1
|
Lateralized Declarative-Like Memory for Conditional Spatial Information in Domestic Chicks (Gallus gallus). Symmetry (Basel) 2021. [DOI: 10.3390/sym13050906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Declarative memory is an explicit, long-term memory system, used in generalization and categorization processes and to make inferences and to predict probable outcomes in novel situations. Animals have been proven to possess a similar declarative-like memory system. Here, we investigated declarative-like memory representations in young chicks, assessing the roles of the two hemispheres in memory recollection. Chicks were exposed for three consecutive days to two different arenas (blue/yellow), where they were presented with two panels, each depicting a different stimulus (cross/square). Only one of the two stimuli was rewarded, i.e., it hid a food reward. The position (left/right) of the rewarded stimulus remained constant within the same arena, but it differed between the two arenas (e.g., reward always on the left in the blue context and on the right in the yellow one). At test, both panels depicted the rewarded stimulus, thus chicks had to remember food position depending on the previously experienced contextual rule. Both binocular and right-eye monocularly-tested chicks correctly located the reward, whereas left-eye monocularly-tested chicks performed at the chance level. We showed that declarative-like memory of integrated information is available at early stages of development, and it is associated with a left hemisphere dominance.
Collapse
|
2
|
Hodgetts CJ, Stefani M, Williams AN, Kolarik BS, Yonelinas AP, Ekstrom AD, Lawrence AD, Zhang J, Graham KS. The role of the fornix in human navigational learning. Cortex 2020; 124:97-110. [PMID: 31855730 PMCID: PMC7061322 DOI: 10.1016/j.cortex.2019.10.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 07/12/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022]
Abstract
Experiments on rodents have demonstrated that transecting the white matter fibre pathway linking the hippocampus with an array of cortical and subcortical structures - the fornix - impairs flexible navigational learning in the Morris Water Maze (MWM), as well as similar spatial learning tasks. While diffusion magnetic resonance imaging (dMRI) studies in humans have linked inter-individual differences in fornix microstructure to episodic memory abilities, its role in human spatial learning is currently unknown. We used high-angular resolution diffusion MRI combined with constrained spherical deconvolution-based tractography, to ask whether inter-individual differences in fornix microstructure in healthy young adults would be associated with spatial learning in a virtual reality navigation task. To efficiently capture individual learning across trials, we adopted a novel curve fitting approach to estimate a single index of learning rate. We found a statistically significant correlation between learning rate and the microstructure (mean diffusivity) of the fornix, but not that of a comparison tract linking occipital and anterior temporal cortices (the inferior longitudinal fasciculus, ILF). Further, this correlation remained significant when controlling for both hippocampal volume and participant gender. These findings extend previous animal studies by demonstrating the functional relevance of the fornix for human spatial learning in a virtual reality environment, and highlight the importance of a distributed neuroanatomical network, underpinned by key white matter pathways, such as the fornix, in complex spatial behaviour.
Collapse
Affiliation(s)
- Carl J Hodgetts
- Department of Psychology, Royal Holloway University of London, Egham, UK; Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff Wales, UK.
| | - Martina Stefani
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff Wales, UK
| | - Angharad N Williams
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff Wales, UK
| | - Branden S Kolarik
- Center for the Neurobiology of Learning & Memory, University of California, Irvine, USA
| | - Andrew P Yonelinas
- Department of Psychology, University of California, Davis, CA, USA; Center for Neuroscience, University of California, Davis, CA, USA
| | - Arne D Ekstrom
- Department of Psychology, The University of Arizona, AZ USA
| | - Andrew D Lawrence
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff Wales, UK
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff Wales, UK
| | - Kim S Graham
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff Wales, UK
| |
Collapse
|
3
|
Language, gesture, and judgment: Children's paths to abstract geometry. J Exp Child Psychol 2018; 177:70-85. [PMID: 30170245 DOI: 10.1016/j.jecp.2018.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 05/18/2018] [Accepted: 07/14/2018] [Indexed: 01/29/2023]
Abstract
As infants, children are sensitive to geometry when recognizing objects or navigating through rooms; however, explicit knowledge of geometry develops slowly and may be unstable even in adults. How can geometric concepts be both so accessible and so elusive? To examine how implicit and explicit geometric concepts develop, the current study assessed, in 132 children (3-8 years old) while they played a simple geometric judgment task, three distinctive channels: children's choices during the game as well as the language and gestures they used to justify and accompany their choices. Results showed that, for certain geometric properties, children chose the correct card even if they could not express with words (or gestures) why they had made this choice. Furthermore, other geometric concepts were expressed and supported by gestures prior to their articulation in either choices or speech. These findings reveal that gestures and behavioral choices may reflect implicit knowledge and serve as a foundation for the development of geometric reasoning. Altogether, our results suggest that language alone might not be enough for expressing and organizing geometric concepts and that children pursue multiple paths to overcome its limitations, a finding with potential implications for primary education in mathematics.
Collapse
|
4
|
Scott NM, Sera MD. Language unifies relational coding: The roles of label acquisition and accessibility in making flexible relational judgments. JOURNAL OF MEMORY AND LANGUAGE 2018; 101:136-152. [PMID: 30479457 PMCID: PMC6251321 DOI: 10.1016/j.jml.2018.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Language is likely structuring spatial judgments, but how it achieves this is not clear. We examined the development of relative, spatial judgments across verbal and nonverbal tasks of above, below, right and left in children between the ages of 5 and 10 years. We found that the verbal ability to make above/below judgments preceded verbal right/left judgments and all nonverbal judgments. We also found that only when the labels were accessed - as opposed to only having been acquired - did children's nonverbal performance improve. Our findings further indicate that accessing the correct term was not needed for enhanced performance. The results suggest that accessing language unifies different instantiations of a relation into a single representation.
Collapse
Affiliation(s)
- Nicole M Scott
- Center for Cognitive Sciences, University of Minnesota, 75 East River Road, Minneapolis, MN 55417, USA
| | - Maria D Sera
- Institute of Child Development, University of Minnesota, 51 East River Road, Minneapolis, MN 55455, USA; 612-624-2856
| |
Collapse
|
5
|
Gianni E, De Zorzi L, Lee SA. The developing role of transparent surfaces in children's spatial representation. Cogn Psychol 2018; 105:39-52. [PMID: 29920399 DOI: 10.1016/j.cogpsych.2018.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 05/30/2018] [Indexed: 11/28/2022]
Abstract
Children adeptly use environmental boundaries to navigate. But how do they represent surfaces as boundaries, and how does this change over development? To investigate the effects of boundaries as visual and physical barriers, we tested spatial reorientation in 160 children (2-7 year-olds) in a transparent rectangular arena (Condition 1). In contrast with their consistent success using opaque surfaces (Condition 2), children only succeeded at using transparent surfaces at 5-7 years of age. These results suggest a critical role of visually opaque surfaces in early spatial coding and a developmental change around the age of five in representing locations with respect to transparent surfaces. In application, these findings may inform our usage of windows and glass surfaces in designing and building environments occupied by young children.
Collapse
Affiliation(s)
- Eugenia Gianni
- Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, Rovereto, Italy
| | - Laura De Zorzi
- Department of Psychology and Cognitive Science, Corso Bettini 84, Rovereto, Italy
| | - Sang Ah Lee
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daehak-ro 291, Daejeon, Republic of Korea; Center for Mind/Brain Sciences, University of Trento, Corso Bettini 31, Rovereto, Italy.
| |
Collapse
|
6
|
Mental imagery skills predict the ability in performing environmental directional judgements. Exp Brain Res 2017; 235:2225-2233. [PMID: 28455738 DOI: 10.1007/s00221-017-4966-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
Abstract
Mental imagery plays a crucial role in several cognitive processes, including human navigation. According to the Kosslyn's Model, mental imagery is subserved by three components: generation, inspection and transformation. The role of transformation, where by individuals recognise, from a different perspective, a place they have already visited, is no longer a matter of debate. However, the role of the other two components when recalling a map from different perspectives, has never been fully investigated. In the present study, we enrolled forty-nine college students and asked them to learn a schematic map and to provide directional judgements aligned or counter-aligned compared to the learnt map orientation. Their mental imagery generation, inspection and transformation skills were also investigated. Results demonstrated that all three visual mental imagery components negatively correlate with errors in providing directional judgements. Specifically, generation assumes a role in aligned directional judgements, while inspection and transformation predict the capability to provide counter-aligned directional judgements. Although all mental imagery components play a role in mentally recalling a map, only the proficiency in inspection and mental rotation can predict the accuracy in changing perspective.
Collapse
|
7
|
Landau B. Update on “What” and “Where” in Spatial Language: A New Division of Labor for Spatial Terms. Cogn Sci 2016; 41 Suppl 2:321-350. [DOI: 10.1111/cogs.12410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 03/09/2016] [Accepted: 03/14/2016] [Indexed: 01/29/2023]
Affiliation(s)
- Barbara Landau
- Department of Cognitive Science; Johns Hopkins University
| |
Collapse
|
8
|
Proulx MJ, Todorov OS, Taylor Aiken A, de Sousa AA. Where am I? Who am I? The Relation Between Spatial Cognition, Social Cognition and Individual Differences in the Built Environment. Front Psychol 2016; 7:64. [PMID: 26903893 PMCID: PMC4749931 DOI: 10.3389/fpsyg.2016.00064] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 01/12/2016] [Indexed: 11/13/2022] Open
Abstract
Knowing who we are, and where we are, are two fundamental aspects of our physical and mental experience. Although the domains of spatial and social cognition are often studied independently, a few recent areas of scholarship have explored the interactions of place and self. This fits in with increasing evidence for embodied theories of cognition, where mental processes are grounded in action and perception. Who we are might be integrated with where we are, and impact how we move through space. Individuals vary in personality, navigational strategies, and numerous cognitive and social competencies. Here we review the relation between social and spatial spheres of existence in the realms of philosophical considerations, neural and psychological representations, and evolutionary context, and how we might use the built environment to suit who we are, or how it creates who we are. In particular we investigate how two spatial reference frames, egocentric and allocentric, might transcend into the social realm. We then speculate on how environments may interact with spatial cognition. Finally, we suggest how a framework encompassing spatial and social cognition might be taken in consideration by architects and urban planners.
Collapse
Affiliation(s)
- Michael J Proulx
- Crossmodal Cognition Laboratory, Department of Psychology, University of Bath Bath, UK
| | - Orlin S Todorov
- European Network for Brain Evolution Research The Hague, Netherlands
| | | | | |
Collapse
|
9
|
Gonzalez-Redin J, Luque S, Poggio L, Smith R, Gimona A. Spatial Bayesian belief networks as a planning decision tool for mapping ecosystem services trade-offs on forested landscapes. ENVIRONMENTAL RESEARCH 2016; 144:15-26. [PMID: 26597639 DOI: 10.1016/j.envres.2015.11.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/04/2015] [Accepted: 11/07/2015] [Indexed: 05/25/2023]
Abstract
An integrated methodology, based on linking Bayesian belief networks (BBN) with GIS, is proposed for combining available evidence to help forest managers evaluate implications and trade-offs between forest production and conservation measures to preserve biodiversity in forested habitats. A Bayesian belief network is a probabilistic graphical model that represents variables and their dependencies through specifying probabilistic relationships. In spatially explicit decision problems where it is difficult to choose appropriate combinations of interventions, the proposed integration of a BBN with GIS helped to facilitate shared understanding of the human-landscape relationships, while fostering collective management that can be incorporated into landscape planning processes. Trades-offs become more and more relevant in these landscape contexts where the participation of many and varied stakeholder groups is indispensable. With these challenges in mind, our integrated approach incorporates GIS-based data with expert knowledge to consider two different land use interests - biodiversity value for conservation and timber production potential - with the focus on a complex mountain landscape in the French Alps. The spatial models produced provided different alternatives of suitable sites that can be used by policy makers in order to support conservation priorities while addressing management options. The approach provided provide a common reasoning language among different experts from different backgrounds while helped to identify spatially explicit conflictive areas.
Collapse
Affiliation(s)
| | - Sandra Luque
- University of St Andrews Centre for Biological Diversity (CBD), St Andrews, Fife, KY16 9ST Scotland, UK; IRSTEA, National Research Institute of Science and Technology for Environment and Agriculture, France - 2, Rue de la Papeterie, Saint-Martin-d'Heres cedex 38402, France.
| | - Laura Poggio
- The James Hutton Institute Craigibuckler, Aberdeen, AB15 8QH Scotland, UK.
| | - Ron Smith
- Centre for Ecology and Hydrology Bush Estate, Penicuik, Midlothian, EH26 0QB Scotland, UK.
| | - Alessandro Gimona
- The James Hutton Institute Craigibuckler, Aberdeen, AB15 8QH Scotland, UK.
| |
Collapse
|
10
|
Abstract
Research on animals, infants, children, and adults provides evidence that distinct cognitive systems underlie navigation and object recognition. Here we examine whether and how these systems interact when children interpret 2D edge-based perspectival line drawings of scenes and objects. Such drawings serve as symbols early in development, and they preserve scene and object geometry from canonical points of view. Young children show limits when using geometry both in non-symbolic tasks and in symbolic map tasks that present 3D contexts from unusual, unfamiliar points of view. When presented with the familiar viewpoints in perspectival line drawings, however, do children engage more integrated geometric representations? In three experiments, children successfully interpreted line drawings with respect to their depicted scene or object. Nevertheless, children recruited distinct processes when navigating based on the information in these drawings, and these processes depended on the context in which the drawings were presented. These results suggest that children are flexible but limited in using geometric information to form integrated representations of scenes and objects, even when interpreting spatial symbols that are highly familiar and faithful renditions of the visual world.
Collapse
Affiliation(s)
- Moira R. Dillon
- Psychology Department, Harvard University, Cambridge, MA 02138, USA
| | | |
Collapse
|
11
|
Does spatial locative comprehension predict landmark-based navigation? PLoS One 2015; 10:e0115432. [PMID: 25629814 PMCID: PMC4309642 DOI: 10.1371/journal.pone.0115432] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Accepted: 11/24/2014] [Indexed: 11/19/2022] Open
Abstract
In the present study we investigated the role of spatial locative comprehension in learning and retrieving pathways when landmarks were available and when they were absent in a sample of typically developing 6- to 11-year-old children. Our results show that the more proficient children are in understanding spatial locatives the more they are able to learn pathways, retrieve them after a delay and represent them on a map when landmarks are present in the environment. These findings suggest that spatial language is crucial when individuals rely on sequences of landmarks to drive their navigation towards a given goal but that it is not involved when navigational representations based on the geometrical shape of the environment or the coding of body movements are sufficient for memorizing and recalling short pathways.
Collapse
|
12
|
Vallortigara G. Foundations of Number and Space Representations in Non-Human Species. EVOLUTIONARY ORIGINS AND EARLY DEVELOPMENT OF NUMBER PROCESSING 2015. [DOI: 10.1016/b978-0-12-420133-0.00002-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Huang Y, Spelke ES. Core knowledge and the emergence of symbols: The case of maps. JOURNAL OF COGNITION AND DEVELOPMENT 2015; 16:81-96. [PMID: 25642150 PMCID: PMC4308729 DOI: 10.1080/15248372.2013.784975] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Map reading is unique to humans but present in people of diverse cultures, at ages as young as 4 years. Here we explore the nature and sources of this ability, asking both what geometric information young children use in maps and what non-symbolic systems are associated with their map-reading performance. Four-year-old children were given two tests of map-based navigation (placing an object within a small 3D surface layout at a position indicated on a 2D map), one focused on distance relations and the other on angle relations. Children also were given two non-symbolic tasks, testing their use of geometry for navigation (a reorientation task) and for visual form analysis (a deviant-detection task). Although children successfully performed both map tasks, their performance on the two map tasks was uncorrelated, providing evidence for distinct abilities to represent distance and angle on 2D maps of 3D surface layouts. In contrast, performance on each map task was associated with performance on one of the two non-symbolic tasks: map-based navigation by distance correlated with sensitivity to the shape of the environment in the reorientation task, whereas map-based navigation by angle correlated with sensitivity to the shapes of 2D forms and patterns in the deviant detection task. These findings suggest links between one uniquely human, emerging symbolic ability, geometric map use, and two core systems of geometry.
Collapse
Affiliation(s)
- Yi Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | | |
Collapse
|
14
|
Chiandetti C, Spelke ES, Vallortigara G. Inexperienced newborn chicks use geometry to spontaneously reorient to an artificial social partner. Dev Sci 2014; 18:972-8. [DOI: 10.1111/desc.12277] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/30/2014] [Indexed: 01/29/2023]
Affiliation(s)
- Cinzia Chiandetti
- Department of Life Sciences; Psychology Unit, University of Trieste; Italy
| | | | | |
Collapse
|
15
|
Mattson MP. Superior pattern processing is the essence of the evolved human brain. Front Neurosci 2014; 8:265. [PMID: 25202234 PMCID: PMC4141622 DOI: 10.3389/fnins.2014.00265] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 08/05/2014] [Indexed: 01/18/2023] Open
Abstract
Humans have long pondered the nature of their mind/brain and, particularly why its capacities for reasoning, communication and abstract thought are far superior to other species, including closely related anthropoids. This article considers superior pattern processing (SPP) as the fundamental basis of most, if not all, unique features of the human brain including intelligence, language, imagination, invention, and the belief in imaginary entities such as ghosts and gods. SPP involves the electrochemical, neuronal network-based, encoding, integration, and transfer to other individuals of perceived or mentally-fabricated patterns. During human evolution, pattern processing capabilities became increasingly sophisticated as the result of expansion of the cerebral cortex, particularly the prefrontal cortex and regions involved in processing of images. Specific patterns, real or imagined, are reinforced by emotional experiences, indoctrination and even psychedelic drugs. Impaired or dysregulated SPP is fundamental to cognitive and psychiatric disorders. A broader understanding of SPP mechanisms, and their roles in normal and abnormal function of the human brain, may enable the development of interventions that reduce irrational decisions and destructive behaviors.
Collapse
Affiliation(s)
- Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging Intramural Research Program Baltimore, MD, USA ; Department of Neuroscience, Johns Hopkins University School of Medicine Baltimore, MD, USA
| |
Collapse
|
16
|
Abstract
Preschool children can navigate by simple geometric maps of the environment, but the nature of the geometric relations they use in map reading remains unclear. Here, children were tested specifically on their sensitivity to angle. Forty-eight children (age 47:15-53:30 months) were presented with fragments of geometric maps, in which angle sections appeared without any relevant length or distance information. Children were able to read these map fragments and compare two-dimensional to three-dimensional angles. However, this ability appeared both variable and fragile among the youngest children of the sample. These findings suggest that 4-year-old children begin to form an abstract concept of angle that applies both to two-dimensional and three-dimensional displays and that serves to interpret novel spatial symbols.
Collapse
Affiliation(s)
- Véronique Izard
- Laboratoire Psychologie de la Perception, Université Paris Descartes, Sorbonne Paris Cité, 75006 Paris, France
- CNRS UMR 8158, 75006 Paris, France
- Department of Psychology, Harvard University, Cambridge MA 02138, USA
| | - Evan O'Donnell
- Department of Psychology, Harvard University, Cambridge MA 02138, USA
| | | |
Collapse
|
17
|
Abstract
Human adults from diverse cultures share intuitions about the points, lines, and figures of Euclidean geometry. Do children develop these intuitions by drawing on phylogenetically ancient and developmentally precocious geometric representations that guide their navigation and their analysis of object shape? In what way might these early-arising representations support later-developing Euclidean intuitions? To approach these questions, we investigated the relations among young children's use of geometry in tasks assessing: navigation; visual form analysis; and the interpretation of symbolic, purely geometric maps. Children's navigation depended on the distance and directional relations of the surface layout and predicted their use of a symbolic map with targets designated by surface distances. In contrast, children's analysis of visual forms depended on the size-invariant shape relations of objects and predicted their use of the same map but with targets designated by corner angles. Even though the two map tasks used identical instructions and map displays, children's performance on these tasks showed no evidence of integrated representations of distance and angle. Instead, young children flexibly recruited geometric representations of either navigable layouts or objects to interpret the same spatial symbols. These findings reveal a link between the early-arising geometric representations that humans share with diverse animals and the flexible geometric intuitions that give rise to human knowledge at its highest reaches. Although young children do not appear to integrate core geometric representations, children's use of the abstract geometry in spatial symbols such as maps may provide the earliest clues to the later construction of Euclidean geometry.
Collapse
Affiliation(s)
- Moira R. Dillon
- Psychology Department, Harvard University, Cambridge, MA 02138; and
| | - Yi Huang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | | |
Collapse
|
18
|
Picucci L, Gyselinck V, Piolino P, Nicolas S, Bosco A. Spatial Mental Models: The Interaction of Presentation Format, Task Requirements and Availability of Working Memory Components. APPLIED COGNITIVE PSYCHOLOGY 2013. [DOI: 10.1002/acp.2909] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | | | | | - Andrea Bosco
- Università degli Studi di Bari “Aldo Moro”; Italy
| |
Collapse
|
19
|
Gramann K. Embodiment of Spatial Reference Frames and Individual Differences in Reference Frame Proclivity. SPATIAL COGNITION AND COMPUTATION 2013. [DOI: 10.1080/13875868.2011.589038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Shettleworth SJ. Modularity, comparative cognition and human uniqueness. Philos Trans R Soc Lond B Biol Sci 2013; 367:2794-802. [PMID: 22927578 DOI: 10.1098/rstb.2012.0211] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Darwin's claim 'that the difference in mind between man and the higher animals … is certainly one of degree and not of kind' is at the core of the comparative study of cognition. Recent research provides unprecedented support for Darwin's claim as well as new reasons to question it, stimulating new theories of human cognitive uniqueness. This article compares and evaluates approaches to such theories. Some prominent theories propose sweeping domain-general characterizations of the difference in cognitive capabilities and/or mechanisms between adult humans and other animals. Dual-process theories for some cognitive domains propose that adult human cognition shares simple basic processes with that of other animals while additionally including slower-developing and more explicit uniquely human processes. These theories are consistent with a modular account of cognition and the 'core knowledge' account of children's cognitive development. A complementary proposal is that human infants have unique social and/or cognitive adaptations for uniquely human learning. A view of human cognitive architecture as a mosaic of unique and species-general modular and domain-general processes together with a focus on uniquely human developmental mechanisms is consistent with modern evolutionary-developmental biology and suggests new questions for comparative research.
Collapse
Affiliation(s)
- Sara J Shettleworth
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada, M5S 3G3.
| |
Collapse
|
21
|
Palermo L, Ranieri G, Boccia M, Piccardi L, Nemmi F, Guariglia C. Map-following skills in left and right brain-damaged patients with and without hemineglect. J Clin Exp Neuropsychol 2012; 34:1065-79. [PMID: 23036103 DOI: 10.1080/13803395.2012.727385] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Tommasi L, Laeng B. Psychology of spatial cognition. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2012; 3:565-580. [PMID: 26305266 DOI: 10.1002/wcs.1198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In this overview, focusing on memory and higher cognitive processes, we cover some of the most relevant results that emerged from research on spatial cognition in animals and in humans in the last 3 decades. In particular, we discuss how representations of distance and direction are used to localize oneself with respect to the external world, to determine the position of objects with respect to each other, and to compute the position of invisible goals. The role of landmarks and environmental geometry as cues for extracting spatial information in such abilities is compared, and the reliance upon self-centered and external frames of reference is discussed. Moreover, the contribution of working memory and processing strategies in forming representations of spatial relations in humans is presented. Finally, implications for some neighboring fields of the cognitive sciences will be outlined. WIREs Cogn Sci 2012. doi: 10.1002/wcs.1198 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Luca Tommasi
- Department of Neuroscience and Imaging, University of Chieti, Chieti, Italy
| | - Bruno Laeng
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
23
|
Abstract
"Number" is the single most influential quantitative dimension in modern human society. It is our preferred dimension for keeping track of almost everything, including distance, weight, time, temperature, and value. How did "number" become psychologically affiliated with all of these different quantitative dimensions? Humans and other animals process a broad range of quantitative information across many psychophysical dimensions and sensory modalities. The fact that adults can rapidly translate one dimension (e.g., loudness) into any other (e.g., handgrip pressure) has been long established by psychophysics research (Stevens, 1975 ). Recent literature has attempted to account for the development of the computational and neural mechanisms that underlie interactions between quantitative dimensions. We review evidence that there are fundamental cognitive and neural relations among different quantitative dimensions (number, size, time, pitch, loudness, and brightness). Then, drawing on theoretical frameworks that explain phenomena from cross-modal perception, we outline some possible conceptualizations for how different quantitative dimensions could come to be related over both ontogenetic and phylogenetic time scales.
Collapse
Affiliation(s)
- Cory D Bonn
- Brain & Cognitive Sciences Department, University of Rochester, NY, USA
| | | |
Collapse
|
24
|
From natural geometry to spatial cognition. Neurosci Biobehav Rev 2012; 36:799-824. [PMID: 22206900 DOI: 10.1016/j.neubiorev.2011.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 12/07/2011] [Accepted: 12/13/2011] [Indexed: 01/29/2023]
|
25
|
Vallortigara G. Core knowledge of object, number, and geometry: a comparative and neural approach. Cogn Neuropsychol 2012; 29:213-36. [PMID: 22292801 DOI: 10.1080/02643294.2012.654772] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Studies on the ontogenetic origins of human knowledge provide evidence for a small set of separable systems of core knowledge dealing with the representation of inanimate and animate objects, number, and geometry. Because core knowledge systems are evolutionarily ancient, they can be investigated from a comparative perspective, making use of various animal models. In this review, I discuss evidence showing precocious abilities in nonhuman species to represent (a) objects that move partly or fully out of view and their basic mechanical properties such as solidity, (b) the cardinal and ordinal/sequential aspects of numerical cognition and rudimentary arithmetic with small numerosities, and (c) the geometrical relationships among extended surfaces in the surrounding layout. Controlled rearing studies suggest that the abilities associated with core knowledge systems of objects, number, and geometry are observed in animals in the absence (or with very reduced) experience, supporting a nativistic foundation of such cognitive mechanisms. Animal models also promise a fresh approach to the issue of the neurobiological and genetic mechanisms underlying the expression of core knowledge systems.
Collapse
|
26
|
Shusterman A, Ah Lee S, Spelke ES. Cognitive effects of language on human navigation. Cognition 2011; 120:186-201. [PMID: 21665199 DOI: 10.1016/j.cognition.2011.04.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2009] [Revised: 04/18/2011] [Accepted: 04/21/2011] [Indexed: 10/18/2022]
Abstract
Language has been linked to spatial representation and behavior in humans, but the nature of this effect is debated. Here, we test whether simple verbal expressions improve 4-year-old children's performance in a disoriented search task in a small rectangular room with a single red landmark wall. Disoriented children's landmark-guided search for a hidden object was dramatically enhanced when the experimenter used certain verbal expressions to designate the landmark during the hiding event. Both a spatial expression ("I'm hiding the sticker at the red/white wall") and a non-spatial but task-relevant expression ("The red/white wall can help you get the sticker") enhanced children's search, relative to uncued controls. By contrast, a verbal expression that drew attention to the landmark in a task-irrelevant manner ("Look at this pretty red/white wall") produced no such enhancement. These findings provide further evidence that language changes spatial behavior in children and illuminate one mechanism through which language exerts its effect: by helping children understand the relevance of landmarks for encoding locations.
Collapse
Affiliation(s)
- Anna Shusterman
- Department of Psychology, Wesleyan University, Middletown, CT 06459, United States.
| | | | | |
Collapse
|
27
|
Impaired representation of geometric relationships in humans with damage to the hippocampal formation. PLoS One 2011; 6:e19507. [PMID: 21611122 PMCID: PMC3097200 DOI: 10.1371/journal.pone.0019507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 03/30/2011] [Indexed: 11/19/2022] Open
Abstract
The pivotal role of the hippocampus for spatial memory is well-established. However, while neurophysiological and imaging studies suggest a specialization of the hippocampus for viewpoint-independent or allocentric memory, results from human lesion studies have been less conclusive. It is currently unclear whether disproportionate impairment in allocentric memory tasks reflects impairment of cognitive functions that are not sufficiently supported by regions outside the medial temporal lobe or whether the deficits observed in some studies are due to experimental factors. Here, we have investigated whether hippocampal contributions to spatial memory depend on the spatial references that are available in a certain behavioral context. Patients with medial temporal lobe lesions affecting systematically the right hippocampal formation performed a series of three oculomotor tasks that required memory of a spatial cue either in retinal coordinates or relative to a single environmental reference across a delay of 5000 ms. Stimulus displays varied the availability of spatial references and contained no complex visuo-spatial associations. Patients showed a selective impairment in a condition that critically depended on memory of the geometric relationship between spatial cue and environmental reference. We infer that regions of the medial temporal lobe, most likely the hippocampal formation, contribute to behavior in conditions that exceed the potential of viewpoint-dependent or egocentric representations. Apparently, this already applies to short-term memory of simple geometric relationships and does not necessarily depend on task difficulty or integration of landmarks into more complex representations. Deficient memory of basic geometric relationships may represent a core deficit that contributes to impaired performance in allocentric spatial memory tasks.
Collapse
|
28
|
Abstract
Geometrical concepts are critical to a host of human cognitive achievements, from maps to measurement to mathematics, and both the development of these concepts, and their variation by gender, have long been studied. Most studies of geometrical reasoning, however, present children with materials containing both geometric and non-geometric information, and with tasks that are open to multiple solution strategies. Here we present kindergarten children with a task requiring a focus on geometry: navigation in a small-scale space by a purely geometric map. Children spontaneously extracted and used relationships of both distance and angle in the maps, without prior demonstration, instruction, or feedback, but they failed to use the sense information that distinguishes an array from its mirror image. Children of both genders showed a common profile of performance, with boys showing no advantage on this task. These findings provide evidence that some map-reading abilities arise prior to formal instruction, are common to both genders, and are used spontaneously to guide children's spatial behavior.
Collapse
|
29
|
Chiandetti C, Vallortigara G. Intuitive physical reasoning about occluded objects by inexperienced chicks. Proc Biol Sci 2011; 278:2621-7. [PMID: 21270036 DOI: 10.1098/rspb.2010.2381] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Questions concerning the role of nature and nurture in higher cognition appear to be intractable if one restricts one's attention to development in humans. However, in other domains, such as sensory development, much information has been gained from controlled rearing studies with animals. Here, we used a similar experimental strategy to investigate intuitive reasoning about occluded objects. Newborn domestic chicks (Gallus gallus) were reared singly with a small object that became their social partner. They were then accustomed to rejoin such an imprinting object when it was made to move and disappear behind either one of two identical opaque screens. After disappearance of the imprinting object, chicks were faced with two screens of different slants, or of different height or different width, which may or may not have been compatible with the presence of the imprinting object hidden beneath/behind them. Chicks consistently chose the screen of slant/height/width compatible with the presence of the object beneath/behind it. Preventing chicks from touching and pecking at the imprinting object before testing did not affect the results, suggesting that intuitive reasoning about physical objects is largely independent of specific experience of interaction with objects and of objects' occluding events.
Collapse
Affiliation(s)
- Cinzia Chiandetti
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Corso Bettini 31, Rovereto 38068, Italy
| | | |
Collapse
|
30
|
Hyde DC, Winkler-Rhoades N, Lee SA, Izard V, Shapiro KA, Spelke ES. Spatial and numerical abilities without a complete natural language. Neuropsychologia 2010; 49:924-936. [PMID: 21168425 DOI: 10.1016/j.neuropsychologia.2010.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 11/08/2010] [Accepted: 12/13/2010] [Indexed: 01/29/2023]
Abstract
We studied the cognitive abilities of a 13-year-old deaf child, deprived of most linguistic input from late infancy, in a battery of tests designed to reveal the nature of numerical and geometrical abilities in the absence of a full linguistic system. Tests revealed widespread proficiency in basic symbolic and non-symbolic numerical computations involving the use of both exact and approximate numbers. Tests of spatial and geometrical abilities revealed an interesting patchwork of age-typical strengths and localized deficits. In particular, the child performed extremely well on navigation tasks involving geometrical or landmark information presented in isolation, but very poorly on otherwise similar tasks that required the combination of the two types of spatial information. Tests of number- and space-specific language revealed proficiency in the use of number words and deficits in the use of spatial terms. This case suggests that a full linguistic system is not necessary to reap the benefits of linguistic vocabulary on basic numerical tasks. Furthermore, it suggests that language plays an important role in the combination of mental representations of space.
Collapse
Affiliation(s)
- Daniel C Hyde
- Department of Psychology, Harvard University, 1118 WJH, 33 Kirkland Street, Cambridge, MA 02138, United States.
| | - Nathan Winkler-Rhoades
- Department of Psychology, Harvard University, 1118 WJH, 33 Kirkland Street, Cambridge, MA 02138, United States
| | - Sang-Ah Lee
- Department of Psychology, Harvard University, 1118 WJH, 33 Kirkland Street, Cambridge, MA 02138, United States
| | - Veronique Izard
- Department of Psychology, Harvard University, 1118 WJH, 33 Kirkland Street, Cambridge, MA 02138, United States
| | - Kevin A Shapiro
- Department of Psychology, Harvard University, 1118 WJH, 33 Kirkland Street, Cambridge, MA 02138, United States; Department of Neurology, Pediatric Neurology Unit, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, United States; Division of Developmental Medicine, Children's Hospital Boston, 300 Longwood Avenue, Boston, MA 02115, United States
| | - Elizabeth S Spelke
- Department of Psychology, Harvard University, 1118 WJH, 33 Kirkland Street, Cambridge, MA 02138, United States
| |
Collapse
|
31
|
|
32
|
Kaufman J, Needham A. Spatial expectations of young human infants, following passive movement. Dev Psychobiol 2010; 53:23-36. [PMID: 20806293 DOI: 10.1002/dev.20484] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jordy Kaufman
- Brain Sciences Institute, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.
| | | |
Collapse
|
33
|
Lee SA, Spelke ES. Two systems of spatial representation underlying navigation. Exp Brain Res 2010; 206:179-88. [PMID: 20614214 DOI: 10.1007/s00221-010-2349-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Accepted: 06/19/2010] [Indexed: 01/29/2023]
Abstract
We review evidence for two distinct cognitive processes by which humans and animals represent the navigable environment. One process uses the shape of the extended 3D surface layout to specify the navigator's position and orientation. A second process uses objects and patterns as beacons to specify the locations of significant objects. Although much of the evidence for these processes comes from neurophysiological studies of navigating animals and neuroimaging studies of human adults, behavioral studies of navigating children shed light both on the nature of these systems and on their interactions.
Collapse
Affiliation(s)
- Sang Ah Lee
- Department of Psychology, Harvard University, 11th Floor, Cambridge, MA 02138, USA.
| | | |
Collapse
|
34
|
Abstract
Video game enthusiasts spend many hours at play, and this intense activity has the potential to alter both brain and behavior. We review studies that investigate the ability of video games to modify processes in spatial cognition. We outline the initial stages of research into the underlying mechanisms of learning, and we also consider possible applications of this new knowledge. Several experiments have shown that playing action games induces changes in a number of sensory, perceptual, and attentional abilities that are important for many tasks in spatial cognition. These basic capacities include contrast sensitivity, spatial resolution, the attentional visual field, enumeration, multiple object tracking, and visuomotor coordination and speed. In addition to altering performance on basic tasks, playing action video games has a beneficial effect on more complex spatial tasks such as mental rotation, thus demonstrating that learning generalizes far beyond the training activities in the game. Far transfer of this sort is generally elusive in learning, and we discuss some early attempts to elucidate the brain functions that are responsible. Finally, we suggest that studying video games may contribute not only to an improved understanding of the mechanisms of learning but may also offer new approaches to teaching spatial skills.
Collapse
Affiliation(s)
- Ian Spence
- Department of Psychology, University of Toronto
| | - Jing Feng
- Department of Psychology, University of Toronto
| |
Collapse
|
35
|
Abstract
For many centuries, philosophers and scientists have pondered the origins and nature of human intuitions about the properties of points, lines, and figures on the Euclidean plane, with most hypothesizing that a system of Euclidean concepts either is innate or is assembled by general learning processes. Recent research from cognitive and developmental psychology, cognitive anthropology, animal cognition, and cognitive neuroscience suggests a different view. Knowledge of geometry may be founded on at least two distinct, evolutionarily ancient, core cognitive systems for representing the shapes of large-scale, navigable surface layouts and of small-scale, movable forms and objects. Each of these systems applies to some but not all perceptible arrays and captures some but not all of the three fundamental Euclidean relationships of distance (or length), angle, and direction (or sense). Like natural number (Carey, 2009), Euclidean geometry may be constructed through the productive combination of representations from these core systems, through the use of uniquely human symbolic systems.
Collapse
|
36
|
Innate sensitivity for self-propelled causal agency in newly hatched chicks. Proc Natl Acad Sci U S A 2010; 107:4483-5. [PMID: 20160095 DOI: 10.1073/pnas.0908792107] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The idea that sensitivity to self-produced motion could lie at the foundations of the clear-cut divide that the brain operates between the two basic domains of inanimate and animate objects dates back to Aristotle. Sensitivity to self-propelled objects is apparent in human infants from around the fifth month of age, which leaves undetermined whether it is acquired by experience with animate objects or whether it is innately predisposed in the brain. Here, we report that newly hatched, visually naïve domestic chicks presented with objects exhibiting motion either self-produced or caused by physical contact prefer to associate with self-propelled objects. This finding supports the idea of an evolutionarily ancient, predisposed neural mechanism in the vertebrate brain for the detection of animacy.
Collapse
|