1
|
Flavell SW, Oren-Suissa M, Stern S. Sources of behavioral variability in C. elegans: Sex differences, individuality, and internal states. Curr Opin Neurobiol 2025; 91:102984. [PMID: 39986247 PMCID: PMC12038806 DOI: 10.1016/j.conb.2025.102984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 02/24/2025]
Abstract
Animal behavior varies across different timescales. This includes rapid shifts in behavior as animals transition between states and long-term changes that develop throughout an organism's life. This review presents the contributions of sex differences, individuality, and internal states to behavioral variability in the roundworm Caenorhabditis elegans. Sex is determined by chromosome composition, which directs neuronal development through gene regulation and experience to shape dimorphic behaviors. Genetically identical individuals within the same sex and reared in the same conditions still display distinctive, long-lasting behavioral traits that are controlled by neuromodulatory systems. At all life stages, internal states within the individual, shaped by external factors like food and stress, modulate behavior over minutes to hours. The interplay between these factors gives rise to rich behavioral diversity in C. elegans. These factors impact behavior in a sequential manner, as genetic sex, individuality, and internal states influence behavior over progressively finer timescales.
Collapse
Affiliation(s)
- Steven W Flavell
- Howard Hughes Medical Institute, Picower Institute for Learning and Memory, Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Meital Oren-Suissa
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, 7610001, Israel.
| | - Shay Stern
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
2
|
Van Camp BT, Zapata QN, Curran SP. WormRACER: Robust Analysis by Computer-Enhanced Recording. GeroScience 2025:10.1007/s11357-025-01631-8. [PMID: 40140154 DOI: 10.1007/s11357-025-01631-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
The pace of scientific high-throughput screening for age-related phenotypes requires the need for developing streamlined and efficacious methods of measuring and quantifying physiological outcomes and at a scale that enables adequate statistical power to measure the variation in populations. Here, we introduce Worm Robust Analysis by Computer-Enhanced Recording (WormRACER), a computationally efficient computer vision software capable of extracting six different crawling and swimming metrics from many animals simultaneously, including worm area, worm length, crawling speed, swimming speed, dynamic amplitude, and wave initiation rate (thrashing). Additionally, we developed a web-based portal that provides metric averages and metric vs time graphs that allow for simple data analysis and quality assurance. WormRACER will facilitate the rapid and quantitative characterization of movement as a facile measurement of healthspan enabling power for high-throughput screening of genetic, environmental, and pharmacological interventions.
Collapse
Affiliation(s)
- Bennett T Van Camp
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| | | | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA.
| |
Collapse
|
3
|
Imani Farahani N, Lin L, Nazir S, Naderi A, Rokos L, McIntosh AR, Julian LM. Advances in physiological and clinical relevance of hiPSC-derived brain models for precision medicine pipelines. Front Cell Neurosci 2025; 18:1478572. [PMID: 39835290 PMCID: PMC11743572 DOI: 10.3389/fncel.2024.1478572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Precision, or personalized, medicine aims to stratify patients based on variable pathogenic signatures to optimize the effectiveness of disease prevention and treatment. This approach is favorable in the context of brain disorders, which are often heterogeneous in their pathophysiological features, patterns of disease progression and treatment response, resulting in limited therapeutic standard-of-care. Here we highlight the transformative role that human induced pluripotent stem cell (hiPSC)-derived neural models are poised to play in advancing precision medicine for brain disorders, particularly emerging innovations that improve the relevance of hiPSC models to human physiology. hiPSCs derived from accessible patient somatic cells can produce various neural cell types and tissues; current efforts to increase the complexity of these models, incorporating region-specific neural tissues and non-neural cell types of the brain microenvironment, are providing increasingly relevant insights into human-specific neurobiology. Continued advances in tissue engineering combined with innovations in genomics, high-throughput screening and imaging strengthen the physiological relevance of hiPSC models and thus their ability to uncover disease mechanisms, therapeutic vulnerabilities, and tissue and fluid-based biomarkers that will have real impact on neurological disease treatment. True physiological understanding, however, necessitates integration of hiPSC-neural models with patient biophysical data, including quantitative neuroimaging representations. We discuss recent innovations in cellular neuroscience that can provide these direct connections through generative AI modeling. Our focus is to highlight the great potential of synergy between these emerging innovations to pave the way for personalized medicine becoming a viable option for patients suffering from neuropathologies, particularly rare epileptic and neurodegenerative disorders.
Collapse
Affiliation(s)
- Negin Imani Farahani
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa Lin
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shama Nazir
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Alireza Naderi
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Leanne Rokos
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Toronto, ON, Canada
| | - Anthony Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Lisa M. Julian
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
- Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, BC, Canada
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
4
|
Singhvi A, Shaham S, Rapti G. Glia Development and Function in the Nematode Caenorhabditis elegans. Cold Spring Harb Perspect Biol 2024; 16:a041346. [PMID: 38565269 PMCID: PMC11445397 DOI: 10.1101/cshperspect.a041346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The nematode Caenorhabditis elegans is a powerful experimental setting for uncovering fundamental tenets of nervous system organization and function. Its nearly invariant and simple anatomy, coupled with a plethora of methodologies for interrogating single-gene functions at single-cell resolution in vivo, have led to exciting discoveries in glial cell biology and mechanisms of glia-neuron interactions. Findings over the last two decades reinforce the idea that insights from C. elegans can inform our understanding of glial operating principles in other species. Here, we summarize the current state-of-the-art, and describe mechanistic insights that have emerged from a concerted effort to understand C. elegans glia. The remarkable acceleration in the pace of discovery in recent years paints a portrait of striking molecular complexity, exquisite specificity, and functional heterogeneity among glia. Glial cells affect nearly every aspect of nervous system development and function, from generating neurons, to promoting neurite formation, to animal behavior, and to whole-animal traits, including longevity. We discuss emerging questions where C. elegans is poised to fill critical knowledge gaps in our understanding of glia biology.
Collapse
Affiliation(s)
- Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, New York, New York 10065, USA
| | - Georgia Rapti
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg 69117, Germany
- Epigenetics and Neurobiology Unit, European Molecular Biology Laboratory, Monterotondo, Rome 00015, Italy
- Interdisciplinary Center of Neurosciences, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Neziri S, Köseoğlu AE, Deniz Köseoğlu G, Özgültekin B, Özgentürk NÖ. Animal models in neuroscience with alternative approaches: Evolutionary, biomedical, and ethical perspectives. Animal Model Exp Med 2024; 7:868-880. [PMID: 39375824 DOI: 10.1002/ame2.12487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024] Open
Abstract
Animal models have been a crucial tool in neuroscience research for decades, providing insights into the biomedical and evolutionary mechanisms of the nervous system, disease, and behavior. However, their use has raised concerns on several ethical, clinical, and scientific considerations. The welfare of animals and the 3R principles (replacement, reduction, refinement) are the focus of the ethical concerns, targeting the importance of reducing the stress and suffering of these models. Several laws and guidelines are applied and developed to protect animal rights during experimenting. Concurrently, in the clinic and biomedical fields, discussions on the relevance of animal model findings on human organisms have increased. Latest data suggest that in a considerable amount of time the animal model results are not translatable in humans, costing time and money. Alternative methods, such as in vitro (cell culture, microscopy, organoids, and micro physiological systems) techniques and in silico (computational) modeling, have emerged as potential replacements for animal models, providing more accurate data in a minimized cost. By adopting alternative methods and promoting ethical considerations in research practices, we can achieve the 3R goals while upholding our responsibility to both humans and other animals. Our goal is to present a thorough review of animal models used in neuroscience from the biomedical, evolutionary, and ethical perspectives. The novelty of this research lies in integrating diverse points of views to provide an understanding of the advantages and disadvantages of animal models in neuroscience and in discussing potential alternative methods.
Collapse
Affiliation(s)
- Sabina Neziri
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Yıldız Technical University, Istanbul, Turkey
| | | | | | - Buminhan Özgültekin
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Acıbadem University, Istanbul, Turkey
| | - Nehir Özdemir Özgentürk
- Department of Molecular Biology and Genetics, Faculty of Art and Science, Yıldız Technical University, Istanbul, Turkey
| |
Collapse
|
6
|
Kim JC, Kim Y, Cho S, Park HS. Noncanonical Amino Acid Incorporation in Animals and Animal Cells. Chem Rev 2024; 124:12463-12497. [PMID: 39541258 DOI: 10.1021/acs.chemrev.3c00955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Noncanonical amino acids (ncAAs) are synthetic building blocks that, when incorporated into proteins, confer novel functions and enable precise control over biological processes. These small yet powerful tools offer unprecedented opportunities to investigate and manipulate various complex life forms. In particular, ncAA incorporation technology has garnered significant attention in the study of animals and their constituent cells, which serve as invaluable model organisms for gaining insights into human physiology, genetics, and diseases. This review will provide a comprehensive discussion on the applications of ncAA incorporation technology in animals and animal cells, covering past achievements, current developments, and future perspectives.
Collapse
Affiliation(s)
- Joo-Chan Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - YouJin Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Suho Cho
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Hee-Sung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
7
|
Reinhardt F, Kaiser A, Prömel S, Stadler PF. Evolution of neuropeptide Y/RFamide-like receptors in nematodes. Heliyon 2024; 10:e34473. [PMID: 39130429 PMCID: PMC11315170 DOI: 10.1016/j.heliyon.2024.e34473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/13/2024] Open
Abstract
The Neuropeptide Y/RFamide-like receptors belong to the Rhodopsin-like G protein-coupled receptors G protein-coupled receptors (GPCRs) and are involved in functions such as locomotion, feeding and reproduction. With 41 described receptors they form the best-studied group of neuropeptide GPCRs in Caenorhabditis elegans. In order to understand the expansion of the Neuropeptide Y/RFamide-like receptor family in nematodes, we started from the sequences of selected receptor paralogs in C. elegans as query and surveyed the corresponding orthologous sequences in another 159 representative nematode target genomes. To this end we employed a automated pipeline based on ExonMatchSolver, a tool that solves the paralog-to-contig assignment problem. Utilizing subclass-specific HMMs we were able to detect a total of 1557 Neuropeptide Y/RFamide-like receptor sequences (1100 NPRs, 375 FRPRs and 82 C09F12.3) in the 159 target nematode genomes investigated here. These sequences demonstrate a good conservation of the Neuropeptide Y/RFamide-like receptors across the Nematoda and highlight the diversification of the family in nematode evolution. No other genus shares all Neuropeptide Y/RFamide-like receptors with the genus Caenorhabditis. At the same time, we observe large numbers of clade specific duplications and losses of family members across the phylum Nematoda.
Collapse
Affiliation(s)
- Franziska Reinhardt
- Bioinformatics Group, Institute of Computer Science, Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig, D-04107, Germany
| | - Anette Kaiser
- Leipzig University, Faculty of Medicine, Department of Anesthesiology and Intensive Care, Liebigstr. 19, Leipzig, D-04103, Germany
- Leipzig University, Faculty of Life Sciences, Institute of Biochemistry, Brüderstraße 34, Leipzig, D-04103, Germany
| | - Simone Prömel
- Heinrich Heine University Düsseldorf, Universitätsstraße 1/ Gebäude 26.24, Düsseldorf, D-40225, Germany
| | - Peter F. Stadler
- Bioinformatics Group, Institute of Computer Science, Interdisciplinary Center of Bioinformatics, Leipzig University, Härtelstraße 16-18, Leipzig, D-04107, Germany
- Max-Planck-Institute for Mathematics in the Sciences, Inselstrße 22, D-04103 Leipzig, Germany
- Inst. f. Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria
- Facultad de Ciencias, Universidad National de Colombia, Sede Bogota, Colombia
- Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA
| |
Collapse
|
8
|
Vidal-Saez MS, Vilarroya O, Garcia-Ojalvo J. A multiscale sensorimotor model of experience-dependent behavior in a minimal organism. Biophys J 2024; 123:1654-1667. [PMID: 38815587 PMCID: PMC11213988 DOI: 10.1016/j.bpj.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
To survive in ever-changing environments, living organisms need to continuously combine the ongoing external inputs they receive, representing present conditions, with their dynamical internal state, which includes influences of past experiences. It is still unclear in general, however 1) how this happens at the molecular and cellular levels and 2) how the corresponding molecular and cellular processes are integrated with the behavioral responses of the organism. Here, we address these issues by modeling mathematically a particular behavioral paradigm in a minimal model organism, namely chemotaxis in the nematode C. elegans. Specifically, we use a long-standing collection of elegant experiments on salt chemotaxis in this animal, in which the migration direction varies depending on its previous experience. Our model integrates the molecular, cellular, and organismal levels to reproduce the experimentally observed experience-dependent behavior. The model proposes specific molecular mechanisms for the encoding of current conditions and past experiences in key neurons associated with this response, predicting the behavior of various mutants associated with those molecular circuits.
Collapse
Affiliation(s)
- María Sol Vidal-Saez
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Oscar Vilarroya
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain; Hospital del Mar Research Institute (IMIM), Barcelona, Spain
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
9
|
Brown JW, Berg OH, Boutko A, Stoerck C, Boersma MA, Frost WN. Division of labor for defensive retaliation and preemption by the peripheral and central nervous systems in the nudibranch Berghia. Curr Biol 2024; 34:2175-2185.e4. [PMID: 38718797 PMCID: PMC11846655 DOI: 10.1016/j.cub.2024.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/02/2024] [Accepted: 04/15/2024] [Indexed: 05/23/2024]
Abstract
Relatively little is known about how peripheral nervous systems (PNSs) contribute to the patterning of behavior in which their role transcends the simple execution of central motor commands or mediation of reflexes. We sought to draw inferences to this end in the aeolid nudibranch Berghia stephanieae, which generates a rapid, dramatic defense behavior, "bristling." This behavior involves the coordinated movement of cerata, dozens of venomous appendages emerging from the animal's mantle. Our investigations revealed that bristling constitutes a stereotyped but non-reflexive two-stage behavior: an initial adduction of proximate cerata to sting the offending stimulus (stage 1) followed by a coordinated radial extension of remaining cerata to create a pincushion-like defensive screen around the animal (stage 2). In decerebrated specimens, stage 1 bristling was preserved, while stage 2 bristling was replaced by slower, uncoordinated ceratal movements. We conclude from these observations that, first, the animal's PNS and central nervous system (CNS) mediate stages 1 and 2 of bristling, respectively; second, the behavior propagates through the body utilizing both peripheral- and central-origin nerve networks that support different signaling kinetics; and third, the former network inhibits the latter in the body region being stimulated. These findings extend our understanding of the PNS' computational capacity and provide insight into a neuroethological scheme in which the CNS and PNS both independently and interactively pattern different aspects of non-reflexive behavior.
Collapse
Affiliation(s)
- Jeffrey W Brown
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Ondine H Berg
- Neuroscience Program, Lake Forest College, Lake Forest, IL 60045, USA
| | - Anastasiya Boutko
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Cody Stoerck
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831, USA
| | | | - William N Frost
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA; The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
10
|
Kim AT, Li S, Kim Y, You YJ, Park Y. Food preference-based screening method for identification of effectors of substance use disorders using Caenorhabditis elegans. Life Sci 2024; 345:122580. [PMID: 38514005 DOI: 10.1016/j.lfs.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Substance use disorder (SUD) affects over 48 million Americans aged 12 and over. Thus, identifying novel chemicals contributing to SUD will be critical for developing efficient prevention and mitigation strategies. Considering the complexity of the actions and effects of these substances on human behavior, a high-throughput platform using a living organism is ideal. We developed a quick and easy screening assay using Caenorhabditis elegans. C. elegans prefers high-quality food (Escherichia coli HB101) over low-quality food (Bacillus megaterium), with a food preference index of approximately 0.2, defined as the difference in the number of worms at E. coli HB101 and B. megaterium over the total worm number. The food preference index was significantly increased by loperamide, a μ-opioid receptor (MOPR) agonist, and decreased by naloxone, a MOPR antagonist. These changes depended on npr-17, a C. elegans homolog of opioid receptors. In addition, the food preference index was significantly increased by arachidonyl-2'-chloroethylamide, a cannabinoid 1 receptor (CB1R) agonist, and decreased by rimonabant, a CB1R inverse agonist. These changes depended on npr-19, a homolog of CB1R. These results suggest that the conserved opioid and endocannabinoid systems modulate the food preference behaviors of C. elegans. Finally, the humanoid C. elegans strains where npr-17 was replaced with human MOPR and where npr-19 was replaced with human CB1R phenocopied the changes in food preference by the drug treatment. Together, the current results show that this method can be used to rapidly screen the potential effectors of MOPR and CB1R to yield results highly translatable to humans.
Collapse
Affiliation(s)
- Aaron Taehwan Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Sida Li
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Yoo Kim
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Young-Jai You
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Yeonhwa Park
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
11
|
Lopez JS, Ali S, Asher M, Benjamin CA, Brennan RT, Burke MLT, Civantos JM, DeJesus EA, Geller A, Guo MY, Haase Cox SK, Johannsen JM, Kang JSJ, Konsker HB, Liu BC, Oakes KG, Park HI, Perez DR, Sajjadian AM, Torio Salem M, Sato J, Zeng AI, Juarez BH, Gonzalez M, Morales G, Bradon N, Fiocca K, Pamplona Barbosa MM, O'Connell LA. Pavement ant extract is a chemotaxis repellent for C. elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001146. [PMID: 38596360 PMCID: PMC11002644 DOI: 10.17912/micropub.biology.001146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/14/2024] [Accepted: 03/21/2024] [Indexed: 04/11/2024]
Abstract
Ant behavior relies on a collection of natural products, from following trail pheromones during foraging to warding off potential predators. How nervous systems sense these compounds to initiate a behavioral response remains unclear. Here, we used Caenorhabditis elegans chemotaxis assays to investigate how ant compounds are detected by heterospecific nervous systems. We found that C. elegans avoid extracts of the pavement ant ( Tetramorium immigrans ) and either osm-9 or tax-4 ion channels are required for this response. These experiments were conducted in an undergraduate laboratory course, demonstrating that new insights into interspecies interactions can be generated through genuine research experiences in a classroom setting.
Collapse
Affiliation(s)
- Jayela S. Lopez
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Saif Ali
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Malcom Asher
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Christina A. Benjamin
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Ryan T. Brennan
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Mai Ly T. Burke
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Joseph M. Civantos
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Emilia A. DeJesus
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Ana Geller
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Michaela Y. Guo
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Sophia K. Haase Cox
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Julia M. Johannsen
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Joshua S. J. Kang
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Harrison B. Konsker
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Benjamin C. Liu
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Kylie G. Oakes
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Hannah I. Park
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Diego R. Perez
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Amin M. Sajjadian
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Madeleine Torio Salem
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Justine Sato
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Amanda I. Zeng
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
| | - Bryan H. Juarez
- Department of Biology, Stanford University, Stanford, California, United States
| | - Mabel Gonzalez
- Department of Biology, Stanford University, Stanford, California, United States
| | - Griselda Morales
- Department of Biology, Stanford University, Stanford, California, United States
| | - Nicole Bradon
- Department of Biology, Stanford University, Stanford, California, United States
| | - Katherine Fiocca
- Department of Biology, Stanford University, Stanford, California, United States
| | - Mila M. Pamplona Barbosa
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
- Department of Biology, Stanford University, Stanford, California, United States
| | - Lauren A. O'Connell
- BIO161 Organismal Biology Lab, Stanford University, Stanford, California, United States
- Department of Biology, Stanford University, Stanford, California, United States
| |
Collapse
|
12
|
Doser RL, Knight KM, Deihl EW, Hoerndli FJ. Activity-dependent mitochondrial ROS signaling regulates recruitment of glutamate receptors to synapses. eLife 2024; 13:e92376. [PMID: 38483244 PMCID: PMC10990490 DOI: 10.7554/elife.92376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Our understanding of mitochondrial signaling in the nervous system has been limited by the technical challenge of analyzing mitochondrial function in vivo. In the transparent genetic model Caenorhabditis elegans, we were able to manipulate and measure mitochondrial reactive oxygen species (mitoROS) signaling of individual mitochondria as well as neuronal activity of single neurons in vivo. Using this approach, we provide evidence supporting a novel role for mitoROS signaling in dendrites of excitatory glutamatergic C. elegans interneurons. Specifically, we show that following neuronal activity, dendritic mitochondria take up calcium (Ca2+) via the mitochondrial Ca2+ uniporter (MCU-1) that results in an upregulation of mitoROS production. We also observed that mitochondria are positioned in close proximity to synaptic clusters of GLR-1, the C. elegans ortholog of the AMPA subtype of glutamate receptors that mediate neuronal excitation. We show that synaptic recruitment of GLR-1 is upregulated when MCU-1 function is pharmacologically or genetically impaired but is downregulated by mitoROS signaling. Thus, signaling from postsynaptic mitochondria may regulate excitatory synapse function to maintain neuronal homeostasis by preventing excitotoxicity and energy depletion.
Collapse
Affiliation(s)
- Rachel L Doser
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
- Department of Health and Exercise Sciences, Colorado State UniversityFort CollinsUnited States
| | - Kaz M Knight
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
- Cellular and Molecular Biology Graduate Program, Colorado State UniversityFort CollinsUnited States
| | - Ennis W Deihl
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
| | - Frederic J Hoerndli
- Department of Biomedical Science, Colorado State UniversityFort CollinsUnited States
| |
Collapse
|
13
|
Sterling P, Laughlin S. Why an animal needs a brain. Anim Cogn 2023; 26:1751-1762. [PMID: 38041700 DOI: 10.1007/s10071-023-01825-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2023] [Indexed: 12/03/2023]
Abstract
In Principles of Neural Design (2015, MIT Press), inspired by Charles Darwin, Sterling and Laughlin undertook the unfashionable task of distilling principles from facts in the technique-driven, data-saturated domain of neuroscience. Their starting point for deriving the organizing principles of brains are two brainless single-celled organisms, Escherichia coli and Paramecium, and the 302-neuron brain of the nematode Caenorhabditis elegans. The book is an exemplar in how to connect the dots between simpler and (much) more complex organisms in a particular area. Here, they have generously agreed to republish an abridged version of Chapter 2 (Why an Animal Needs a Brain), in which many of their principles are first described.
Collapse
Affiliation(s)
- Peter Sterling
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Simon Laughlin
- Department of Zoology, University of Cambridge, Cambridge, England
| |
Collapse
|
14
|
Silveira CMDV, Farelo Dos Santos V, Ornelas IM, Carrilho BDS, Ventura MAVDC, Pereira HMG, Rehen SK, Junqueira M. Systematic characterization of Lysergic Acid Diethylamide metabolites in Caenorhabditis elegans by ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry. J Chromatogr A 2023; 1708:464362. [PMID: 37717453 DOI: 10.1016/j.chroma.2023.464362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/23/2023] [Accepted: 09/04/2023] [Indexed: 09/19/2023]
Abstract
Psychedelic compounds have gained renewed interest for their potential therapeutic applications, but their metabolism and effects on complex biological systems remain poorly understood. Here, we present a systematic characterization of Lysergic Acid Diethylamide (LSD) metabolites in the model organism Caenorhabditis elegans using state-of-the-art analytical techniques. By employing ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry, we putatively identified a range of LSD metabolites, shedding light on their metabolic pathways and offering insights into their pharmacokinetics. Our study demonstrates the suitability of Caenorhabditis elegans as a valuable model system for investigating the metabolism of psychedelic compounds and provides a foundation for further research on the therapeutic potential of LSD.
Collapse
Affiliation(s)
| | | | - Isis Moraes Ornelas
- Departamento de Ciências Fisiológicas, Centro de Ciências da Saúde, Universidade Federal do Espírito Santo (UFES), Vitória, Brasil; Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brasil
| | | | | | | | - Stevens Kastrup Rehen
- Instituto D'Or de Pesquisa e Ensino (IDOR), Rio de Janeiro, Brasil; Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil
| | - Magno Junqueira
- Instituto de Química, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brasil.
| |
Collapse
|
15
|
Brown JW, Berg OH, Boutko A, Stoerck C, Boersma MA, Frost WN. Neural division of labor: the gastropod Berghia defends against attack using its PNS to retaliate and its CNS to erect a defensive screen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.29.551068. [PMID: 37577477 PMCID: PMC10418079 DOI: 10.1101/2023.07.29.551068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Relatively little is known about how the peripheral nervous system (PNS) contributes to the patterning of behavior, in which its role transcends the simple execution of central motor commands or mediation of reflexes. We sought to draw inferences to this end in the aeolid nudibranch Berghia stephanieae, which generates a rapid, dramatic defense behavior, "bristling." This behavior involves the coordinated movement of cerata, dozens of venomous appendages emerging from the animal's mantle. Our investigations revealed that bristling constitutes a stereotyped but non-reflexive two-stage behavior: an initial adduction of proximate cerata to sting the offending stimulus (Stage 1), followed by a coordinated radial extension of remaining cerata to create a pincushion-like defensive screen around the animal (Stage 2). In decerebrated specimens, Stage 1 bristling was preserved, while Stage 2 bristling was replaced by slower, uncoordinated, and ultimately maladaptive ceratal movements. We conclude from these observations that 1) the PNS and central nervous system (CNS) mediate Stages 1 and 2 of bristling, respectively; 2) the behavior propagates through the body utilizing both peripheral- and central-origin nerve networks that support different signaling kinetics; and 3) the former network inhibits the latter in the body region being stimulated. These findings extend our understanding of the PNS's computational capacity and provide insight into a neuroethological scheme that may generalize across cephalized animals, in which the CNS and PNS both independently and interactively pattern different aspects of non-reflexive behavior.
Collapse
Affiliation(s)
- Jeffrey W. Brown
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Ondine H. Berg
- Neuroscience Program, Lake Forest College, Lake Forest, IL 60045
| | - Anastasiya Boutko
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| | - Cody Stoerck
- Department of Psychology, California State University at Fullerton, Fullerton, CA 92831
| | | | - William N. Frost
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
- The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064
| |
Collapse
|
16
|
Alonso A, Kirkegaard JB. Fast detection of slender bodies in high density microscopy data. Commun Biol 2023; 6:754. [PMID: 37468539 PMCID: PMC10356847 DOI: 10.1038/s42003-023-05098-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/05/2023] [Indexed: 07/21/2023] Open
Abstract
Computer-aided analysis of biological microscopy data has seen a massive improvement with the utilization of general-purpose deep learning techniques. Yet, in microscopy studies of multi-organism systems, the problem of collision and overlap remains challenging. This is particularly true for systems composed of slender bodies such as swimming nematodes, swimming spermatozoa, or the beating of eukaryotic or prokaryotic flagella. Here, we develop a end-to-end deep learning approach to extract precise shape trajectories of generally motile and overlapping slender bodies. Our method works in low resolution settings where feature keypoints are hard to define and detect. Detection is fast and we demonstrate the ability to track thousands of overlapping organisms simultaneously. While our approach is agnostic to area of application, we present it in the setting of and exemplify its usability on dense experiments of swimming Caenorhabditis elegans. The model training is achieved purely on synthetic data, utilizing a physics-based model for nematode motility, and we demonstrate the model's ability to generalize from simulations to experimental videos.
Collapse
Affiliation(s)
- Albert Alonso
- Niels Bohr Institute & Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | - Julius B Kirkegaard
- Niels Bohr Institute & Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
17
|
Yuan Y, Xin K, Liu J, Zhao P, Lu MP, Yan Y, Hu Y, Huo H, Li Z, Fang T. A GNN-based model for capturing spatio-temporal changes in locomotion behaviors of aging C. elegans. Comput Biol Med 2023; 155:106694. [PMID: 36812812 DOI: 10.1016/j.compbiomed.2023.106694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/27/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Investigating the locomotion of aging C. elegans is an important way for understanding the basic mechanisms behind age-related changes in organisms. However, the locomotion of aging C. elegans is often quantified using insufficient physical variables, which makes it challenging to capture essential dynamics. To study changes in the locomotion pattern of aging C. elegans, we developed a novel data-driven model based on graph neural networks, in which the C. elegans body is modeled as a long chain with interactions within and between adjacent segments, and their interactions are described by high-dimensional variables. Using this model, we discovered that each segment of the C. elegans body generally tends to maintain its locomotion, i.e., tries to keep the bending angle unchanged, and expects to change the locomotion of the adjacent segments. The ability to maintain its locomotion strengthens with age. Besides, a subtle distinguish in the changes in the locomotion pattern of C. elegans at various aging stages were observed. Our model is anticipated to provide a data-driven method for quantifying the changes in the locomotion pattern of aging C. elegans and for mining the underlying causes of these changes.
Collapse
Affiliation(s)
- Ye Yuan
- Institute of Machine Intelligence, University of Shanghai for Science and Technology, Shanghai, 200093, China; Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of System Control and Information Processing, Ministry of Education, China
| | - Kuankuan Xin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of System Control and Information Processing, Ministry of Education, China
| | - Peng Zhao
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of System Control and Information Processing, Ministry of Education, China
| | - Man Pok Lu
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yuner Yan
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yuchen Hu
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hong Huo
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of System Control and Information Processing, Ministry of Education, China.
| | - Zhaoyu Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Tao Fang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory of System Control and Information Processing, Ministry of Education, China.
| |
Collapse
|
18
|
Pham TD. Classification of Caenorhabditis Elegans Locomotion Behaviors With Eigenfeature-Enhanced Long Short-Term Memory Networks. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2023; 20:206-216. [PMID: 35196241 DOI: 10.1109/tcbb.2022.3153668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The free-living nematode Caenorhabditis elegans is an ideal model for understanding behavior and networks of neurons. Experimental and quantitative analyses of neural circuits and behavior have led to system-level understanding of behavioral genetics and process of transformation from sensory integration in stimulus environments to behavioral outcomes. The ability to differentiate locomotion behavior between wild-type and mutant Caenorhabditis elegans strains allows precise inference on and gaining insights into genetic and environmental influences on behaviors. This paper presents an eigenfeature-enhanced deep-learning method for classifying the dynamics of locomotion behavior of wild-type and mutant Caenorhabditis elegans. Classification results obtained from public benchmark time-series data of eigenworms illustrate the superior performance of the new method over several existing classifiers. The proposed method has potential as a useful artificial-intelligence tool for automated identification of the nematode worm behavioral patterns aiming at elucidating molecular and genetic mechanisms that control the nervous system.
Collapse
|
19
|
Abstract
Cleavage under targets and release using nuclease (CUT&RUN) is a recently developed chromatin profiling technique that uses a targeted micrococcal nuclease cleavage strategy to obtain high-resolution binding profiles of protein factors or to map histones with specific post-translational modifications. Due to its high sensitivity, CUT&RUN allows quality binding profiles to be obtained with only a fraction of the starting material and sequencing depth typically required for other chromatin profiling techniques such as chromatin immunoprecipitation. Although CUT&RUN has been widely adopted in multiple model systems, it has rarely been utilized in Caenorhabditis elegans, a model system of great importance to genomic research. Cell dissociation techniques, which are required for this approach, can be challenging in C. elegans due to the toughness of the worm's cuticle and the sensitivity of the cells themselves. Here, we describe a robust CUT&RUN protocol for use in C. elegans to determine the genome-wide localization of protein factors and specific histone marks. With a simple protocol utilizing live, uncrosslinked tissue as the starting material, performing CUT&RUN in worms has the potential to produce physiologically relevant data at a higher resolution than chromatin immunoprecipitation. This protocol involves a simple dissociation step to uniformly permeabilize worms while avoiding sample loss or cell damage, resulting in high-quality CUT&RUN profiles with as few as 100 worms and detectable signal with as few as 10 worms. This represents a significant advancement over chromatin immunoprecipitation, which typically uses thousands or hundreds of thousands of worms for a single experiment. The protocols presented here provide a detailed description of worm growth, sample preparation, CUT&RUN workflow, library preparation for high-throughput sequencing, and a basic overview of data analysis, making CUT&RUN simple and accessible for any worm lab. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Growth and synchronization of C. elegans Basic Protocol 2: Worm dissociation, sample preparation, and optimization Basic Protocol 3: CUT&RUN chromatin profiling Alternate Protocol: Improving CUT&RUN signal using a secondary antibody Basic Protocol 4: CUT&RUN library preparation for Illumina high-throughput sequencing Basic Protocol 5: Basic data analysis using Linux.
Collapse
Affiliation(s)
- Felicity J. Emerson
- Department of Molecular Biology and Genetics, Cornell
University, Ithaca, NY, 14850
- Biomedical and Biological Sciences Ph.D. Program, Cornell
University, Ithaca, NY, 14850
| | - Siu Sylvia Lee
- Department of Molecular Biology and Genetics, Cornell
University, Ithaca, NY, 14850
| |
Collapse
|
20
|
Liu J, Lu W, Yuan Y, Xin K, Zhao P, Gu X, Raza A, Huo H, Li Z, Fang T. Fixed Point Attractor Theory Bridges Structure and Function in C. elegans Neuronal Network. Front Neurosci 2022; 16:808824. [PMID: 35546893 PMCID: PMC9085386 DOI: 10.3389/fnins.2022.808824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 03/30/2022] [Indexed: 11/27/2022] Open
Abstract
Understanding the structure–function relationship in a neuronal network is one of the major challenges in neuroscience research. Despite increasing researches at circuit connectivity and neural network structure, their structure-based biological interpretability remains unclear. Based on the attractor theory, here we develop an analytical framework that links neural circuit structures and their functions together through fixed point attractor in Caenorhabditis elegans. In this framework, we successfully established the structural condition for the emergence of multiple fixed points in C. elegans connectome. Then we construct a finite state machine to explain how functions related to bistable phenomena at the neural activity and behavioral levels are encoded. By applying the proposed framework to the command circuit in C. elegans, we provide a circuit level interpretation for the forward-reverse switching behaviors. Interestingly, network properties of the command circuit and first layer amphid interneuron circuit can also be inferred from their functions in this framework. Our research indicates the reliability of the fixed point attractor bridging circuit structure and functions, suggesting its potential applicability to more complex neuronal circuits in other species.
Collapse
Affiliation(s)
- Jian Liu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Wenbo Lu
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Ye Yuan
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Kuankuan Xin
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Peng Zhao
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Xiao Gu
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Asif Raza
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
| | - Hong Huo
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
- *Correspondence: Hong Huo,
| | - Zhaoyu Li
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
- Zhaoyu Li,
| | - Tao Fang
- Department of Automation, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of System Control and Information Processing, Ministry of Education, Shanghai, China
- Tao Fang,
| |
Collapse
|
21
|
Sakelaris BG, Li Z, Sun J, Banerjee S, Booth V, Gourgou E. Modelling learning in C. elegans chemosensory and locomotive circuitry for T-maze navigation. Eur J Neurosci 2021; 55:354-376. [PMID: 34894022 PMCID: PMC9269982 DOI: 10.1111/ejn.15560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 11/11/2021] [Accepted: 11/21/2021] [Indexed: 11/30/2022]
Abstract
Recently, a new type of Caenorhabditis elegans associative learning was reported, where nematodes learn to reach a target arm in an empty T‐maze, after they have successfully located reward (food) in the same side arm of a similar, baited, training maze. Here, we present a simplified mathematical model of C. elegans chemosensory and locomotive circuitry that replicates C. elegans navigation in a T‐maze and predicts the underlying mechanisms generating maze learning. Based on known neural circuitry, the model circuit responds to food‐released chemical cues by modulating motor neuron activity that drives simulated locomotion. We show that, through modulation of interneuron activity, such a circuit can mediate maze learning by acquiring a turning bias, even after a single training session. Simulated nematode maze navigation during training conditions in food‐baited mazes and during testing conditions in empty mazes is validated by comparing simulated behaviour with new experimental video data, extracted through the implementation of a custom‐made maze tracking algorithm. Our work provides a mathematical framework for investigating the neural mechanisms underlying this novel learning behaviour in C. elegans. Model results predict neuronal components involved in maze and spatial learning and identify target neurons and potential neural mechanisms for future experimental investigations into this learning behaviour.
Collapse
Affiliation(s)
| | - Zongyu Li
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Jiawei Sun
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Shurjo Banerjee
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor
| | - Victoria Booth
- Department of Mathematics, University of Michigan, Ann Arbor.,Department of Anesthesiology, University of Michigan, Ann Arbor
| | - Eleni Gourgou
- Department of Mechanical Engineering, University of Michigan, Ann Arbor.,Institute of Gerontology, Medical School, University of Michigan, Ann Arbor
| |
Collapse
|
22
|
Pereira FSDO, Barbosa FAR, Canto RFS, Lucchese C, Pinton S, Braga AL, Azeredo JBD, Quines CB, Ávila DS. Dihydropyrimidinone-derived selenoesters efficacy and safety in an in vivo model of Aβ aggregation. Neurotoxicology 2021; 88:14-24. [PMID: 34718060 DOI: 10.1016/j.neuro.2021.10.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 10/15/2021] [Accepted: 10/26/2021] [Indexed: 12/15/2022]
Abstract
In a previous in vitro study, dihydropyrimidinone-derived selenoesteres demonstrated antioxidant properties, metal chelators and inhibitory acetylcholinesterase (AChE) activity, making these compounds promising candidates for Alzheimer's Disease (AD) treatment. However, these effects have yet to be demonstrated in an in vivo animal model; therefore, this study aimed to evaluate the safety and efficacy of eight selenoester compounds in a Caenorhabditis elegans model using transgenic strains for amyloid-beta peptide (Aβ) aggregation. The L1 stage worms were acutely exposed (30 min) to the compounds at concentrations ranging from 5 to 200 μM and after 48 h the maintenance temperature was increased to 25 ° C for Aβ expression and aggregation. After 48 h, several parameters related to phenotypic manifestations of Aβ toxicity and mechanistic elucidation were analyzed. At the concentrations tested no significant toxicity of the compounds was found. The selenoester compound FA90 significantly reduced the rate of paralyzed worms and increased the number of swimming movements compared to the untreated worms. In addition, FA90 and FA130 improved egg-laying induced by levamisole and positively modulated HSP-6 and HSP-4 expression, thereby increasing reticular and mitochondrial protein folding response in C. elegans, which could attenuate Aβ aggregation in early exposure. Therefore, our initial screening using an alternative model demonstrated that FA90, among the eight selenoesters evaluated, was the most promising compound for AD evaluation screening in more complex animals.
Collapse
Affiliation(s)
- Flávia Suelen de Oliveira Pereira
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Flavio Augusto Rocha Barbosa
- Laboratory of Synthesis of Bioactive Selenium Compounds (LabSelen), Chemistry Department, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Rômulo Farias Santos Canto
- Department of Pharmacosciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, RS, Brazil
| | | | - Simone Pinton
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Antônio Luiz Braga
- Laboratory of Synthesis of Bioactive Selenium Compounds (LabSelen), Chemistry Department, Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Juliano Braun de Azeredo
- Graduate Program in Pharmaceutical Sciences, Pharmacy Course, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Caroline Brandão Quines
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil
| | - Daiana Silva Ávila
- Graduate Program in Biochemistry, Laboratory of Biochemistry and Toxicology in Caenorhabditis elegans, Federal University of Pampa, Uruguaiana, RS, Brazil.
| |
Collapse
|
23
|
Pham TD. Recurrence eigenvalues of movements from brain signals. Brain Inform 2021; 8:22. [PMID: 34652546 PMCID: PMC8521564 DOI: 10.1186/s40708-021-00143-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/02/2022] Open
Abstract
The ability to characterize muscle activities or skilled movements controlled by signals from neurons in the motor cortex of the brain has many useful implications, ranging from biomedical perspectives to brain–computer interfaces. This paper presents the method of recurrence eigenvalues for differentiating moving patterns in non-mammalian and human models. The non-mammalian models of Caenorhabditis elegans have been studied for gaining insights into behavioral genetics and discovery of human disease genes. Systematic probing of the movement of these worms is known to be useful for these purposes. Study of dynamics of normal and mutant worms is important in behavioral genetic and neuroscience. However, methods for quantifying complexity of worm movement using time series are still not well explored. Neurodegenerative diseases adversely affect gait and mobility. There is a need to accurately quantify gait dynamics of these diseases and differentiate them from the healthy control to better understand their pathophysiology that may lead to more effective therapeutic interventions. This paper attempts to explore the potential application of the method for determining the largest eigenvalues of convolutional fuzzy recurrence plots of time series for measuring the complexity of moving patterns of Caenorhabditis elegans and neurodegenerative disease subjects. Results obtained from analyses demonstrate that the largest recurrence eigenvalues can differentiate phenotypes of behavioral dynamics between wild type and mutant strains of Caenorhabditis elegans; and walking patterns among healthy control subjects and patients with Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Tuan D Pham
- Center for Artificial Intelligence, Prince Mohammad Bin Fahd University, Khobar, Saudi Arabia.
| |
Collapse
|
24
|
Rawsthorne H, Calahorro F, Holden-Dye L, O’ Connor V, Dillon J. Investigating autism associated genes in C. elegans reveals candidates with a role in social behaviour. PLoS One 2021; 16:e0243121. [PMID: 34043629 PMCID: PMC8158995 DOI: 10.1371/journal.pone.0243121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 03/29/2021] [Indexed: 11/18/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a triad of behavioural impairments and includes disruption in social behaviour. ASD has a clear genetic underpinning and hundreds of genes are implicated in its aetiology. However, how single penetrant genes disrupt activity of neural circuits which lead to affected behaviours is only beginning to be understood and less is known about how low penetrant genes interact to disrupt emergent behaviours. Investigations are well served by experimental approaches that allow tractable investigation of the underpinning genetic basis of circuits that control behaviours that operate in the biological domains that are neuro-atypical in autism. The model organism C. elegans provides an experimental platform to investigate the effect of genetic mutations on behavioural outputs including those that impact social biology. Here we use progeny-derived social cues that modulate C. elegans food leaving to assay genetic determinants of social behaviour. We used the SAFRI Gene database to identify C. elegans orthologues of human ASD associated genes. We identified a number of mutants that displayed selective deficits in response to progeny. The genetic determinants of this complex social behaviour highlight the important contribution of synaptopathy and implicates genes within cell signalling, epigenetics and phospholipid metabolism functional domains. The approach overlaps with a growing number of studies that investigate potential molecular determinants of autism in C. elegans. However, our use of a complex, sensory integrative, emergent behaviour provides routes to enrich new or underexplored biology with the identification of novel candidate genes with a definable role in social behaviour.
Collapse
Affiliation(s)
- Helena Rawsthorne
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Fernando Calahorro
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Lindy Holden-Dye
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - Vincent O’ Connor
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
| | - James Dillon
- School of Biological Sciences, Highfield Campus, University of Southampton, Southampton, United Kingdom
- * E-mail:
| |
Collapse
|
25
|
Zanier ER, Barzago MM, Vegliante G, Romeo M, Restelli E, Bertani I, Natale C, Colnaghi L, Colombo L, Russo L, Micotti E, Fioriti L, Chiesa R, Diomede L. C. elegans detects toxicity of traumatic brain injury generated tau. Neurobiol Dis 2021; 153:105330. [PMID: 33711491 PMCID: PMC8039186 DOI: 10.1016/j.nbd.2021.105330] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022] Open
Abstract
Traumatic brain injury (TBI) is associated with widespread tau pathology in about 30% of patients surviving late after injury. We previously found that TBI in mice induces the formation of an abnormal form of tau (tauTBI) which progressively spreads from the site of injury to remote brain regions. Intracerebral inoculation of TBI brain homogenates into naïve mice induced progressive tau pathology, synaptic loss and late cognitive decline, suggesting a pivotal role of tauTBI in post-TBI neurodegeneration. However, the possibility that tauTBI was a marker of TBI-associated neurodegeneration rather than a toxic driver of functional decline could not be excluded. Here we employed the nematode C. elegans as a biosensor to test the pathogenic role of TBI generated tau. The motility of this nematode depends on efficient neuromuscular transmission and is exceptionally sensitive to the toxicity of amyloidogenic proteins, providing a tractable model for our tests. We found that worms exposed to brain homogenates from chronic but not acute TBI mice, or from mice in which tauTBI had been transmitted by intracerebral inoculation, had impaired motility and neuromuscular synaptic transmission. Results were similar when worms were given brain homogenates from transgenic mice overexpressing tau P301L, a tauopathy mouse model, suggesting that TBI-induced and mutant tau have similar toxic properties. P301L brain homogenate toxicity was similar in wild-type and ptl-1 knock-out worms, indicating that the nematode tau homolog protein PTL-1 was not required to mediate the toxic effect. Harsh protease digestion to eliminate the protein component of the homogenates, pre-incubation with anti-tau antibodies or tau depletion by immunoprecipitation, abolished the toxicity. Homogenates of chronic TBI brains from tau knock-out mice were not toxic to C. elegans, whereas oligomeric recombinant tau was sufficient to impair their motility. This study indicates that tauTBI impairs motor activity and synaptic transmission in C. elegans and supports a pathogenic role of tauTBI in the long-term consequences of TBI. It also sets the groundwork for the development of a C. elegans-based platform for screening anti-tau compounds. Traumatic brain injury (TBI) in mice induces a progressive tau pathology. Brain-injured tissue from chronic but not acute TBI mice impairs C. elegans motility. TBI tissue immunodepleted of tau or from tau knock-out mice has no toxic effect. Brain-injured tissue from TBI mice impairs neuromuscular transmission in worms. C. elegans is a tractable model for investigating tau toxicity generated by TBI.
Collapse
Affiliation(s)
- Elisa R Zanier
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Maria Monica Barzago
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Gloria Vegliante
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Margherita Romeo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Elena Restelli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Ilaria Bertani
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Carmina Natale
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Colnaghi
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy; Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luca Russo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Edoardo Micotti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Luana Fioriti
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Roberto Chiesa
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.
| |
Collapse
|
26
|
Bengtsson-Palme J. Microbial model communities: To understand complexity, harness the power of simplicity. Comput Struct Biotechnol J 2020; 18:3987-4001. [PMID: 33363696 PMCID: PMC7744646 DOI: 10.1016/j.csbj.2020.11.043] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/23/2020] [Accepted: 11/23/2020] [Indexed: 12/14/2022] Open
Abstract
Natural microbial communities are complex ecosystems with myriads of interactions. To deal with this complexity, we can apply lessons learned from the study of model organisms and try to find simpler systems that can shed light on the same questions. Here, microbial model communities are essential, as they can allow us to learn about the metabolic interactions, genetic mechanisms and ecological principles governing and structuring communities. A variety of microbial model communities of varying complexity have already been developed, representing different purposes, environments and phenomena. However, choosing a suitable model community for one's research question is no easy task. This review aims to be a guide in the selection process, which can help the researcher to select a sufficiently well-studied model community that also fulfills other relevant criteria. For example, a good model community should consist of species that are easy to grow, have been evaluated for community behaviors, provide simple readouts and - in some cases - be of relevance for natural ecosystems. Finally, there is a need to standardize growth conditions for microbial model communities and agree on definitions of community-specific phenomena and frameworks for community interactions. Such developments would be the key to harnessing the power of simplicity to start disentangling complex community interactions.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46 Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
27
|
Doser RL, Amberg GC, Hoerndli FJ. Reactive Oxygen Species Modulate Activity-Dependent AMPA Receptor Transport in C. elegans. J Neurosci 2020; 40:7405-7420. [PMID: 32847966 PMCID: PMC7511182 DOI: 10.1523/jneurosci.0902-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/26/2020] [Accepted: 08/16/2020] [Indexed: 12/22/2022] Open
Abstract
The AMPA subtype of synaptic glutamate receptors (AMPARs) plays an essential role in cognition. Their function, numbers, and change at synapses during synaptic plasticity are tightly regulated by neuronal activity. Although we know that long-distance transport of AMPARs is essential for this regulation, we do not understand the associated regulatory mechanisms of it. Neuronal transmission is a metabolically demanding process in which ATP consumption and production are tightly coupled and regulated. Aerobic ATP synthesis unavoidably produces reactive oxygen species (ROS), such as hydrogen peroxide, which are known modulators of calcium signaling. Although a role for calcium signaling in AMPAR transport has been described, there is little understanding of the mechanisms involved and no known link to physiological ROS signaling. Here, using real-time in vivo imaging of AMPAR transport in the intact C. elegans nervous system, we demonstrate that long-distance synaptic AMPAR transport is bidirectionally regulated by calcium influx and activation of calcium/calmodulin-dependent protein kinase II. Quantification of in vivo calcium dynamics revealed that modest, physiological increases in ROS decrease calcium transients in C. elegans glutamatergic neurons. By combining genetic and pharmacological manipulation of ROS levels and calcium influx, we reveal a mechanism in which physiological increases in ROS cause a decrease in synaptic AMPAR transport and delivery by modulating activity-dependent calcium signaling. Together, our results identify a novel role for oxidant signaling in the regulation of synaptic AMPAR transport and delivery, which in turn could be critical for coupling the metabolic demands of neuronal activity with excitatory neurotransmission.SIGNIFICANCE STATEMENT Synaptic AMPARs are critical for excitatory synaptic transmission. The disruption of their synaptic localization and numbers is associated with numerous psychiatric, neurologic, and neurodegenerative conditions. However, very little is known about the regulatory mechanisms controlling transport and delivery of AMPAR to synapses. Here, we describe a novel physiological signaling mechanism in which ROS, such as hydrogen peroxide, modulate AMPAR transport by modifying activity-dependent calcium signaling. Our findings provide the first evidence in support of a mechanistic link between physiological ROS signaling, AMPAR transport, localization, and excitatory transmission. This is of fundamental and clinical significance since dysregulation of intracellular calcium and ROS signaling is implicated in aging and the pathogenesis of several neurodegenerative disorders, including Alzheimer's and Parkinson's disease.
Collapse
Affiliation(s)
- Rachel L Doser
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Gregory C Amberg
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| | - Frederic J Hoerndli
- Department of Biomedical Science, Colorado State University, Fort Collins, Colorado 80523
| |
Collapse
|
28
|
Anjaneyulu J, R V, Godbole A. Differential effect of Ayurvedic nootropics on C. elegans models of Parkinson's disease. J Ayurveda Integr Med 2020; 11:440-447. [PMID: 32978047 PMCID: PMC7772502 DOI: 10.1016/j.jaim.2020.07.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 10/27/2022] Open
Abstract
BACKGROUND Globally, there is increased incidence of Parkinson's Disease (PD), which is the second most common age-related neurodegenerative disease. The currently available PD-therapeutics provide only symptomatic relief. Thus, there is an urgent need to devise an effective and safe treatment strategy for PD. The holistic approach of Ayurveda can be a potential effective strategy for treating PD. The integration of different medicine systems, such as modern bio-medicine and Ayurveda can be an effective strategy for treatment of complex diseases, including PD. OBJECTIVE This study aimed to evaluate the neuroprotective mechanism of six Ayurvedic nootropics that are commonly used to treat PD. MATERIAL AND METHODS Six Ayurvedic herbs, namely Mucuna pruriens (MP), Bacopa monnieri (BM), Withania somnifera (WS), Centella asiatica (CA), Sida cordifolia (SC), and Celastrus paniculatus (CP), were selected after consultation with Ayurvedic scholars and physicians. The mode of action of methanolic herbal extracts was evaluated using the Caenorhabditis elegans BZ555 and NL5901 strains, which can be used to model the two main hallmarks of PD, namely degeneration of dopaminergic neurons and aggregation of α-synuclein protein. RESULTS All six herbal extracts exhibited neuroprotective effect. The extracts of BM and MP exhibited maximum protection against 1-methyl-4-phenylpyridinium iodide (MPP+ iodide)-induced dopaminergic neurodegeneration in the BZ555 strain. Furthermore, the herbal extracts, except CA extract, inhibited the aggregation of heterologously expressed human α-synuclein in the NL5901 strain. CONCLUSION Ayurvedic herbs used in the treatment of PD exhibited differential neuroprotective and protein aggregation mitigating effects in C. elegans.
Collapse
Affiliation(s)
- Jalagam Anjaneyulu
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-disciplinary Health Sciences and Technology (TDU)-Foundation for Revitalisation of Local Health Traditions (FRLHT), No 74/2, Jarakabande Kaval, Post: Attur, Via Yelahanka, Bangalore, Karnataka 560106, India
| | - Vidyashankar R
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-disciplinary Health Sciences and Technology (TDU)-Foundation for Revitalisation of Local Health Traditions (FRLHT), No 74/2, Jarakabande Kaval, Post: Attur, Via Yelahanka, Bangalore, Karnataka 560106, India
| | - Ashwini Godbole
- Centre for Ayurveda Biology and Holistic Nutrition, The University of Trans-disciplinary Health Sciences and Technology (TDU)-Foundation for Revitalisation of Local Health Traditions (FRLHT), No 74/2, Jarakabande Kaval, Post: Attur, Via Yelahanka, Bangalore, Karnataka 560106, India.
| |
Collapse
|
29
|
Pearce KM, Bell M, Linthicum WH, Wen Q, Srinivasan J, Rangamani P, Scarlata S. Gαq-mediated calcium dynamics and membrane tension modulate neurite plasticity. Mol Biol Cell 2020; 31:683-694. [PMID: 31825720 PMCID: PMC7202066 DOI: 10.1091/mbc.e19-09-0536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
The formation and disruption of synaptic connections during development are a fundamental step in neural circuit formation. Subneuronal structures such as neurites are known to be sensitive to the level of spontaneous neuronal activity, but the specifics of how neurotransmitter-induced calcium activity regulates neurite homeostasis are not yet fully understood. In response to stimulation by neurotransmitters such as acetylcholine, calcium responses in cells are mediated by the Gαq/phospholipase Cβ (PLCβ)/phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling pathway. Here, we show that prolonged Gαq stimulation results in the retraction of neurites in PC12 cells and the rupture of neuronal synapses by modulating membrane tension. To understand the underlying cause, we dissected the behavior of individual components of the Gαq/PLCβ/PI(4,5)P2 pathway during retraction and correlated these with the retraction of the membrane and cytoskeletal elements impacted by calcium signaling. We developed a mathematical model that combines biochemical signaling with membrane tension and cytoskeletal mechanics to show how signaling events are coupled to retraction velocity, membrane tension, and actin dynamics. The coupling between calcium and neurite retraction is shown to be operative in the Caenorhabditis elegans nervous system. This study uncovers a novel mechanochemical connection between Gαq/PLCβ /PI(4,5)P2 that couples calcium responses with neural plasticity.
Collapse
Affiliation(s)
| | - Miriam Bell
- Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA 92093
| | | | - Qi Wen
- Department of Biomedical Engineering, and
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Padmini Rangamani
- Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA 92093
| | | |
Collapse
|
30
|
Crawford Z, San-Miguel A. An inexpensive programmable optogenetic platform for controlled neuronal activation regimens in C. elegans. APL Bioeng 2020; 4:016101. [PMID: 31934682 PMCID: PMC6941946 DOI: 10.1063/1.5120002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/29/2019] [Indexed: 12/03/2022] Open
Abstract
In Caenorhabditis elegans, optogenetic stimulation has been widely used to assess neuronal function, control animal movement, or assay circuit responses to controlled stimuli. Most studies are performed on single animals and require high-end components such as lasers and shutters. We present an accessible platform that enables controlled optogenetic stimulation of C. elegans in two modes: single animal stimulation with locomotion tracking and entire population stimulation for neuronal exercise regimens. The system consists of accessible electronic components: a high-power light-emitting diode, Arduino board, and relay are integrated with MATLAB to enable programmable optogenetic stimulation regimens. This system provides flexibility in optogenetic stimulation in freely moving animals while providing quantitative information of optogenetic-driven locomotion responses. We show the applicability of this platform in single animals by stimulation of cholinergic motor neurons in C. elegans and quantitative assessment of contractile responses. In addition, we tested synaptic plasticity by coupling the entire-population stimulation mode with measurements of synaptic strength using an aldicarb assay, where clear changes in synaptic strength were observed after regimens of neuronal exercise. This platform is composed of inexpensive components, while providing the illumination strength of high-end systems, which require expensive lasers, shutters, or automated stages. This platform requires no moving parts but provides flexibility in stimulation regimens.
Collapse
Affiliation(s)
- Zachary Crawford
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| | - Adriana San-Miguel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695, USA
| |
Collapse
|
31
|
Chen X, Randi F, Leifer AM, Bialek W. Searching for collective behavior in a small brain. Phys Rev E 2019; 99:052418. [PMID: 31212571 DOI: 10.1103/physreve.99.052418] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Indexed: 12/29/2022]
Abstract
In large neuronal networks, it is believed that functions emerge through the collective behavior of many interconnected neurons. Recently, the development of experimental techniques that allow simultaneous recording of calcium concentration from a large fraction of all neurons in Caenorhabditis elegans-a nematode with 302 neurons-creates the opportunity to ask whether such emergence is universal, reaching down to even the smallest brains. Here, we measure the activity of 50+ neurons in C. elegans, and analyze the data by building the maximum entropy model that matches the mean activity and pairwise correlations among these neurons. To capture the graded nature of the cells' responses, we assign each cell multiple states. These models, which are equivalent to a family of Potts glasses, successfully predict higher statistical structure in the network. In addition, these models exhibit signatures of collective behavior: the state of single cells can be predicted from the state of the rest of the network; the network, despite being sparse in a way similar to the structural connectome, distributes its response globally when locally perturbed; the distribution over network states has multiple local maxima, as in models of memory; and the parameters that describe the real network are close to a critical surface in this family of models.
Collapse
Affiliation(s)
- Xiaowen Chen
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Francesco Randi
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Andrew M Leifer
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544, USA.,Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08544, USA
| | - William Bialek
- Joseph Henry Laboratories of Physics, Princeton University, Princeton, New Jersey 08544, USA.,Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey 08544, USA.,Initiative for the Theoretical Sciences, The Graduate Center, City University of New York, 365 Fifth Avenue, New York, New York 10016, USA
| |
Collapse
|
32
|
Sofela S, Sahloul S, Stubbs C, Orozaliev A, Refai FS, Esmaeel AM, Fahs H, Abdelgawad MO, Gunsalus KC, Song YA. Phenotyping of the thrashing forces exerted by partially immobilized C. elegans using elastomeric micropillar arrays. LAB ON A CHIP 2019; 19:3685-3696. [PMID: 31576392 DOI: 10.1039/c9lc00660e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
As a simple model organism, C. elegans plays an important role in gaining insight into the relationship between bodily thrashing forces and biological effects, such as disease and aging, or physical stimuli, like touch and light. Due to their similar length scale, microfluidic chips have been extensively explored for use in various biological studies involving C. elegans. However, a formidable challenge still exists due to the complexity of integrating external stimuli (chemical, mechanical or optical) with free-moving worms and subsequent imaging on the chip. In this report, we use a microfluidic device to partially immobilize a worm, which allows for measurements of the relative changes in the thrashing force under different assay conditions. Using a device adapted to the natural escape-like coiling response of a worm to immobilization, we have quantified the relative changes in the thrashing force during different developmental stages (L1, L3, L4, and young adult) and in response to various glucose concentrations and drug treatment. Our findings showed a loss of thrashing force following the introduction of glucose into a wild type worm culture that could be reversed upon treatment with the type 2 diabetes drug metformin. A morphological study of the actin filament structures in the body wall muscles provided supporting evidence for the force measurement data. Finally, we demonstrated the multiplexing capabilities of our device through recording the thrashing activities of eight worms simultaneously. The multiplexing capabilities and facile imaging available using our device open the door for high-throughput neuromuscular studies using C. elegans.
Collapse
Affiliation(s)
- Samuel Sofela
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates. and Tandon School of Engineering, New York University, New York, USA
| | - Sarah Sahloul
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates.
| | | | - Ajymurat Orozaliev
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates.
| | - Fathima Shaffra Refai
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | | | - Hala Fahs
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Mohamed Omar Abdelgawad
- Department of Mechanical Engineering, Assiut University, Egypt and Department of Mechanical Engineering, American University of Sharjah, United Arab Emirates
| | - Kristin C Gunsalus
- Center for Genomics and Systems Biology, New York University Abu Dhabi, United Arab Emirates
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, United Arab Emirates. and Tandon School of Engineering, New York University, New York, USA
| |
Collapse
|
33
|
Baker EA, Woollard A. How Weird is The Worm? Evolution of the Developmental Gene Toolkit in Caenorhabditis elegans. J Dev Biol 2019; 7:E19. [PMID: 31569401 PMCID: PMC6956190 DOI: 10.3390/jdb7040019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 01/14/2023] Open
Abstract
Comparative developmental biology and comparative genomics are the cornerstones of evolutionary developmental biology. Decades of fruitful research using nematodes have produced detailed accounts of the developmental and genomic variation in the nematode phylum. Evolutionary developmental biologists are now utilising these data as a tool with which to interrogate the evolutionary basis for the similarities and differences observed in Nematoda. Nematodes have often seemed atypical compared to the rest of the animal kingdom-from their totally lineage-dependent mode of embryogenesis to their abandonment of key toolkit genes usually deployed by bilaterians for proper development-worms are notorious rule breakers of the bilaterian handbook. However, exploring the nature of these deviations is providing answers to some of the biggest questions about the evolution of animal development. For example, why is the evolvability of each embryonic stage not the same? Why can evolution sometimes tolerate the loss of genes involved in key developmental events? Lastly, why does natural selection act to radically diverge toolkit genes in number and sequence in certain taxa? In answering these questions, insight is not only being provided about the evolution of nematodes, but of all metazoans.
Collapse
Affiliation(s)
- Emily A Baker
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.
| | - Alison Woollard
- Department of Biochemistry, University of Oxford, South Parks Rd, Oxford OX1 3QU, UK.
| |
Collapse
|
34
|
Hughes S, Celikel T. Prominent Inhibitory Projections Guide Sensorimotor Computation: An Invertebrate Perspective. Bioessays 2019; 41:e1900088. [DOI: 10.1002/bies.201900088] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/17/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Samantha Hughes
- HAN BioCentreHAN University of Applied Sciences Nijmegen 6525EM The Netherlands
| | - Tansu Celikel
- Department of Neurophysiology, Donders Institute for Brain Cognition and BehaviourRadboud University Nijmegen 6525AJ The Netherlands
| |
Collapse
|
35
|
Nicoletti M, Loppini A, Chiodo L, Folli V, Ruocco G, Filippi S. Biophysical modeling of C. elegans neurons: Single ion currents and whole-cell dynamics of AWCon and RMD. PLoS One 2019; 14:e0218738. [PMID: 31260485 PMCID: PMC6602206 DOI: 10.1371/journal.pone.0218738] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 06/07/2019] [Indexed: 01/28/2023] Open
Abstract
C. elegans neuronal system constitutes the ideal framework for studying simple, yet realistic, neuronal activity, since the whole nervous system is fully characterized with respect to the exact number of neurons and the neuronal connections. Most recent efforts are devoted to investigate and clarify the signal processing and functional connectivity, which are at the basis of sensing mechanisms, signal transmission, and motor control. In this framework, a refined modelof whole neuron dynamics constitutes a key ingredient to describe the electrophysiological processes, both at thecellular and at the network scale. In this work, we present Hodgkin-Huxley-based models of ion channels dynamics black, built on data available both from C. elegans and from other organisms, expressing homologous channels. We combine these channel models to simulate the electrical activity oftwo among the most studied neurons in C. elegans, which display prototypical dynamics of neuronal activation, the chemosensory AWCON and the motor neuron RMD. Our model properly describes the regenerative responses of the two cells. We analyze in detail the role of ion currents, both in wild type and in in silico knockout neurons. Moreover, we specifically investigate the behavior of RMD, identifying a heterogeneous dynamical response which includes bistable regimes and sustained oscillations. We are able to assess the critical role of T-type calcium currents, carried by CCA-1 channels, and leakage currents in the regulation of RMD response. Overall, our results provide new insights in the activity of key C. elegans neurons. The developed mathematical framework constitute a basis for single-cell and neuronal networks analyses, opening new scenarios in the in silico modeling of C. elegans neuronal system.
Collapse
Affiliation(s)
- Martina Nicoletti
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
- Center for Life Nano Science CLNS@Sapienza, Istituto Italiano di Tecnologia - IIT, Rome, Italy
| | | | - Letizia Chiodo
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| | - Viola Folli
- Center for Life Nano Science CLNS@Sapienza, Istituto Italiano di Tecnologia - IIT, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano Science CLNS@Sapienza, Istituto Italiano di Tecnologia - IIT, Rome, Italy
| | - Simonetta Filippi
- Department of Engineering, Campus Bio-Medico University, Rome, Italy
| |
Collapse
|
36
|
Sinis SI, Gourgoulianis KI, Hatzoglou C, Zarogiannis SG. Mechanisms of engineered nanoparticle induced neurotoxicity in Caenorhabditis elegans. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2019; 67:29-34. [PMID: 30710828 DOI: 10.1016/j.etap.2019.01.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 11/19/2018] [Accepted: 01/20/2019] [Indexed: 06/09/2023]
Abstract
The wide-spread implementation of nanoparticles poses a major health concern. Unique biokinetics allow them to transfer to neurons throughout the body and inflict neurotoxicity, which is challenging to evaluate solely in mammalian experimental models due to logistics, financial and ethical limitations. In recent years, the nematode Caenorhabditis elegans has emerged as a promising nanotoxicology experimental surrogate due to characteristics such as ease of culture, short life cycle and high number of progeny. Most importantly, this model organism has a well conserved and fully described nervous system rendering it ideal for use in neurotoxicity assessment of nanoparticles. In that context, this mini review aims to summarize the main mechanistic findings on nanoparticle related neurotoxicity in the setting of Caenorhabditis elegans screening. The injury pathway primarily involves changes in intestinal permeability and defecation frequency both of which facilitate translocation at the site of neurons, where toxicity formation is linked partly to oxidative stress and perturbed neurotransmission.
Collapse
Affiliation(s)
- Sotirios I Sinis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Konstantinos I Gourgoulianis
- Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Chrissi Hatzoglou
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece
| | - Sotirios G Zarogiannis
- Department of Physiology, Faculty of Medicine, University of Thessaly, BIOPOLIS, Larissa, 41500, Greece.
| |
Collapse
|
37
|
Reverse-Correlation Analysis of the Mechanosensation Circuit and Behavior in C. elegans Reveals Temporal and Spatial Encoding. Sci Rep 2019; 9:5182. [PMID: 30914655 PMCID: PMC6435754 DOI: 10.1038/s41598-019-41349-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 03/04/2019] [Indexed: 01/11/2023] Open
Abstract
Animals must integrate the activity of multiple mechanoreceptors to navigate complex environments. In Caenorhabditis elegans, the general roles of the mechanosensory neurons have been defined, but most studies involve end-point or single-time-point measurements, and thus lack dynamic information. Here, we formulate a set of unbiased quantitative characterizations of the mechanosensory system by using reverse correlation analysis on behavior. We use a custom tracking, selective illumination, and optogenetics platform to compare two mechanosensory systems: the gentle-touch (TRNs) and harsh-touch (PVD) circuits. This method yields characteristic linear filters that allow for the prediction of behavioral responses. The resulting filters are consistent with previous findings and further provide new insights on the dynamics and spatial encoding of the systems. Our results suggest that the tiled network of the gentle-touch neurons has better resolution for spatial encoding than the harsh-touch neurons. Additionally, linear-nonlinear models can predict behavioral responses based only on sensory neuron activity. Our results capture the overall dynamics of behavior induced by the activation of sensory neurons, providing simple transformations that quantitatively characterize these systems. Furthermore, this platform can be extended to capture the behavioral dynamics induced by any neuron or other excitable cells in the animal.
Collapse
|
38
|
Meta-analysis suggests evidence of novel stress-related pathway components in Orsay virus - Caenorhabditis elegans viral model. Sci Rep 2019; 9:4399. [PMID: 30867481 PMCID: PMC6416287 DOI: 10.1038/s41598-019-40762-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 02/20/2019] [Indexed: 12/31/2022] Open
Abstract
The genetic model organism, Caenorhabditis elegans (C. elegans), shares many genes with humans and is the best-annotated of the eukaryotic genome. Therefore, the identification of new genes and pathways is unlikely. Nevertheless, host-pathogen interaction studies from viruses, recently discovered in the environment, has created new opportunity to discover these pathways. For example, the exogenous RNAi response in C. elegans by the Orsay virus as seen in plants and other eukaryotes is not systemic and transgenerational, suggesting different RNAi pathways between these organisms. Using a bioinformatics meta-analysis approach, we show that the top 17 genes differentially-expressed during C. elegans infection by Orsay virus are functionally uncharacterized genes. Furthermore, functional annotation using similarity search and comparative modeling, was able to predict folds correctly, but could not assign easily function to the majority. However, we could identify gene expression studies that showed a similar pattern of gene expression related to toxicity, stress and immune response. Those results were strengthened using protein-protein interaction network analysis. This study shows that novel molecular pathway components, of viral innate immune response, can be identified and provides models that can be further used as a framework for experimental studies. Whether these features are reminiscent of an ancient mechanism evolutionarily conserved, or part of a novel pathway, remain to be established. These results reaffirm the tremendous value of this approach to broaden our understanding of viral immunity in C. elegans.
Collapse
|
39
|
|
40
|
Shaw M, Zhan H, Elmi M, Pawar V, Essmann C, Srinivasan MA. Three-dimensional behavioural phenotyping of freely moving C. elegans using quantitative light field microscopy. PLoS One 2018; 13:e0200108. [PMID: 29995960 PMCID: PMC6040744 DOI: 10.1371/journal.pone.0200108] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/19/2018] [Indexed: 11/19/2022] Open
Abstract
Behavioural phenotyping of model organisms is widely used to investigate fundamental aspects of organism biology, from the functioning of the nervous system to the effects of genetic mutations, as well as for screening new drug compounds. However, our capacity to observe and quantify the full range and complexity of behavioural responses is limited by the inability of conventional microscopy techniques to capture volumetric image information at sufficient speed. In this article we describe how combining light field microscopy with computational depth estimation provides a new method for fast, quantitative assessment of 3D posture and movement of the model organism Caenorhabditis elegans (C. elegans). We apply this technique to compare the behaviour of cuticle collagen mutants, finding significant differences in 3D posture and locomotion. We demonstrate the ability of quantitative light field microscopy to provide new fundamental insights into C. elegans locomotion by analysing the 3D postural modes of a freely swimming worm. Finally, we consider relative merits of the method and its broader application for phenotypic imaging of other organisms and for other volumetric bioimaging applications.
Collapse
Affiliation(s)
- Michael Shaw
- Department of Computer Science, University College London, London, United Kingdom
- Biometrology Group, National Physical Laboratory, Teddington, United Kingdom
- * E-mail:
| | - Haoyun Zhan
- Department of Computer Science, University College London, London, United Kingdom
| | - Muna Elmi
- Department of Computer Science, University College London, London, United Kingdom
| | - Vijay Pawar
- Department of Computer Science, University College London, London, United Kingdom
| | - Clara Essmann
- Department of Computer Science, University College London, London, United Kingdom
| | - Mandayam A. Srinivasan
- Department of Computer Science, University College London, London, United Kingdom
- MIT TouchLab, Research Laboratory of Electronics and Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
41
|
Keller J, Borzekowski A, Haase H, Menzel R, Rueß L, Koch M. Toxicity Assay for Citrinin, Zearalenone and Zearalenone-14-Sulfate Using the Nematode Caenorhabditis elegans as Model Organism. Toxins (Basel) 2018; 10:toxins10070284. [PMID: 29987228 PMCID: PMC6070962 DOI: 10.3390/toxins10070284] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 06/17/2018] [Accepted: 07/06/2018] [Indexed: 11/16/2022] Open
Abstract
To keep pace with the rising number of detected mycotoxins, there is a growing need for fast and reliable toxicity tests to assess potential threats to food safety. Toxicity tests with the bacterial-feeding nematode Caenorhabditis elegans as the model organism are well established. In this study the C. elegans wildtype strain N2 (var. Bristol) was used to investigate the toxic effects of the food-relevant mycotoxins citrinin (CIT) and zearalenone-14-sulfate (ZEA-14-S) and zearalenone (ZEA) on different life cycle parameters including reproduction, thermal and oxidative stress resistance and lifespan. The metabolization of the mycotoxins by the nematodes in vivo was investigated using HPLC-MS/MS. ZEA was metabolized in vivo to the reduced isomers α-zearalenol (α-ZEL) and β-ZEL. ZEA-14-S was reduced to α-/β-ZEL-14-sulfate and CIT was metabolized to mono-hydroxylated CIT. All mycotoxins tested led to a significant decrease in the number of nematode offspring produced. ZEA and CIT displayed negative effects on stress tolerance levels and for CIT an additional shortening of the mean lifespan was observed. In the case of ZEA-14-S, however, the mean lifespan was prolonged. The presented study shows the applicability of C. elegans for toxicity testing of emerging food mycotoxins for the purpose of assigning potential health threats.
Collapse
Affiliation(s)
- Julia Keller
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Antje Borzekowski
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| | - Hajo Haase
- Department of Food Chemistry and Toxicology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.
| | - Ralph Menzel
- Institute of Biology, Ecology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany.
| | - Liliane Rueß
- Institute of Biology, Ecology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany.
| | - Matthias Koch
- Department of Analytical Chemistry, Reference Materials, Bundesanstalt für Materialforschung und-Prüfung (BAM), Richard-Willstätter-Str. 11, 12489 Berlin, Germany.
| |
Collapse
|
42
|
V363I and V363A mutated tau affect aggregation and neuronal dysfunction differently in C. elegans. Neurobiol Dis 2018; 117:226-234. [PMID: 29936232 DOI: 10.1016/j.nbd.2018.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 06/18/2018] [Accepted: 06/20/2018] [Indexed: 11/24/2022] Open
Abstract
Mutations in the microtubule-associated protein tau (MAPT) gene have been linked to a heterogeneous group of progressive neurodegenerative disorders commonly called tauopathies. From patients with frontotemporal lobar degeneration with distinct atypical clinical phenotypes, we recently identified two new mutations on the same codon, in position 363 of the MAPT gene, which resulted in the production of Val-to-Ala (tauV363A) or Val-to-Ile (tauV363I) mutated tau. These substitutions specifically affected microtubule polymerization and propensity of tau to aggregate in vitro suggesting that single amino acid modification may dictate the fate of the neuropathology. To clarify whether tauV363A and tauV363I affect protein misfolding differently in vivo driving certain phenotypes, we generated new transgenic C. elegans strains. Human 2N4R tau carrying the mutation was expressed in all the neurons of worms. The behavioral defects, misfolding and proteotoxicity caused by the tauV363A and tauV363I mutated proteins were compared to that induced by the expression of wild-type tau (tauwt). Pan-neuronal expression of human 2N4R tauWT in worms resulted in a neuromuscular defect with characteristics of a neurodegenerative phenotype. This defect was worsened by the expression of mutated proteins which drive distinct neuronal dysfunctions and synaptic impairments involving, in transgenic worms expressing tauV363A (V363A) also a pharyngeal defect never linked before to other mutations. The two mutations differently affected the tau phosphorylation and misfolding propensities: tauV363I was highly phosphorylated on epitopes corresponding to Thr231 and Ser202/Thr205, and accumulated as insoluble tau assemblies whereas tauV363A showed a greater propensity to form soluble oligomeric assemblies. These findings uphold the role of a single amino acid substitution in specifically affecting the ability of tau to form soluble and insoluble assemblies, opening up new perspectives in the pathogenic mechanism underlying tauopathies.
Collapse
|
43
|
Rouse T, Aubry G, Cho Y, Zimmer M, Lu H. A programmable platform for sub-second multichemical dynamic stimulation and neuronal functional imaging in C. elegans. LAB ON A CHIP 2018; 18:505-513. [PMID: 29313542 PMCID: PMC5790607 DOI: 10.1039/c7lc01116d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Caenorhabditis elegans (C. elegans) is a prominent model organism in neuroscience, as its small stereotyped nervous system offers unique advantages for studying neuronal circuits at the cellular level. Characterizing temporal dynamics of neuronal circuits is essential to fully understand neuronal processing. Characterization of the temporal dynamics of chemosensory circuits requires a precise and fast method to deliver multiple stimuli and monitor the animal's neuronal activity. Microfluidic platforms have been developed that offer an improved control of chemical delivery compared to manual methods. However, stimulating an animal with multiple chemicals at high speed is still difficult. In this work, we have developed a platform that can deliver any sequence of multiple chemical reagents, at sub-second resolution and without cross-contamination. We designed a network of chemical selectors wherein the chemical selected for stimulation is determined by the set of pressures applied to the chemical reservoirs. Modulation of inlet pressures has been automated to create robust, programmable sequences of subsecond chemical pulses. We showed that stimulation with sequences of different chemicals at the second to sub-second range can generate different neuronal activity patterns in chemosensory neurons; we observed previously unseen neuronal responses to a controlled chemical stimulation. Because of the speed and versatility of stimulus generated, this platform opens new possibilities to investigate neuronal circuits.
Collapse
Affiliation(s)
- T Rouse
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive NW, Atlanta, Georgia 30332, USA.
| | | | | | | | | |
Collapse
|
44
|
Analyzing the locomotory gaitprint of Caenorhabditis elegans on the basis of empirical mode decomposition. PLoS One 2017; 12:e0181469. [PMID: 28742107 PMCID: PMC5524362 DOI: 10.1371/journal.pone.0181469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 06/30/2017] [Indexed: 01/09/2023] Open
Abstract
The locomotory gait analysis of the microswimmer, Caenorhabditis elegans, is a commonly adopted approach for strain recognition and examination of phenotypic defects. Gait is also a visible behavioral expression of worms under external stimuli. This study developed an adaptive data analysis method based on empirical mode decomposition (EMD) to reveal the biological cues behind intricate motion. The method was used to classify the strains of worms according to their gaitprints (i.e., phenotypic traits of locomotion). First, a norm of the locomotory pattern was created from the worm of interest. The body curvature of the worm was decomposed into four intrinsic mode functions (IMFs). A radar chart showing correlations between the predefined database and measured worm was then obtained by dividing each IMF into three parts, namely, head, mid-body, and tail. A comprehensive resemblance score was estimated after k-means clustering. Simulated data that use sinusoidal waves were generated to assess the feasibility of the algorithm. Results suggested that temporal frequency is the major factor in the process. In practice, five worm strains, including wild-type N2, TJ356 (zIs356), CL2070 (dvIs70), CB0061 (dpy-5), and CL2120 (dvIs14), were investigated. The overall classification accuracy of the gaitprint analyses of all the strains reached nearly 89%. The method can also be extended to classify some motor neuron-related locomotory defects of C. elegans in the same fashion.
Collapse
|
45
|
Itskovits E, Levine A, Cohen E, Zaslaver A. A multi-animal tracker for studying complex behaviors. BMC Biol 2017; 15:29. [PMID: 28385158 PMCID: PMC5383998 DOI: 10.1186/s12915-017-0363-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 03/06/2017] [Indexed: 11/30/2022] Open
Abstract
Background Animals exhibit astonishingly complex behaviors. Studying the subtle features of these behaviors requires quantitative, high-throughput, and accurate systems that can cope with the often rich perplexing data. Results Here, we present a Multi-Animal Tracker (MAT) that provides a user-friendly, end-to-end solution for imaging, tracking, and analyzing complex behaviors of multiple animals simultaneously. At the core of the tracker is a machine learning algorithm that provides immense flexibility to image various animals (e.g., worms, flies, zebrafish, etc.) under different experimental setups and conditions. Focusing on C. elegans worms, we demonstrate the vast advantages of using this MAT in studying complex behaviors. Beginning with chemotaxis, we show that approximately 100 animals can be tracked simultaneously, providing rich behavioral data. Interestingly, we reveal that worms’ directional changes are biased, rather than random – a strategy that significantly enhances chemotaxis performance. Next, we show that worms can integrate environmental information and that directional changes mediate the enhanced chemotaxis towards richer environments. Finally, offering high-throughput and accurate tracking, we show that the system is highly suitable for longitudinal studies of aging- and proteotoxicity-associated locomotion deficits, enabling large-scale drug and genetic screens. Conclusions Together, our tracker provides a powerful and simple system to study complex behaviors in a quantitative, high-throughput, and accurate manner. Electronic supplementary material The online version of this article (doi:10.1186/s12915-017-0363-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Eyal Itskovits
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.,School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel
| | - Amir Levine
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), School of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Ehud Cohen
- Biochemistry and Molecular Biology, The Institute for Medical Research Israel - Canada (IMRIC), School of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Alon Zaslaver
- Department of Genetics, The Silberman Institute of Life Science, Edmond J. Safra Campus, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| |
Collapse
|
46
|
Complex Locomotion Behavior Changes Are Induced in Caenorhabditis elegans by the Lack of the Regulatory Leak K+ Channel TWK-7. Genetics 2016; 204:683-701. [PMID: 27535928 DOI: 10.1534/genetics.116.188896] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/06/2016] [Indexed: 11/18/2022] Open
Abstract
The change of locomotion activity in response to external cues is a considerable achievement of animals and is required for escape responses, foraging, and other complex behaviors. Little is known about the molecular regulators of such an adaptive locomotion. The conserved eukaryotic two-pore domain potassium (K2P) channels have been recognized as regulatory K+ channels that modify the membrane potential of cells, thereby affecting, e.g., rhythmic muscle activity. By using the Caenorhabditis elegans system combined with cell-type-specific approaches and locomotion in-depth analyses, here, we found that the loss of K2P channel TWK-7 increases the locomotor activity of worms during swimming and crawling in a coordinated mode. Moreover, loss of TWK-7 function results in a hyperactive state that (although less pronounced) resembles the fast, persistent, and directed forward locomotion behavior of stimulated C. elegans TWK-7 is expressed in several head neurons as well as in cholinergic excitatory and GABAergic inhibitory motor neurons. Remarkably, the abundance of TWK-7 in excitatory B-type and inhibitory D-type motor neurons affected five central aspects of adaptive locomotion behavior: velocity/frequency, wavelength/amplitude, direction, duration, and straightness. Hence, we suggest that TWK-7 activity might represent a means to modulate a complex locomotion behavior at the level of certain types of motor neurons.
Collapse
|
47
|
Abstract
C. elegans encodes a PTEN homolog called DAF-18 and human PTEN can functionally replace DAF-18. Thus C. elegans provides a valuable model organism to study PTEN. This chapter provides methods to study DAF-18/PTEN function in C. elegans. We provide methods to genotype daf-18/Pten mutants, visualize and quantify DAF-18/PTEN in C. elegans, as well as to study physiological and developmental processes that will provide molecular insight on DAF-18/PTEN function.
Collapse
Affiliation(s)
- Shanqing Zheng
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, Canada, K7L 3N6
| | - Ian D Chin-Sang
- Department of Biology, Queen's University, 116 Barrie St., Kingston, ON, Canada, K7L 3N6.
| |
Collapse
|
48
|
Santos J, Shlizerman E. Closing the loop: optimal stimulation of C. elegans neuronal network via adaptive control to exhibit full body movements. BMC Neurosci 2015. [PMCID: PMC4697557 DOI: 10.1186/1471-2202-16-s1-o14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
49
|
Izquierdo EJ, Williams PL, Beer RD. Information Flow through a Model of the C. elegans Klinotaxis Circuit. PLoS One 2015; 10:e0140397. [PMID: 26465883 PMCID: PMC4605772 DOI: 10.1371/journal.pone.0140397] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022] Open
Abstract
Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm Caenorhabditis elegans. Despite large variations in the neural parameters of individual circuits, we found that the overall information flow architecture circuit is remarkably consistent across the ensemble. This suggests structural connectivity is not necessarily predictive of effective connectivity. It also suggests information flow analysis captures general principles of operation for the klinotaxis circuit. In addition, information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit’s state-dependent response. (4) The neck carries more information about small changes in concentration than about large ones, and more information about positive changes in concentration than about negative ones. Thus, not all directions of movement are equally informative for the worm. Each of these findings corresponds to hypotheses that could potentially be tested in the worm. Knowing the results of these experiments would greatly refine our understanding of the neural circuit underlying klinotaxis.
Collapse
Affiliation(s)
- Eduardo J. Izquierdo
- Cognitive Science Program, Indiana University, Bloomington, Indiana, United States of America
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| | - Paul L. Williams
- Cognitive Science Program, Indiana University, Bloomington, Indiana, United States of America
| | - Randall D. Beer
- Cognitive Science Program, Indiana University, Bloomington, Indiana, United States of America
- School of Informatics and Computing, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
50
|
Wen H, Yu Y, Zhu G, Jiang L, Qin J. A droplet microchip with substance exchange capability for the developmental study of C. elegans. LAB ON A CHIP 2015; 15:1905-11. [PMID: 25715864 DOI: 10.1039/c4lc01377h] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The nematode Caenorhabditis elegans (C. elegans) has been widely used as a multicellular organism in developmental research due to its simplicity, short lifecycle, and its relevance to human genetics and biology. Droplet microfluidics is an attractive platform for the study of C. elegans in integrated mode with flexibility at the single animal resolution. However, it is still challenging to conduct the developmental study of worms within droplets initiating at the L1 larval stage, due to the small size, active movement, and the difficulty in achieving effective substance exchange within the droplets. Here, we present a multifunctional droplet microchip to address these issues and demonstrate the usefulness of this device for investigating post-embryonic development in individual C. elegans initiating at the larval L1 stage. The key components of this device consist of multiple functional units that enable parallel worm loading, droplet formation/trapping, and worm encapsulation in parallel. In particular, it exhibits superior functions in encapsulating and trapping individual larval L1 worms into droplets in a controlled way. Continuous food addition and expulsion of waste by mixing the static worm-in-droplet with moving medium plugs allows for the long-term culture of worms under a variety of conditions. We used this device to investigate the development processes of C. elegans in transgenic strains with deletion and overexpression of the hypoxia-inducible factor (HIF-1), a highly conserved transcript factor in regulating an organism's response to hypoxia. This microdevice may be a useful tool for the high throughput analysis of individual worms starting at the larval stage, and facilitates the study of developmental worms in response to multiple drugs or environmental toxins.
Collapse
Affiliation(s)
- Hui Wen
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, China.
| | | | | | | | | |
Collapse
|