2024] [Indexed: 04/21/2024] Open
Abstract
Sleep spindles appear to play an important role in learning new motor skills. Motor skill learning engages several regions in the brain with two important areas being the motor cortex (M1) and the cerebellum. However, the neurophysiological processes in these areas during sleep, especially how spindle oscillations affect local and cross-region spiking, are not fully understood. We recorded activity from the M1 and cerebellar cortex in 8 rats during spontaneous activity to investigate how sleep spindles in these regions are related to local spiking as well as cross-region spiking. We found that M1 firing was significantly changed during both M1 and cerebellum spindles and this spiking occurred at a preferred phase of the spindle. On average, M1 and cerebellum neurons showed most spiking at the M1 or cerebellum spindle peaks. These neurons also developed a preferential phase-locking to local or cross-area spindles with the greatest phase-locking value at spindle peaks; however, this preferential phase-locking wasn't significant for cerebellar neurons when compared to cerebellum spindles. Additionally, we found the percentage of task-modulated cells in the M1 and cerebellum that fired with non-uniform spike-phase distribution during M1/ cerebellum spindle peaks were greater in the rats that learned a reach-to-grasp motor task robustly. Finally, we found that spindle-band LFP coherence (for M1 and cerebellum LFPs) showed a positive correlation with success rate in the motor task. These findings support the idea that sleep spindles in both the M1 and cerebellum recruit neurons that participate in the awake task to support motor memory consolidation.Significance Statement Neural processing during sleep spindles is linked to memory consolidation. However, little is known about sleep activity in the cerebellum and whether cerebellum spindles can affect spiking activity in local or distant areas. We report the effect of sleep spindles on neuron activity in the M1 and cerebellum-specifically their firing rate and phase-locking to spindle oscillations. Our results indicate that awake practice neuronal activity is tempered during local M1 and cerebellum spindles, and during cross-region spindles, which may support motor skill learning. We describe spiking dynamics in motor networks spindle oscillations that may aid in the learning of skills. Our results support the sleep reactivation hypothesis and suggest that awake M1 activity may be reactivated during cerebellum spindles.
Collapse
Affiliation(s)
- Pierson Fleischer
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
| | - Aamir Abbasi
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
| | - Tanuj Gulati
- Center for Neural Science and Medicine, Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Department of Neurology, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Department of Medicine, David Geffen School of Medicine; and Department of Bioengineering, Henry Samueli School of Engineering, University of California-Los Angeles, 10833 Le Conte Ave, Los Angeles, CA 90095
| |
Collapse
|
29
|
Danna J, Lê M, Tallet J, Albaret JM, Chaix Y, Ducrot S, Jover M. Motor Adaptation Deficits in Children with Developmental Coordination Disorder and/or Reading Disorder. CHILDREN (BASEL, SWITZERLAND) 2024; 11:491. [PMID: 38671708 PMCID: PMC11049534 DOI: 10.3390/children11040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Procedural learning has been mainly tested through motor sequence learning tasks in children with neurodevelopmental disorders, especially with isolated Developmental Coordination Disorder (DCD) and Reading Disorder (RD). Studies on motor adaptation are scarcer and more controversial. This study aimed to compare the performance of children with isolated and associated DCD and RD in a graphomotor adaptation task. In total, 23 children with RD, 16 children with DCD, 19 children with DCD-RD, and 21 typically developing (TD) children wrote trigrams both in the conventional (from left to right) and opposite (from right to left) writing directions. The results show that movement speed and accuracy were more impacted by the adaptation condition (opposite writing direction) in children with neurodevelopmental disorders than TD children. Our results also reveal that children with RD have less difficulty adapting their movement than children with DCD. Children with DCD-RD had the most difficulty, and analysis of their performance suggests a cumulative effect of the two neurodevelopmental disorders in motor adaptation.
Collapse
Affiliation(s)
- Jérémy Danna
- CLLE, Université de Toulouse, CNRS, 31058 Toulouse, France
| | - Margaux Lê
- Aix-Marseille University, PsyCLE, 13284 Aix-en-Provence, France; (M.L.); (M.J.)
- Aix-Marseille University, CNRS, CRPN, 13015 Marseille, France
| | - Jessica Tallet
- ToNIC, Université de Toulouse, Inserm, UT3, 31300 Toulouse, France; (J.T.); (Y.C.)
| | - Jean-Michel Albaret
- ToNIC, Université de Toulouse, Inserm, UT3, 31300 Toulouse, France; (J.T.); (Y.C.)
| | - Yves Chaix
- ToNIC, Université de Toulouse, Inserm, UT3, 31300 Toulouse, France; (J.T.); (Y.C.)
- Pediatric Neurology Department, Children’s Hospital, Toulouse University Hospital, 31300 Toulouse, France
| | - Stéphanie Ducrot
- Aix-Marseille University, CNRS, LPL, 13100 Aix-en-Provence, France;
| | - Marianne Jover
- Aix-Marseille University, PsyCLE, 13284 Aix-en-Provence, France; (M.L.); (M.J.)
| |
Collapse
|
30
|
Muller CO, Metais A, Boublay N, Breuil C, Deligault S, Di Rienzo F, Guillot A, Collet C, Krolak-Salmon P, Saimpont A. Anodal transcranial direct current stimulation does not enhance the effects of motor imagery training of a sequential finger-tapping task in young adults. J Sports Sci 2024:1-12. [PMID: 38574326 DOI: 10.1080/02640414.2024.2328418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/01/2024] [Indexed: 04/06/2024]
Abstract
When applied over the primary motor cortex (M1), anodal transcranial direct current stimulation (a-tDCS) could enhance the effects of a single motor imagery training (MIt) session on the learning of a sequential finger-tapping task (SFTT). This study aimed to investigate the effect of a-tDCS on the learning of an SFTT during multiple MIt sessions. Two groups of 16 healthy young adults participated in three consecutive MIt sessions over 3 days, followed by a retention test 1 week later. They received active or sham a-tDCS during a MIt session in which they mentally rehearsed an eight-item complex finger sequence with their left hand. Before and after each session, and during the retention test, they physically repeated the sequence as quickly and accurately as possible. Both groups (i) improved their performance during the first two sessions, showing online learning; (ii) stabilised the level they reached during all training sessions, reflecting offline consolidation; and (iii) maintained their performance level one week later, showing retention. However, no significant difference was found between the groups, regardless of the MSL stage. These results emphasise the importance of performing several MIt sessions to maximise performance gains, but they do not support the additional effects of a-tDCS.
Collapse
Affiliation(s)
- Camille O Muller
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Alès, Montpellier, France
| | - Angèle Metais
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Nawale Boublay
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Caroline Breuil
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Sébastien Deligault
- Centre d'Etude et de Recherche Multimodal et Pluridisciplinaire en Imagerie du Vivant (CERMEP), Département de MagnétoEncéphalographie, Bron, France
| | - Franck Di Rienzo
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Aymeric Guillot
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Christian Collet
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| | - Pierre Krolak-Salmon
- Centre de Recherche Clinique Vieillissement Cerveau - Fragilité, Hospices Civils de Lyon, Lyon, France
| | - Arnaud Saimpont
- Universite Claude Bernard Lyon 1, LIBM, Inter-university Laboratory of Human Movement Sciences, UR 7424, F-69622 Villeurbanne, France
| |
Collapse
|
31
|
Wessel MJ, Draaisma LR, Durand-Ruel M, Maceira-Elvira P, Moyne M, Turlan JL, Mühl A, Chauvigné L, Koch PJ, Morishita T, Guggisberg AG, Hummel FC. Multi-focal Stimulation of the Cortico-cerebellar Loop During the Acquisition of a Novel Hand Motor Skill in Chronic Stroke Survivors. CEREBELLUM (LONDON, ENGLAND) 2024; 23:341-354. [PMID: 36802021 PMCID: PMC10951005 DOI: 10.1007/s12311-023-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/31/2023] [Indexed: 02/21/2023]
Abstract
Impairment of hand motor function is a frequent consequence after a stroke and strongly determines the ability to regain a self-determined life. An influential research strategy for improving motor deficits is the combined application of behavioral training and non-invasive brain stimulation of the motor cortex (M1). However, a convincing clinical translation of the present stimulation strategies has not been achieved yet. One alternative and innovative approach is to target the functionally relevant brain network-based architecture, e.g., the dynamic interactions within the cortico-cerebellar system during learning. Here, we tested a sequential multifocal stimulation strategy targeting the cortico-cerebellar loop. Anodal transcranial direct current stimulation (tDCS) was applied simultaneously to a hand-based motor training in N = 11 chronic stroke survivors during four training sessions on two consecutive days. The tested conditions were: sequential multifocal (M1-cerebellum (CB)-M1-CB) vs. monofocal control stimulation (M1-sham-M1-sham). Additionally, skill retention was assessed 1 and 10 days after the training phase. Paired-pulse transcranial magnetic stimulation data were recorded to characterize stimulation response determining features. The application of CB-tDCS boosted motor behavior in the early training phase in comparison to the control condition. No faciliatory effects on the late training phase or skill retention were detected. Stimulation response variability was related to the magnitude of baseline motor ability and short intracortical inhibition (SICI). The present findings suggest a learning phase-specific role of the cerebellar cortex during the acquisition of a motor skill in stroke and that personalized stimulation strategies encompassing several nodes of the underlying brain network should be considered.
Collapse
Affiliation(s)
- M J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
- University Hospital Würzburg (UKW), Department of Neurology, Josef-Schneider-Str. 11, 97080, Würzburg, Germany
| | - L R Draaisma
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - M Durand-Ruel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - P Maceira-Elvira
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - M Moyne
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland
| | - J-L Turlan
- Clinique Romande de Réadaptation (CRR Suva), Sion, Switzerland
| | - A Mühl
- Clinique Romande de Réadaptation (CRR Suva), Sion, Switzerland
| | - L Chauvigné
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland
| | - P J Koch
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - T Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland
| | - A G Guggisberg
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland
- Universitäre Neurorehabilitation, Universitätsklinik für Neurologie, Inselspital, University Hospital of Berne, Berne, Switzerland
| | - F C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), École Polytechnique Fédérale de Lausanne (EPFL), 9 Chemin des Mines, 1202, Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute (INX) and Brain Mind Institute (BMI), Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne (EPFL Valais), Av. Grand-Champsec 90, 1951, Sion, Switzerland.
- Department of Clinical Neurosciences, Geneva University Hospital (HUG), Geneva, Switzerland.
| |
Collapse
|
32
|
Kaminski E, Carius D, Knieke J, Mizuguchi N, Ragert P. Complex sequential learning is not facilitated by transcranial direct current stimulation over DLPFC or M1. Eur J Neurosci 2024; 59:2046-2058. [PMID: 38270331 DOI: 10.1111/ejn.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/26/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique which was found to have a positive modulatory effect on online sequence acquisition or offline motor consolidation, depending on the relative role of the associated brain region. Primary motor regions (M1) and dorsolateral prefrontal cortices (DLPFC) have both been related to sequential learning. However, research so far did not systematically disentangle their differential roles in online and offline learning especially in more complex sequential paradigms. In this study, the influence of anodal M1 leg area-tDCS and anodal DLPFC-tDCS applied during complex sequential learning (online and offline) was investigated using a complex whole body serial reaction time task (CWB-SRTT) in 42 healthy volunteers. TDCS groups did not differ from sham tDCS group regarding their response and reaction time (online) and also not in terms of overnight consolidation (offline). Sequence specific learning and the number of recalled items also did not differ between groups. Results may be related to unspecific parameters such as timing of the stimulation or current intensity but can also be attributed to the relative role of M1 and DLPFC during early complex learning. Taken together, the current study provides preliminary evidence that M1 leg area or DLPFC modulation by means of tDCS does not improve complex sequential skill learning. SIGNIFICANCE STATEMENT: Understanding motor learning is helpful to deepen our knowledge about the human ability to acquire new skills. Complex sequential learning tasks have only been studied, sparsely, but are particularly mimicking challenges of daily living. The present study studied early motor learning in a complex serial reaction time task while transcranial direct current stimulation (tDCS) was either applied to leg primary motor cortex or bilateral dorsolateral prefrontal cortex. TDCS did not affect sequential learning, neither directly during performance nor in terms of sequence consolidation. Results provide preliminary information that M1 or bilateral DLPFC modulation does not improve early complex motor learning.
Collapse
Affiliation(s)
- Elisabeth Kaminski
- Faculty of Sport Science, Department of Movement Neuroscience, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel Carius
- Faculty of Sport Science, Department of Movement Neuroscience, University of Leipzig, Leipzig, Germany
| | - Jan Knieke
- Faculty of Sport Science, Department of Movement Neuroscience, University of Leipzig, Leipzig, Germany
| | - Nobuaki Mizuguchi
- Research Organization of Science and Technology, Ritsumeikan University, Kyoto, Japan
- Institute of Advanced Research for Sport and Health Science, Ritsumeikan University, Kyoto, Japan
| | - Patrick Ragert
- Faculty of Sport Science, Department of Movement Neuroscience, University of Leipzig, Leipzig, Germany
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
33
|
Brown RM, Koch I. Repetition costs in sequence chunking. Psychon Bull Rev 2024; 31:802-818. [PMID: 37726598 PMCID: PMC11061030 DOI: 10.3758/s13423-023-02338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2023] [Indexed: 09/21/2023]
Abstract
We examined how flexibly we plan sequences of actions when we switch between multiple action sequences. Mastering a sequential skill is assumed to involve integrating successive actions into groups known as chunks that can be efficiently planned and smoothly executed. Chunking is suggested by gains in planning efficiency for long compared to short action sequences following practice and learning associations between actions and perceptual outcomes. Less is understood about how efficiently we plan sequential chunks when we switch between multiple action sequences. Do we plan learned chunks less efficiently when we switch to a different action sequence? We examined this question by comparing the initiation and execution latencies of long versus short action sequences, performed from memory, when sequences switched or repeated across trials. Additionally, each action within the sequences generated predictable perceptual outcomes that were either spatially compatible or spatially incompatible with the action sequences. Results suggested repetition costs (instead of benefits) when performing long sequences. Repetition, as opposed to switching, prolonged initiation and increased the error rate of long compared to short sequences. We attribute these results to the flexible coordination of chunk planning and execution. Repetition may prolong advanced planning of long sequences in order to resolve conflict between multiple chunks, and switching may allow the planning of later chunks to be postponed until execution. We propose that the chunking of action sequences can both facilitate and interfere with action-switching performance.
Collapse
Affiliation(s)
- Rachel M Brown
- Institute of Psychology, RWTH Aachen University, Jägerstraße 17-19, 52066, Aachen, Germany.
| | - Iring Koch
- Institute of Psychology, RWTH Aachen University, Jägerstraße 17-19, 52066, Aachen, Germany
| |
Collapse
|
34
|
Tseng CT, Welch HF, Gi AL, Kang EM, Mamidi T, Pydimarri S, Ramesh K, Sandoval A, Ploski JE, Thorn CA. Frequency Specific Optogenetic Stimulation of the Locus Coeruleus Induces Task-Relevant Plasticity in the Motor Cortex. J Neurosci 2024; 44:e1528232023. [PMID: 38124020 PMCID: PMC10869157 DOI: 10.1523/jneurosci.1528-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/07/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023] Open
Abstract
The locus ceruleus (LC) is the primary source of neocortical noradrenaline, which is known to be involved in diverse brain functions including sensory perception, attention, and learning. Previous studies have shown that LC stimulation paired with sensory experience can induce task-dependent plasticity in the sensory neocortex and in the hippocampus. However, it remains unknown whether LC activation similarly impacts neural representations in the agranular motor cortical regions that are responsible for movement planning and production. In this study, we test whether optogenetic stimulation of the LC paired with motor performance is sufficient to induce task-relevant plasticity in the somatotopic cortical motor map. Male and female TH-Cre + rats were trained on a skilled reaching lever-pressing task emphasizing the use of the proximal forelimb musculature, and a viral approach was used to selectively express ChR2 in noradrenergic LC neurons. Once animals reached criterial behavioral performance, they received five training sessions in which correct task performance was paired with optogenetic stimulation of the LC delivered at 3, 10, or 30 Hz. After the last stimulation session, motor cortical mapping was performed using intracortical microstimulation. Our results show that lever pressing paired with LC stimulation at 10 Hz, but not at 3 or 30 Hz, drove the expansion of the motor map representation of the task-relevant proximal FL musculature. These findings demonstrate that phasic, training-paired activation of the LC is sufficient to induce experience-dependent plasticity in the agranular motor cortex and that this LC-driven plasticity is highly dependent on the temporal dynamics of LC activation.
Collapse
Affiliation(s)
- Ching-Tzu Tseng
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Hailey F Welch
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Ashley L Gi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Erica Mina Kang
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Tanushree Mamidi
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Sahiti Pydimarri
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Kritika Ramesh
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas
| | - Alfredo Sandoval
- Department of Neurobiology, The University of Texas Medical Branch, Galveston 77555, Texas
| | - Jonathan E Ploski
- Department of Neural and Behavioral Sciences, Penn State College of Medicine, Hershey 17033-0850, Pennsylvania
| | - Catherine A Thorn
- Department of Neuroscience, The University of Texas at Dallas, Richardson 75080, Texas,
| |
Collapse
|
35
|
Hagen AC, Patrick CM, Bast IE, Fling BW. Propulsive Force Modulation Drives Split-Belt Treadmill Adaptation in People with Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2024; 24:1067. [PMID: 38400224 PMCID: PMC10891828 DOI: 10.3390/s24041067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 01/26/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024]
Abstract
Most people with multiple sclerosis (PwMS) experience significant gait asymmetries between their legs during walking, leading to an increased risk of falls. Split-belt treadmill training, where the speed of each limb is controlled independently, alters each leg's stepping pattern and can improve gait symmetry in PwMS. However, the biomechanical mechanisms of this adaptation in PwMS remain poorly understood. In this study, 32 PwMS underwent a 10 min split-belt treadmill adaptation paradigm with the more affected (MA) leg moving twice as fast as the less affected (LA) leg. The most noteworthy biomechanical adaptation observed was increased peak propulsion asymmetry between the limbs. A kinematic analysis revealed that peak dorsiflexion asymmetry and the onset of plantarflexion in the MA limb were the primary contributors to the observed increases in peak propulsion. In contrast, the joints in the LA limb underwent only immediate reactive adjustments without subsequent adaptation. These findings demonstrate that modulation during gait adaptation in PwMS occurs primarily via propulsive forces and joint motions that contribute to propulsive forces. Understanding these distinct biomechanical changes during adaptation enhances our grasp of the rehabilitative impact of split-belt treadmill training, providing insights for refining therapeutic interventions aimed at improving gait symmetry.
Collapse
Affiliation(s)
- Andrew C. Hagen
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA; (C.M.P.); (I.E.B.)
| | - Christopher M. Patrick
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA; (C.M.P.); (I.E.B.)
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1617, USA
| | - Isaac E. Bast
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA; (C.M.P.); (I.E.B.)
| | - Brett W. Fling
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523-1582, USA; (C.M.P.); (I.E.B.)
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523-1617, USA
| |
Collapse
|
36
|
Baudou E, Peran P, Tensaouti F, Arribarat G, Pariente J, Courbieres N, Pollidoro L, Bertozzi AI, Gambart M, Sevely A, Roques M, Ducassou A, Danna J, Tallet J, Dufour C, Chaix Y, Laprie A. The long-term impact of irradiation on functional connectivity in brain circuits involved in memory processes after pediatric posterior fossa tumor. Radiother Oncol 2024; 191:110073. [PMID: 38145791 DOI: 10.1016/j.radonc.2023.110073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/26/2023] [Accepted: 12/20/2023] [Indexed: 12/27/2023]
Abstract
PURPOSE Memory is one of the main specific cognitive domains impaired with attention and processing speed after a pediatric brain tumor. This work explored the long-term impact of radiotherapy in children with posterior fossa tumor (PFT) on brain connectivity in neural circuits involved in memory using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS A total of 20 irradiated and 15 non-irradiated PFT survivors, and 21 healthy controls, prospectively included in the IMPALA study (NCT04324450), performed memory tests assessing episodic, procedural, and working memories and were subjected to an rs-fMRI. We manually contoured main structures involved in memory to explore connectivity at rest in a seed-to-voxel analysis. The groups were compared and differences in connectivity were correlated with behavioral scores and irradiation doses. RESULTS The performance of all mnesic tasks was lower in PFT survivors with a greater alteration in working and episodic memory in irradiated patients. Irradiated survivors had atypical connectivities in all memory circuits compared to controls and in cortico-caudate and cortico-cerebellar circuits compared to non-irradiated survivors. Non-irradiated survivors had only atypical connectivities in the cortico-cerebellar circuits compared to controls. In irradiated survivors, atypical connectivities in cortico-hippocampal circuits were linked with episodic memory scores and dose of irradiation to the left hippocampus and in cortico-striatal circuits with procedural memory scores and dose of irradiation to the striatum. CONCLUSION The results of this study highlight that irradiation has a long-term impact on brain connectivity in brain circuits involved in memory after pediatric PFT with a specific radiation-dose effect in supratentorial structures.
Collapse
Affiliation(s)
- Eloïse Baudou
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France.
| | - Patrice Peran
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France
| | - Fatima Tensaouti
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Radiation Oncology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Germain Arribarat
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Neurology Department, Toulouse University Hospital, Toulouse, France
| | - Nicolas Courbieres
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France
| | - Lisa Pollidoro
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Anne-Isabelle Bertozzi
- Pediatric Oncology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Marion Gambart
- Pediatric Oncology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Annick Sevely
- Radiology Department, Toulouse University Hospital, Toulouse, France
| | - Margaux Roques
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Radiology Department, Toulouse University Hospital, Toulouse, France
| | - Anne Ducassou
- Radiation Oncology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| | - Jérémy Danna
- CLLE, Université de Toulouse, CNRS, Toulouse, France
| | - Jessica Tallet
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France
| | - Christelle Dufour
- Department of Pediatric and Adolescent Oncology, Institut Gustave Roussy, University Paris-Saclay, Villejuif, France
| | - Yves Chaix
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Pediatric Neurology Department, Children's Hospital, Toulouse University Hospital, Toulouse, France
| | - Anne Laprie
- Toulouse NeuroImaging Center (ToNIC), INSERM University of Toulouse Paul Sabatier, Toulouse, France; Radiation Oncology Department, Institut Universitaire du Cancer de Toulouse-Oncopole, Toulouse, France
| |
Collapse
|
37
|
Zachariou V, Pappas C, Bauer CE, Shao X, Liu P, Lu H, Wang DJJ, Gold BT. Regional differences in the link between water exchange rate across the blood-brain barrier and cognitive performance in normal aging. GeroScience 2024; 46:265-282. [PMID: 37713089 PMCID: PMC10828276 DOI: 10.1007/s11357-023-00930-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/04/2023] [Indexed: 09/16/2023] Open
Abstract
The blood-brain barrier (BBB) undergoes functional changes with aging which may contribute to cognitive decline. A novel, diffusion prepared arterial spin labeling-based MRI technique can measure the rate of water exchange across the BBB (kw) and may thus be sensitive to age-related alterations in water exchange at the BBB. However, studies investigating relationships between kw and cognition have reported different directions of association. Here, we begin to investigate the direction of associations between kw and cognition in different brain regions, and their possible underpinnings, by evaluating links between kw, cognitive performance, and MRI markers of cerebrovascular dysfunction and/or damage. Forty-seven healthy older adults (age range 61-84) underwent neuroimaging to obtain whole-brain measures of kw, cerebrovascular reactivity (CVR), and white matter hyperintensity (WMH) volumes. Additionally, participants completed uniform data set (Version 3) neuropsychological tests of executive function (EF) and episodic memory (MEM). Voxel-wise linear regressions were conducted to test associations between kw and cognitive performance, CVR, and WMH volumes. We found that kw in the frontoparietal brain regions was positively associated with cognitive performance but not with CVR or WMH volumes. Conversely, kw in the basal ganglia was negatively associated with cognitive performance and CVR and positively associated with regional, periventricular WMH volume. These regionally dependent associations may relate to different physiological underpinnings in the relationships between kw and cognition in neocortical versus subcortical brain regions in older adults.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA.
| | - Colleen Pappas
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Christopher E Bauer
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
| | - Xingfeng Shao
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Peiying Liu
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Danny J J Wang
- Laboratory of FMRI Technology (LOFT), Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Brian T Gold
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, USA
- Sanders-Brown Center On Aging, University of Kentucky, Lexington, KY, USA
- Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
38
|
Firouzi M, Baetens K, Swinnen E, Baeken C, Van Overwalle F, Deroost N. Does transcranial direct current stimulation of the primary motor cortex improve implicit motor sequence learning in Parkinson's disease? J Neurosci Res 2024; 102:e25311. [PMID: 38400585 DOI: 10.1002/jnr.25311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024]
Abstract
Implicit motor sequence learning (IMSL) is a cognitive function that is known to be associated with impaired motor function in Parkinson's disease (PD). We previously reported positive effects of transcranial direct current stimulation (tDCS) over the primary motor cortex (M1) on IMSL in 11 individuals with PD with mild cognitive impairments (MCI), with the largest effects occurring during reacquisition. In the present study, we included 35 individuals with PD, with (n = 15) and without MCI (n = 20), and 35 age- and sex-matched controls without PD, with (n = 13) and without MCI (n = 22). We used mixed-effects models to analyze anodal M1 tDCS effects on acquisition (during tDCS), short-term (five minutes post-tDCS) and long-term reacquisition (one-week post-tDCS) of general and sequence-specific learning skills, as measured by the serial reaction time task. At long-term reacquisition, anodal tDCS resulted in smaller general learning effects compared to sham, only in the PD group, p = .018, possibly due to floor effects. Anodal tDCS facilitated the acquisition of sequence-specific learning (M = 54.26 ms) compared to sham (M = 38.98 ms), p = .003, regardless of group (PD/controls). Further analyses revealed that this positive effect was the largest in the PD-MCI group (anodal: M = 69.07 ms; sham: M = 24.33 ms), p < .001. Although the observed effect did not exceed the stimulation period, this single-session tDCS study confirms the potential of tDCS to enhance IMSL, with the largest effects observed in patients with lower cognitive status. These findings add to the body of evidence that anodal tDCS can beneficially modulate the abnormal basal ganglia network activity that occurs in PD.
Collapse
Affiliation(s)
- Mahyar Firouzi
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Kris Baetens
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Eva Swinnen
- Rehabilitation Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Vrije Universiteit Brussel, Jette, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Chris Baeken
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
- Department of Psychiatry and Medical Psychology, Ghent University, University Hospital Ghent (UZ Ghent), Ghent, Belgium
- Department of Psychiatry, Vrije Universiteit Brussel (VUB), Faculty of Medicine and Pharmacy, University Hospital Brussel (UZ Brussel), Brussels, Belgium
| | - Frank Van Overwalle
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| | - Natacha Deroost
- Brain, Body and Cognition Research Group, Faculty of Psychology and Educational Sciences, Vrije Universiteit Brussel, Elsene, Belgium
- Center for Neurosciences (C4N), Vrije Universiteit Brussel, Elsene, Belgium
| |
Collapse
|
39
|
Eisenstein T, Furman-Haran E, Tal A. Early excitatory-inhibitory cortical modifications following skill learning are associated with motor memory consolidation and plasticity overnight. Nat Commun 2024; 15:906. [PMID: 38291029 PMCID: PMC10828487 DOI: 10.1038/s41467-024-44979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Consolidation of motor memories is vital to offline enhancement of new motor skills and involves short and longer-term offline processes following learning. While emerging evidence link glutamate and GABA dynamics in the primary motor cortex (M1) to online motor skill practice, its relationship with offline consolidation processes in humans is unclear. Using two-day repeated measures of behavioral and multimodal neuroimaging data before and following motor sequence learning, we show that short-term glutamatergic and GABAergic responses in M1 within minutes after learning were associated with longer-term learning-induced functional, structural, and behavioral modifications overnight. Furthermore, Glutamatergic and GABAergic modifications were differentially associated with different facets of motor memory consolidation. Our results point to unique and distinct roles of Glutamate and GABA in motor memory consolidation processes in the human brain across timescales and mechanistic levels, tying short-term changes on the neurochemical level to overnight changes in macroscale structure, function, and behavior.
Collapse
Affiliation(s)
- Tamir Eisenstein
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| | - Edna Furman-Haran
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Assaf Tal
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
40
|
Yamada T, Watanabe T, Sasaki Y. Plasticity-stability dynamics during post-training processing of learning. Trends Cogn Sci 2024; 28:72-83. [PMID: 37858389 PMCID: PMC10842181 DOI: 10.1016/j.tics.2023.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 10/21/2023]
Abstract
Learning continues beyond the end of training. Post-training learning is supported by changes in plasticity and stability in the brain during both wakefulness and sleep. However, the lack of a unified measure for assessing plasticity and stability dynamics during training and post-training periods has limited our understanding of how these dynamics shape learning. Focusing primarily on procedural learning, we integrate work using behavioral paradigms and a recently developed measure, the excitatory-to-inhibitory (E/I) ratio, to explore the delicate balance between plasticity and stability and its relationship to post-training learning. This reveals plasticity-stability cycles during both wakefulness and sleep that enhance learning and protect it from new learning during post-training processing.
Collapse
Affiliation(s)
- Takashi Yamada
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Takeo Watanabe
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA
| | - Yuka Sasaki
- Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, RI, USA.
| |
Collapse
|
41
|
Yassin M, Lev M, Polat U. Space, time, and dynamics of binocular interactions. Sci Rep 2023; 13:21449. [PMID: 38052879 DOI: 10.1038/s41598-023-48380-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/25/2023] [Indexed: 12/07/2023] Open
Abstract
Binocular summation (BS), defined as the superiority of binocular over monocular visual performance, shows that thresholds are about 40% (a factor of 1.4) better in binocular than in monocular viewing. However, it was reported that different amounts of BS exist in a range from 1.4 to 2 values because BS is affected by the spatiotemporal parameters of the stimulus. Lateral interactions can be defined as the neuron's ability to affect the neighboring neurons by either inhibiting or exciting their activity. We investigated the effect of the spatial and temporal domains on binocular interactions and BS under the lateral masking paradigm and how BS would be affected by lateral interactions via a lateral masking experiment. The two temporal alternative forced-choice (2TAFC) method was used. The stimuli consisted of a central vertically oriented Gabor target and high-contrast Gabor flankers positioned in two configurations (orthogonal or collinear) with target-flanker separations of either 2 or 3 wavelengths (λ), presented at 4 different presentation times (40, 80, 120, and 200 ms) using a different order of measurements across the different experiments. Opaque lenses were used to control the monocular and binocular vision. BS is absent at close distances (2λ), depending on the presentation time's order, for the collinear but not for the orthogonal configuration. However, BS exists at more distant flankers (collinear and orthogonal, 3λ). BS is not uniform (1.4); it depends on the stimulus condition, the presentation times, the order, and the method that was used to control the monocular and binocular vision.
Collapse
Affiliation(s)
- Marzouk Yassin
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Maria Lev
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Uri Polat
- School of Optometry and Vision Sciences, Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
42
|
Di Rienzo F, Debarnot U, Daligault S, Delpuech C, Doyon J, Guillot A. Brain plasticity underlying sleep-dependent motor consolidation after motor imagery. Cereb Cortex 2023; 33:11431-11445. [PMID: 37814365 DOI: 10.1093/cercor/bhad379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/18/2023] [Accepted: 09/19/2023] [Indexed: 10/11/2023] Open
Abstract
Motor imagery can, similarly to physical practice, improve motor performance through experience-based plasticity. Using magnetoencephalography, we investigated changes in brain activity associated with offline consolidation of motor sequence learning through physical practice or motor imagery. After an initial training session with either physical practice or motor imagery, participants underwent overnight consolidation. As control condition, participants underwent wake-related consolidation after training with motor imagery. Behavioral analyses revealed that overnight consolidation of motor learning through motor imagery outperformed wake-related consolidation (95% CI [0.02, 0.07], P < 0.001, RP2 = 0.05). As regions of interest, we selected the generators of event-related synchronization/desynchronization of alpha (8-12 Hz) and beta (15-30 Hz) oscillations, which predicted the level of performance on the motor sequence. This yielded a primary sensorimotor-premotor network for alpha oscillations and a cortico-cerebellar network for beta oscillations. The alpha network exhibited increased neural desynchronization after overnight consolidation compared to wake-related consolidation. By contrast, the beta network exhibited an increase in neural synchronization after wake-related consolidation compared to overnight consolidation. We provide the first evidence of parallel brain plasticity underlying behavioral changes associated with sleep-dependent consolidation of motor skill learning through motor imagery and physical practice.
Collapse
Affiliation(s)
- Franck Di Rienzo
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
| | - Ursula Debarnot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| | | | - Claude Delpuech
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, Bron 69677, France
| | - Julien Doyon
- Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Aymeric Guillot
- Univ Lyon, Université Claude Bernard Lyon 1, Laboratoire Interuniversitaire de Biologie de la Motricité, LIBM, Villeurbanne, France
- Institut Universitaire de France, 1 Rue Descartes 75005 Paris, France
| |
Collapse
|
43
|
Ke Y, Liu S, Chen L, Wang X, Ming D. Lasting enhancements in neural efficiency by multi-session transcranial direct current stimulation during working memory training. NPJ SCIENCE OF LEARNING 2023; 8:48. [PMID: 37919371 PMCID: PMC10622507 DOI: 10.1038/s41539-023-00200-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
The neural basis for long-term behavioral improvements resulting from multi-session transcranial direct current stimulation (tDCS) combined with working memory training (WMT) remains unclear. In this study, we used task-related electroencephalography (EEG) measures to investigate the lasting neurophysiological effects of anodal high-definition (HD)-tDCS applied over the left dorsolateral prefrontal cortex (dlPFC) during a challenging WMT. Thirty-four healthy young adults were randomized to sham or active tDCS groups and underwent ten 30-minute training sessions over ten consecutive days, preceded by a pre-test and followed by post-tests performed one day and three weeks after the last session, respectively, by performing high-load WM tasks along with EEG recording. Multi-session HD-tDCS significantly enhanced the behavioral benefits of WMT. Compared to the sham group, the active group showed facilitated increases in theta, alpha, beta, and gamma task-related oscillations at the end of training and significantly increased P300 response 3 weeks post-training. Our findings suggest that applying anodal tDCS over the left dlPFC during multi-session WMT can enhance the behavioral benefits of WMT and facilitate sustained improvements in WM-related neural efficiency.
Collapse
Affiliation(s)
- Yufeng Ke
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China.
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China.
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China.
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China.
| | - Long Chen
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China
| | - Xiashuang Wang
- The Second Academy of China Aerospace Science and Industry Corporation, Beijing, PR China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin International Joint Research Centre for Neural Engineering, and Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, PR China.
- Haihe Laboratory of Brain-computer Interaction and Human-machine Integration, Tianjin, PR China.
| |
Collapse
|
44
|
Wessel MJ, Beanato E, Popa T, Windel F, Vassiliadis P, Menoud P, Beliaeva V, Violante IR, Abderrahmane H, Dzialecka P, Park CH, Maceira-Elvira P, Morishita T, Cassara AM, Steiner M, Grossman N, Neufeld E, Hummel FC. Noninvasive theta-burst stimulation of the human striatum enhances striatal activity and motor skill learning. Nat Neurosci 2023; 26:2005-2016. [PMID: 37857774 PMCID: PMC10620076 DOI: 10.1038/s41593-023-01457-7] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/07/2023] [Indexed: 10/21/2023]
Abstract
The stimulation of deep brain structures has thus far only been possible with invasive methods. Transcranial electrical temporal interference stimulation (tTIS) is a novel, noninvasive technology that might overcome this limitation. The initial proof-of-concept was obtained through modeling, physics experiments and rodent models. Here we show successful noninvasive neuromodulation of the striatum via tTIS in humans using computational modeling, functional magnetic resonance imaging studies and behavioral evaluations. Theta-burst patterned striatal tTIS increased activity in the striatum and associated motor network. Furthermore, striatal tTIS enhanced motor performance, especially in healthy older participants as they have lower natural learning skills than younger subjects. These findings place tTIS as an exciting new method to target deep brain structures in humans noninvasively, thus enhancing our understanding of their functional role. Moreover, our results lay the groundwork for innovative, noninvasive treatment strategies for brain disorders in which deep striatal structures play key pathophysiological roles.
Collapse
Affiliation(s)
- Maximilian J Wessel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Elena Beanato
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Traian Popa
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Fabienne Windel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pierre Vassiliadis
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
- Institute of Neuroscience, Université Catholique de Louvain, Brussels, Belgium
| | - Pauline Menoud
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Valeriia Beliaeva
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, Zurich, Switzerland
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | - Patrycja Dzialecka
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Chang-Hyun Park
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Pablo Maceira-Elvira
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Takuya Morishita
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland
| | - Antonino M Cassara
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Melanie Steiner
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, UK
- United Kingdom Dementia Research Institute, Imperial College London, London, UK
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society, Zurich, Switzerland
| | - Friedhelm C Hummel
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
- Defitech Chair of Clinical Neuroengineering, Neuro-X Institute and Brain Mind Institute, Clinique Romande de Réadaptation, École Polytechnique Fédérale de Lausanne, Sion, Switzerland.
- Clinical Neuroscience, University of Geneva Medical School, Geneva, Switzerland.
| |
Collapse
|
45
|
Kato D, Aoyama Y, Nishida K, Takahashi Y, Sakamoto T, Takeda I, Tatematsu T, Go S, Saito Y, Kunishima S, Cheng J, Hou L, Tachibana Y, Sugio S, Kondo R, Eto F, Sato S, Moorhouse AJ, Yao I, Kadomatsu K, Setou M, Wake H. Regulation of lipid synthesis in myelin modulates neural activity and is required for motor learning. Glia 2023; 71:2591-2608. [PMID: 37475643 DOI: 10.1002/glia.24441] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/11/2023] [Accepted: 07/03/2023] [Indexed: 07/22/2023]
Abstract
Brain function relies on both rapid electrical communication in neural circuitry and appropriate patterns or synchrony of neural activity. Rapid communication between neurons is facilitated by wrapping nerve axons with insulation by a myelin sheath composed largely of different lipids. Recent evidence has indicated that the extent of myelination of nerve axons can adapt based on neural activity levels and this adaptive myelination is associated with improved learning of motor tasks, suggesting such plasticity may enhance effective learning. In this study, we examined whether another aspect of myelin plasticity-changes in myelin lipid synthesis and composition-may also be associated with motor learning. We combined a motor learning task in mice with in vivo two-photon imaging of neural activity in the primary motor cortex (M1) to distinguish early and late stages of learning and then probed levels of some key myelin lipids using mass spectrometry analysis. Sphingomyelin levels were elevated in the early stage of motor learning while galactosylceramide levels were elevated in the middle and late stages of motor learning, and these changes were correlated across individual mice with both learning performance and neural activity changes. Targeted inhibition of oligodendrocyte-specific galactosyltransferase expression, the enzyme that synthesizes myelin galactosylceramide, impaired motor learning. Our results suggest regulation of myelin lipid composition could be a novel facet of myelin adaptations associated with learning.
Collapse
Affiliation(s)
- Daisuke Kato
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Yuki Aoyama
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazuki Nishida
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yutaka Takahashi
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takumi Sakamoto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Ikuko Takeda
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
| | - Tsuyako Tatematsu
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiori Go
- Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| | - Yutaro Saito
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Shiho Kunishima
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Jinlei Cheng
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Lingnan Hou
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihisa Tachibana
- Division of System Neuroscience, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shouta Sugio
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reon Kondo
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Fumihiro Eto
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Shumpei Sato
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Andrew J Moorhouse
- School of Medical Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Ikuko Yao
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Sanda, Japan
| | - Kenji Kadomatsu
- Institute for Glyco-core Research, Nagoya University, Nagoya, Japan
| | - Mitsutoshi Setou
- Department of Cellular and Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroaki Wake
- Department of Anatomy and Molecular Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Division of Multicellular Circuit Dynamics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Japan
- Center of Optical Scattering Image Science, Kobe University, Kobe, Japan
- Department of Physiological Sciences, Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
- Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
46
|
Mathunny JJ, Srinivasan HK, Kumar A, Karthik V. A Cross-Sectional Study on Fall Direction and Lower Limb Loading in Response to a Perturbation on Laterally Inclined Platform. Appl Bionics Biomech 2023; 2023:7385119. [PMID: 37928743 PMCID: PMC10624552 DOI: 10.1155/2023/7385119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
Perturbation-based balance training (PBT) improves reactive stepping in older adults and people with neurological disorders. Slip-induced falls are a threat to older adults, leading to hip fractures. Fall-prone individuals must be trained to regain balance during a fall in the posterolateral direction. This study aims to analyze the characteristics of the reactive step induced by a laterally inclined platform. This cross-sectional study included 46 healthy participants who performed a "lean and release" backward fall using a platform with two inclined angles on each side. Kinovea software was used to analyze the step width. Reactive steps, characterized by crossover or medial foot placement, are preventive measures against posterolateral falls. The first objective was on the narrowed step width that was subjected to analysis using analysis of variance (ANOVA) and Tukey's post hoc assessment, indicating a tendency toward posterolateral falls. As part of our second objective, the inclined platform resulted in uneven loading between the legs, with a preference for the unloaded leg as the reactive leg (p < 0.001), as determined by Fisher's exact test and Cramer's V. These characteristics align closely with those observed in modified constraint-induced movement therapy (mCIMT). The angled platform had a significant effect on selecting the reactive leg, particularly at higher angles (p < 0.001). Thus, the study suggested that the device is capable of inducing posterolateral falls and exhibited mCIMT characteristics.
Collapse
Affiliation(s)
- Jaison Jacob Mathunny
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Hari Krishnan Srinivasan
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Ashok Kumar
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| | - Varshini Karthik
- Department of Biomedical Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, Tamil Nadu, India
| |
Collapse
|
47
|
Truong C, Ruffino C, Gaveau J, White O, Hilt PM, Papaxanthis C. Time of day and sleep effects on motor acquisition and consolidation. NPJ SCIENCE OF LEARNING 2023; 8:30. [PMID: 37658041 PMCID: PMC10474136 DOI: 10.1038/s41539-023-00176-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/17/2023] [Indexed: 09/03/2023]
Abstract
We investigated the influence of the time-of-day and sleep on skill acquisition (i.e., skill improvement immediately after a training-session) and consolidation (i.e., skill retention after a time interval including sleep). Three groups were trained at 10 a.m. (G10am), 3 p.m. (G3pm), or 8 p.m. (G8pm) on a finger-tapping task. We recorded the skill (i.e., the ratio between movement duration and accuracy) before and immediately after the training to evaluate acquisition, and after 24 h to measure consolidation. We did not observe any difference in acquisition according to the time of the day. Interestingly, we found a performance improvement 24 h after the evening training (G8pm), while the morning (G10am) and the afternoon (G3pm) groups deteriorated and stabilized their performance, respectively. Furthermore, two control experiments (G8awake and G8sleep) supported the idea that a night of sleep contributes to the skill consolidation of the evening group. These results show a consolidation when the training is carried out in the evening, close to sleep, and forgetting when the training is carried out in the morning, away from sleep. This finding may have an important impact on the planning of training programs in sports, clinical, or experimental domains.
Collapse
Affiliation(s)
- Charlène Truong
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France.
| | - Célia Ruffino
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
- EA4660, C3S Laboratory, C3S Culture Sport Health Society, Université de Bourgogne Franche-Comté, UPFR Sports, 25000, Besançon, France
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Olivier White
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Pauline M Hilt
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, F-21000, Dijon, France
- Pôle Recherche et Santé Publique, CHU Dijon Bourgogne, F-21000, Dijon, France
| |
Collapse
|
48
|
Takeda S, Miyamoto R. A randomized controlled trial of changes in resting-state functional connectivity associated with short-term motor learning of chopstick use with the non-dominant hand. Behav Brain Res 2023; 452:114599. [PMID: 37506851 DOI: 10.1016/j.bbr.2023.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 07/15/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION This study identified the offline brain networks associated with motor learning of non-dominant hand chopstick use within-session. METHODS 40 healthy right-handed adults were randomly assigned to the practice and control groups (20 each). The performance, resting-state functional connectivity (RSFC), and their correlation were compared within and between groups. Both groups repeated 9 cycles of 30 s task and rest. During the task, the practice group performed the chopstick-use practice with their left hand, while the control group held chopsticks without acquiring any skills. During the rest, both groups fixated their gaze on a fixation point. The number of times candies were moved using chopsticks with the left hand in 30 s was used to evaluate the performance. RSFC was obtained by resting-state fMRI scanning and extracting Z-scores between the right primary motor cortex and all other brain regions. RESULTS Both the groups improved in the post-task performance; the practice group improved more. The RSFC of the two networks increased in the practice group. One network was the RSFC between the right M1 and the right cerebellar Crus I, positively correlated with performance in the post-task. Another was the RSFC between the right M1 and the left cerebellar Crus II, positively correlated with skills in the amount of change pre- and post-task. CONCLUSION Offline enhancement of RSFC in these networks was shown to contribute to early chopstick-use motor learning with the left hand. These results serve as a basis for future studies on compensatory networks in individuals with stroke.
Collapse
Affiliation(s)
- Sayori Takeda
- Department of Occupational Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo, Japan.
| | - Reiko Miyamoto
- Department of Occupational Therapy, Graduate School of Human Health Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo, Japan; Division of Occupational Therapy, Faculty of Health Science, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa-ku, Tokyo, Japan
| |
Collapse
|
49
|
Andrushko JW, Rinat S, Greeley B, Larssen BC, Jones CB, Rubino C, Denyer R, Ferris JK, Campbell KL, Neva JL, Boyd LA. Improved processing speed and decreased functional connectivity in individuals with chronic stroke after paired exercise and motor training. Sci Rep 2023; 13:13652. [PMID: 37608062 PMCID: PMC10444837 DOI: 10.1038/s41598-023-40605-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023] Open
Abstract
After stroke, impaired motor performance is linked to an increased demand for cognitive resources. Aerobic exercise improves cognitive function in neurologically intact populations and may be effective in altering cognitive function post-stroke. We sought to determine if high-intensity aerobic exercise paired with motor training in individuals with chronic stroke alters cognitive-motor function and functional connectivity between the dorsolateral prefrontal cortex (DLPFC), a key region for cognitive-motor processes, and the sensorimotor network. Twenty-five participants with chronic stroke were randomly assigned to exercise (n = 14; 66 ± 11 years; 4 females), or control (n = 11; 68 ± 8 years; 2 females) groups. Both groups performed 5-days of paretic upper limb motor training after either high-intensity aerobic exercise (3 intervals of 3 min each, total exercise duration of 23-min) or watching a documentary (control). Resting-state fMRI, and trail making test part A (TMT-A) and B were recorded pre- and post-intervention. Both groups showed implicit motor sequence learning (p < 0.001); there was no added benefit of exercise for implicit motor sequence learning (p = 0.738). The exercise group experienced greater overall cognitive-motor improvements measured with the TMT-A. Regardless of group, the changes in task score, and dwell time during TMT-A were correlated with a decrease in DLPFC-sensorimotor network functional connectivity (task score: p = 0.025; dwell time: p = 0.043), which is thought to reflect a reduction in the cognitive demand and increased automaticity. Aerobic exercise may improve cognitive-motor processing speed post-stroke.
Collapse
Affiliation(s)
- Justin W Andrushko
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Shie Rinat
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Brian Greeley
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Beverley C Larssen
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Christina B Jones
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Cristina Rubino
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Ronan Denyer
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Graduate Program in Neuroscience, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jennifer K Ferris
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
- Graduate Program in Rehabilitation Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Kristin L Campbell
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jason L Neva
- Faculty of Medicine, School of Kinesiology and Physical Activity Sciences, University of Montreal, Montreal, QC, H3T 1J4, Canada
- Research Center of the Montreal Geriatrics Institute (CRIUGM), Montreal, QC, Canada
| | - Lara A Boyd
- Brain Behaviour Laboratory, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
50
|
Bonanno L, Cannuli A, Pignolo L, Marino S, Quartarone A, Calabrò RS, Cerasa A. Neural Plasticity Changes Induced by Motor Robotic Rehabilitation in Stroke Patients: The Contribution of Functional Neuroimaging. Bioengineering (Basel) 2023; 10:990. [PMID: 37627875 PMCID: PMC10451271 DOI: 10.3390/bioengineering10080990] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/07/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Robotic rehabilitation is one of the most advanced treatments helping people with stroke to faster recovery from motor deficits. The clinical impact of this type of treatment has been widely defined and established using clinical scales. The neurofunctional indicators of motor recovery following conventional rehabilitation treatments have already been identified by previous meta-analytic investigations. However, a clear definition of the neural correlates associated with robotic neurorehabilitation treatment has never been performed. This systematic review assesses the neurofunctional correlates (fMRI, fNIRS) of cutting-edge robotic therapies in enhancing motor recovery of stroke populations in accordance with PRISMA standards. A total of 7, of the initial yield of 150 articles, have been included in this review. Lessons from these studies suggest that neural plasticity within the ipsilateral primary motor cortex, the contralateral sensorimotor cortex, and the premotor cortices are more sensitive to compensation strategies reflecting upper and lower limbs' motor recovery despite the high heterogeneity in robotic devices, clinical status, and neuroimaging procedures. Unfortunately, the paucity of RCT studies prevents us from understanding the neurobiological differences induced by robotic devices with respect to traditional rehabilitation approaches. Despite this technology dating to the early 1990s, there is a need to translate more functional neuroimaging markers in clinical settings since they provide a unique opportunity to examine, in-depth, the brain plasticity changes induced by robotic rehabilitation.
Collapse
Affiliation(s)
- Lilla Bonanno
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (L.B.); (A.C.); (S.M.); (A.Q.)
| | - Antonio Cannuli
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (L.B.); (A.C.); (S.M.); (A.Q.)
| | | | - Silvia Marino
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (L.B.); (A.C.); (S.M.); (A.Q.)
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo, 98123 Messina, Italy; (L.B.); (A.C.); (S.M.); (A.Q.)
| | | | - Antonio Cerasa
- S’Anna Institute, 88900 Crotone, Italy;
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy
- Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| |
Collapse
|