1
|
Rambaud V, Frajerman A, Fournier M, Iftimovici A, Dwir D, Khadimallah I, Kebir O, Marzo A, Krebs MO, Chaumette B. Oxidative stress markers during the psychotic transition. J Psychiatr Res 2025; 186:137-144. [PMID: 40239390 DOI: 10.1016/j.jpsychires.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 03/09/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025]
Abstract
Ultra-high-risk state (UHR) concept was initially applied to promote the early detection of young help-seeking patients with higher risk of psychotic transition. However, most UHR individuals do not evolve to psychosis, stressing the need for biomarkers allowing the prediction of the transition. Substantial evidence suggest that redox dysregulation plays a major role in the pathophysiology of psychotic disorders. The aim of this study is to explore the relationship between the evolution of blood oxidative stress markers in UHR individuals. Blood samples were collected from 48 UHR individuals at their first visit and 12 months later for those who did not convert to psychosis (UHR-NC), or at the time of the transition for the converters (UHR-C). Markers for redox dysregulation, including the glutathione antioxidant system, superoxide dismutase, thioredoxin, TBARS, macrophage migration inhibitory factor, peroxiredoxin-4, MMP9 and sRAGE, were assessed in erythrocytes, serum and plasma. Statistical analyses revealed a combination of peripheral redox markers associated with the risk of transition to psychosis. These markers were able to discriminate between UHR-C and UHR-NC subjects at baseline. A decrease in blood levels of peroxiredoxin-4, an antioxidant enzyme, was associated with a lower risk of transition. GPx activity and TBARS levels were associated with the later severity of symptoms during the course of psychosis. These findings suggest the interest of peripheral biomarkers of oxidative stress to monitor the risk of psychosis. Overall, these findings hold promises for early detection and argue for the development of treatments targeting redox pathways in psychosis.
Collapse
Affiliation(s)
- Victoria Rambaud
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Ariel Frajerman
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Margot Fournier
- Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Department of Psychiatry, Lausanne, Switzerland
| | - Anton Iftimovici
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Department of Psychiatry, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Lausanne University Hospital (CHUV), Department of Psychiatry, Lausanne, Switzerland
| | - Oussama Kebir
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Aude Marzo
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France
| | - Marie-Odile Krebs
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France
| | - Boris Chaumette
- Université Paris Cité, INSERM U1266, Institute of Psychiatry and Neuroscience of Paris, Paris, France; GHU Paris Psychiatrie et Neurosciences, Paris, France; Department of Psychiatry, McGill University, Montreal, France.
| |
Collapse
|
2
|
Santos-Silva T, Lopes CFB, Hazar Ülgen D, Guimarães DA, Guimarães FS, Alberici LC, Sandi C, Gomes FV. Adolescent Stress-Induced Ventral Hippocampus Redox Dysregulation Underlies Behavioral Deficits and Excitatory/Inhibitory Imbalance Related to Schizophrenia. Schizophr Bull 2025; 51:501-512. [PMID: 38525594 PMCID: PMC11908863 DOI: 10.1093/schbul/sbae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
BACKGROUND AND HYPOTHESIS Redox dysregulation has been proposed as a convergent point of childhood trauma and the emergence of psychiatric disorders, such as schizophrenia (SCZ). A critical region particularly vulnerable to environmental insults during adolescence is the ventral hippocampus (vHip). However, the impact of severe stress on vHip redox states and their functional consequences, including behavioral and electrophysiological changes related to SCZ, are not entirely understood. STUDY DESIGN After exposing adolescent animals to physical stress (postnatal day, PND31-40), we explored social and cognitive behaviors (PND47-49), the basal activity of pyramidal glutamate neurons, the number of parvalbumin (PV) interneurons, and the transcriptomic signature of the vHip (PND51). We also evaluated the impact of stress on the redox system, including mitochondrial respiratory function, reactive oxygen species (ROS) production, and glutathione (GSH) levels in the vHip and serum. STUDY RESULTS Adolescent-stressed animals exhibited loss of sociability, cognitive impairment, and vHip excitatory/inhibitory (E/I) imbalance. Genome-wide transcriptional profiling unveiled the impact of stress on redox system- and synaptic-related genes. Stress impacted mitochondrial respiratory function and changes in ROS levels in the vHip. GSH and glutathione disulfide (GSSG) levels were elevated in the serum of stressed animals, while GSSG was also increased in the vHip and negatively correlated with sociability. Additionally, PV interneuron deficits in the vHip caused by adolescent stress were associated with oxidative stress. CONCLUSIONS Our results highlight the negative impact of adolescent stress on vHip redox regulation and mitochondrial function, which are partially associated with E/I imbalance and behavioral abnormalities related to SCZ.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Caio Fábio Baeta Lopes
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Doğukan Hazar Ülgen
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Danielle A Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luciane Carla Alberici
- Department of Biomolecular Sciences, Ribeirão Preto Pharmaceutical Sciences School, University of São Paulo, Ribeirão Preto, Brazil
| | - Carmen Sandi
- Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Lorenc-Koci E, Górny M, Chwatko G, Kamińska K, Iciek M, Rogóż Z. The effect of phencyclidine-mediated blockade of NMDA receptors in the early postnatal period on glutathione and sulfur amino acid levels in the rat brain as a potential causative factor of schizophrenia-like behavior in adulthood. Pharmacol Rep 2024; 76:863-877. [PMID: 38904712 PMCID: PMC11294273 DOI: 10.1007/s43440-024-00607-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Phencyclidine, an NMDA receptor antagonist, is frequently used to model behavioral and neurochemical changes correlated with schizophrenia in laboratory animals. The present study aimed to examine the effects of repeated administration of phencyclidine during early postnatal development on the contents of glutathione and sulfur-containing amino acids, as well as the activity of antioxidant enzymes in the brain of 12-day-old rats, and schizophrenia-like symptoms in adulthood. METHODS Male Sprague-Dawley pups were administered phencyclidine (10 mg/kg) or saline subcutaneously on the postnatal days p2, p6, p9 and p12. In 12-day-old pups, 4 h after the last dose of phencyclidine, the levels of glutathione, cysteine, methionine, and homocysteine, and the enzymatic activity of superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione reductase (GR) were measured in the frontal cortex, hippocampus, and striatum. In 70-72-day-old rats, schizophrenia-like symptoms were assessed using behavioral tests. RESULTS Biochemical data showed that perinatal phencyclidine treatment significantly reduced glutathione and cysteine levels in all brain structures studied, methionine was diminished in the striatum, and homocysteine in both the frontal cortex and striatum. GR activity was increased in the frontal cortex while SODactivity was decreased in the hippocampus. Behaviorally, perinatal phencyclidine induced long-term deficits in social and cognitive function and a decrease in locomotor activity assessed as the time of walking. Finally, perinatal treatment with phencyclidine resulted in a significant reduction in body weight gain over time. CONCLUSION Our research provides further evidence for the usefulness of the phencyclidine-induced neurodevelopmental model of schizophrenia for studying the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Elżbieta Lorenc-Koci
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland.
| | - Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, Kraków, 31-034, Poland
| | - Grażyna Chwatko
- Department of Environmental Chemistry, University of Łódź, 163 Pomorska Street, Łódź, 90-236, Poland
| | - Kinga Kamińska
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, 7 Kopernika Street, Kraków, 31-034, Poland
| | - Zofia Rogóż
- Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, 31-343, Poland
| |
Collapse
|
4
|
Sailike B, Onzhanova Z, Akbay B, Tokay T, Molnár F. Vitamin D in Central Nervous System: Implications for Neurological Disorders. Int J Mol Sci 2024; 25:7809. [PMID: 39063051 PMCID: PMC11277055 DOI: 10.3390/ijms25147809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Vitamin D, obtained from diet or synthesized internally as cholecalciferol and ergocalciferol, influences bodily functions through its most active metabolite and the vitamin D receptor. Recent research has uncovered multiple roles for vitamin D in the central nervous system, impacting neural development and maturation, regulating the dopaminergic system, and controlling the synthesis of neural growth factors. This review thoroughly examines these connections and investigates the consequences of vitamin D deficiency in neurological disorders, particularly neurodegenerative diseases. The potential benefits of vitamin D supplementation in alleviating symptoms of these diseases are evaluated alongside a discussion of the controversial findings from previous intervention studies. The importance of interpreting these results cautiously is emphasised. Furthermore, the article proposes that additional randomised and well-designed trials are essential for gaining a deeper understanding of the potential therapeutic advantages of vitamin D supplementation for neurological disorders. Ultimately, this review highlights the critical role of vitamin D in neurological well-being and highlights the need for further research to enhance our understanding of its function in the brain.
Collapse
Affiliation(s)
| | | | | | | | - Ferdinand Molnár
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Kabanbay Batyr 53, Astana 010000, Kazakhstan; (B.S.); (Z.O.); (B.A.); (T.T.)
| |
Collapse
|
5
|
Haroon H, Ho AMC, Gupta VK, Dasari S, Sellgren CM, Cervenka S, Engberg G, Eren F, Erhardt S, Sung J, Choi DS. Cerebrospinal fluid proteomic signatures are associated with symptom severity of first-episode psychosis. J Psychiatr Res 2024; 171:306-315. [PMID: 38340697 PMCID: PMC10995989 DOI: 10.1016/j.jpsychires.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/04/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Apart from their diagnostic, monitoring, or prognostic utility in clinical settings, molecular biomarkers may be instrumental in understanding the pathophysiology of psychiatric disorders, including schizophrenia. Using untargeted metabolomics, we recently identified eight cerebrospinal fluid (CSF) metabolites unique to first-episode psychosis (FEP) subjects compared to healthy controls (HC). In this study, we sought to investigate the CSF proteomic signatures associated with FEP. We employed 16-plex tandem mass tag (TMT) mass spectrometry (MS) to examine the relative protein abundance in CSF samples of 15 individuals diagnosed with FEP and 15 age-and-sex-matched healthy controls (HC). Multiple linear regression model (MLRM) identified 16 differentially abundant CSF proteins between FEP and HC at p < 0.01. Among them, the two most significant CSF proteins were collagen alpha-2 (IV) chain (COL4A2: standard mean difference [SMD] = -1.12, p = 1.64 × 10-4) and neuron-derived neurotrophic factor (NDNF: SMD = -1.03, p = 4.52 × 10-4) both of which were down-regulated in FEP subjects compared to HC. We also identified several potential CSF proteins associated with the pathophysiology and the symptom profile and severity in FEP subjects, including COL4A2, NDNF, hornerin (HRNR), contactin-6 (CNTN6), voltage-dependent calcium channel subunit alpha-2/delta-3 (CACNA2D3), tropomyosin alpha-3 chain (TPM3 and TPM4). Moreover, several protein signatures were associated with cognitive performance. Although the results need replication, our exploratory study suggests that CSF protein signatures can be used to increase the understanding of the pathophysiology of psychosis.
Collapse
Affiliation(s)
- Humza Haroon
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Ada Man-Choi Ho
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Vinod K Gupta
- Division of Surgery Research, Department of Surgery, Rochester, MN, USA; Microbiome Program, Center for Individualized Medicine, Rochester, MN, USA
| | - Surendra Dasari
- Division of Biomedical Statistics and Informatics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Carl M Sellgren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden; Department of Medical Sciences, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Feride Eren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Sophie Erhardt
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jaeyun Sung
- Division of Surgery Research, Department of Surgery, Rochester, MN, USA; Microbiome Program, Center for Individualized Medicine, Rochester, MN, USA; Division of Rheumatology, Department of Internal Medicine, Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA; Neuroscience Program, Mayo Clinic College of Medicine and Science, Rochester, MN, USA.
| |
Collapse
|
6
|
Choi J, Kang J, Kim T, Nehs CJ. Sleep, mood disorders, and the ketogenic diet: potential therapeutic targets for bipolar disorder and schizophrenia. Front Psychiatry 2024; 15:1358578. [PMID: 38419903 PMCID: PMC10899493 DOI: 10.3389/fpsyt.2024.1358578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/29/2024] [Indexed: 03/02/2024] Open
Abstract
Bipolar disorder and schizophrenia are serious psychiatric conditions that cause a significant reduction in quality of life and shortened life expectancy. Treatments including medications and psychosocial support exist, but many people with these disorders still struggle to participate in society and some are resistant to current therapies. Although the exact pathophysiology of bipolar disorder and schizophrenia remains unclear, increasing evidence supports the role of oxidative stress and redox dysregulation as underlying mechanisms. Oxidative stress is an imbalance between the production of reactive oxygen species generated by metabolic processes and antioxidant systems that can cause damage to lipids, proteins, and DNA. Sleep is a critical regulator of metabolic homeostasis and oxidative stress. Disruption of sleep and circadian rhythms contribute to the onset and progression of bipolar disorder and schizophrenia and these disorders often coexist with sleep disorders. Furthermore, sleep deprivation has been associated with increased oxidative stress and worsening mood symptoms. Dysfunctional brain metabolism can be improved by fatty acid derived ketones as the brain readily uses both ketones and glucose as fuel. Ketones have been helpful in many neurological disorders including epilepsy and Alzheimer's disease. Recent clinical trials using the ketogenic diet suggest positive improvement in symptoms for bipolar disorder and schizophrenia as well. The improvement in psychiatric symptoms from the ketogenic diet is thought to be linked, in part, to restoration of mitochondrial function. These findings encourage further randomized controlled clinical trials, as well as biochemical and mechanistic investigation into the role of metabolism and sleep in psychiatric disorders. This narrative review seeks to clarify the intricate relationship between brain metabolism, sleep, and psychiatric disorders. The review will delve into the initial promising effects of the ketogenic diet on mood stability, examining evidence from both human and animal models of bipolar disorder and schizophrenia. The article concludes with a summary of the current state of affairs and encouragement for future research focused on the role of metabolism and sleep in mood disorders.
Collapse
Affiliation(s)
- Jinyoung Choi
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Jiseung Kang
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| | - Tae Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Republic of Korea
| | - Christa J. Nehs
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
7
|
Wu X, Ao H, Wu X, Cao Y. Sulfur-containing amino acids and risk of schizophrenia. Schizophr Res 2023; 262:8-17. [PMID: 37918291 DOI: 10.1016/j.schres.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 09/10/2023] [Accepted: 10/22/2023] [Indexed: 11/04/2023]
Abstract
BACKGROUND Schizophrenia is a chronic and complex severe psychiatric disorder. Male and female are different in their risks for schizophrenia for the biologic and sociocultural reasons. Homocysteine (Hcy), Cysteine (Cys), and methionine (Met) play important roles in metabolism, and the three amino acids may also be involved in pathogenesis of schizophrenia. OBJECTIVE This study aimed to test the associations between sulfur-containing amino acid blood levels and risk of schizophrenia, evaluating the different risk in male and female. METHODS We organized a case-control study on 876 individuals with schizophrenia and 913 age- and sex-matched healthy subjects as control group. The concentrations of Hcy, Cys and Met were measured by liquid chromatography-tandem mass spectrometry technology. Subsequently, restricted cubic spline was applied to explore full-range associations of these amino acids with schizophrenia. Interactions between levels of the three amino acids and sex on additive scale were also tested. RESULTS Hcy levels at ≤29 μmol/L were associated with sharply increased risk of schizophrenia, inversely, Met was associated with sharply decreased risk of schizophrenia at levels ≤22 μmol/L. Increased Cys levels were associated with decreased risk of schizophrenia. Almost inverse associations were observed between Cys/Hcy and Met/Hcy ratios and schizophrenia. Significant synergistic interactions between levels of all the three amino acids and sex were discovered on an additive scale. CONCLUSIONS Our study suggests a close association between sulfur-containing amino acids and schizophrenia with different risk in male and female. Future studies are demanded to clarify the pathogenic role of Hcy, Cys and Met in schizophrenia.
Collapse
Affiliation(s)
- Xue Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Huaixuan Ao
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China; The Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550003, China
| | - Xiaoyong Wu
- Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou 550025, China.
| | - Yunfeng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, NHC Key Laboratory of Reproduction Regulation, Shanghai Engineering Research Center of Reproductive Health Drug and Devices, Shanghai, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
| |
Collapse
|
8
|
Zuccoli GS, Nascimento JM, Moraes-Vieira PM, Rehen SK, Martins-de-Souza D. Mitochondrial, cell cycle control and neuritogenesis alterations in an iPSC-based neurodevelopmental model for schizophrenia. Eur Arch Psychiatry Clin Neurosci 2023; 273:1649-1664. [PMID: 37039888 DOI: 10.1007/s00406-023-01605-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/29/2023] [Indexed: 04/12/2023]
Abstract
Schizophrenia is a severe psychiatric disorder of neurodevelopmental origin that affects around 1% of the world's population. Proteomic studies and other approaches have provided evidence of compromised cellular processes in the disorder, including mitochondrial function. Most of the studies so far have been conducted on postmortem brain tissue from patients, and therefore, do not allow the evaluation of the neurodevelopmental aspect of the disorder. To circumvent that, we studied the mitochondrial and nuclear proteomes of neural stem cells (NSCs) and neurons derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients versus healthy controls to assess possible alterations related to energy metabolism and mitochondrial function during neurodevelopment in the disorder. Our results revealed differentially expressed proteins in pathways related to mitochondrial function, cell cycle control, DNA repair and neuritogenesis and their possible implication in key process of neurodevelopment, such as neuronal differentiation and axonal guidance signaling. Moreover, functional analysis of NSCs revealed alterations in mitochondrial oxygen consumption in schizophrenia-derived cells and a tendency of higher levels of intracellular reactive oxygen species (ROS). Hence, this study shows evidence that alterations in important cellular processes are present during neurodevelopment and could be involved with the establishment of schizophrenia, as well as the phenotypic traits observed in adult patients. Neural stem cells (NSCs) and neurons were derived from induced pluripotent stem cells (iPSCs) from schizophrenia patients and controls. Proteomic analyses were performed on the enriched mitochondrial and nuclear fractions of NSCs and neurons. Whole-cell proteomic analysis was also performed in neurons. Our results revealed alteration in proteins related to mitochondrial function, cell cycle control, among others. We also performed energy pathway analysis and reactive oxygen species (ROS) analysis of NSCs, which revealed alterations in mitochondrial oxygen consumption and a tendency of higher levels of intracellular ROS in schizophrenia-derived cells.
Collapse
Affiliation(s)
- Giuliana S Zuccoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Juliana M Nascimento
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Pedro M Moraes-Vieira
- Laboratory of Immunometabolism, Department of Genetics, Evolution, Microbiology and Immunology, Institute of Biology, University of Campinas, Campinas, São Paulo, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil
- Obesity and Comorbidities Research Center (OCRC), University of Campinas, São Paulo, Brazil
| | - Stevens K Rehen
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas, Campinas, Brazil.
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil.
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, SP, 13083-862, Brazil.
- Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION), Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.
| |
Collapse
|
9
|
Górny M, Bilska-Wilkosz A, Iciek M, Rogóż Z, Lorenc-Koci E. Treatment with aripiprazole and N-acetylcysteine affects anaerobic cysteine metabolism in the hippocampus and reverses schizophrenia-like behavior in the neurodevelopmental rat model of schizophrenia. FEBS J 2023; 290:5773-5793. [PMID: 37646112 DOI: 10.1111/febs.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/25/2023] [Accepted: 08/29/2023] [Indexed: 09/01/2023]
Abstract
Preclinical and clinical studies have shown that the antipsychotic drug aripiprazole and the antioxidant N-acetylcysteine have unique biological properties. The aim of the study was to investigate, in a rat model of schizophrenia, the effects of chronic administration of these drugs on schizophrenia-like behaviors and anaerobic cysteine metabolism in the hippocampus (HIP). The schizophrenia-type changes were induced in Sprague-Dawley rats by repeated administration of the glutathione synthesis inhibitor l-butionine-(S,R)-sulfoximine in combination with the dopamine reuptake inhibitor GBR 12909 in the early postnatal period. Adult model rats were chronically treated with aripiprazole (0.3 mg·kg-1 , i.p.) or N-acetylcysteine (30 mg·kg-1 , orally), and their effects on schizophrenia-like behaviors were assessed using the social interaction test and novel object recognition test. In the HIP, the level of anaerobic cysteine metabolites, H2 S, and bound sulfane sulfur were determined by a fluorescence method, while the expression of H2 S-synthetizing enzymes: cystathionine β-synthase (CBS) and mercaptopyruvate sulfurtransferase (MST) by western blot. Long-term treatment with aripiprazole or N-acetylcysteine reversed social and cognitive deficits and reduced the exploratory behaviors. In the HIP of 16-day-old model pups, H2 S levels and MST protein expression were significantly decreased. In adult model rats, H2 S levels remained unchanged, bound sulfane sulfur significantly increased, and the expression of CBS and MST slightly decreased. The studied drugs significantly reduced the level of bound sulfane sulfur and the expression of tested enzymes. The reduction in bound sulfane sulfur level coincided with the attenuation of exploratory behavior, suggesting that modulation of anaerobic cysteine metabolism in the HIP may have therapeutic potential in schizophrenia.
Collapse
Affiliation(s)
- Magdalena Górny
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Bilska-Wilkosz
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Małgorzata Iciek
- The Chair of Medical Biochemistry, Jagiellonian University Medical College, Kraków, Poland
| | - Zofia Rogóż
- Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | | |
Collapse
|
10
|
Carletti B, Banaj N, Piras F, Bossù P. Schizophrenia and Glutathione: A Challenging Story. J Pers Med 2023; 13:1526. [PMID: 38003841 PMCID: PMC10672475 DOI: 10.3390/jpm13111526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
Schizophrenia (SZ) is a devastating mental illness with a complex and heterogeneous clinical state. Several conditions like symptoms, stage and severity of the disease are only some of the variables that have to be considered to define the disorder and its phenotypes. SZ pathophysiology is still unclear, and the diagnosis is currently relegated to the analysis of clinical symptoms; therefore, the search for biomarkers with diagnostic relevance is a major challenge in the field, especially in the era of personalized medicine. Though the mechanisms implicated in SZ are not fully understood, some processes are beginning to be elucidated. Oxidative stress, and in particular glutathione (GSH) dysregulation, has been demonstrated to play a crucial role in SZ pathophysiology. In fact, glutathione is a leading actor of oxidative-stress-mediated damage in SZ and appears to reflect the heterogeneity of the disease. The literature reports differing results regarding the levels of glutathione in SZ patients. However, each GSH state may be a sign of specific symptoms or groups of symptoms, candidating glutathione as a biomarker useful for discriminating SZ phenotypes. Here, we summarize the literature about the levels of glutathione in SZ and analyze the role of this molecule and its potential use as a biomarker.
Collapse
Affiliation(s)
- Barbara Carletti
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Nerisa Banaj
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via Ardeatina 306, 00179 Rome, Italy; (N.B.); (F.P.)
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, Clinical Neuroscience and Neurorehabilitation Department, IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| |
Collapse
|
11
|
Bouassida M, Egloff M, Levy J, Chatron N, Bernardini L, Le Guyader G, Tabet AC, Schluth-Bolard C, Brancati F, Giuffrida MG, Dard R, Clorennec J, Coursimault J, Vialard F, Hervé B. 2p25.3 microduplications involving MYT1L: further phenotypic characterization through an assessment of 16 new cases and a literature review. Eur J Hum Genet 2023; 31:895-904. [PMID: 37188826 PMCID: PMC10400587 DOI: 10.1038/s41431-023-01379-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 04/03/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
Microduplications involving the MYT1L gene have mostly been described in series of patients with isolated schizophrenia. However, few reports have been published, and the phenotype has still not been well characterized. We sought to further characterize the phenotypic spectrum of this condition by describing the clinical features of patients with a pure 2p25.3 microduplication that includes all or part of MYT1L. We assessed 16 new patients with pure 2p25.3 microduplications recruited through a French national collaboration (n = 15) and the DECIPHER database (n = 1). We also reviewed 27 patients reported in the literature. For each case, we recorded clinical data, the microduplication size, and the inheritance pattern. The clinical features were variable and included developmental and speech delays (33%), autism spectrum disorder (ASD, 23%), mild-to-moderate intellectual disability (ID, 21%), schizophrenia (23%), or behavioral disorders (16%). Eleven patients did not have an obvious neuropsychiatric disorder. The microduplications ranged from 62.4 kb to 3.8 Mb in size and led to duplication of all or part of MYT1L; seven of these duplications were intragenic. The inheritance pattern was available for 18 patients: the microduplication was inherited in 13 cases, and all parents but one had normal phenotype. Our comprehensive review and expansion of the phenotypic spectrum associated with 2p25.3 microduplications involving MYT1L should help clinicians to better assess, counsel and manage affected individuals. MYT1L microduplications are characterized by a spectrum of neuropsychiatric phenotypes with incomplete penetrance and variable expressivity, which are probably due to as-yet unknown genetic and nongenetic modifiers.
Collapse
Affiliation(s)
- Malek Bouassida
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France.
| | - Matthieu Egloff
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, F-86021, Poitiers, France
| | - Jonathan Levy
- Département de Génétique, Hôpital Robert Debré, APHP, F-75019, Paris, France
| | - Nicolas Chatron
- Service de cytogénétique, Groupement Hospitalier Est, Hospices Civils de Lyon, F-69500, Bron, France
| | | | - Gwenaël Le Guyader
- Service de Génétique, Centre Hospitalier Universitaire de Poitiers, F-86021, Poitiers, France
| | - Anne-Claude Tabet
- Département de Génétique, Hôpital Robert Debré, APHP, F-75019, Paris, France
| | - Caroline Schluth-Bolard
- Service de cytogénétique, Groupement Hospitalier Est, Hospices Civils de Lyon, F-69500, Bron, France
| | - Francesco Brancati
- Department of Life, Health and Environmental Sciences, University of L'Aquila Piazzale Salvatore Tommasi, It-67100, Coppito - L'Aquila, Italy
- San Raffaele Roma, IRCCS, It-00163, Roma, Italy
| | | | - Rodolphe Dard
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France
- RHuMA Team, UMR-BREED, INRA-UVSQ-ENVA, UFR Simone Veil Santé, F-78380, Montigny-le-Bretonneux, France
| | - Juliette Clorennec
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France
- RHuMA Team, UMR-BREED, INRA-UVSQ-ENVA, UFR Simone Veil Santé, F-78380, Montigny-le-Bretonneux, France
| | - Juliette Coursimault
- Department of Genetics and Reference Center for Developmental Disorders, Normandie Univ, UNIROUEN, Inserm U1245 and CHU Rouen, F-76000, Rouen, France
| | - François Vialard
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France.
- RHuMA Team, UMR-BREED, INRA-UVSQ-ENVA, UFR Simone Veil Santé, F-78380, Montigny-le-Bretonneux, France.
| | - Bérénice Hervé
- Département de Génétique, Laboratoire de Biologie Médicale, CHI de Poissy-St Germain en Laye, F-78300, Poissy, France
| |
Collapse
|
12
|
Hennig-Fast K, Meissner D, Steuwe C, Dehning S, Blautzik J, Eilert DW, Zill P, Müller N, Meindl T, Reiser M, Möller HJ, Falkai P, Driessen M, Buchheim A. The Interplay of Oxytocin and Attachment in Schizophrenic Patients: An fMRI Study. Brain Sci 2023; 13:1125. [PMID: 37626482 PMCID: PMC10452454 DOI: 10.3390/brainsci13081125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Attachment theory offers an important framework for understanding interpersonal interaction experiences. In the present study, we examined the neural correlates of attachment patterns and oxytocin in schizophrenic patients (SZP) compared to healthy controls (HC) using fMRI. We assumed that male SZP shows a higher proportion of insecure attachment and an altered level of oxytocin compared to HC. On a neural level, we hypothesized that SZP shows increased neural activation in memory and self-related brain regions during the activation of the attachment system compared to HC. METHODS We used an event-related design for the fMRI study based on stimuli that were derived from the Adult Attachment Projective Picture System to examine attachment representations and their neural and hormonal correlates in 20 male schizophrenic patients compared to 20 male healthy controls. RESULTS A higher proportion of insecure attachment in schizophrenic patients compared to HC could be confirmed. In line with our hypothesis, Oxytocin (OXT) levels in SZP were significantly lower than in HC. We found increasing brain activations in SZP when confronted with personal relevant sentences before attachment relevant pictures in the precuneus, TPJ, insula, and frontal areas compared to HC. Moreover, we found positive correlations between OXT and bilateral dlPFC, precuneus, and left ACC in SZP only. CONCLUSION Despite the small sample sizes, the patients' response might be considered as a mode of dysregulation when confronted with this kind of personalized attachment-related material. In the patient group, we found positive correlations between OXT and three brain areas (bilateral dlPFC, precuneus, left ACC) and may conclude that OXT might modulate within this neural network in SZP.
Collapse
Affiliation(s)
- Kristina Hennig-Fast
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
- Department of Psychiatry and Psychotherapy, University of Bielefeld, 33615 Bielefeld, Germany
| | - Dominik Meissner
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Carolin Steuwe
- Department of Psychiatry and Psychotherapy, University of Bielefeld, 33615 Bielefeld, Germany
| | - Sandra Dehning
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Janusch Blautzik
- Department of Radiology, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Dirk W. Eilert
- Department of Psychology, University Innsbruck, 6020 Innsbruck, Austria
| | - Peter Zill
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Norbert Müller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Thomas Meindl
- Department of Radiology, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Maximilian Reiser
- Department of Radiology, Ludwig-Maximilians University, 81377 Munich, Germany
| | - Hans-Jürgen Möller
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, 80336 Munich, Germany (H.-J.M.); (P.F.)
| | - Martin Driessen
- Department of Psychiatry and Psychotherapy, University of Bielefeld, 33615 Bielefeld, Germany
| | - Anna Buchheim
- Department of Psychology, University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
13
|
Ebrahimi M, Ahangar N, Zamani E, Shaki F. L-Carnitine Prevents Behavioural Alterations in Ketamine-Induced Schizophrenia in Mice: Possible Involvement of Oxidative Stress and Inflammation Pathways. J Toxicol 2023; 2023:9093231. [PMID: 37363159 PMCID: PMC10289879 DOI: 10.1155/2023/9093231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/10/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023] Open
Abstract
Schizophrenia is a chronic mental complaint known as cognitive impairment. There has been evidence that inflammation and oxidative stress play a main role in schizophrenia pathophysiology. This study aimed to investigate the effects of l-carnitine, as a potent antioxidant, on the treatment of behavioural and biochemical disturbances in mice with ketamine-induced schizophrenia. In this study, schizophrenia was induced in mice by ketamine (25 mg/kg/day, i.p). Before induction of schizophrenia, mice were treated with l-carnitine (100, 200, and 400 mg/kg/day, i.p). Then, behavioural impairments were evaluated by open field (OF) assessment and social interaction test (SIT). After brain tissue isolation, reactive oxygen species (ROS), glutathione concentration (GSH), lipid peroxidation (LPO), protein carbonyl oxidation, superoxide dismutase activity (SOD), and glutathione peroxidase activity (GPx) were assessed as oxidative stress markers. Furthermore, inflammatory biomarkers such as tumour necrosis factor alpha (TNF-α) and nitric oxide (NO) were evaluated in brain tissue. Our results showed ketamine increased inflammation and oxidative damage in brain tissue that was similar to behaviour disorders in mice. Interestingly, l-carnitine significantly decreased oxidative stress and inflammatory markers compared with ketamine-treated mice. In addition, l-carnitine prevented and reversed ketamine-induced alterations in the activities of SOD and GPx enzymes in mice's brains. Also, improved performance in OFT (locomotor activity test) and SIT was observed in l-carnitine-treated mice. These data provided evidence that, due to the antioxidant and anti-inflammatory effects of l-carnitine, it has a neuroprotective effect on mice model of schizophrenia.
Collapse
Affiliation(s)
- Mehrasa Ebrahimi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Students Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nematollah Ahangar
- Department of Pharmacology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Ehsan Zamani
- Department of Pharmacology and Toxicology, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Fatemeh Shaki
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
14
|
Dwir D, Khadimallah I, Xin L, Rahman M, Du F, Öngür D, Do KQ. Redox and Immune Signaling in Schizophrenia: New Therapeutic Potential. Int J Neuropsychopharmacol 2023; 26:309-321. [PMID: 36975001 PMCID: PMC10229853 DOI: 10.1093/ijnp/pyad012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/27/2023] [Indexed: 03/29/2023] Open
Abstract
Redox biology and immune signaling play major roles in the body, including in brain function. A rapidly growing literature also suggests that redox and immune abnormalities are implicated in neuropsychiatric conditions such as schizophrenia (SZ), bipolar disorder, autism, and epilepsy. In this article we review this literature, its implications for the pathophysiology of SZ, and the potential for development of novel treatment interventions targeting redox and immune signaling. Redox biology and immune signaling in the brain are complex and not fully understood; in addition, there are discrepancies in the literature, especially in patient-oriented studies. Nevertheless, it is clear that abnormalities arise in SZ from an interaction between genetic and environmental factors during sensitive periods of brain development, and these abnormalities disrupt local circuits and long-range connectivity. Interventions that correct these abnormalities may be effective in normalizing brain function in psychotic disorders, especially in early phases of illness.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| | - Lijing Xin
- Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Meredith Rahman
- Virginia Tech Carilion School of Medicine, Roanoke, Virginia, USA
| | - Fei Du
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Dost Öngür
- Psychotic Disorders Division, McLean Hospital, Harvard Medical School, Belmont, Massachusetts, USA
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne, Route de Cery, 1008 Prilly-Lausanne, Switzerland
| |
Collapse
|
15
|
Edemann-Callesen H, Bernhardt N, Hlusicka EB, Hintz F, Habelt B, Winter R, Neubert I, Pelz M, Filla A, Soto-Montenegro ML, Winter C, Hadar R. Supplement Treatment with NAC and Omega-3 Polyunsaturated Fatty Acids during Pregnancy Partially Prevents Schizophrenia-Related Outcomes in the Poly I:C Rat Model. Antioxidants (Basel) 2023; 12:antiox12051068. [PMID: 37237933 DOI: 10.3390/antiox12051068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Heightened levels of inflammation and oxidative stress are thought to be involved in the pathophysiology of schizophrenia. We aimed to assess whether intake of anti-inflammatory and anti-oxidant drugs during pregnancy prevents later schizophrenia-related outcomes in a neurodevelopmental rat model of this disorder. METHODS Pregnant Wistar rats were injected with polyriboinosinic-polyribocytidilic acid (Poly I:C) or saline and subsequently treated with either N-acetyl cysteine (NAC) or omega-3 polyunsaturated fatty acids (PUFAs) until delivery. Controls rats received no treatment. In the offspring, neuroinflammation and anti-oxidant enzyme activity were assessed on postnatal day (PND) 21, 33, 48, and 90. Behavioral testing was performed at PND 90, followed by post-mortem neurochemical assessment and ex vivo MRI. RESULTS The supplement treatment led to a quicker restoration of the wellbeing of dams. In the adolescent Poly I:C offspring, the supplement treatment prevented an increase in microglial activity and partially prevented a deregulation in the anti-oxidant defense system. In the adult Poly I:C offspring, supplement treatment partially prevented dopamine deficits, which was paralleled by some changes in behavior. Exposure to omega-3 PUFAs prevented the enlargement of lateral ventricles. CONCLUSION Intake of over-the-counter supplements may assist in especially targeting the inflammatory response related to schizophrenia pathophysiology, aiding in diminishing later disease severity in the offspring.
Collapse
Affiliation(s)
- Henriette Edemann-Callesen
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Nadine Bernhardt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Elizabeth Barroeta Hlusicka
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Franziska Hintz
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Bettina Habelt
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
- Leibniz Institute of Polymer Research Dresden, 01069 Dresden, Germany
| | - Rebecca Winter
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Isabell Neubert
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Meike Pelz
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Alexandra Filla
- Department of Psychiatry and Psychotherapy, Medical Faculty Carl Gustav Carus, Technische Universität, 01307 Dresden, Germany
| | - Maria Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, 28029 Madrid, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
| | - Christine Winter
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ravit Hadar
- Department of Psychiatry and Neuroscience, Campus Mitte, Charité University Medicine Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
16
|
Giangreco B, Dwir D, Klauser P, Jenni R, Golay P, Cleusix M, Baumann PS, Cuénod M, Conus P, Toni N, Do KQ. Characterization of early psychosis patients carrying a genetic vulnerability to redox dysregulation: a computational analysis of mechanism-based gene expression profile in fibroblasts. Mol Psychiatry 2023; 28:1983-1994. [PMID: 37002404 PMCID: PMC10575782 DOI: 10.1038/s41380-023-02034-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/21/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
In view of its heterogeneity, schizophrenia needs new diagnostic tools based on mechanistic biomarkers that would allow early detection. Complex interaction between genetic and environmental risk factors may lead to NMDAR hypofunction, inflammation and redox dysregulation, all converging on oxidative stress. Using computational analysis, the expression of 76 genes linked to these systems, known to be abnormally regulated in schizophrenia, was studied in skin-fibroblasts from early psychosis patients and age-matched controls (N = 30), under additional pro-oxidant challenge to mimic environmental stress. To evaluate the contribution of a genetic risk related to redox dysregulation, we investigated the GAG trinucleotide polymorphism in the key glutathione (GSH) synthesizing enzyme, glutamate-cysteine-ligase-catalytic-subunit (gclc) gene, known to be associated with the disease. Patients and controls showed different gene expression profiles that were modulated by GAG-gclc genotypes in combination with oxidative challenge. In GAG-gclc low-risk genotype patients, a global gene expression dysregulation was observed, especially in the antioxidant system, potentially induced by other risks. Both controls and patients with GAG-gclc high-risk genotype (gclcGAG-HR) showed similar gene expression profiles. However, under oxidative challenge, a boosting of other antioxidant defense, including the master regulator Nrf2 and TRX systems was observed only in gclcGAG-HR controls, suggesting a protective compensation against the genetic GSH dysregulation. Moreover, RAGE (redox/inflammation interaction) and AGMAT (arginine pathway) were increased in the gclcGAG-HR patients, suggesting some additional risk factors interacting with this genotype. Finally, the use of a machine-learning approach allowed discriminating patients and controls with an accuracy up to 100%, paving the way towards early detection of schizophrenia.
Collapse
Affiliation(s)
- Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Golay
- Service of Community Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philipp S Baumann
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Nicolas Toni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland.
| |
Collapse
|
17
|
De Simone G, Mazza B, Vellucci L, Barone A, Ciccarelli M, de Bartolomeis A. Schizophrenia Synaptic Pathology and Antipsychotic Treatment in the Framework of Oxidative and Mitochondrial Dysfunction: Translational Highlights for the Clinics and Treatment. Antioxidants (Basel) 2023; 12:antiox12040975. [PMID: 37107350 PMCID: PMC10135787 DOI: 10.3390/antiox12040975] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023] Open
Abstract
Schizophrenia is a worldwide mental illness characterized by alterations at dopaminergic and glutamatergic synapses resulting in global dysconnectivity within and between brain networks. Impairments in inflammatory processes, mitochondrial functions, energy expenditure, and oxidative stress have been extensively associated with schizophrenia pathophysiology. Antipsychotics, the mainstay of schizophrenia pharmacological treatment and all sharing the common feature of dopamine D2 receptor occupancy, may affect antioxidant pathways as well as mitochondrial protein levels and gene expression. Here, we systematically reviewed the available evidence on antioxidants' mechanisms in antipsychotic action and the impact of first- and second-generation compounds on mitochondrial functions and oxidative stress. We further focused on clinical trials addressing the efficacy and tolerability of antioxidants as an augmentation strategy of antipsychotic treatment. EMBASE, Scopus, and Medline/PubMed databases were interrogated. The selection process was conducted in respect of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) criteria. Several mitochondrial proteins involved in cell viability, energy metabolism, and regulation of oxidative systems were reported to be significantly modified by antipsychotic treatment with differences between first- and second-generation drugs. Finally, antioxidants may affect cognitive and psychotic symptoms in patients with schizophrenia, and although the evidence is only preliminary, the results indicate that further studies are warranted.
Collapse
Affiliation(s)
- Giuseppe De Simone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Benedetta Mazza
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Licia Vellucci
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Mariateresa Ciccarelli
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
| | - Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Translational and Molecular Psychiatry and Unit of Treatment-Resistant Psychosis, Department of Neuroscience, Reproductive Sciences, and Dentistry, University Medical School of Naples "Federico II", Via Pansini 5, 80131 Naples, Italy
- UNESCO Chair on Health Education and Sustainable Development, University of Naples "Federico II", 80131 Naples, Italy
| |
Collapse
|
18
|
Khan A, Zahid S, Hasan B, Asif AR, Ahmed N. Mass Spectrometry based identification of site-specific proteomic alterations and potential pathways underlying the pathophysiology of schizophrenia. Mol Biol Rep 2023; 50:4931-4943. [PMID: 37076706 DOI: 10.1007/s11033-023-08431-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 04/04/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND Schizophrenia (SZ) is a complex multifactorial disorder that affects 1% of the population worldwide with no available effective treatment. Although proteomic alterations are reported in SZ however proteomic expression aberrations among different brain regions are not fully determined. Therefore, the present study aimed spatial differential protein expression profiling of three distinct regions of SZ brain and identification of associated affected biological pathways in SZ progression. METHODS AND RESULTS Comparative protein expression profiling of three distinct autopsied human brain regions (i.e., substantia nigra, hippocampus and prefrontal cortex) of SZ was performed with respective healthy controls. Using two-dimensional electrophoresis (2DE)-based nano liquid chromatography tandem mass spectrometry (Nano-LC MS /MS) analysis, 1443 proteins were identified out of which 58 connote to be significantly dysregulated, representing 26 of substantia nigra,14 of hippocampus and 18 of prefrontal cortex. The 58 differentially expressed proteins were further analyzed using Ingenuity pathway analysis (IPA). The IPA analysis provided protein-protein interaction networks of several proteins including nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kb), extracellular signal regulated kinases 1/2 (ERK1/2), alpha serine / Threonine-protein kinase (AKT1), cellular tumor antigen p53 (TP53) and amyloid precursor protein (APP), holding prime positions in networks and interacts with most of the identified proteins and their closely interacting partners. CONCLUSION These findings provide conceptual insights of novel SZ related pathways and the cross talk of co and contra regulated proteins. This spatial proteomic analysis will further broaden the conceptual framework for schizophrenia research in future.
Collapse
Affiliation(s)
- Ayesha Khan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Saadia Zahid
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Beena Hasan
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Abdul R Asif
- Institute of Clinical Chemistry, University Medical Center, Robert-Koch-Str. 40, 37075, Göttingen, Göttingen, Germany
| | - Nikhat Ahmed
- Neurochemistry Research Laboratory, Department of Biochemistry, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
19
|
Gandhi T, Liu CC, Adeyelu TT, Canepa CR, Lee CC. Behavioral regulation by perineuronal nets in the prefrontal cortex of the CNTNAP2 mouse model of autism spectrum disorder. Front Behav Neurosci 2023; 17:1114789. [PMID: 36998537 PMCID: PMC10043266 DOI: 10.3389/fnbeh.2023.1114789] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Autism spectrum disorders (ASDs) arise from altered development of the central nervous system, and manifest behaviorally as social interaction deficits and restricted and repetitive behaviors. Alterations to parvalbumin (PV) expressing interneurons have been implicated in the neuropathological and behavioral deficits in autism. In addition, perineuronal nets (PNNs), specialized extracellular matrix structures that enwrap the PV-expressing neurons, also may be altered, which compromises neuronal function and susceptibility to oxidative stress. In particular, the prefrontal cortex (PFC), which regulates several core autistic traits, relies on the normal organization of PNNs and PV-expressing cells, as well as other neural circuit elements. Consequently, we investigated whether PNNs and PV-expressing cells were altered in the PFC of the CNTNAP2 knockout mouse model of ASD and whether these contributed to core autistic-like behaviors in this model system. We observed an overexpression of PNNs, PV-expressing cells, and PNNs enwrapping PV-expressing cells in adult CNTNAP2 mice. Transient digestion of PNNs from the prefrontal cortex (PFC) by injection of chondroitinase ABC in CNTNAP2 mutant mice rescued some of the social interaction deficits, but not the restricted and repetitive behaviors. These findings suggest that the neurobiological regulation of PNNs and PVs in the PFC contribute to social interaction behaviors in neurological disorders including autism.
Collapse
Affiliation(s)
- Tanya Gandhi
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Chin-Chi Liu
- Department of Veterinary Clinical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Tolulope T. Adeyelu
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Cade R. Canepa
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | - Charles C. Lee
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
20
|
Collins MA, Ji JL, Chung Y, Lympus CA, Afriyie-Agyemang Y, Addington JM, Goodyear BG, Bearden CE, Cadenhead KS, Mirzakhanian H, Tsuang MT, Cornblatt BA, Carrión RE, Keshavan M, Stone WS, Mathalon DH, Perkins DO, Walker EF, Woods SW, Powers AR, Anticevic A, Cannon TD. Accelerated cortical thinning precedes and predicts conversion to psychosis: The NAPLS3 longitudinal study of youth at clinical high-risk. Mol Psychiatry 2023; 28:1182-1189. [PMID: 36434057 PMCID: PMC10005940 DOI: 10.1038/s41380-022-01870-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 11/27/2022]
Abstract
Progressive grey matter loss has been demonstrated among clinical high-risk (CHR) individuals who convert to psychosis, but it is unknown whether these changes occur prior to psychosis onset. Identifying illness-related neurobiological mechanisms that occur prior to conversion is essential for targeted early intervention. Among participants in the third wave of the North American Prodrome Longitudinal Study (NAPLS3), this report investigated if steeper cortical thinning was observable prior to psychosis onset among CHR individuals who ultimately converted (CHR-C) and assessed the shortest possible time interval in which rates of cortical thinning differ between CHR-C, CHR non-converters (CHR-NC), and health controls (HC). 338 CHR-NC, 42 CHR-C, and 62 HC participants (age 19.3±4.2, 44.8% female, 52.5% racial/ethnic minority) completed up to 5 MRI scans across 8 months. Accelerated thinning among CHR-C compared to CHR-NC and HC was observed in multiple prefrontal, temporal, and parietal cortical regions. CHR-NC also exhibited accelerated cortical thinning compared to HC in several of these areas. Greater percent decrease in cortical thickness was observed among CHR-C compared to other groups across 2.9±1.8 months, on average, in several cortical areas. ROC analyses discriminating CHR-C from CHR-NC by percent thickness change in a left hemisphere region of interest, scanner, age, age2, and sex had an AUC of 0.74, with model predictive power driven primarily by percent thickness change. Findings indicate that accelerated cortical thinning precedes psychosis onset and differentiates CHR-C from CHR-NC and HC across short time intervals. Mechanisms underlying cortical thinning may provide novel treatment targets prior to psychosis onset.
Collapse
Affiliation(s)
| | - Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Yoonho Chung
- Department of Psychiatry, McLean Hospital and Harvard Medical School, Belmont, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
| | - Cole A Lympus
- Department of Psychology, Yale University, New Haven, CT, USA
| | | | - Jean M Addington
- Department of Psychiatry, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Bradley G Goodyear
- Department of Radiology, Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, Semel Institute for Neuroscience and Human Behavior, UCLA, Los Angeles, CA, USA
| | | | | | - Ming T Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, USA
- Institute of Genomic Medicine, UCSD, La Jolla, CA, USA
| | | | - Ricardo E Carrión
- Division of Psychiatry Research, The Zucker Hillside Hospital, Glen Oaks, NY, USA
- Institute of Behavioral Science, The Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Department of Psychiatry, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Wiliam S Stone
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center and Massachusetts General Hospital, Boston, MA, USA
| | - Daniel H Mathalon
- Department of Psychiatry, UCSF, and SFVA Medical Center, San Francisco, CA, USA
| | - Diana O Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Emory University, Atlanta, GA, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Albert R Powers
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Alan Anticevic
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Low protein-induced intrauterine growth restriction as a risk factor for schizophrenia phenotype in a rat model: assessing the role of oxidative stress and neuroinflammation interaction. Transl Psychiatry 2023; 13:30. [PMID: 36720849 PMCID: PMC9889339 DOI: 10.1038/s41398-023-02322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 02/02/2023] Open
Abstract
A large body of evidence suggests that intrauterine growth restriction (IUGR) impedes normal neurodevelopment and predisposes the offspring to cognitive and behavioral deficits later in life. A significantly higher risk rate for schizophrenia (SZ) has been reported in individuals born after IUGR. Oxidative stress and neuroinflammation are both involved in the pathophysiology of SZ, particularly affecting the structural and functional integrity of parvalbumin interneurons (PVI) and their perineuronal nets (PNN). These anomalies have been tightly linked to impaired cognition, as observed in SZ. However, these pathways remain unexplored in models of IUGR. New research has proposed the activation of the MMP9-RAGE pathway to be a cause of persisting damage to PVIs. We hypothesize that IUGR, caused by a maternal protein deficiency during gestation, will induce oxidative stress and neuroinflammation. The activation of these pathways during neurodevelopment may affect the maturation of PVIs and PNNs, leading to long-term consequences in adolescent rats, in analogy to SZ patients. The level of oxidative stress and microglia activation were significantly increased in adolescent IUGR rats at postnatal day (P)35 as compared to control rats. PVI and PNN were decreased in P35 IUGR rats when compared to the control rats. MMP9 protein level and RAGE shedding were also increased, suggesting the involvement of this mechanism in the interaction between oxidative stress and neuroinflammation. We propose that maternal diet is an important factor for proper neurodevelopment of the inhibitory circuitry, and is likely to play a crucial role in determining normal cognition later in life, thus making it a pertinent model for SZ.
Collapse
|
22
|
Gene set enrichment analysis of pathophysiological pathways highlights oxidative stress in psychosis. Mol Psychiatry 2022; 27:5135-5143. [PMID: 36131045 PMCID: PMC9763118 DOI: 10.1038/s41380-022-01779-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 01/14/2023]
Abstract
Polygenic risk prediction remains an important aim of genetic association studies. Currently, the predictive power of schizophrenia polygenic risk scores (PRSs) is not large enough to allow highly accurate discrimination between cases and controls and thus is not adequate for clinical integration. Since PRSs are rarely used to reveal biological functions or to validate candidate pathways, to fill this gap, we investigated whether their predictive ability could be improved by building genome-wide (GW-PRSs) and pathway-specific PRSs, using distance- or expression quantitative trait loci (eQTLs)- based mapping between genetic variants and genes. We focused on five pathways (glutamate, oxidative stress, GABA/interneurons, neuroimmune/neuroinflammation and myelin) which belong to a critical hub of schizophrenia pathophysiology, centred on redox dysregulation/oxidative stress. Analyses were first performed in the Lausanne Treatment and Early Intervention in Psychosis Program (TIPP) study (n = 340, cases/controls: 208/132), a sample of first-episode of psychosis patients and matched controls, and then validated in an independent study, the epidemiological and longitudinal intervention program of First-Episode Psychosis in Cantabria (PAFIP) (n = 352, 224/128). Our results highlighted two main findings. First, GW-PRSs for schizophrenia were significantly associated with early psychosis status. Second, oxidative stress was the only significantly associated pathway that showed an enrichment in both the TIPP (p = 0.03) and PAFIP samples (p = 0.002), and exclusively when gene-variant linking was done using eQTLs. The results suggest that the predictive accuracy of polygenic risk scores could be improved with the inclusion of information from functional annotations, and through a focus on specific pathways, emphasizing the need to build and study functionally informed risk scores.
Collapse
|
23
|
Xu H, Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia. Transl Psychiatry 2022; 12:464. [PMID: 36344514 PMCID: PMC9640700 DOI: 10.1038/s41398-022-02233-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/09/2022] Open
Abstract
Dopamine (DA) is a major monoamine neurotransmitter in the brain and has essential roles in higher functions of the brain. Malfunctions of dopaminergic signaling have been implicated in various mental disorders such as addiction, attention deficit/hyperactivity disorder, Huntington's disease, Parkinson's disease (PD), and schizophrenia. The pathogenesis of PD and schizophrenia involves the interplay of mitochondrial defect and DA metabolism abnormalities. This article focuses on this issue in schizophrenia. It started with the introduction of metabolism, behavioral action, and physiology of DA, followed by reviewing evidence for malfunctions of dopaminergic signaling in patients with schizophrenia. Then it provided an overview of multiple facets of mitochondrial physiology before summarizing mitochondrial defects reported in clinical studies with schizophrenia patients. Finally, it discussed the interplay between DA metabolism abnormalities and mitochondrial defects and outlined some clinical studies showing effects of combination therapy of antipsychotics and antioxidants in treating patients with schizophrenia. The update and integration of these lines of information may advance our understanding of the etiology, pathogenesis, phenomenology, and treatment of schizophrenia.
Collapse
Affiliation(s)
- Haiyun Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China.
- Zhejiang Provincial Clinical Research Center for Mental Illness, The Affiliated Kangning Hospital of Wenzhou Medical University, Wenzhou, China.
- Mental Health Center, Shantou University Medical College, Shantou, China.
| | - Fan Yang
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
24
|
Kuo CY, Lin CH, Lane HY. Targeting D-Amino Acid Oxidase (DAAO) for the Treatment of Schizophrenia: Rationale and Current Status of Research. CNS Drugs 2022; 36:1143-1153. [PMID: 36194364 DOI: 10.1007/s40263-022-00959-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/14/2022] [Indexed: 11/29/2022]
Abstract
In the brain, D-amino acid oxidase (DAAO) is a peroxisomal flavoenzyme. Through oxidative deamination by DAAO, D-serine, the main coagonist of synaptic N-methyl-D-aspartate receptors (NMDARs), is degraded into α-keto acids and ammonia; flavin adenine dinucleotide (FAD) is simultaneously reduced to dihydroflavine-adenine dinucleotide (FADH2), which is subsequently reoxidized to FAD, with hydrogen peroxide produced as a byproduct. NMDAR hypofunction is implicated in the pathogenesis of schizophrenia. In previous studies, compared with control subjects, patients with schizophrenia had lower D-serine levels in peripheral blood and cerebrospinal fluid but higher DAAO expression and activity in the brain. Inhibiting DAAO activity and slowing D-serine degradation by using DAAO inhibitors to enhance NMDAR function may be a new strategy for use in the treatment of schizophrenia. The aim of this leading article is to review the current research in DAAO inhibitors.
Collapse
Affiliation(s)
- Chien-Yi Kuo
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC
| | - Chieh-Hsin Lin
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC.
- Department of Psychiatry, Kaohsiung Chang Gung Memorial Hospital, No. 123, Dapi Rd., Niaosong Dist., Kaohsiung City, 83301, Taiwan, ROC.
- School of Medicine, Chang Gung University, No. 259, Wenhua 1st Rd., Guishan Dist., Taoyuan City, 33302, Taiwan, ROC.
| | - Hsien-Yuan Lane
- Department of Psychiatry, China Medical University Hospital, No. 2, Yude Rd., North Dist., Taichung City, 404327, Taiwan, ROC.
- Graduate Institute of Biomedical Sciences, China Medical University, No. 91, Xueshi Rd., North Dis., Taichung City, 404333, Taiwan, ROC.
- Department of Psychology, College of Medical and Health Sciences, Asia University, No. 500, Lioufeng Rd., Wufeng Dist., Taichung City, 413305, Taiwan, ROC.
| |
Collapse
|
25
|
Czekus C, Steullet P, Orero López A, Bozic I, Rusterholz T, Bandarabadi M, Do KQ, Gutierrez Herrera C. Alterations in TRN-anterodorsal thalamocortical circuits affect sleep architecture and homeostatic processes in oxidative stress vulnerable Gclm -/- mice. Mol Psychiatry 2022; 27:4394-4406. [PMID: 35902628 PMCID: PMC9734061 DOI: 10.1038/s41380-022-01700-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 12/14/2022]
Abstract
Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia.
Collapse
Affiliation(s)
- Christina Czekus
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Albert Orero López
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Ivan Bozic
- Department for Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
| | - Mojtaba Bandarabadi
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital, Site de Cery, CH-1008, Prilly-Lausanne, Switzerland
| | - Carolina Gutierrez Herrera
- Center for Experimental Neurology, Department of Neurology, Inselspital University Hospital, Bern, Switzerland.
- Department for Biomedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
26
|
Decreased Activity of Erythrocyte Catalase and Glutathione Peroxidase in Patients with Schizophrenia. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58101491. [PMID: 36295651 PMCID: PMC9609318 DOI: 10.3390/medicina58101491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/05/2022] [Accepted: 09/07/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Catalase and glutathione peroxidase (GPx) are important antioxidant enzymes that break down hydrogen peroxide (H2O2) in order to control its intracellular concentration, thus enabling its physiological role and preventing toxic effects. A lack or disruption of their function leads to the accumulation of hydrogen peroxide and the occurrence of oxidative stress. Accumulating studies have shown that the activities of key antioxidant enzymes are impaired in patients with schizophrenia. Since the published results are contradictory, and our previous studies found significantly higher erythrocyte superoxide dismutase (SOD) activity in patients with schizophrenia, the aim of this study was to determine the activity of enzymes that degrade hydrogen peroxide in the same group of patients, as well as to examine their dependence on clinical symptoms, therapy, and parameters associated with this disease. Materials and Methods: Catalase and GPx activities were determined in the erythrocytes of 68 inpatients with schizophrenia and 59 age- and gender-matched healthy controls. The clinical assessment of patients was performed by using the Positive and Negative Syndrome Scale (PANSS). The catalase activity was measured by the kinetic spectrophotometric method, while the GPx activity was determined by the commercially available Ransel test. Results: Erythrocyte catalase and GPx activities were significantly lower (p < 0.001 and p < 0.01, respectively) in subjects with schizophrenia than they were in healthy individuals. Lower catalase activity does not depend on heredity, disease onset, the number of episodes, or disease duration, while GPx activity showed significant changes in patients who had more than one episode and in those who had been suffering from the disease for over a year. Significantly lower catalase activity was noted in the PANSS(+/−) group in comparison with the PANSS(+) and PANSS(−) groups. The lowest catalase activity was found in subjects who were simultaneously treated with first- and second-generation antipsychotics; this was significantly lower than it was in those who received only one class of antipsychotics. Conclusion: These results indicate the presence of oxidative stress in the first years of clinically manifested schizophrenia and its dependence on the number of psychotic episodes, illness duration, predominant symptomatology, and antipsychotic medication.
Collapse
|
27
|
Jiao S, Cao T, Cai H. Peripheral biomarkers of treatment-resistant schizophrenia: Genetic, inflammation and stress perspectives. Front Pharmacol 2022; 13:1005702. [PMID: 36313375 PMCID: PMC9597880 DOI: 10.3389/fphar.2022.1005702] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Treatment-resistant schizophrenia (TRS) often results in severe disability and functional impairment. Currently, the diagnosis of TRS is largely exclusionary and emphasizes the improvement of symptoms that may not be detected early and treated according to TRS guideline. As the gold standard, clozapine is the most prescribed selection for TRS. Therefore, how to predict TRS in advance is critical for forming subsequent treatment strategy especially clozapine is used during the early stage of TRS. Although mounting studies have identified certain clinical factors and neuroimaging characteristics associated with treatment response in schizophrenia, the predictors for TRS remain to be explored. Biomarkers, particularly for peripheral biomarkers, show great potential in predicting TRS in view of their predictive validity, noninvasiveness, ease of testing and low cost that would enable their widespread use. Recent evidence supports that the pathogenesis of TRS may be involved in abnormal neurotransmitter systems, inflammation and stress. Due to the heterogeneity of TRS and the lack of consensus in diagnostic criteria, it is difficult to compare extensive results among different studies. Based on the reported neurobiological mechanisms that may be associated with TRS, this paper narratively reviews the updates of peripheral biomarkers of TRS, from genetic and other related perspectives. Although current evidence regarding biomarkers in TRS remains fragmentary, when taken together, it can help to better understand the neurobiological interface of clinical phenotypes and psychiatric symptoms, which will enable individualized prediction and therapy for TRS in the long run.
Collapse
Affiliation(s)
- Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Changsha, Hunan, China
- *Correspondence: Hualin Cai,
| |
Collapse
|
28
|
Oxidative Stress and Emergence of Psychosis. Antioxidants (Basel) 2022; 11:antiox11101870. [PMID: 36290593 PMCID: PMC9598314 DOI: 10.3390/antiox11101870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/16/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Treatment and prevention strategies for schizophrenia require knowledge about the mechanisms involved in the psychotic transition. Increasing evidence suggests a redox imbalance in schizophrenia patients. This narrative review presents an overview of the scientific literature regarding blood oxidative stress markers’ evolution in the early stages of psychosis and chronic patients. Studies investigating peripheral levels of oxidative stress in schizophrenia patients, first episode of psychosis or UHR individuals were considered. A total of 76 peer-reviewed articles published from 1991 to 2022 on PubMed and EMBASE were included. Schizophrenia patients present with increased levels of oxidative damage to lipids in the blood, and decreased levels of non-enzymatic antioxidants. Genetic studies provide evidence for altered antioxidant functions in patients. Antioxidant blood levels are decreased before psychosis onset and blood levels of oxidative stress correlate with symptoms severity in patients. Finally, adjunct treatment of antipsychotics with the antioxidant N-acetyl cysteine appears to be effective in schizophrenia patients. Further studies are required to assess its efficacy as a prevention strategy. Redox imbalance might contribute to the pathophysiology of emerging psychosis and could serve as a therapeutic target for preventive or adjunctive therapies, as well as biomarkers of disease progression.
Collapse
|
29
|
Knight S, McCutcheon R, Dwir D, Grace AA, O'Daly O, McGuire P, Modinos G. Hippocampal circuit dysfunction in psychosis. Transl Psychiatry 2022; 12:344. [PMID: 36008395 PMCID: PMC9411597 DOI: 10.1038/s41398-022-02115-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/09/2022] Open
Abstract
Despite strong evidence of the neurodevelopmental origins of psychosis, current pharmacological treatment is not usually initiated until after a clinical diagnosis is made, and is focussed on antagonising striatal dopamine receptors. These drugs are only partially effective, have serious side effects, fail to alleviate the negative and cognitive symptoms of the disorder, and are not useful as a preventive treatment. In recent years, attention has turned to upstream brain regions that regulate striatal dopamine function, such as the hippocampus. This review draws together these recent data to discuss why the hippocampus may be especially vulnerable in the pathophysiology of psychosis. First, we describe the neurodevelopmental trajectory of the hippocampus and its susceptibility to dysfunction, exploring this region's proneness to structural and functional imbalances, metabolic pressures, and oxidative stress. We then examine mechanisms of hippocampal dysfunction in psychosis and in individuals at high-risk for psychosis and discuss how and when hippocampal abnormalities may be targeted in these groups. We conclude with future directions for prospective studies to unlock the discovery of novel therapeutic strategies targeting hippocampal circuit imbalances to prevent or delay the onset of psychosis.
Collapse
Affiliation(s)
- Samuel Knight
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Robert McCutcheon
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Anthony A Grace
- Departments of Neuroscience, Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Owen O'Daly
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- NIHR Maudsley Biomedical Research Centre, London, UK
| | - Gemma Modinos
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| |
Collapse
|
30
|
Grajek M, Krupa-Kotara K, Białek-Dratwa A, Sobczyk K, Grot M, Kowalski O, Staśkiewicz W. Nutrition and mental health: A review of current knowledge about the impact of diet on mental health. Front Nutr 2022; 9:943998. [PMID: 36071944 PMCID: PMC9441951 DOI: 10.3389/fnut.2022.943998] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 07/20/2022] [Indexed: 12/13/2022] Open
Abstract
Applied psychopharmacotherapy and psychotherapy do not always bring the expected results in the treatment of mental disorders. As a result, other interventions are receiving increasing attention. In recent years, there has been a surge in research on the effects of nutrition on mental status, which may be an important aspect of the prevention of many mental disorders and, at the same time, may lead to a reduction in the proportion of people with mental disorders. This review aims to answer whether and to what extent lifestyle and related nutrition affect mental health and whether there is scientific evidence supporting a link between diet and mental health. A review of the scientific evidence was conducted based on the available literature by typing in phrases related to nutrition and mental health using the methodological tool of the PubMed database. The literature search yielded 3,473 records, from which 356 sources directly related to the topic of the study were selected, and then those with the highest scientific value were selected according to bibliometric impact factors. In the context of current changes, urbanization, globalization, including the food industry, and changes in people’s lifestyles and eating habits, the correlations between these phenomena and their impact on mental state become important. Knowledge of these correlations creates potential opportunities to implement new effective dietary, pharmacological, therapeutic, and above all preventive interventions. The highest therapeutic potential is seen in the rational diet, physical activity, use of psychobiotics, and consumption of antioxidants. Research also shows that there are nutritional interventions that have psychoprotective potential.
Collapse
Affiliation(s)
- Mateusz Grajek
- Department of Public Health, Department of Public Health Policy, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - Karolina Krupa-Kotara
- Department of Epidemiology, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
- *Correspondence: Karolina Krupa-Kotara,
| | - Agnieszka Białek-Dratwa
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - Karolina Sobczyk
- Department of Economics and Health Care Management, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - Martina Grot
- Department of Public Health, Department of Public Health Policy, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - Oskar Kowalski
- Department of Human Nutrition, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| | - Wiktoria Staśkiewicz
- Department of Technology and Food Quality Evaluation, Department of Dietetics, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
31
|
Wang X, Xiu M, Wang K, Su X, Li X, Wu F. Plasma linoelaidyl carnitine levels positively correlated with symptom improvement in olanzapine-treated first-episode drug-naïve schizophrenia. Metabolomics 2022; 18:50. [PMID: 35819637 DOI: 10.1007/s11306-022-01909-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 06/15/2022] [Indexed: 10/17/2022]
Abstract
INTRODUCTION Olanzapine (OLA) is one of the most commonly used second-generation antipsychotics for the treatment of schizophrenia. However, the heterogeneity of therapeutic response to OLA among schizophrenia patients deserves further exploration. The role of carnitine in the clinical response to OLA monotherapy remains unclear. OBJECTIVES The current study was designed to investigate whether carnitine and its derivatives are linked to the response to OLA treatment. Drug-naïve first-episode patients with schizophrenia were recruited and treated with OLA for 4 weeks. Psychiatric symptoms were assessed using the Positive and Negative Syndrome Scale (PANSS) in pre and post treatment. RESULTS After treatment, we found a significant decrease in 2-Octenoylcarnitine levels and a significant increase in linoelaidyl carnitine, 11Z-Octadecenylcarnitine and 9-Decenoylcarnitine levels. Furthermore, baseline linoelaidyl carnitine levels were correlated with the reduction of PANSS positive symptom subscore. Linear regression and logistic regression analyses found that the baseline linoelaidyl carnitine level was a predictive marker for the therapeutic response to OLA monotherapy for 4 weeks. CONCLUSION Our pilot study suggests that linoelaidyl carnitine levels at baseline may have a predictive role for the improvement of positive symptoms after OLA monotherapy in the patients with schizophrenia.
Collapse
Affiliation(s)
- Xuan Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Keqiang Wang
- Hebei Province Veterans Hospital, Baoding, China
| | - Xiuru Su
- Hebei Province Veterans Hospital, Baoding, China
| | - Xirong Li
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Fengchun Wu
- Department of Psychiatry, The Affiliated Brain Hospital of Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Department of Biomedical Engineering, Guangzhou Medical University, Liwan District, Guangzhou, 510370, China.
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Liwan District, Guangzhou, 510370, China.
| |
Collapse
|
32
|
PPARα Signaling: A Candidate Target in Psychiatric Disorder Management. Biomolecules 2022; 12:biom12050723. [PMID: 35625650 PMCID: PMC9138493 DOI: 10.3390/biom12050723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/07/2022] [Accepted: 05/18/2022] [Indexed: 02/01/2023] Open
Abstract
Peroxisome proliferator-activator receptors (PPARs) regulate lipid and glucose metabolism, control inflammatory processes, and modulate several brain functions. Three PPAR isoforms have been identified, PPARα, PPARβ/δ, and PPARγ, which are expressed in different tissues and cell types. Hereinafter, we focus on PPARα involvement in the pathophysiology of neuropsychiatric and neurodegenerative disorders, which is underscored by PPARα localization in neuronal circuits involved in emotion modulation and stress response, and its role in neurodevelopment and neuroinflammation. A multiplicity of downstream pathways modulated by PPARα activation, including glutamatergic neurotransmission, upregulation of brain-derived neurotrophic factor, and neurosteroidogenic effects, encompass mechanisms underlying behavioral regulation. Modulation of dopamine neuronal firing in the ventral tegmental area likely contributes to PPARα effects in depression, anhedonia, and autism spectrum disorder (ASD). Based on robust preclinical evidence and the initial results of clinical studies, future clinical trials should assess the efficacy of PPARα agonists in the treatment of mood and neurodevelopmental disorders, such as depression, schizophrenia, and ASD.
Collapse
|
33
|
What Is Parvalbumin for? Biomolecules 2022; 12:biom12050656. [PMID: 35625584 PMCID: PMC9138604 DOI: 10.3390/biom12050656] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
Parvalbumin (PA) is a small, acidic, mostly cytosolic Ca2+-binding protein of the EF-hand superfamily. Structural and physical properties of PA are well studied but recently two highly conserved structural motifs consisting of three amino acids each (clusters I and II), which contribute to the hydrophobic core of the EF-hand domains, have been revealed. Despite several decades of studies, physiological functions of PA are still poorly known. Since no target proteins have been revealed for PA so far, it is believed that PA acts as a slow calcium buffer. Numerous experiments on various muscle systems have shown that PA accelerates the relaxation of fast skeletal muscles. It has been found that oxidation of PA by reactive oxygen species (ROS) is conformation-dependent and one more physiological function of PA in fast muscles could be a protection of these cells from ROS. PA is thought to regulate calcium-dependent metabolic and electric processes within the population of gamma-aminobutyric acid (GABA) neurons. Genetic elimination of PA results in changes in GABAergic synaptic transmission. Mammalian oncomodulin (OM), the β isoform of PA, is expressed mostly in cochlear outer hair cells and in vestibular hair cells. OM knockout mice lose their hearing after 3–4 months. It was suggested that, in sensory cells, OM maintains auditory function, most likely affecting outer hair cells’ motility mechanisms.
Collapse
|
34
|
Rogóż Z, Lech MA, Chamera K, Wąsik A. The Effect of Glutathione Deficit During Early Postnatal Brain Development on the Prepulse Inhibition and Monoamine Levels in Brain Structures of Adult Sprague-Dawley Rats. Neurotox Res 2022; 40:733-750. [PMID: 35386024 DOI: 10.1007/s12640-022-00496-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/07/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
Recent studies suggest that impaired glutathione synthesis and distorted dopaminergic transmission are important factors in the pathophysiology of schizophrenia. In the present study, on the postnatal days p5-p16, male pups were treated with the inhibitor of glutathione synthesis, L-buthionine-(S,R)- sulfoximine (BSO, 3.8 or 7.6 mmol/kg), and the dopamine uptake inhibitor, GBR 12,909 (5 mg/kg) alone or in combination, and prepulse inhibition of the acoustic startle response (PPI) was evaluated in adult 90-day-old rats. Moreover, the monoamine levels in the cortex and hippocampus of 16-day-old rats or 91-day-old rats were measured. The present results showed that administration of BSO at 3.8 mmol/kg led to a decreasing tendency in PPI for all tested prepulse intensities. In contrast, a combined treatment with BSO in both studied doses and GBR 12,909 did not induce significant deficits in PPI. Moreover, the results of biochemical studies indicated that treatment with BSO or GBR 12,909 alone induced a weak increase in the activity of dopaminergic, serotonergic, and noradrenergic systems in the frontal cortex and hippocampus of 16-day-old rats and 91-day-old rats. However, the combined administration of both substances allowed for maintaining the normal activity of monoaminergic systems in the rat brain. The most significant changes in the functioning of monoaminergic systems were observed in the frontal cortex of 16-day-old rats. Therefore, it seems that the frontal cortex of rat puppies is most sensitive to glutathione deficiencies resulting in increased oxidative stress in neurons. As a result, it can lead to cognitive and memory impairment.
Collapse
Affiliation(s)
- Zofia Rogóż
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Marta A Lech
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Katarzyna Chamera
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland.
| |
Collapse
|
35
|
Cuenod M, Steullet P, Cabungcal JH, Dwir D, Khadimallah I, Klauser P, Conus P, Do KQ. Caught in vicious circles: a perspective on dynamic feed-forward loops driving oxidative stress in schizophrenia. Mol Psychiatry 2022; 27:1886-1897. [PMID: 34759358 PMCID: PMC9126811 DOI: 10.1038/s41380-021-01374-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/18/2022]
Abstract
A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.
Collapse
Affiliation(s)
- Michel Cuenod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Ines Khadimallah
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland
- Service of Child and Adolescent Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital, Prilly, Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Prilly, Lausanne, Switzerland.
| |
Collapse
|
36
|
Effects of antipsychotics on antioxidant defence system in patients with schizophrenia: A meta-analysis. Psychiatry Res 2022; 309:114429. [PMID: 35150976 DOI: 10.1016/j.psychres.2022.114429] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 12/15/2021] [Accepted: 01/30/2022] [Indexed: 12/25/2022]
Abstract
Theory of oxidative stress is suggested in the pathophysiology of schizophrenia. To determine the cause of impaired antioxidant defense system in schizophrenia, a meta-analysis was performed by selecting studies published from 1964 to 2021 from Pubmed and Scopus databases. Data were analysed using Comprehensive Meta-Analysis version 2 and calculated effect sizes were compared between unmedicated and medicated patients with schizophrenia and healthy controls. Heterogeneity, publication bias assessments and subgroup analyses of drug-free and drug-naïve patients, and patients treated with atypical and typical antipsychotics were conducted. Subgroup analysis of confounding factors including age, gender, illness duration and patient status was also conducted. We found that glutathione peroxidase (GPx) was significantly decreased in all patients. Significantly lower catalase (CAT), glutathione (GSH) and albumin (ALB) were found in unmedicated patients only. Both groups showed significantly weakened non-enzymatic antioxidant capacity. Subgroup analyses indicated that weakened non-enzymatic antioxidant capacity may be associated with schizophrenia. Antioxidant status was more impaired in drug-free patients compared with other subgroups. This indicated that antipsychotics may improve antioxidant defense system. Although effect sizes were smaller, future studies may focus on the effect of antipsychotic discontinuation. In overall, schizophrenia was associated with impaired antioxidant defense system especially the non-enzymatic antioxidant system.
Collapse
|
37
|
Ayad B, Omolaoye TS, Louw N, Ramsunder Y, Skosana BT, Oyeipo PI, Du Plessis SS. Oxidative Stress and Male Infertility: Evidence From a Research Perspective. FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:822257. [PMID: 36303652 PMCID: PMC9580735 DOI: 10.3389/frph.2022.822257] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
Male fertility potential can be influenced by a variety of conditions that frequently coincide. Spermatozoa are particularly susceptible to oxidative damage due to their limited antioxidant capacity and cell membrane rich in polyunsaturated fatty acids (PUFAs). The role of oxidative stress (OS) in the etiology of male infertility has been the primary focus of our Stellenbosch University Reproductive Research Group (SURRG) over the last 10 years. This review aims to provide a novel insight into the impact of OS on spermatozoa and male reproductive function by reviewing the OS-related findings from a wide variety of studies conducted in our laboratory, along with those emerging from other investigators. We will provide a concise overview of the production of reactive oxygen species (ROS) and the development of OS in the male reproductive tract along with the physiological and pathological effects thereof on male reproductive functions. Recent advances in methods and techniques used for the assessment of OS will also be highlighted. We will furthermore consider the current evidence regarding the association between OS and ejaculatory abstinence period, as well as the potential mechanisms involved in the pathophysiology of various systemic diseases such as obesity, insulin resistance, hypertension, and certain mental health disorders which have been shown to cause OS induced male infertility. Finally, special emphasis will be placed on the potential for transferring and incorporating research findings emanating from different experimental studies into clinical practice.
Collapse
Affiliation(s)
- Bashir Ayad
- Department of Physiology, Faculty of Medicine, Misurata University, Misrata, Libya
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Temidayo S. Omolaoye
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Nicola Louw
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Yashthi Ramsunder
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Bongekile T. Skosana
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Peter I. Oyeipo
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Physiology, College of Health Sciences, Osun State University, Osogbo, Nigeria
| | - Stefan S. Du Plessis
- Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
- Department of Basic Medical Sciences, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| |
Collapse
|
38
|
Beeraka NM, Avila-Rodriguez MF, Aliev G. Recent Reports on Redox Stress-Induced Mitochondrial DNA Variations, Neuroglial Interactions, and NMDA Receptor System in Pathophysiology of Schizophrenia. Mol Neurobiol 2022; 59:2472-2496. [PMID: 35083660 DOI: 10.1007/s12035-021-02703-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/14/2021] [Indexed: 10/19/2022]
Abstract
Schizophrenia (SZ) is a chronic psychiatric disorder affecting several people worldwide. Mitochondrial DNA (mtDNA) variations could invoke changes in the OXPHOS system, calcium buffering, and ROS production, which have significant implications for glial cell survival during SZ. Oxidative stress has been implicated in glial cells-mediated pathogenesis of SZ; the brain comparatively more prone to oxidative damage through NMDAR. A confluence of scientific evidence points to mtDNA alterations, Nrf2 signaling, dynamic alterations in dorsolateral prefrontal cortex (DLPFC), and provocation of oxidative stress that enhance pathophysiology of SZ. Furthermore, the alterations in excitatory signaling related to NMDAR signaling were particularly reported for SZ pathophysiology. Current review reported the recent evidence for the role of mtDNA variations and oxidative stress in relation to pathophysiology of SZ, NMDAR hypofunction, and glutathione deficiency. NMDAR system is influenced by redox dysregulation in oxidative stress, inflammation, and antioxidant mediators. Several studies have demonstrated the relationship of these variables on severity of pathophysiology in SZ. An extensive literature search was conducted using Medline, PubMed, PsycINFO, CINAHL PLUS, BIOSIS Preview, Google scholar, and Cochrane databases. We summarize consistent evidence pointing out a plausible model that may elucidate the crosstalk between mtDNA alterations in glial cells and redox dysregulation during oxidative stress and the perturbation of NMDA neurotransmitter system during current therapeutic modalities for the SZ treatment. This review can be beneficial for the development of promising novel diagnostics, and therapeutic modalities by ascertaining the mtDNA variations, redox state, and efficacy of pharmacological agents to mitigate redox dysregulation and augment NMDAR function to treat cognitive and behavioral symptoms in SZ.
Collapse
Affiliation(s)
- Narasimha M Beeraka
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.
| | - Marco F Avila-Rodriguez
- Faculty of Health Sciences, Department of Clinical Sciences, Barrio Santa Helena, University of Tolima, 730006, Ibagué, Colombia
| | - Gjumrakch Aliev
- Department of Human Anatomy, I M Sechenov First Moscow State Medical University (Sechenov University), St. Trubetskaya, 8, bld. 2, Moscow, 119991, Russia.,Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, Moscow Region, 142432, Russia.,Research Institute of Human Morphology, 3 Tsyurupy Street, Moscow, 117418, Russia.,GALLY International Research Institute, 7733 Louis Pasteur Drive, #330, San Antonio, TX, 78229, USA
| |
Collapse
|
39
|
Khadimallah I, Jenni R, Cabungcal JH, Cleusix M, Fournier M, Beard E, Klauser P, Knebel JF, Murray MM, Retsa C, Siciliano M, Spencer KM, Steullet P, Cuenod M, Conus P, Do KQ. Mitochondrial, exosomal miR137-COX6A2 and gamma synchrony as biomarkers of parvalbumin interneurons, psychopathology, and neurocognition in schizophrenia. Mol Psychiatry 2022; 27:1192-1204. [PMID: 34686767 PMCID: PMC9054672 DOI: 10.1038/s41380-021-01313-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 12/16/2022]
Abstract
Early detection and intervention in schizophrenia requires mechanism-based biomarkers that capture neural circuitry dysfunction, allowing better patient stratification, monitoring of disease progression and treatment. In prefrontal cortex and blood of redox dysregulated mice (Gclm-KO ± GBR), oxidative stress induces miR-137 upregulation, leading to decreased COX6A2 and mitophagy markers (NIX, Fundc1, and LC3B) and to accumulation of damaged mitochondria, further exacerbating oxidative stress and parvalbumin interneurons (PVI) impairment. MitoQ, a mitochondria-targeted antioxidant, rescued all these processes. Translating to early psychosis patients (EPP), blood exosomal miR-137 increases and COX6A2 decreases, combined with mitophagy markers alterations, suggest that observations made centrally and peripherally in animal model were reflected in patients' blood. Higher exosomal miR-137 and lower COX6A2 levels were associated with a reduction of ASSR gamma oscillations in EEG. As ASSR requires proper PVI-related networks, alterations in miR-137/COX6A2 plasma exosome levels may represent a proxy marker of PVI cortical microcircuit impairment. EPP can be stratified in two subgroups: (a) a patients' group with mitochondrial dysfunction "Psy-D", having high miR-137 and low COX6A2 levels in exosomes, and (b) a "Psy-ND" subgroup with no/low mitochondrial impairment, including patients having miR-137 and COX6A2 levels in the range of controls. Psy-D patients exhibited more impaired ASSR responses in association with worse psychopathological status, neurocognitive performance, and global and social functioning, suggesting that impairment of PVI mitochondria leads to more severe disease profiles. This stratification would allow, with high selectivity and specificity, the selection of patients for treatments targeting brain mitochondria dysregulation and capture the clinical and functional efficacy of future clinical trials.
Collapse
Affiliation(s)
- Ines Khadimallah
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martine Cleusix
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly Lausanne, Switzerland
| | - Margot Fournier
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Elidie Beard
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland ,grid.9851.50000 0001 2165 4204Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly Lausanne, Switzerland
| | - Jean-François Knebel
- grid.8515.90000 0001 0423 4662The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland ,grid.8515.90000 0001 0423 4662Sensory, Perceptual and Cognitive Neuroscience Section, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Micah M. Murray
- grid.8515.90000 0001 0423 4662The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland ,grid.8515.90000 0001 0423 4662Sensory, Perceptual and Cognitive Neuroscience Section, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland ,grid.428685.50000 0004 0627 5427Ophthalmology Department, Fondation Asile des Aveugles and University of Lausanne, Lausanne, Switzerland
| | - Chrysa Retsa
- grid.8515.90000 0001 0423 4662The LINE (Laboratory for Investigative Neurophysiology), Radiodiagnostic Service, University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland ,grid.8515.90000 0001 0423 4662Sensory, Perceptual and Cognitive Neuroscience Section, Center for Biomedical Imaging (CIBM), University Hospital Center and University of Lausanne, 1011 Lausanne, Switzerland
| | - Milena Siciliano
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Kevin M. Spencer
- grid.410370.10000 0004 4657 1992Neural Dynamics Laboratory, Research Service, Veterans Affairs Boston Healthcare System, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Psychiatry, Harvard Medical School, Boston, MA USA
| | - Pascal Steullet
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michel Cuenod
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- grid.9851.50000 0001 2165 4204Service of General Psychiatry, Department of Psychiatry, University Hospital Center and University of Lausanne, Prilly Lausanne, Switzerland
| | - Kim Q. Do
- grid.8515.90000 0001 0423 4662Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
40
|
Thalamic reticular nucleus impairments and abnormal prefrontal control of dopamine system in a developmental model of schizophrenia: prevention by N-acetylcysteine. Mol Psychiatry 2021; 26:7679-7689. [PMID: 34193975 PMCID: PMC8716611 DOI: 10.1038/s41380-021-01198-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 06/10/2021] [Indexed: 02/06/2023]
Abstract
Recent evidence showed thalamic abnormalities in schizophrenia involving disruptions to the parvalbumin neurons in the thalamic reticular nucleus (TRN). However, their functional consequences, as well as a potential linkage to oxidative stress, are unclear. The TRN is posited to gate prefrontal control of dopamine neuron activity in the ventral tegmental area (VTA). Thus, we hypothesized that schizophrenia-related TRN abnormalities might contribute to dopamine dysregulation, a well-known feature of the disorder. To test this, in adult rats exposed prenatally to methylazoxymethanol acetate (MAM rats), oxidative impairments to the parvalbumin neurons in the anterior TRN were assessed by immunohistochemistry. Using in vivo electrophysiology, we investigated whether inactivation of the prefrontal cortex would produce differential effects on VTA dopamine neurons in MAM rats. We show that MAM rats displayed reduced markers of parvalbumin and wisteria floribunda agglutinin-labeled perineuronal nets, correlating with increased markers of oxidative stress (8-oxo-7, 8-dihydro-20-deoxyguanosine, and 3-nitrotyrosine). Moreover, MAM rats displayed heightened baseline and abnormal prefrontal control of VTA dopamine neuron activity, as tetrodotoxin-induced inactivation of the infralimbic prefrontal cortex decreased the dopamine population activity, contrary to the normal increase in controls. Such dopamine neuron dysregulation was recapitulated by enzymatic perineuronal net digestion in the TRN of normal rats. Furthermore, juvenile (postnatal day 11-25) antioxidant treatment (N-acetyl-cysteine, 900 mg/L drinking water) prevented all these impairments in MAM rats. Our findings suggest that early accumulation of oxidative stress in the TRN may shape the later onset of schizophrenia pathophysiology, highlighting redox regulation as a potential target for early intervention.
Collapse
|
41
|
Palaniyappan L, Sabesan P, Li X, Luo Q. Schizophrenia Increases Variability of the Central Antioxidant System: A Meta-Analysis of Variance From MRS Studies of Glutathione. Front Psychiatry 2021; 12:796466. [PMID: 34916980 PMCID: PMC8669304 DOI: 10.3389/fpsyt.2021.796466] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 11/02/2021] [Indexed: 11/13/2022] Open
Abstract
Patients with schizophrenia diverge in their clinical trajectories. Such diverge outcomes may result from the resilience provided by antioxidant response system centered on glutathione (GSH). Proton Magnetic Resonance Spectroscopy (1H-MRS) has enabled the precise in vivo measurement of intracortical GSH; but individual studies report highly variable results even when GSH levels are measured from the same brain region. This inconsistency could be due to the presence of distinct subgroups of schizophrenia with varying GSH-levels. At present, we do not know if schizophrenia increases the interindividual variability of intracortical GSH relative to matched healthy individuals. We reviewed all 1H-MRS GSH studies in schizophrenia focused on the Anterior Cingulate Cortex published until August 2021. We estimated the relative variability of ACC GSH levels in patients compared to control groups using the variability ratio (VR) and coefficient of variation ratio (CVR). The presence of schizophrenia significantly increases the variability of intracortical GSH in the ACC (logVR = 0.12; 95% CI: 0.03-0.21; log CVR = 0.15; 95% CI = 0.06-0.23). Insofar as increased within-group variability (heterogeneity) could result from the existence of subtypes, our results call for a careful examination of intracortical GSH distribution in schizophrenia to seek redox-deficient and redox-sufficient subgroups. An increase in GSH variability among patients also indicate that the within-group predictability of adaptive response to oxidative stress may be lower in schizophrenia. Uncovering the origins of this illness-related reduction in the redox system stability may provide novel treatment targets in schizophrenia.
Collapse
Affiliation(s)
- Lena Palaniyappan
- Department of Psychiatry, University of Western Ontario, London, ON, Canada
- Robarts Research Institute, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
- Department of Medical Biophysics, University of Western Ontario, London, ON, Canada
| | | | - Xuan Li
- MOE-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Qiang Luo
- MOE-Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- National Clinical Research Center for Aging and Medicine at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science and Human Phenome Institute, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Dwir D, Cabungcal JH, Xin L, Giangreco B, Parietti E, Cleusix M, Jenni R, Klauser P, Conus P, Cuénod M, Steullet P, Do KQ. Timely N-Acetyl-Cysteine and Environmental Enrichment Rescue Oxidative Stress-Induced Parvalbumin Interneuron Impairments via MMP9/RAGE Pathway: A Translational Approach for Early Intervention in Psychosis. Schizophr Bull 2021; 47:1782-1794. [PMID: 34080015 PMCID: PMC8530393 DOI: 10.1093/schbul/sbab066] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Research in schizophrenia (SZ) emphasizes the need for new therapeutic approaches based on antioxidant/anti-inflammatory compounds and psycho-social therapy. A hallmark of SZ is a dysfunction of parvalbumin-expressing fast-spiking interneurons (PVI), which are essential for neuronal synchrony during sensory/cognitive processing. Oxidative stress and inflammation during early brain development, as observed in SZ, affect PVI maturation. We compared the efficacy of N-acetyl-cysteine (NAC) and/or environmental enrichment (EE) provided during juvenile and/or adolescent periods in rescuing PVI impairments induced by an additional oxidative insult during childhood in a transgenic mouse model with gluthation deficit (Gclm KO), relevant for SZ. We tested whether this rescue was promoted by the inhibition of MMP9/RAGE mechanism, both in the mouse model and in early psychosis (EP) patients, enrolled in a double-blind, randomized, placebo-controlled clinical trial of NAC supplementation for 6 months. We show that a sequential combination of NAC+EE applied after an early-life oxidative insult recovers integrity and function of PVI network in adult Gclm KO, via the inhibition of MMP9/RAGE. Six-month NAC treatment in EP patients reduces plasma sRAGE in association with increased prefrontal GABA, improvement of cognition and clinical symptoms, suggesting similar neuroprotective mechanisms. The sequential combination of NAC+EE reverses long-lasting effects of an early oxidative insult on PVI/perineuronal net (PNN) through the inhibition of MMP9/RAGE mechanism. In analogy, patients vulnerable to early-life insults could benefit from a combined pharmacological and psycho-social therapy.
Collapse
Affiliation(s)
- Daniella Dwir
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jan-Harry Cabungcal
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Lijing Xin
- Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging (CIBM), Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Basilio Giangreco
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Enea Parietti
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Martine Cleusix
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Raoul Jenni
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Paul Klauser
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Conus
- Service of General Psychiatry, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michel Cuénod
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Pascal Steullet
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Kim Q Do
- Center for Psychiatric Neuroscience, Department of Psychiatry, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| |
Collapse
|
43
|
Wu Z, Liu Q, Zhang Y, Guan X, Xiu M, Zhang X. Superoxide Dismutase, BDNF, and Cognitive Improvement in Drug-Naive First-Episode Patients With Schizophrenia: A 12-Week Longitudinal Study. Int J Neuropsychopharmacol 2021; 25:128-135. [PMID: 34622272 PMCID: PMC8832226 DOI: 10.1093/ijnp/pyab065] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/13/2021] [Accepted: 10/02/2021] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Cognitive improvement after antipsychotic agents in patients with schizophrenia (SCZ) appears to involve redox regulation through neurotrophins such as brain derived neurotropic factor (BDNF). This study examined whether cognitive improvement was associated with the increase in superoxide dismutase (SOD) and whether higher levels of BDNF could have a permissive role in allowing SOD to improve cognition. METHODS We examined this hypothesis in 183 drug-naïve first-episode SCZ patients taking risperidone monotherapy for 12 weeks. We measured total copper-zinc SOD (CuZn-SOD), manganese SOD (Mn-SOD), and SOD activities and BDNF levels in these patients and compared their levels with 152 healthy controls. We assessed cognitive functioning and clinical symptoms at baseline and 12-week follow-up. RESULTS After treatment with risperidone, CuZn-SOD activity was significantly increased, and BDNF levels were slightly increased. Increased CuZn-SOD activity was associated with the cognitive effectiveness of risperidone monotherapy. The BDNF levels and SOD activities were correlated at baseline but not after 12-week treatment. Furthermore, baseline CuZn-SOD activity positively correlated with improvement on the delayed memory subscale of the Repeatable Battery for the Assessment of Neuropsychological Status only in the high BDNF subgroup. CONCLUSIONS Our longitudinal study suggests that risperidone can enhance SOD activity and that, in combination with higher baseline BDNF levels acting in a permissive role, can improve cognitive impairments in SCZ. Greater baseline CuZn-SOD activity also may have predictive value for cognitive improvement of delayed memory in SCZ patients receiving risperidone treatment.
Collapse
Affiliation(s)
- Zhiwei Wu
- Department of Psychiatry, Shenzhen Kangning Hospital; Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Qinqin Liu
- Qingdao Mental Health Center, Qingdao, Shandong, China
| | - Yinghua Zhang
- Department of Psychiatry, Shenzhen Kangning Hospital; Shenzhen Mental Health Center, Shenzhen, Guangdong, China
| | - Xiaoni Guan
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China
| | - Meihong Xiu
- Peking University HuiLongGuan Clinical Medical School, Beijing HuiLongGuan Hospital, Beijing, China,Correspondence: Mei Hong Xiu, PhD, Changping District, Beijing, 100096, China ()
| | - Xiangyang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
44
|
Mikulska J, Juszczyk G, Gawrońska-Grzywacz M, Herbet M. HPA Axis in the Pathomechanism of Depression and Schizophrenia: New Therapeutic Strategies Based on Its Participation. Brain Sci 2021; 11:1298. [PMID: 34679364 PMCID: PMC8533829 DOI: 10.3390/brainsci11101298] [Citation(s) in RCA: 173] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 12/27/2022] Open
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is involved in the pathophysiology of many neuropsychiatric disorders. Increased HPA axis activity can be observed during chronic stress, which plays a key role in the pathophysiology of depression. Overactivity of the HPA axis occurs in major depressive disorder (MDD), leading to cognitive dysfunction and reduced mood. There is also a correlation between the HPA axis activation and gut microbiota, which has a significant impact on the development of MDD. It is believed that the gut microbiota can influence the HPA axis function through the activity of cytokines, prostaglandins, or bacterial antigens of various microbial species. The activity of the HPA axis in schizophrenia varies and depends mainly on the severity of the disease. This review summarizes the involvement of the HPA axis in the pathogenesis of neuropsychiatric disorders, focusing on major depression and schizophrenia, and highlights a possible correlation between these conditions. Although many effective antidepressants are available, a large proportion of patients do not respond to initial treatment. This review also discusses new therapeutic strategies that affect the HPA axis, such as glucocorticoid receptor (GR) antagonists, vasopressin V1B receptor antagonists and non-psychoactive CB1 receptor agonists in depression and/or schizophrenia.
Collapse
Affiliation(s)
| | | | - Monika Gawrońska-Grzywacz
- Chair and Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, 8b Jaczewskiego Street, 20-090 Lublin, Poland; (J.M.); (G.J.); (M.H.)
| | | |
Collapse
|
45
|
Cystine/Glutamate Antiporter in Schizophrenia: From Molecular Mechanism to Novel Biomarker and Treatment. Int J Mol Sci 2021; 22:ijms22189718. [PMID: 34575878 PMCID: PMC8466274 DOI: 10.3390/ijms22189718] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 01/04/2023] Open
Abstract
Glutamate, a crucial excitatory neurotransmitter, plays a major role in the modulation of schizophrenia’s pathogenesis. New drug developments for schizophrenia have been prompted by the hypoglutamatergic hypothesis of schizophrenia. The cystine/glutamate antiporter system xc− is related to glutamate-release regulation. Patients with schizophrenia were recently discovered to exhibit downregulation of xc− subunits—the solute carrier (SLC) family 3 member 2 and the SLC family 7 member 11. We searched for relevant studies from 1980, when Bannai and Kitamura first identified the protein subunit system xc− in lung fibroblasts, with the aim of compiling the biological, functional, and pharmacological characteristics of antiporter xc−, which consists of several subunits. Some of them can significantly stimulate the human brain through the glutamate pathway. Initially, extracellular cysteine activates neuronal xc−, causing glutamate efflux. Next, excitatory amino acid transporters enhance the unidirectional transportation of glutamate and sodium. These two biochemical pathways are also crucial to the production of glutathione, a protective agent for neural and glial cells and astrocytes. Investigation of the expression of system xc− genes in the peripheral white blood cells of patients with schizophrenia can facilitate better understanding of the mental disorder and future development of novel biomarkers and treatments for schizophrenia. In addition, the findings further support the hypoglutamatergic hypothesis of schizophrenia.
Collapse
|
46
|
Schroeder R, Sridharan P, Nguyen L, Loren A, Williams NS, Kettimuthu KP, Cintrón-Pérez CJ, Vázquez-Rosa E, Pieper AA, Stevens HE. Maternal P7C3-A20 Treatment Protects Offspring from Neuropsychiatric Sequelae of Prenatal Stress. Antioxid Redox Signal 2021; 35:511-530. [PMID: 33501899 PMCID: PMC8388250 DOI: 10.1089/ars.2020.8227] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Aims: Impaired embryonic cortical interneuron development from prenatal stress is linked to adult neuropsychiatric impairment, stemming in part from excessive generation of reactive oxygen species in the developing embryo. Unfortunately, there are no preventive medicines that mitigate the risk of prenatal stress to the embryo, as the underlying pathophysiologic mechanisms are poorly understood. Our goal was to interrogate the molecular basis of prenatal stress-mediated damage to the embryonic brain to identify a neuroprotective strategy. Results: Chronic prenatal stress in mice dysregulated nicotinamide adenine dinucleotide (NAD+) synthesis enzymes and cortical interneuron development in the embryonic brain, leading to axonal degeneration in the hippocampus, cognitive deficits, and depression-like behavior in adulthood. Offspring were protected from these deleterious effects by concurrent maternal administration of the NAD+-modulating agent P7C3-A20, which crossed the placenta to access the embryonic brain. Prenatal stress also produced axonal degeneration in the adult corpus callosum, which was not prevented by maternal P7C3-A20. Innovation: Prenatal stress dysregulates gene expression of NAD+-synthesis machinery and GABAergic interneuron development in the embryonic brain, which is associated with adult cognitive impairment and depression-like behavior. We establish a maternally directed treatment that protects offspring from these effects of prenatal stress. Conclusion: NAD+-synthesis machinery and GABAergic interneuron development are critical to proper embryonic brain development underlying postnatal neuropsychiatric functioning, and these systems are highly susceptible to prenatal stress. Pharmacologic stabilization of NAD+ in the stressed embryonic brain may provide a neuroprotective strategy that preserves normal embryonic development and protects offspring from neuropsychiatric impairment. Antioxid. Redox Signal. 35, 511-530.
Collapse
Affiliation(s)
- Rachel Schroeder
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| | - Preethy Sridharan
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA
| | - Lynn Nguyen
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Alexandra Loren
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA
| | - Noelle S Williams
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kavitha P Kettimuthu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Coral J Cintrón-Pérez
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Edwin Vázquez-Rosa
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA.,Department of Psychiatry and Case Western Reserve University, Cleveland, Ohio, USA.,Department of Neuroscience, Case Western Reserve University, Cleveland, Ohio, USA.,Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.,Geriatric Research Education and Clinical Centers, Louis Stokes Cleveland VAMC, Cleveland, Ohio, USA.,Weill Cornell Autism Research Program, Weill Cornell Medicine of Cornell University, New York, New York, USA
| | - Hanna E Stevens
- Department of Psychiatry, University of Iowa Carver College of Medicine, Iowa City, Iowa, USA.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
47
|
Lech MA, Kamińska K, Leśkiewicz M, Lorenc-Koci E, Rogóż Z. Impact of repeated co-treatment with escitalopram and aripiprazole on the schizophrenia-like behaviors and BDNF mRNA expression in the adult Sprague-Dawley rats exposed to glutathione deficit during early postnatal development of the brain. Pharmacol Rep 2021; 73:1712-1723. [PMID: 34398437 PMCID: PMC8599398 DOI: 10.1007/s43440-021-00318-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 10/27/2022]
Abstract
BACKGROUND Preclinical and clinical studies have indicated that impaired endogenous synthesis of glutathione during early postnatal development plays a significant role in the pathophysiology of schizophrenia. Moreover, some studies have suggested that antidepressants are able to increase the activity of atypical antipsychotics which may efficiently improve the treatment of negative and cognitive symptoms of schizophrenia. METHODS In the present study, we investigated the influence of repeated co-treatment with escitalopram and aripiprazole on the schizophrenia-like behavior and BDNF mRNA expression in adult rats exposed to glutathione deficit during early postnatal development. Male pups between the postnatal days p5-p16 were treated with the inhibitor of glutathione synthesis, BSO (L-buthionine-(S,R)-sulfoximine) and the dopamine uptake inhibitor, GBR 12,909 alone or in combination. Escitalopram and aripiprazole were given repeatedly for 21 days before the tests. On p90-92 rats were evaluated in the behavioral and biochemical tests. RESULTS BSO given alone and together with GBR 12,909 induced deficits in the studied behavioral tests and decreased the expression of BDNF mRNA. Repeated aripiprazole administration at a higher dose reversed these behavioral deficits. Co-treatment with aripiprazole and an ineffective dose of escitalopram also abolished the behavioral deficits in the studied tests. CONCLUSION The obtained data indicated that the inhibition of glutathione synthesis in early postnatal development induced long-term deficits corresponding to schizophrenia-like behavior and decreased the BDNF mRNA expression in adult rats, and these behavioral deficits were reversed by repeated treatment with a higher dose of aripiprazole and also by co-treatment with aripiprazole and ineffective dose of escitalopram.
Collapse
Affiliation(s)
- Marta A Lech
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Kinga Kamińska
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Monika Leśkiewicz
- Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences,, 12 Smętna Street, Kraków, Poland
| | - Elżbieta Lorenc-Koci
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland
| | - Zofia Rogóż
- Department of Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smętna Street, Kraków, Poland. .,The Podhale State Higher Vocational School, Faculty of Cosmetology, Institute of Health, 71 Kokoszków, Nowy Targ, Poland.
| |
Collapse
|
48
|
Kwon N, Lim CS, Ko G, Ha J, Lee D, Yin J, Kim HM, Yoon J. Fluorescence Probe for Imaging N-Methyl-d-aspartate Receptors and Monitoring GSH Selectively Using Two-Photon Microscopy. Anal Chem 2021; 93:11612-11616. [PMID: 34382767 DOI: 10.1021/acs.analchem.1c02350] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-Methyl-d-aspartate (NMDA) is an excitotoxic amino acid used to identify a specific subset of glutamate receptors. The activity of NMDA receptors is closely related to the redox level of the biological system. Glutathione (GSH) as an antioxidant plays a key role with regard to modulation of the redox environment. In this work we designed and developed a GSH-specific fluorescent probe with the capability of targeting NMDA receptors, which was composed of a two-photon naphthalimide fluorophore, a GSH-reactive group sulfonamide, and an ifenprodil targeting group for the NMDA receptor. This probe exhibited high selectivity toward GSH in comparison to other similar amino acids. Two-photon fluorescence microscopy allowed this probe to successfully monitor GSH in neuronal cells and hippocampal tissues with an excitation at 750 nm. It could serve as a potential practical imaging tool to explore the function of GSH and related biological processes in the brain.
Collapse
Affiliation(s)
- Nahyun Kwon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Chang Su Lim
- Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea
| | - Gyeongju Ko
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Jeongsun Ha
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Dayoung Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| | - Jun Yin
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education; Hubei International Scientific and Technological Cooperation Base of Pesticide and Green Synthesis; International Joint Research Center for Intelligent Biosensing Technology and Health; College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Hwan Myung Kim
- Department of Energy Systems Research, Ajou University, Suwon 443-749, Korea
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
49
|
He S, Li Y, Li T, Xu F, Zeng D, Shi Y, Zhao N, Zhang L, Ma YZ, Wang Q, Yu W, Shen Y, Huang J, Li H. Sex differences between serum total bilirubin levels and cognition in patients with schizophrenia. BMC Psychiatry 2021; 21:396. [PMID: 34376171 PMCID: PMC8353745 DOI: 10.1186/s12888-021-03407-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 08/03/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Cognitive deficits are common in patients with schizophrenia (SCZ). Abnormal serum total bilirubin (TBIL) levels have been involved in cognitive deficits associated with neuropsychiatric diseases such as mild cognitive impairment and subcortical ischemic vascular disease. However, this relationship has not yet been fully investigated in patients with SCZ. Therefore, the aim of this study was to investigate the association between the serum TBIL concentration and cognitive deficits in SCZ patients and to determine whether a sex difference exists in the association. METHODS A total of 455 participants were eligible and included in this cross-sectional study. Cognition was evaluated using the Montreal Cognitive Assessment. Serum TBIL concentration was measured with an automatic biochemistry analyzer according to the routine protocol in the hospital medical laboratory. RESULTS Serum TBIL levels were lower in the cognition impairment group than in the cognition normal group in male patients. In contrast, serum TBIL levels tended to be increased in the cognition impairment group in female patients, although the difference was not significant. Further stepwise multiple regression analysis stratified by sex showed that serum TBIL was independently and positively associated with cognitive function in male patients but not in female patients. Moreover, the association between serum TBIL level and cognitive function was also identified by the propensity score matching (PSM) method in male patients, but not in female patients. CONCLUSION These findings suggest that lower serum TBIL levels may be associated with cognitive impairment in male SCZ patients.
Collapse
Affiliation(s)
- Shen He
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yange Li
- Department of Psychiatry, First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tian Li
- Air Force Medical University, No. 169 Changle West Rd, Xi'an, 710032, China
| | - Feikang Xu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Duan Zeng
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Shi
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Zhao
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Lei Zhang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yin Zhu Ma
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Wang
- Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai, China
| | - Wenjuan Yu
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Clinical Research Center for Mental Health, Shanghai, China
| | - Yifeng Shen
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Clinical Research Center for Mental Health, Shanghai, China
| | - Jingjing Huang
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Clinical Research Center for Mental Health, Shanghai, China.
| | - Huafang Li
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Clinical Research Center for Mental Health, Shanghai, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
50
|
Ventriglio A, Bellomo A, Favale D, Bonfitto I, Vitrani G, Di Sabatino D, Cuozzo E, Di Gioia I, Mauro P, Giampaolo P, Alessandro V, De Berardis D. Oxidative Stress in the Early Stage of Psychosis. Curr Top Med Chem 2021; 21:1457-1470. [PMID: 34218786 DOI: 10.2174/1568026621666210701105839] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the past few decades, increasing evidence in the literature has appeared describing the role of the antioxidant defense system and redox signaling in the multifactorial pathophysiology of psychosis. It is of interest to clinicians and researchers alike that abnormalities of the antioxidant defense system are associated with alterations of cellular membranes, immune functions and neurotransmission, all of which have some clinical implications. METHODS This narrative review summarizes the evidence regarding oxidative stress in the early stages of psychosis. We included 136 peer-reviewed articles published from 2007 to 2020 on PubMed EMBASE, The Cochrane Library and Google Scholar. RESULTS Patients affected by psychotic disorders show a decreased level of non-enzymatic antioxidants, an increased level of lipid peroxides, nitric oxides, and a homeostatic imbalance of purine catabolism. In particular, a significantly reduced antioxidant defense has been described in the early onset first episode of psychosis, including reduced levels of glutathione. Also, it has been shown that a decreased basal low -antioxidant capacity correlates with cognitive deficits and negative symptoms, mostly related to glutamate-receptor hypofunction. In addition, atypical antipsychotic drugs seem to show significant antioxidant activity. These factors are critical in order to treat cases of first-onset psychosis effectively. CONCLUSION This systematic review indicates the importance that must be given to anti-oxidant defense systems.
Collapse
Affiliation(s)
- Antonio Ventriglio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Donato Favale
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Iris Bonfitto
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giovanna Vitrani
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Dario Di Sabatino
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Edwige Cuozzo
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Ilaria Di Gioia
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Pettorruso Mauro
- Department of Neurosciences, Imaging and Clinical Sciences, Univerity of Chieti, Italy
| | - Perna Giampaolo
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | | | | |
Collapse
|