1
|
Martin CG, Bent JS, Hill T, Topalidou I, Singhvi A. Epithelial UNC-23 limits mechanical stress to maintain glia-neuron architecture in C. elegans. Dev Cell 2024; 59:1668-1688.e7. [PMID: 38670103 PMCID: PMC11233253 DOI: 10.1016/j.devcel.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/23/2023] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
For an organ to maintain correct architecture and function, its diverse cellular components must coordinate their size and shape. Although cell-intrinsic mechanisms driving homotypic cell-cell coordination are known, it is unclear how cell shape is regulated across heterotypic cells. We find that epithelial cells maintain the shape of neighboring sense-organ glia-neuron units in adult Caenorhabditis elegans (C. elegans). Hsp co-chaperone UNC-23/BAG2 prevents epithelial cell shape from deforming, and its loss causes head epithelia to stretch aberrantly during animal movement. In the sense-organ glia, amphid sheath (AMsh), this causes progressive fibroblast growth factor receptor (FGFR)-dependent disruption of the glial apical cytoskeleton. Resultant glial cell shape alteration causes concomitant shape change in glia-associated neuron endings. Epithelial UNC-23 maintenance of glia-neuron shape is specific both spatially, within a defined anatomical zone, and temporally, in a developmentally critical period. As all molecular components uncovered are broadly conserved across central and peripheral nervous systems, we posit that epithelia may similarly regulate glia-neuron architecture cross-species.
Collapse
Affiliation(s)
- Cecilia G Martin
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James S Bent
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Tyler Hill
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | - Irini Topalidou
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Biological Structure, University of Washington School of Medicine, Seattle, WA 98195, USA.
| |
Collapse
|
2
|
Rathore S, Stahl A, Benoit JB, Buschbeck EK. Exploring the molecular makeup of support cells in insect camera eyes. BMC Genomics 2023; 24:702. [PMID: 37993800 PMCID: PMC10664524 DOI: 10.1186/s12864-023-09804-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/13/2023] [Indexed: 11/24/2023] Open
Abstract
Animals typically have either compound eyes, or camera-type eyes, both of which have evolved repeatedly in the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. At the molecular level deeply conserved genes that relate to the differentiation of photoreceptor cells have fueled a discussion on whether or not a shared evolutionary origin might be considered for this cell type. In contrast, only a handful of studies, primarily on the compound eyes of Drosophila melanogaster, have demonstrated molecular similarities in SupCs. D. melanogaster SupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to question if there could be conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetle Thermonectus marmoratus. To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several common features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate similarities, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas. T. marmoratus SupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results suggest that T. marmoratus SupCs are a form of glia, and like photoreceptors, may be deeply conserved.
Collapse
Affiliation(s)
- Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
- Section on Light and Circadian Rhythms (SLCR), National Institute of Mental Health, NIH, Bethesda, MD, 20892, USA.
| | - Aaron Stahl
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Neuroscience and Pharmacology, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Elke K Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Rathore S, Stahl A, Benoit JB, Buschbeck EK. Exploring the molecular makeup of support cells in insect camera eyes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549729. [PMID: 37503285 PMCID: PMC10370194 DOI: 10.1101/2023.07.19.549729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Animals generally have either compound eyes, which have evolved repeatedly in different invertebrates, or camera eyes, which have evolved many times across the animal kingdom. Both eye types include two important kinds of cells: photoreceptor cells, which can be excited by light, and non-neuronal support cells (SupCs), which provide essential support to photoreceptors. Despite many examples of convergence in eye evolution, similarities in the gross developmental plan and molecular signatures have been discovered, even between phylogenetically distant and functionally different eye types. For this reason, a shared evolutionary origin has been considered for photoreceptors. In contrast, only a handful of studies, primarily on the compound eyes of Drosophila melanogaster , have demonstrated molecular similarities in SupCs. D. melanogaster SupCs (Semper cells and primary pigment cells) are specialized eye glia that share several molecular similarities with certain vertebrate eye glia, including Müller glia. This led us to speculate whether there are conserved molecular signatures of SupCs, even in functionally different eyes such as the image-forming larval camera eyes of the sunburst diving beetle Thermonectus marmoratus . To investigate this possibility, we used an in-depth comparative whole-tissue transcriptomics approach. Specifically, we dissected the larval principal camera eyes into SupC- and retina-containing regions and generated the respective transcriptomes. Our analysis revealed several conserved features of SupCs including enrichment of genes that are important for glial function (e.g. gap junction proteins such as innexin 3), glycogen production (glycogenin), and energy metabolism (glutamine synthetase 1 and 2). To evaluate the extent of conservation, we compared our transcriptomes with those of fly (Semper cells) and vertebrate (Müller glia) eye glia as well as respective retinas. T. marmoratus SupCs were found to have distinct genetic overlap with both fly and vertebrate eye glia. These results provide molecular evidence for the deep conservation of SupCs in addition to photoreceptor cells, raising essential questions about the evolutionary origin of eye-specific glia in animals.
Collapse
|
4
|
Calvin-Cejudo L, Martin F, Mendez LR, Coya R, Castañeda-Sampedro A, Gomez-Diaz C, Alcorta E. Neuron-glia interaction at the receptor level affects olfactory perception in adult Drosophila. iScience 2022; 26:105837. [PMID: 36624835 PMCID: PMC9823236 DOI: 10.1016/j.isci.2022.105837] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/17/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Some types of glia play an active role in neuronal signaling by modifying their activity although little is known about their role in sensory information signaling at the receptor level. In this research, we report a functional role for the glia that surround the soma of the olfactory receptor neurons (OSNs) in adult Drosophila. Specific genetic modifications have been targeted to this cell type to obtain live individuals who are tested for olfactory preference and display changes both increasing and reducing sensitivity. A closer look at the antenna by Ca2+ imaging shows that odor activates the OSNs, which subsequently produce an opposite and smaller effect in the glia that partially counterbalances neuronal activation. Therefore, these glia may play a dual role in preventing excessive activation of the OSNs at high odorant concentrations and tuning the chemosensory window for the individual according to the network structure in the receptor organ.
Collapse
Affiliation(s)
- Laura Calvin-Cejudo
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Fernando Martin
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Luis R. Mendez
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Ruth Coya
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Ana Castañeda-Sampedro
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Carolina Gomez-Diaz
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
| | - Esther Alcorta
- Group of Neurobiology of the Sensory Systems (NEUROSEN), Department of Functional Biology, Faculty of Medicine, University of Oviedo, 33006 Oviedo, Spain
- Corresponding author
| |
Collapse
|
5
|
Tsao CK, Huang YF, Sun YH. Early lineage segregation of the retinal basal glia in the Drosophila eye disc. Sci Rep 2020; 10:18522. [PMID: 33116242 PMCID: PMC7595039 DOI: 10.1038/s41598-020-75581-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/16/2020] [Indexed: 11/09/2022] Open
Abstract
The retinal basal glia (RBG) is a group of glia that migrates from the optic stalk into the third instar larval eye disc while the photoreceptor cells (PR) are differentiating. The RBGs are grouped into three major classes based on molecular and morphological characteristics: surface glia (SG), wrapping glia (WG) and carpet glia (CG). The SGs migrate and divide. The WGs are postmitotic and wraps PR axons. The CGs have giant nucleus and extensive membrane extension that each covers half of the eye disc. In this study, we used lineage tracing methods to determine the lineage relationships among these glia subtypes and the temporal profile of the lineage decisions for RBG development. We found that the CG lineage segregated from the other RBG very early in the embryonic stage. It has been proposed that the SGs migrate under the CG membrane, which prevented SGs from contacting with the PR axons lying above the CG membrane. Upon passing the front of the CG membrane, which is slightly behind the morphogenetic furrow that marks the front of PR differentiation, the migrating SG contact the nascent PR axon, which in turn release FGF to induce SGs' differentiation into WG. Interestingly, we found that SGs are equally distributed apical and basal to the CG membrane, so that the apical SGs are not prevented from contacting PR axons by CG membrane. Clonal analysis reveals that the apical and basal RBG are derived from distinct lineages determined before they enter the eye disc. Moreover, the basal SG lack the competence to respond to FGFR signaling, preventing its differentiation into WG. Our findings suggest that this novel glia-to-glia differentiation is both dependent on early lineage decision and on a yet unidentified regulatory mechanism, which can provide spatiotemporal coordination of WG differentiation with the progressive differentiation of photoreceptor neurons.
Collapse
Affiliation(s)
- Chia-Kang Tsao
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC
| | - Yu Fen Huang
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC.,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.,, 64 Marvin Lane, Piscataway, NJ, 08854, USA
| | - Y Henry Sun
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan, ROC. .,Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, ROC.
| |
Collapse
|
6
|
Bittern J, Pogodalla N, Ohm H, Brüser L, Kottmeier R, Schirmeier S, Klämbt C. Neuron-glia interaction in the Drosophila nervous system. Dev Neurobiol 2020; 81:438-452. [PMID: 32096904 DOI: 10.1002/dneu.22737] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/11/2020] [Accepted: 02/24/2020] [Indexed: 12/14/2022]
Abstract
Animals are able to move and react in manifold ways to external stimuli. Thus, environmental stimuli need to be detected, information must be processed, and, finally, an output decision must be transmitted to the musculature to get the animal moving. All these processes depend on the nervous system which comprises an intricate neuronal network and many glial cells. Glial cells have an equally important contribution in nervous system function as their neuronal counterpart. Manifold roles are attributed to glia ranging from controlling neuronal cell number and axonal pathfinding to regulation of synapse formation, function, and plasticity. Glial cells metabolically support neurons and contribute to the blood-brain barrier. All of the aforementioned aspects require extensive cell-cell interactions between neurons and glial cells. Not surprisingly, many of these processes are found in all phyla executed by evolutionarily conserved molecules. Here, we review the recent advance in understanding neuron-glia interaction in Drosophila melanogaster to suggest that work in simple model organisms will shed light on the function of mammalian glial cells, too.
Collapse
Affiliation(s)
- Jonas Bittern
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Nicole Pogodalla
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Henrike Ohm
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Lena Brüser
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Rita Kottmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Universität Münster, Münster, Germany
| |
Collapse
|
7
|
Afridi R, Kim JH, Rahman MH, Suk K. Metabolic Regulation of Glial Phenotypes: Implications in Neuron-Glia Interactions and Neurological Disorders. Front Cell Neurosci 2020; 14:20. [PMID: 32116564 PMCID: PMC7026370 DOI: 10.3389/fncel.2020.00020] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/23/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are multifunctional, non-neuronal components of the central nervous system with diverse phenotypes that have gained much attention for their close involvement in neuroinflammation and neurodegenerative diseases. Glial phenotypes are primarily characterized by their structural and functional changes in response to various stimuli, which can be either neuroprotective or neurotoxic. The reliance of neurons on glial cells is essential to fulfill the energy demands of the brain for its proper functioning. Moreover, the glial cells perform distinct functions to regulate their own metabolic activities, as well as work in close conjunction with neurons through various secreted signaling or guidance molecules, thereby constituting a complex network of neuron-glial interactions in health and disease. The emerging evidence suggests that, in disease conditions, the metabolic alterations in the glial cells can induce structural and functional changes together with neuronal dysfunction indicating the importance of neuron-glia interactions in the pathophysiology of neurological disorders. This review covers the recent developments that implicate the regulation of glial phenotypic changes and its consequences on neuron-glia interactions in neurological disorders. Finally, we discuss the possibilities and challenges of targeting glial metabolism as a strategy to treat neurological disorders.
Collapse
Affiliation(s)
- Ruqayya Afridi
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Jong-Heon Kim
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Md Habibur Rahman
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- BK21 Plus KNU Biomedical Convergence Program, Department of Pharmacology, Brain Science and Engineering Institute, School of Medicine, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
8
|
Neuert H, Deing P, Krukkert K, Naffin E, Steffes G, Risse B, Silies M, Klämbt C. The Drosophila NCAM homolog Fas2 signals independent of adhesion. Development 2019; 147:dev.181479. [DOI: 10.1242/dev.181479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 12/09/2019] [Indexed: 12/22/2022]
Abstract
The development of tissues and organs requires close interaction of cells. To do so, cells express adhesion proteins such as the neural cell adhesion molecule (NCAM) or its Drosophila orthologue Fasciclin 2 (Fas2). Both are members of the Ig-domain superfamily of proteins that mediate homophilic adhesion. These proteins are expressed as different isoforms differing in their membrane anchorage and their cytoplasmic domains. To study the function of single isoforms we have conducted a comprehensive genetic analysis of fas2. We reveal the expression pattern of all major Fas2 isoforms, two of which are GPI-anchored. The remaining five isoforms carry transmembrane domains with variable cytoplasmic tails. We generated fas2 mutants expressing only single isoforms. In contrast to the null mutation which causes embryonic lethality, these mutants are viable, indicating redundancy among the different isoforms. Cell type specific rescue experiments showed that glial secreted Fas2 can rescue the fas2 mutant phenotype to viability. This demonstrates cytoplasmic Fas2 domains have no apparent essential functions and indicate that Fas2 has function(s) other than homophilic adhesion. In conclusion, our data propose novel mechanistic aspects of a long studied adhesion protein.
Collapse
Affiliation(s)
- Helen Neuert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Petra Deing
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Karin Krukkert
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Elke Naffin
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Georg Steffes
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Benjamin Risse
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Marion Silies
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| | - Christian Klämbt
- University of Münster, Institute for Neuro- and Behavioral Biology, Badestr. 9, 48149 Münster, Germany
| |
Collapse
|
9
|
Sasse S, Klämbt C. Repulsive Epithelial Cues Direct Glial Migration along the Nerve. Dev Cell 2017; 39:696-707. [PMID: 27997826 DOI: 10.1016/j.devcel.2016.11.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/14/2016] [Accepted: 11/19/2016] [Indexed: 11/29/2022]
Abstract
Most glial cells show pronounced migratory abilities and generally follow axonal trajectories to reach their final destination. However, the molecular cues controlling their directional migration are largely unknown. To address this, we established glial migration onto the developing Drosophila leg imaginal disc as a model. Here, CNS-derived glial cells move along nerves containing motoaxons and sensory axons. Along their path, glial cells encounter at least three choice points where directional decisions are needed. Subsequent genetic analyses allowed uncovering mechanisms that escaped previous studies. Most strikingly, we found that glial cells require the expression of the repulsive guidance receptors PlexinA/B and Robo2 to prevent breaking away from the nerve. Interestingly, the repulsive ligands are presented by the underlying leg imaginal disc epithelium, which appears to push glial cells toward the axon fascicle. In conclusion, nerve formation not only requires neuron-glia interaction but also depends on glial-epithelial communication.
Collapse
Affiliation(s)
- Sofia Sasse
- Institut für Neuro- und Verhaltensbiologie, Badestraße 9, 48149 Münster, Germany
| | - Christian Klämbt
- Institut für Neuro- und Verhaltensbiologie, Badestraße 9, 48149 Münster, Germany.
| |
Collapse
|
10
|
Borderless regulates glial extension and axon ensheathment. Dev Biol 2016; 414:170-80. [DOI: 10.1016/j.ydbio.2016.04.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 03/15/2016] [Accepted: 04/26/2016] [Indexed: 11/19/2022]
|
11
|
Araújo SJ. The Hedgehog Signalling Pathway in Cell Migration and Guidance: What We Have Learned from Drosophila melanogaster. Cancers (Basel) 2015; 7:2012-22. [PMID: 26445062 PMCID: PMC4695873 DOI: 10.3390/cancers7040873] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/23/2015] [Accepted: 09/28/2015] [Indexed: 01/20/2023] Open
Abstract
Cell migration and guidance are complex processes required for morphogenesis, the formation of tumor metastases, and the progression of human cancer. During migration, guidance molecules induce cell directionality and movement through complex intracellular mechanisms. Expression of these molecules has to be tightly regulated and their signals properly interpreted by the receiving cells so as to ensure correct navigation. This molecular control is fundamental for both normal morphogenesis and human disease. The Hedgehog (Hh) signaling pathway is evolutionarily conserved and known to be crucial for normal cellular growth and differentiation throughout the animal kingdom. The relevance of Hh signaling for human disease is emphasized by its activation in many cancers. Here, I review the current knowledge regarding the involvement of the Hh pathway in cell migration and guidance during Drosophila development and discuss its implications for human cancer origin and progression.
Collapse
Affiliation(s)
- Sofia J Araújo
- Institut de Biologia Molecular de Barcelona (IBMB-CSIC), Parc Cientific de Barcelona, C. Baldiri Reixac 10,08028 Barcelona, Spain.
| |
Collapse
|
12
|
Sasse S, Neuert H, Klämbt C. Differentiation ofDrosophilaglial cells. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:623-36. [DOI: 10.1002/wdev.198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 03/25/2015] [Accepted: 05/24/2015] [Indexed: 01/10/2023]
Affiliation(s)
- Sofia Sasse
- Institut für Neuro- und Verhaltensbiologie; Münster Germany
| | - Helen Neuert
- Institut für Neuro- und Verhaltensbiologie; Münster Germany
| | | |
Collapse
|
13
|
Abstract
Brain glial cells, in particular astrocytes and microglia, secrete signaling molecules that regulate glia-glia or glia-neuron communication and synaptic activity. While much is known about roles of glial cells in nervous system development, we are only beginning to understand the physiological functions of such cells in the adult brain. Studies in vertebrate and invertebrate models, in particular mice and Drosophila, have revealed roles of glia-neuron communication in the modulation of complex behavior. This chapter emphasizes recent evidence from studies of rodents and Drosophila that highlight the importance of glial cells and similarities or differences in the neural circuits regulating circadian rhythms and sleep in the two models. The chapter discusses cellular, molecular, and genetic approaches that have been useful in these models for understanding how glia-neuron communication contributes to the regulation of rhythmic behavior.
Collapse
Affiliation(s)
- F Rob Jackson
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA.
| | - Fanny S Ng
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Sukanya Sengupta
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Samantha You
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| | - Yanmei Huang
- Department of Neuroscience, Sackler Program in Biomedical Sciences, Tufts University School of Medicine, Boston, MA, USA
| |
Collapse
|
14
|
Kim SN, Jeibmann A, Halama K, Witte HT, Wälte M, Matzat T, Schillers H, Faber C, Senner V, Paulus W, Klämbt C. ECM stiffness regulates glial migration in Drosophila and mammalian glioma models. Development 2014; 141:3233-42. [DOI: 10.1242/dev.106039] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell migration is an important feature of glial cells. Here, we used the Drosophila eye disc to decipher the molecular network controlling glial migration. We stimulated glial motility by pan-glial PDGF receptor (PVR) activation and identified several genes acting downstream of PVR. Drosophila lox is a non-essential gene encoding a secreted protein that stiffens the extracellular matrix (ECM). Glial-specific knockdown of Integrin results in ECM softening. Moreover, we show that lox expression is regulated by Integrin signaling and vice versa, suggesting that a positive-feedback loop ensures a rigid ECM in the vicinity of migrating cells. The general implication of this model was tested in a mammalian glioma model, where a Lox-specific inhibitor unraveled a clear impact of ECM rigidity in glioma cell migration.
Collapse
Affiliation(s)
- Su Na Kim
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Kathrin Halama
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Hanna Teresa Witte
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Mike Wälte
- Institute of Physiology II, University Hospital Münster, Münster 48149, Germany
| | - Till Matzat
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| | - Hermann Schillers
- Institute of Physiology II, University Hospital Münster, Münster 48149, Germany
| | - Cornelius Faber
- Department of Clinical Radiology, University Hospital Münster, Münster 48149, Germany
| | - Volker Senner
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Werner Paulus
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Christian Klämbt
- Institute of Neurobiology, University of Münster, Münster 48149, Germany
| |
Collapse
|
15
|
Ten-a affects the fusion of central complex primordia in Drosophila. PLoS One 2013; 8:e57129. [PMID: 23437330 PMCID: PMC3577759 DOI: 10.1371/journal.pone.0057129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 01/17/2013] [Indexed: 02/03/2023] Open
Abstract
The central complex of Drosophila melanogaster plays important functions in various behaviors, such as visual and olfactory memory, visual orientation, sleep, and movement control. However little is known about the genes regulating the development of the central complex. Here we report that a mutant gene affecting central complex morphology, cbd (central brain defect), was mapped to ten-a, a type II trans-membrane protein coding gene. Down-regulation of ten-a in pan-neural cells contributed to abnormal morphology of central complex. Over-expression of ten-a by C767-Gal4 was able to partially restore the abnormal central complex morphology in the cbd mutant. Tracking the development of FB primordia revealed that C767-Gal4 labeled interhemispheric junction that separated fan-shaped body precursors at larval stage withdrew to allow the fusion of the precursors. While the C767-Gal4 labeled structure did not withdraw properly and detached from FB primordia, the two fan-shaped body precursors failed to fuse in the cbd mutant. We propose that the withdrawal of C767-Gal4 labeled structure is related to the formation of the fan-shaped body. Our result revealed the function of ten-a in central brain development, and possible cellular mechanism underlying Drosophila fan-shaped body formation.
Collapse
|
16
|
Boyan GS, Liu Y, Loser M. A cellular network of dye-coupled glia associated with the embryonic central complex in the grasshopper Schistocerca gregaria. Dev Genes Evol 2012; 222:125-38. [PMID: 22460819 DOI: 10.1007/s00427-012-0394-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/11/2012] [Indexed: 12/25/2022]
Abstract
The central complex of the grasshopper (Schistocerca gregaria) brain comprises a modular set of neuropils, which develops after mid-embryogenesis and is functional on hatching. Early in embryogenesis, Repo-positive glia cells are found intermingled among the commissures of the midbrain, but then redistribute as central complex modules become established and, by the end of embryogenesis, envelop all midbrain neuropils. The predominant glia associated with the central body during embryogenesis are glutamine synthetase-/Repo-positive astrocyte-like glia, which direct extensive processes (gliopodia) into and around midbrain neuropils. We used intracellular dye injection in brain slices to ascertain whether such glia are dye-coupled into a communicating cellular network during embryogenesis. Intracellular staining of individual cells located at any one of four sites around the central body revealed a population of dye-coupled cells whose number and spatial distribution were stereotypic for each site and comparable at both 70 and 100% of embryogenesis. Subsequent immunolabeling confirmed these dye-coupled cells to be astrocyte-like glia. The addition of n-heptanol to the bathing saline prevented all dye coupling, consistent with gap junctions linking the glia surrounding the central body. Since dye coupling also occurred in the absence of direct intersomal contacts, it might additionally involve the extensive array of gliopodia, which develop after glia are arrayed around the central body. Collating the data from all injection sites suggests that the developing central body is surrounded by a network of dye-coupled glia, which we speculate may function as a positioning system for the developing neuropils of the central complex.
Collapse
Affiliation(s)
- George S Boyan
- Developmental Neurobiology Group, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
17
|
Danjo R, Kawasaki F, Ordway RW. A tripartite synapse model in Drosophila. PLoS One 2011; 6:e17131. [PMID: 21359186 PMCID: PMC3040228 DOI: 10.1371/journal.pone.0017131] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 01/21/2011] [Indexed: 11/18/2022] Open
Abstract
Tripartite (three-part) synapses are defined by physical and functional interactions of glia with pre- and post-synaptic elements. Although tripartite synapses are thought to be of widespread importance in neurological health and disease, we are only beginning to develop an understanding of glial contributions to synaptic function. In contrast to studies of neuronal mechanisms, a significant limitation has been the lack of an invertebrate genetic model system in which conserved mechanisms of tripartite synapse function may be examined through large-scale application of forward genetics and genome-wide genetic tools. Here we report a Drosophila tripartite synapse model which exhibits morphological and functional properties similar to those of mammalian synapses, including glial regulation of extracellular glutamate, synaptically-induced glial calcium transients and glial coupling of synapses with tracheal structures mediating gas exchange. In combination with classical and cell-type specific genetic approaches in Drosophila, this model is expected to provide new insights into the molecular and cellular mechanisms of tripartite synapse function.
Collapse
Affiliation(s)
- Rie Danjo
- Department of Biology and Center for Molecular and Cellular Neuroscience, Pennsylvania State University, University Park, Pennsylvania
| | - Fumiko Kawasaki
- Department of Biology and Center for Molecular and Cellular Neuroscience, Pennsylvania State University, University Park, Pennsylvania
| | - Richard W. Ordway
- Department of Biology and Center for Molecular and Cellular Neuroscience, Pennsylvania State University, University Park, Pennsylvania
- * E-mail:
| |
Collapse
|