1
|
Vagnetti R, Cooper S, Carlevaro F, Boat R, Magno F, Musella G, Magistro D. Mapping relationships among gross motor skills in 16,989 children using network analysis. Sci Rep 2025; 15:11591. [PMID: 40185823 PMCID: PMC11971267 DOI: 10.1038/s41598-025-95924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
The development of gross motor skills during childhood is crucial for shaping more complex movements and laying the groundwork for physical activity, and subsequently lifelong health and enhanced well-being. Performance in motor skills improves throughout development, with the greatest improvements occurring during childhood. Understanding the relationships between developing gross motor skills is essential for informing educational and intervention practices. A total of 16,989 children aged 3-11 years underwent assessment of gross motor skills. Using network analysis, gross motor skills networks were constructed for the entire sample, and stratified by age and sex. The accuracy and stability of the networks were assessed, and centrality and bridge statistics were estimated for each node. The results indicated that running and two-hand catching exhibited higher centrality and bridge statistics compared to the other nodes in the all-sample network. Additionally, it was observed that the strength between nodes decreased and their distance increased with age. These results highlight the importance of specific gross motor skills due to their significant role in relation to other skills within the network. Gross motor skills progress towards increased independence and specialisation during development, indicating the importance of early educational interventions where children could benefit from educational practices focused on catching and running.
Collapse
Affiliation(s)
- Roberto Vagnetti
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham, NG11 8NS, UK
- School of Environment, Education and Development, University of Manchester, Manchester, M13 9PL, UK
| | - Simon Cooper
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham, NG11 8NS, UK
| | - Fabio Carlevaro
- Polo Universitario Asti Studi Superiori (Uni-Astiss), Area Fabrizio De Andrè, 14100, Asti, Italy
| | - Ruth Boat
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham, NG11 8NS, UK
| | - Francesca Magno
- Polo Universitario Asti Studi Superiori (Uni-Astiss), Area Fabrizio De Andrè, 14100, Asti, Italy
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, University of Torino, Torino, Italy
| | - Giovanni Musella
- Polo Universitario Asti Studi Superiori (Uni-Astiss), Area Fabrizio De Andrè, 14100, Asti, Italy
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, University of Torino, Torino, Italy
| | - Daniele Magistro
- Department of Sport Science, School of Science and Technology, Nottingham Trent University, College Drive, Clifton, Nottingham, NG11 8NS, UK.
| |
Collapse
|
2
|
Vergara-Diaz GP, Sapienza S, Daneault JF, Fabara E, Adans-Dester C, Severini G, Cheung VCK, de Vargas CER, Nimec D, Bonato P. Can muscle synergies shed light on the mechanisms underlying motor gains in response to robot-assisted gait training in children with cerebral palsy? J Neuroeng Rehabil 2025; 22:23. [PMID: 39920813 PMCID: PMC11806738 DOI: 10.1186/s12984-025-01550-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/13/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Children with cerebral palsy (CP) often experience gait impairments. Robot-assisted gait training (RGT) has been shown to have beneficial effects in this patient population. However, clinical outcomes of RGT vary substantially from patient to patient. This study explored the hypothesis that clinical outcomes are associated with changes in muscle synergies in response to RGT. METHODS Thirteen children with CP and Gross Motor Function Classification Scale (GMFCS) levels I-IV were recruited in the study. Children participated in a 6 week-RGT intervention and underwent clinical evaluations and gait studies-with focus on the analysis of electromyographic (EMG) data-pre- and post-training. Lower-limb muscle synergies were derived from the EMG recordings. Pre- vs. post-RGT clinical outcomes and muscle synergies were compared to explore potential relationships. RESULTS Three and, less often, two muscle synergies were detected in study participants pre-RGT. Linear mixed effect models showed that composition of the muscle synergies and their temporal activation coefficients present deviations from normative data proportional to the severity of functional limitations (i.e., GMFCS levels, p < 0.01). At a group level, changes in muscle synergies pre- vs. post-RGT did not significantly correlate with changes in clinical outcomes (p > 0.05). However, it was observed that participants who displayed prominent changes in muscle synergies also displayed large improvements in clinical scores. CONCLUSIONS Gait impairments in children with CP were associated with muscle synergies that deviated from normative. Participants who demonstrated the most substantial improvements in clinical scores following RGT exhibited multiple changes in the muscle synergies. However, no statistically significant correlations were identified at the group level. Future studies relying on larger datasets are needed to further investigate this observation and potential underlying mechanisms.
Collapse
Affiliation(s)
- Gloria P Vergara-Diaz
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Hospital Universitario Virgen del Rocío, Seville, Spain
| | - Stefano Sapienza
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, USA
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Sur-Alzette, Luxembourg
- Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | | | - Eric Fabara
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Catherine Adans-Dester
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Giacomo Severini
- School of Electrical and Electronic Engineering, University College Dublin, Dublin, Ireland
| | - Vincent C K Cheung
- School of Biomedical Sciences, and The Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| | | | - Donna Nimec
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - Paolo Bonato
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, USA.
| |
Collapse
|
3
|
Figus C, Carlson KJ, Bortolini E, Saers J, Seghi F, Sorrentino R, Bernardini F, Vazzana A, Erjavec I, Novak M, Tuniz C, Belcastro MG, Stock J, Ryan TM, Benazzi S. The Ontogeny of the Human Calcaneus: Insights From Morphological and Trabecular Changes During Postnatal Growth. AMERICAN JOURNAL OF BIOLOGICAL ANTHROPOLOGY 2025; 186:e70007. [PMID: 39936218 PMCID: PMC11815546 DOI: 10.1002/ajpa.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 02/13/2025]
Abstract
OBJECTIVES To investigate the developmental changes in the human calcaneal internal and external morphology linked to the acquisition of mature bipedal locomotion. METHODS Seventy seven micro-CT scans of modern juvenile calcanei (from perinates to 15 years old) are employed. The chronological period spans from the Middle/Late Neolithic (4800-4500 BCE) to the 20th century. Through a comprehensive approach that comprises geometric morphometric methods and whole-bone trabecular analysis, the calcaneal growing morphology has been explored. RESULTS Morphological changes reflect the development of bipedal locomotion, showing its potential when tracking the major locomotor milestones. The calcaneal shape is immature and almost featureless during the first year of life. The internal architecture is dense and isotropic with numerous thin trabeculae closely packed together. The internal architecture changes to better adapt to variations in load stimulated by a more mature gait by increasing bone mass and alignment, with fewer and thicker struts. The external morphology shows its plasticity by increasing the surface area where greater strain is expected and changing the orientation of the articular facets. CONCLUSIONS Analysis of morphological changes in the growing calcaneus highlights the importance of an integrative methodology when exploring developmental bone plasticity. The changes in calcaneal internal and external morphologies reflect the different loading patterns experienced during growth, gradually shifting from a more generalized morphology to a more adult-like one, reflecting major locomotor achievement. Our research shows that although initially genetically driven, calcaneal plasticity may display mechanical influences and provide precious information on tracking the main locomotor milestones.
Collapse
Affiliation(s)
- Carla Figus
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Kristian J. Carlson
- Department of Integrative Anatomical Sciences, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Evolutionary Studies InstituteUniversity of the WitwatersrandJohannesburgSouth Africa
| | | | - Jaap Saers
- Naturalis Biodiversity CenterLeidenCRthe Netherlands
| | - Francesca Seghi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Rita Sorrentino
- Department of Biological, Geological and Environmental Sciences—BigeaUniversity of BolognaBolognaItaly
| | - Federico Bernardini
- Department of Humanistic StudiesUniversità Ca’ FoscariVeneziaItaly
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
- Multidisciplinary LaboratoryAbdus Salam International Centre for Theoretical PhysicsTriesteItaly
| | - Antonino Vazzana
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| | - Igor Erjavec
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
| | - Mario Novak
- Centre for Applied BioanthropologyInstitute for Anthropological ResearchZagrebCroatia
- Department of Archaeology and Heritage, Faculty of HumanitiesUniversity of PrimorskaKoperSlovenia
| | - Claudio Tuniz
- Department of Humanistic StudiesUniversità Ca’ FoscariVeneziaItaly
- Laboratory for Mineralized TissueCentre for Translational and Clinical ResearchZagrebCroatia
| | - Maria Giovanna Belcastro
- Department of Biological, Geological and Environmental Sciences—BigeaUniversity of BolognaBolognaItaly
| | - Jay Stock
- Department of AnthropologyWestern UniversityLondonOntarioCanada
| | - Timothy M. Ryan
- Department of AnthropologyPennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Stefano Benazzi
- Department of Cultural HeritageUniversity of BolognaRavennaItaly
| |
Collapse
|
4
|
West CW, Garcia-Ramirez DL, Dougherty KJ. Postnatal maturation of serotonergic modulation of spinal RORβ interneurons in the medial deep dorsal horn. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.15.623295. [PMID: 39605347 PMCID: PMC11601448 DOI: 10.1101/2024.11.15.623295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Proprioceptive input is essential for coordinated locomotion and this input must be properly gated to ensure smooth and effective movement. Presynaptic inhibition mediated by GABAergic interneurons provides regulation of sensory afferent feedback. Serotonin not only promotes locomotion, but also modulates feedback from sensory afferents, both directly and indirectly, potentially by acting on the GABAergic interneurons that mediate presynaptic inhibition. Developmental disruptions in presynaptic inhibition can produce deficits in sensorimotor processing. Importantly, both presynaptic inhibition of proprioceptive afferents and serotonergic innervation of the spinal cord become mature and functional after the first postnatal week. However, little is known about the serotonergic receptors involved in the modulation of interneurons mediating presynaptic inhibition and when developmentally their actions mature. Here, we used whole-cell patch clamp recordings in lumbar spinal slices from neonatal and juvenile mice to assess the intrinsic properties and serotonergic modulation of deep dorsal horn GABAergic RORβ interneurons previously shown to mediate presynaptic inhibition of proprioceptive afferents. RORβ interneurons from juvenile cords displayed more mature membrane properties. Further, serotonin increased the excitability of RORβ interneurons via actions at 5-HT 2A , 5-HT 2B/2C , and 5-HT 7 receptors in juvenile but not early neonatal spinal cords. Our findings indicate that deep dorsal horn RORβ interneurons undergo postnatal maturation in both their intrinsic excitability and ability to respond to serotonin, concurrent with the maturation of serotonergic innervation of the dorsal horn. This information can prompt future targeted studies testing relationships between impairments of serotonergic development, proprioceptive processing disorders, and presynaptic inhibition mediated by RORβ interneurons.
Collapse
|
5
|
Hajilou B, Esmaeili H, Anbarian M. Effect of foot type on electromyography characteristics and synergy of lower limb muscles during running. Sci Rep 2024; 14:25221. [PMID: 39448694 PMCID: PMC11502838 DOI: 10.1038/s41598-024-76878-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
The foot structure is associated with different running mechanics. The central nervous system is responsible for using the muscles through synergies during locomotion. The purpose of the present study was to examine the effect of foot structure on the electromyography factors and the synergy of the selected muscles of the lower extremity. Tibialis anterior, extensor digitorum longus, peroneus longus, soleus, biceps femoris, vastus lateralis, gastrocnemius lateralis and medialis muscles activity of 60 barefoot recreational runners with different foot structures was recorded while running at a speed of 3.3 m/s. Muscle activity was measured in the running cycle. Besides, muscle synergies were extracted using non-negative matrix factorization algorithm. The results showed that there were differences between groups with different foot type in muscle activity under different phases of running in some muscles. Furthermore, the findings indicated that the number of synergies was similar in different groups and the relative weight of muscles was not different across groups. In conclusion, despite the difference in muscle activity under different phases of the running cycle, muscle synergies are similar among the groups. This can indicate similar control by the central nervous system in runners with different arch structures while running and the observed changes in muscle activity can be attributed to the type of forces exerted on the body, the length-tension relationship, and changes in the direction of the lower limbs in people with different arch structures.
Collapse
Affiliation(s)
- Behrouz Hajilou
- Research Institute of Exceptional Children, Research Institute for Education, Organization for Educational Research and Planning, Tehran, Iran.
| | - Hamed Esmaeili
- Department of Sport Biomechanics, Faculty of Sport Sciences, University of Isfahan, Isfahan, Iran
| | - Mehrdad Anbarian
- Department of Sport Biomechanics, Faculty of Physical Education and Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
6
|
Hospodar CM, Adolph KE. The development of gait and mobility: Form and function in infant locomotion. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2024; 15:e1677. [PMID: 38499970 PMCID: PMC11226364 DOI: 10.1002/wcs.1677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/20/2024]
Abstract
The development of locomotion can be described by its form (i.e., gait) and its function (i.e., mobility). Both aspects of locomotion improve with experience. Traditional treatises on infant locomotion focus on form by describing an orderly progression of postural and locomotor milestones en route to characteristic patterns of crawling and walking gait. We provide a traditional treatment of gait by describing developmental antecedents of and improvements in characteristic gait patterns, but we highlight important misconceptions inherent in the notion of "milestones". Most critically, we argue that the prevailing focus on gait and milestones fails to capture the true essence of locomotion-functional mobility to engage with the world. Thus, we also describe the development of mobility, including the use of mobility aids for support and propulsion. We illustrate how infants find individual solutions for mobility and how the ability to move cascades into other domains of development. Finally, we show how an integration of gait and mobility provides insights into the psychological processes that make locomotion functional. This article is categorized under: Psychology > Motor Skill and Performance Psychology > Development and Aging.
Collapse
Affiliation(s)
| | - Karen E Adolph
- Department of Psychology, New York University, New York, New York, USA
| |
Collapse
|
7
|
Jiang L, Qu F, Yang Z, Chen X, Gao X, Sun Q, Huo B. Heel-to-toe drop effects on biomechanical and muscle synergy responses during uphill walking. Front Bioeng Biotechnol 2024; 12:1385264. [PMID: 38798954 PMCID: PMC11116729 DOI: 10.3389/fbioe.2024.1385264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/26/2024] [Indexed: 05/29/2024] Open
Abstract
Uphill walking is a common task encountered in daily life, with steeper inclines potentially imposing greater biomechanical and neuromuscular demands on the human body. The heel-to-toe drop (HTD) in footwear may influence the biomechanical and neuromuscular pattern of uphill walking; but the impact remains unclear. Adjustments in HTD can modulate biomechanical and neuromuscular patterns, mitigating the demands and optimizing the body's response to different inclinations. We hypothesize that adjustments in HTD can modulate biomechanical and neuromuscular patterns, mitigating the demands and optimizing the body's response to different inclinations. Nineteen healthy men walked on an adjustable slope walkway, with varied inclinations (6°, 12°, 20°) and HTD shoes (10mm, 25mm, 40 mm), while the marker positions, ground reaction forces and electromyography data were collected. Our study reveals that gait temporo-spatial parameters are predominantly affected by inclination over HTD. Inclination has a more pronounced effect on kinematic variables, while both inclination and HTD significantly modulate kinetic and muscle synergy parameters. This study demonstrates that an increase in the inclination leads to changes in biomechanical and neuromuscular responses during uphill walking and the adjustment of HTD can modulate these responses during uphill walking. However, the present study suggests that an increased HTD may lead to elevated loads on the knee joint and these adverse effects need more attention.
Collapse
Affiliation(s)
- Liang Jiang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Feng Qu
- Biomechanics Laboratory, Department of Kinesiology, Beijing Sport University, Beijing, China
| | - Zihan Yang
- Fashion Accessory Art and Engineering College, Beijing Institute of Fashion Technology, Beijing, China
| | - Xue Chen
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Xianzhi Gao
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Qing Sun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, China
| | - Bo Huo
- Sport Biomechanics Center, Institute of Artificial Intelligence in Sports, Capital University of Physical Education and Sports, Beijing, China
| |
Collapse
|
8
|
Druelle F, Ghislieri M, Molina-Vila P, Rimbaud B, Agostini V, Berillon G. A comparative study of muscle activity and synergies during walking in baboons and humans. J Hum Evol 2024; 189:103513. [PMID: 38401300 DOI: 10.1016/j.jhevol.2024.103513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/26/2024]
Abstract
Bipedal locomotion was a major functional change during hominin evolution, yet, our understanding of this gradual and complex process remains strongly debated. Based on fossil discoveries, it is possible to address functional hypotheses related to bipedal anatomy, however, motor control remains intangible with this approach. Using comparative models which occasionally walk bipedally has proved to be relevant to shed light on the evolutionary transition toward habitual bipedalism. Here, we explored the organization of the neuromuscular control using surface electromyography (sEMG) for six extrinsic muscles in two baboon individuals when they walk quadrupedally and bipedally on the ground. We compared their muscular coordination to five human subjects walking bipedally. We extracted muscle synergies from the sEMG envelopes using the non-negative matrix factorization algorithm which allows decomposing the sEMG data in the linear combination of two non-negative matrixes (muscle weight vectors and activation coefficients). We calculated different parameters to estimate the complexity of the sEMG signals, the duration of the activation of the synergies, and the generalizability of the muscle synergy model across species and walking conditions. We found that the motor control strategy is less complex in baboons when they walk bipedally, with an increased muscular activity and muscle coactivation. When comparing the baboon bipedal and quadrupedal pattern of walking to human bipedalism, we observed that the baboon bipedal pattern of walking is closer to human bipedalism for both baboons, although substantial differences remain. Overall, our findings show that the muscle activity of a non-adapted biped effectively fulfills the basic mechanical requirements (propulsion and balance) for walking bipedally, but substantial refinements are possible to optimize the efficiency of bipedal locomotion. In the evolutionary context of an expanding reliance on bipedal behaviors, even minor morphological alterations, reducing muscle coactivation, could have faced strong selection pressure, ultimately driving bipedal evolution in hominins.
Collapse
Affiliation(s)
- François Druelle
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France; Functional Morphology Laboratory, University of Antwerp, Campus Drie Eiken (Building D), Universiteitsplein 1, 2610 Antwerp, Belgium.
| | - Marco Ghislieri
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Pablo Molina-Vila
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Brigitte Rimbaud
- Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| | - Valentina Agostini
- Department of Electronics and Telecommunications, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy; PoliTo(BIO)Med Lab, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy
| | - Gilles Berillon
- Histoire Naturelle de l'Homme Préhistorique, UMR 7194, CNRS-MNHN-UPVD, Musée de l'Homme, 17 place du Trocadéro, 75116 Paris, France; Primatology Station of the CNRS, UAR 846, 2230 route des quatre tours, 13790 Rousset, France
| |
Collapse
|
9
|
Cheung VCK, Ha SCW, Zhang-Lea JH, Chan ZYS, Teng Y, Yeung G, Wu L, Liang D, Cheung RTH. Motor patterns of patients with spinal muscular atrophy suggestive of sensory and corticospinal contributions to the development of locomotor muscle synergies. J Neurophysiol 2024; 131:338-359. [PMID: 38230872 PMCID: PMC11321722 DOI: 10.1152/jn.00513.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
Complex locomotor patterns are generated by combination of muscle synergies. How genetic processes, early sensorimotor experiences, and the developmental dynamics of neuronal circuits contribute to the expression of muscle synergies remains elusive. We shed light on the factors that influence development of muscle synergies by studying subjects with spinal muscular atrophy (SMA, types II/IIIa), a disorder associated with degeneration and deafferentation of motoneurons and possibly motor cortical and cerebellar abnormalities, from which the afflicted would have atypical sensorimotor histories around typical walking onset. Muscle synergies of children with SMA were identified from electromyographic signals recorded during active-assisted leg motions or walking, and compared with those of age-matched controls. We found that the earlier the SMA onset age, the more different the SMA synergies were from the normative. These alterations could not just be explained by the different degrees of uneven motoneuronal losses across muscles. The SMA-specific synergies had activations in muscles from multiple limb compartments, a finding reminiscent of the neonatal synergies of typically developing infants. Overall, while the synergies shared between SMA and control subjects may reflect components of a core modular infrastructure determined early in life, the SMA-specific synergies may be developmentally immature synergies that arise from inadequate activity-dependent interneuronal sculpting due to abnormal sensorimotor experience and other factors. Other mechanisms including SMA-induced intraspinal changes and altered cortical-spinal interactions may also contribute to synergy changes. Our interpretation highlights the roles of the sensory and descending systems to the typical and abnormal development of locomotor modules.NEW & NOTEWORTHY This is likely the first report of locomotor muscle synergies of children with spinal muscular atrophy (SMA), a subject group with atypical developmental sensorimotor experience. We found that the earlier the SMA onset age, the more the subjects' synergies deviated from those of age-matched controls. This result suggests contributions of the sensory/corticospinal activities to the typical expression of locomotor modules, and how their disruptions during a critical period of development may lead to abnormal motor modules.
Collapse
Affiliation(s)
- Vincent C K Cheung
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Joint Laboratory of Bioresources and Molecular Research of Common Diseases, The Chinese University of Hong Kong and Kunming Institute of Zoology of the Chinese Academy of Sciences, Hong Kong, China
| | - Sophia C W Ha
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Health and Physical Education, The Education University of Hong Kong, Hong Kong, China
| | - Janet H Zhang-Lea
- School of Nursing and Human Physiology, Gonzaga University, Spokane, Washington, United States
| | - Zoe Y S Chan
- Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Yanling Teng
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Geshi Yeung
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
- Department of Psychology, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Lingqian Wu
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Desheng Liang
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Roy T H Cheung
- School of Health Sciences, Western Sydney University, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Hinnekens E, Berret B, Morard E, Do MC, Barbu-Roth M, Teulier C. Optimization of modularity during development to simplify walking control across multiple steps. Front Neural Circuits 2024; 17:1340298. [PMID: 38343616 PMCID: PMC10853381 DOI: 10.3389/fncir.2023.1340298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 12/14/2023] [Indexed: 02/15/2024] Open
Abstract
Introduction Walking in adults relies on a small number of modules, reducing the number of degrees of freedom that needs to be regulated by the central nervous system (CNS). While walking in toddlers seems to also involve a small number of modules when considering averaged or single-step data, toddlers produce a high amount of variability across strides, and the extent to which this variability interacts with modularity remains unclear. Methods Electromyographic activity from 10 bilateral lower limb muscles was recorded in both adults (n = 12) and toddlers (n = 12) over 8 gait cycles. Toddlers were recorded while walking independently and while being supported by an adult. This condition was implemented to assess if motor variability persisted with reduced balance constraints, suggesting a potential central origin rather than reliance on peripheral regulations. We used non-negative matrix factorization to model the underlying modular command with the Space-by-Time Decomposition method, with or without averaging data, and compared the modular organization of toddlers and adults during multiple walking strides. Results Toddlers were more variable in both conditions (i.e. independent walking and supported by an adult) and required significantly more modules to account for their greater stride-by-stride variability. Activations of these modules varied more across strides and were less parsimonious compared to adults, even with diminished balance constraints. Discussion The findings suggest that modular control of locomotion evolves between toddlerhood and adulthood as the organism develops and practices. Adults seem to be able to generate several strides of walking with less modules than toddlers. The persistence of variability in toddlers when balance constraints were lowered suggests a link with the ability to explore rather than with corrective mechanisms. In conclusion, the capacity of new walkers to flexibly activate their motor command suggests a broader range of possible actions, though distinguishing between modular and non-modular inputs remains challenging.
Collapse
Affiliation(s)
- Elodie Hinnekens
- Université Paris-Saclay, CIAMS, Orsay, France
- Université Paris-Saclay, CIAMS, Orléans, France
| | - Bastien Berret
- Université Paris-Saclay, CIAMS, Orsay, France
- Université Paris-Saclay, CIAMS, Orléans, France
| | - Estelle Morard
- Université Paris-Saclay, CIAMS, Orsay, France
- Université Paris-Saclay, CIAMS, Orléans, France
| | - Manh-Cuong Do
- Université Paris-Saclay, CIAMS, Orsay, France
- Université Paris-Saclay, CIAMS, Orléans, France
| | - Marianne Barbu-Roth
- Université Paris Cité, CNRS, Integrative Neuroscience and Cognition Center, Paris, France
| | - Caroline Teulier
- Université Paris-Saclay, CIAMS, Orsay, France
- Université Paris-Saclay, CIAMS, Orléans, France
| |
Collapse
|
11
|
Cole WG, Adolph KE. Learning to Move in a Changing Body in a Changing World. Integr Comp Biol 2023; 63:653-663. [PMID: 37355781 PMCID: PMC10503469 DOI: 10.1093/icb/icad083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
Infants of all species learn to move in the midst of tremendous variability and rapid developmental change. Traditionally, researchers consider variability to be a problem for development and skill acquisition. Here, we argue for a reconsideration of variability in early life, taking a developmental, ecological, systems approach. Using the development of walking in human infants as an example, we argue that the rich, variable experiences of infancy form the foundation for flexible, adaptive behavior in adulthood. From their first steps, infants must cope with changes in their bodies, skills, and environments. Rapid growth spurts and a continually expanding environment of surfaces, elevations, and obstacles alter the biomechanical constraints on balance and locomotion from day to day and moment to moment. Moreover, infants spontaneously generate a variable practice regimen for learning to walk. Self-initiated locomotion during everyday activity consists of immense amounts of variable, time-distributed, error-filled practice. From infants' first steps and continuing unabated over the next year, infants walk in short bursts of activity (not continual steps), follow curved (not straight) paths, and take steps in every direction (not only forward)-all the while, accompanied by frequent falls as infants push their limits (rather than a steady decrease in errors) and explore their environments. Thus, development ensures tremendous variability-some imposed by physical growth, caregivers, and a changing environment outside infants' control, and some self-generated by infants' spontaneous behavior. The end result of such massive variability is a perceptual-motor system adept at change. Thus, infants do not learn fixed facts about their bodies or environments or their level of walking skill. Instead, they learn how to learn-how to gauge possibilities for action, modify ongoing movements, and generate new movements on the fly from step to step. Simply put, variability in early development is a feature, not a bug. It provides a natural training regimen for successfully navigating complex, ever-changing environments throughout the lifespan. Moreover, observations of infants' natural behavior in natural, cluttered environments-rather than eliciting adult-like behaviors under artificial, controlled conditions-yield very different pictures of what infants of any species do and learn. Over-reliance on traditional tasks that artificially constrain variability therefore risks distorting researchers' understanding of the origins of adaptive behavior.
Collapse
Affiliation(s)
- Whitney G Cole
- Department of Psychology, New York University, 4 Washington Place, NY 10003, USA
| | - Karen E Adolph
- Department of Psychology, New York University, 4 Washington Place, NY 10003, USA
| |
Collapse
|
12
|
Cappellini G, Sylos-Labini F, Avaltroni P, Dewolf AH, Assenza C, Morelli D, Lacquaniti F, Ivanenko Y. Comparison of the forward and sideways locomotor patterns in children with Cerebral Palsy. Sci Rep 2023; 13:7286. [PMID: 37142631 PMCID: PMC10160037 DOI: 10.1038/s41598-023-34369-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 04/28/2023] [Indexed: 05/06/2023] Open
Abstract
Switching locomotion direction is a common task in daily life, and it has been studied extensively in healthy people. Little is known, however, about the locomotor adjustments involved in changing locomotion direction from forward (FW) to sideways (SW) in children with cerebral palsy (CP). The importance of testing the ability of children with CP in this task lies in the assessment of flexible, adaptable adjustments of locomotion as a function of the environmental context. On the one hand, the ability of a child to cope with novel task requirements may provide prognostic cues as to the chances of modifying the gait adaptively. On the other hand, challenging the child with the novel task may represent a useful rehabilitation tool to improve the locomotor performance. SW is an asymmetrical locomotor task and requires a differential control of right and left limb muscles. Here, we report the results of a cross-sectional study comparing FW and SW in 27 children with CP (17 diplegic, 10 hemiplegic, 2-10 years) and 18 age-matched typically developing (TD) children. We analyzed gait kinematics, joint moments, EMG activity of 12 pairs of bilateral muscles, and muscle modules evaluated by factorization of EMG signals. Task performance in several children with CP differed drastically from that of TD children. Only 2/3 of children with CP met the primary outcome, i.e. they succeeded to step sideways, and they often demonstrated attempts to step forward. They tended to rotate their trunk FW, cross one leg over the other, flex the knee and hip. Moreover, in contrast to TD children, children with CP often exhibited similar motor modules for FW and SW. Overall, the results reflect developmental deficits in the control of gait, bilateral coordination and adjustment of basic motor modules in children with CP. We suggest that the sideways (along with the backward) style of locomotion represents a novel rehabilitation protocol that challenges the child to cope with novel contextual requirements.
Collapse
Affiliation(s)
- Germana Cappellini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Francesca Sylos-Labini
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Priscilla Avaltroni
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy
| | - Arthur H Dewolf
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Carla Assenza
- Department of Pediatric Neurorehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179, Rome, Italy
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 306 Via Ardeatina, 00179, Rome, Italy.
| |
Collapse
|
13
|
Singh RE, Ahmadi A, Parr AM, Samadani U, Krassioukov AV, Netoff TI, Darrow DP. Epidural stimulation restores muscle synergies by modulating neural drives in participants with sensorimotor complete spinal cord injuries. J Neuroeng Rehabil 2023; 20:59. [PMID: 37138361 PMCID: PMC10155428 DOI: 10.1186/s12984-023-01164-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Multiple studies have corroborated the restoration of volitional motor control after motor-complete spinal cord injury (SCI) through the use of epidural spinal cord stimulation (eSCS), but rigorous quantitative descriptions of muscle coordination have been lacking. Six participants with chronic, motor and sensory complete SCI underwent a brain motor control assessment (BMCA) consisting of a set of structured motor tasks with and without eSCS. We investigated how muscle activity complexity and muscle synergies changed with and without stimulation. We performed this analysis to better characterize the impact of stimulation on neuromuscular control. We also recorded data from nine healthy participants as controls. Competition exists between the task origin and neural origin hypotheses underlying muscle synergies. The ability to restore motor control with eSCS in participants with motor and sensory complete SCI allows us to test whether changes in muscle synergies reflect a neural basis in the same task. Muscle activity complexity was computed with Higuchi Fractal Dimensional (HFD) analysis, and muscle synergies were estimated using non-negative matrix factorization (NNMF) in six participants with American Spinal Injury Association (ASIA) Impairment Score (AIS) A. We found that the complexity of muscle activity was immediately reduced by eSCS in the SCI participants. We also found that over the follow-up sessions, the muscle synergy structure of the SCI participants became more defined, and the number of synergies decreased over time, indicating improved coordination between muscle groups. Lastly, we found that the muscle synergies were restored with eSCS, supporting the neural hypothesis of muscle synergies. We conclude that eSCS restores muscle movements and muscle synergies that are distinct from those of healthy, able-bodied controls.
Collapse
Affiliation(s)
- Rajat Emanuel Singh
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
- Department of Kinesiology, Northwestern College, Orange, IA, USA
| | - Aliya Ahmadi
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, USA
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Uzma Samadani
- Department of Bioinformatics & Computational Biology, UMN, Minneapolis, MN, USA
- Minneapolis Veteran Affairs Medical Center, Minneapolis, MN, USA
| | - Andrei V Krassioukov
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia (UBC), Vancouver, Canada
- Division of Physical Medicine & Rehabilitation, Department of Medicine, UBC, British Columbia , BC, Canada
- GF Strong Rehabilitation Center, Vancouver Coastal Health, Vancouver, BC, Canada
| | - Theoden I Netoff
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - David P Darrow
- Division of Neurosurgery, Hennepin County Medical Center, Minneapolis, MN, USA.
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
14
|
ALCAN V, ZİNNUROĞLU M. Current developments in surface electromyography. Turk J Med Sci 2023; 53:1019-1031. [PMID: 38813041 PMCID: PMC10763750 DOI: 10.55730/1300-0144.5667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/26/2023] [Accepted: 03/26/2023] [Indexed: 05/31/2024] Open
Abstract
Background/aim Surface electromyography (surface EMG) is a primary technique to detect the electrical activities of muscles through surface electrodes. In recent years, surface EMG applications have grown from conventional fields into new fields. However, there is a gap between the progress in the research of surface EMG and its clinical acceptance, characterized by the translational knowledge and skills in the widespread use of surface EMG among the clinician community. To reduce this gap, it is necessary to translate the updated surface EMG applications and technological advances into clinical research. Therefore, we aimed to present a perspective on recent developments in the application of surface EMG and signal processing methods. Materials and methods We conducted this scoping review following the Joanna Briggs Institute (JBI) method. We conducted a general search of PubMed and Web of Science to identify key search terms. Following the search, we uploaded selected articles into Rayyan and removed duplicates. After prescreening 133 titles and abstracts, we assessed 91 full texts according to the inclusion criteria. Results We concluded that surface EMG has made innovative technological progress and has research potential for routine clinical applications and a wide range of applications, such as neurophysiology, sports and art performances, biofeedback, physical therapy and rehabilitation, assessment of physical exercises, muscle strength, fatigue, posture and postural control, movement analysis, muscle coordination, motor synergies, modelling, and more. Novel methods have been applied for surface EMG signals in terms of time domain, frequency domain, time-frequency domain, statistical methods, and nonlinear methods. Conclusion Translating innovations in surface EMG and signal analysis methods into routine clinical applications can be a helpful tool with a growing and valuable role in muscle activation measurement in clinical practices. Thus, researchers must build many more interfaces that give opportunities for continuing education and research with more contemporary techniques and devices.
Collapse
Affiliation(s)
- Veysel ALCAN
- Department of Electrical and Electronics Engineering, Engineering Faculty, Tarsus University, Mersin,
Turkiye
| | - Murat ZİNNUROĞLU
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Gazi University, Ankara,
Turkiye
| |
Collapse
|
15
|
Miyagishima S, Mani H, Sato Y, Inoue T, Asaka T, Kozuka N. Developmental changes in straight gait in childhood. PLoS One 2023; 18:e0281037. [PMID: 36758023 PMCID: PMC9910736 DOI: 10.1371/journal.pone.0281037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/16/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Understanding typical gait development is critical in developing suitable physical therapy methods for gait disorders. This study investigated the developmental changes and controlling mechanisms of straight gait. METHODS We conducted an experimental procedure among 90 participants, including 76 typically developing children and 14 healthy adults. The children were divided according to age into 3-4, 5-6, 7-8, and 9-10-year age groups. We created two indices to quantify straight gait using the extrapolated center of mass (XCOM; goal index, XCOMG and actual progress index, XCOMP), which were calculated and compared between the groups. Stepwise multiple regression was used to examine the effects of each gait variable on XCOMG and XCOMP. To eliminate the effects of multicollinearity, correlation coefficients were calculated for all gait variables. RESULTS Both XCOMG and XCOMP decreased gradually with age and were significantly larger in the 3-4 and 5-6 year groups than in the adult group. Multiple regression analysis showed that step velocity, step width, and the coefficiente of variation (CV) of the step width had independent coefficients of variation for the XCOMG, and the symmetry index of step time, step width, and the CV of the step width had independent CV for the XCOMP. These variables were selected as significant variables. The results showed that meandering gait was more pronounced at younger ages. Furthermore, straight gait observed in adulthood was achieved by the age of 7. CONCLUSION Pace (step velocity) and stability (step width and CV of step width) may contribute to XCOMG, which assesses the ability to proceed in the direction of the target. Stability and symmetry may contribute to XCOMP, which assesses the ability to walk straight in one's own direction of progress. Physical therapists could apply these indices in children to assess their ability to walk straight.
Collapse
Affiliation(s)
- Saori Miyagishima
- Division of Rehabilitation, Sapporo Medical University Hospital, Hokkaido, Japan
| | - Hiroki Mani
- Faculty of Welfare and Health Science, Oita University, Oita, Japan
- * E-mail:
| | - Yui Sato
- Division of Rehabilitation, Sapporo Medical University Hospital, Hokkaido, Japan
- Graduate School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| | - Takahiro Inoue
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tadayoshi Asaka
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Naoki Kozuka
- Department of Physical Therapy, School of Health Sciences, Sapporo Medical University, Sapporo, Hokkaido, Japan
| |
Collapse
|
16
|
Safari N, Alemzadeh M, Majlesi M, Farahpour N, Mansoorizadeh M. Measuring the Effect of Vision on the Synergy of Lower Extremity Muscles during Walking using Nonnegative Matrix Factorization (NNMF) Algorithm Method. Appl Bionics Biomech 2023; 2023:5501871. [PMID: 37114106 PMCID: PMC10129435 DOI: 10.1155/2023/5501871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/26/2023] [Accepted: 03/15/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Lack of visual information in blind people during walking can affect the choice of muscle synergy from among the many incoming messages that reach the central nervous system (CNS). This study aimed to determine the effect of vision on the synergy of lower limb muscles during walking using the nonnegative matrix factorization algorithm (NNMF). Methods Ten blind people and 10 people with normal vision participated in this study. Activities of involved muscles were recorded during walking. Muscle synergy matrix and synergy activation coefficient were calculated using the NNMF algorithm, while the variance accounted for criterion was used to determine the number of synergies required during walking. In order to assess the similarity of muscle synergy pattern and the relative weight of each muscle in each synergy in each group, Pearson correlation and independent samples t-test at a significance level of α ≤ 0.05 were used. Results Four muscle synergies were extracted from EMG data during walking. The first (r = 0.431) and the second (r = 0.457) synergy patterns showed a moderate correlation between the two groups. However, the third (r = 0.302) and the fourth (r = 0.329) synergy patterns showed a weak correlation between the two groups. In the blind group, the relative weight of the muscles in the first synergy was significant for the external extensor muscle (P = 0.023), and in the second synergy for the biceps femoris. Also, in the third synergy, the relative weight was found to be significant in none of the muscles. In the fourth synergy, however, the relative weight of external extensor muscle in the blind group showed a significant decrease, as compared to the group with normal vision. Conclusions These changes can be the strategy of the CNS to preserve the optimal functioning in the motor system of blind people.
Collapse
Affiliation(s)
- Nasim Safari
- Department of Kinesiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Mahboubeh Alemzadeh
- Department of Kinesiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | - Mahdi Majlesi
- Department of Sport Biomechanics, Faculty of Humanities, Islamic Azad University of Hamadan, Hamedan, Iran
| | - Nader Farahpour
- Department of Kinesiology, Faculty of Sport Sciences, Bu-Ali Sina University, Hamedan, Iran
| | | |
Collapse
|
17
|
Baifa Z, Xinglong Z, Dongmei L. Muscle coordination during archery shooting: A comparison of archers with different skill levels. Eur J Sport Sci 2023; 23:54-61. [PMID: 34859747 DOI: 10.1080/17461391.2021.2014573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This study aimed to compare the muscle coordination of different skill level archers by using the concept of muscle synergies. A total of 28 archers (8 elite, 12 mid-level, and 8 novices) were recruited to participate in this study. Electromyography (EMG) signals were recorded using a 13-channel (Trigno EMG sensor, Delsys Inc., USA) wireless surface EMG system. Fundamental synergies containing time-dependent activation coefficients (motor primitives) and time-invariant muscle weightings (motor modules) were extracted using non-negative matrix factorisation. We observed three fundamental synergies in all groups during archery shooting. The results showed that the centre of activity of the motor primitive of synergy-3 occurred earlier in novice archers than in elite and mid-level archers, which was followed by an increase in the averaged frequency of overlaps. The results also showed a slight difference in the relative muscle contribution of the motor module of synergy-2 and -3 within different groups. These findings revealed that the number of muscle synergies did not depend on the proficiency level; however, more expert archers improved timing management better than less experienced ones. Therefore, we suggest that coaches and athletes focus on optimising the temporal coordination of the follow-through phase.
Collapse
Affiliation(s)
- Zhang Baifa
- School of Sport Science, Beijing Sport University, Beijing, People's Republic of China
| | - Zhou Xinglong
- School of Sport Science, Beijing Sport University, Beijing, People's Republic of China
| | - Luo Dongmei
- School of Sport Science, Beijing Sport University, Beijing, People's Republic of China
| |
Collapse
|
18
|
Sylos-Labini F, La Scaleia V, Cappellini G, Dewolf A, Fabiano A, Solopova IA, Mondì V, Ivanenko Y, Lacquaniti F. Complexity of modular neuromuscular control increases and variability decreases during human locomotor development. Commun Biol 2022; 5:1256. [PMID: 36385628 PMCID: PMC9669031 DOI: 10.1038/s42003-022-04225-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/04/2022] [Indexed: 11/17/2022] Open
Abstract
When does modular control of locomotion emerge during human development? One view is that modularity is not innate, being learnt over several months of experience. Alternatively, the basic motor modules are present at birth, but are subsequently reconfigured due to changing brain-body-environment interactions. One problem in identifying modular structures in stepping infants is the presence of noise. Here, using both simulated and experimental muscle activity data from stepping neonates, infants, preschoolers, and adults, we dissect the influence of noise, and identify modular structures in all individuals, including neonates. Complexity of modularity increases from the neonatal stage to adulthood at multiple levels of the motor infrastructure, from the intrinsic rhythmicity measured at the level of individual muscles activities, to the level of muscle synergies and of bilateral intermuscular network connectivity. Low complexity and high variability of neuromuscular signals attest neonatal immaturity, but they also involve potential benefits for learning locomotor tasks.
Collapse
Affiliation(s)
- Francesca Sylos-Labini
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy.
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179, Rome, Italy.
| | - Valentina La Scaleia
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179, Rome, Italy
| | - Germana Cappellini
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179, Rome, Italy
| | - Arthur Dewolf
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Adele Fabiano
- Neonatology and Neonatal Intensive Care Unit, Ospedale San Giovanni, 00184, Rome, Italy
| | - Irina A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, 127994, Moscow, Russia
| | - Vito Mondì
- Neonatology and Neonatal Intensive Care Unit, Casilino Hospital, 00169, Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179, Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine and Center of Space Biomedicine, University of Rome Tor Vergata, 00133, Rome, Italy.
- Laboratory of Neuromotor Physiology, Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Santa Lucia, 00179, Rome, Italy.
| |
Collapse
|
19
|
Guo X, He B, Lau KYS, Chan PPK, Liu R, Xie JJ, Ha SCW, Chen CY, Cheing GLY, Cheung RTH, Chan RHM, Cheung VCK. Age-Related Modifications of Muscle Synergies and Their Temporal Activations for Overground Walking. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2700-2709. [PMID: 36107887 DOI: 10.1109/tnsre.2022.3206887] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Healthy ageing modifies neuromuscular control of human overground walking. Previous studies found that ageing changes gait biomechanics, but whether there is concurrent ageing-related modulation of neuromuscular control remains unclear. We analyzed gait kinematics and electromyographic signals (EMGs; 14 lower-limb and trunk muscles) collected at three speeds during overground walking in 11 healthy young adults (mean age of 23.4 years) and 11 healthy elderlies (67.2 years). Neuromuscular control was characterized by extracting muscle synergies from EMGs and the synergies of both groups were k -means-clustered. The synergies of the two groups were grossly similar, but we observed numerous cluster- and muscle-specific differences between the age groups. At the population level, some hip-motion-related synergy clusters were more frequently identified in elderlies while others, more frequent in young adults. Such differences in synergy prevalence between the age groups are consistent with the finding that elderlies had a larger hip flexion range. For the synergies shared between both groups, the elderlies had higher inter-subject variability of the temporal activations than young adults. To further explore what synergy characteristics may be related to this inter-subject variability, we found that the inter-subject variance of temporal activations correlated negatively with the sparseness of the synergies in elderlies but not young adults during slow walking. Overall, our results suggest that as humans age, not only are the muscle synergies for walking fine-tuned in structure, but their temporal activation patterns are also more heterogeneous across individuals, possibly reflecting individual differences in prior sensorimotor experience or ageing-related changes in limb neuro-musculoskeletal properties.
Collapse
|
20
|
Long descending commissural V0v neurons ensure coordinated swimming movements along the body axis in larval zebrafish. Sci Rep 2022; 12:4348. [PMID: 35288598 PMCID: PMC8921517 DOI: 10.1038/s41598-022-08283-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 03/02/2022] [Indexed: 01/03/2023] Open
Abstract
Developmental maturation occurs in slow swimming behavior in larval zebrafish; older larvae acquire the ability to perform slow swimming while keeping their head stable in the yaw dimension. A class of long-distance descending commissural excitatory V0v neurons, called MCoD neurons, are known to develop in a later phase of neurogenesis, and participate in slow swimming in older larvae. We hypothesized that these MCoD neurons play a role in coordinating the activities of trunk muscles in the diagonal dimension (e.g., the rostral left and the caudal right) to produce the S-shaped swimming form that contributes to the stability of the head. Here, we show that MCoD neurons do indeed play this role. In larvae in which MCoD neurons were laser-ablated, the swimming body form often adopted a one-sided (C-shaped) bend with reduced appearance of the normal S-shaped bend. With this change in swimming form, the MCoD-ablated larvae exhibited a greater degree of head yaw displacement during slow swimming. In mice, the long-distance descending commissural V0v neurons have been implicated in diagonal interlimb coordination during walking. Together with this, our study suggests that the long-distance descending commissural V0v neurons form an evolutionarily conserved pathway in the spinal locomotor circuits that coordinates the movements of the diagonal body/limb muscles.
Collapse
|
21
|
Couto AGB, Vaz MAP, Pinho L, Félix J, Silva S, Silva A, Sousa ASP. Methodological Considerations in Assessing Interlimb Coordination on Poststroke Gait: A Scoping Review of Biomechanical Approaches and Outcomes. SENSORS (BASEL, SWITZERLAND) 2022; 22:2010. [PMID: 35271155 PMCID: PMC8914666 DOI: 10.3390/s22052010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/18/2022] [Accepted: 03/02/2022] [Indexed: 01/25/2023]
Abstract
Objective: To identify and summarize biomechanical assessment approaches in interlimb coordination on poststroke gait. Introduction: Interlimb coordination involves complex neurophysiological mechanisms that can be expressed through the biomechanical output. The deepening of this concept would have a significant contribution in gait rehabilitation in patients with an asymmetric neurological impairment as poststroke adults. Inclusion criteria: Poststroke adults (>19 years old), with assessment of interlimb coordination during gait, in an open context, according to the Population, Concept, Context framework. Methods: A literature search was performed in PubMed, Web of Science™, Scopus, and gray literature in Google Scholar™, according to the PRISMA-ScR recommendations. Studies written in Portuguese or English language and published between database inception and 14 November 2021 were included. Qualitative studies, conference proceedings, letters, and editorials were excluded. The main conceptual categories were “author/year”, “study design”, “participant’s characteristics”, “walking conditions”, “instruments” and “outcomes”. Results: The search identified 827 potentially relevant studies, with a remaining seven fulfilling the established criteria. Interlimb coordination was assessed during walking in treadmill (n = 3), overground (n = 3) and both (n = 1). The instruments used monitored electromyography (n = 2), kinetics (n = 2), and kinematics (n = 4) to assess spatiotemporal parameters (n = 4), joint kinematics (n = 2), anteroposterior ground reaction forces (n = 2), and electromyography root mean square (n = 2) outcomes. These outcomes were mostly used to analyze symmetry indices or ratios, to calculate propulsive impulse and external mechanical power produced on the CoM, as well as antagonist coactivation. Conclusions: Assessment of interlimb coordination during gait is important for consideration of natural auto-selected overground walking, using kinematic, kinetic, and EMG instruments. These allow for the collection of the main biomechanical outcomes that could contribute to improve better knowledge of interlimb coordination assessment in poststroke patients.
Collapse
Affiliation(s)
- Ana G. B. Couto
- Escola Superior de Saúde de Santa Maria, Travessa Antero de Quental, 173, 4049-024 Porto, Portugal;
- Centro de Investigação em Reabilitação, Centro de Estudos de Movimento e Atividade Humana, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
- Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Mário A. P. Vaz
- Departamento de Engenharia de Mecânica, Faculdade de Engenharia, Universidade do Porto (INEGI/Labiomep), Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal;
| | - Liliana Pinho
- Centro de Investigação em Reabilitação, Centro de Estudos de Movimento e Atividade Humana, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal;
- Faculdade de Desporto, Universidade do Porto, Rua Dr. Plácido da Costa, 91, 4200-450 Porto, Portugal
| | - José Félix
- Departamento de Física, Centro de Investigação em Reabilitação, Centro de Estudos de Movimento e Atividade Humana, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| | - Sandra Silva
- Escola Superior de Saúde do Vale do Ave, Cooperativa de Ensino Superior Politécnico e Universitário, Rua José António Vidal, 81, 4760-409 Vila Nova de Famalicão, Portugal;
| | - Augusta Silva
- Área Científica de Fisioterapia, Centro de Investigação em Reabilitação, Centro de Estudos de Movimento e Atividade Humana, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| | - Andreia S. P. Sousa
- Área Científica de Fisioterapia, Centro de Investigação em Reabilitação, Centro de Estudos de Movimento e Atividade Humana, Escola Superior de Saúde do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal;
| |
Collapse
|
22
|
Saers JPP, Gordon AD, Ryan TM, Stock JT. Growth and development of trabecular structure in the calcaneus of Japanese macaques (Macaca fuscata) reflects locomotor behavior, life history, and neuromuscular development. J Anat 2022; 241:67-81. [PMID: 35178713 PMCID: PMC9178394 DOI: 10.1111/joa.13641] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/26/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Bone structure dynamically adapts to its mechanical environment throughout ontogeny by altering the structure of trabecular bone, the three-dimensional mesh-like structure found underneath joint surfaces. Trabecular structure, then, can provide a record of variation in loading directions and magnitude; and in ontogenetic samples, it can potentially be used to track developmental shifts in limb posture. We aim to broaden the analysis of trabecular bone ontogeny by incorporating interactions between ontogenetic variation in locomotor repertoire, neuromuscular maturation, and life history. We examine the associations between these variables and age-related variation in trabecular structure in the calcaneus of Japanese macaques (Macaca fuscata). We used high-resolution micro-computed tomography scanning to image the calcaneus in a cross-sectional sample of 34 juvenile M. fuscata aged between 0 and 7 years old at the Primate Research Institute, Japan. We calculated whole bone averages of standard trabecular properties and generated whole-bone morphometric maps of bone volume fraction and Young's modulus. Trabecular structure becomes increasingly heterogeneous in older individuals. Bone volume fraction (BV/total volume [TV]) decreases during the first month of life and increases afterward, coinciding with the onset of independent locomotion in M. fuscata. At birth, primary Young's modulus is oriented orthogonal to the ossification center, but after locomotor onset bone structure becomes stiffest in the direction of joint surfaces and muscle attachments. Age-related variation in bone volume fraction is best predicted by an interaction between the estimated percentage of adult brain size, body mass, and locomotor onset. To explain our findings, we propose a model where interactions between age-related increases in body weight and maturation of the neuromuscular system alter the loading environment of the calcaneus, to which the internal trabecular structure dynamically adapts. This model cannot be directly tested based on our cross-sectional data. However, confirmation of the model by longitudinal experiments and in multiple species would show that trabecular structure can be used both to infer behavior from fossil morphology and serve as a valuable proxy for neuromuscular maturation and life history events like locomotor onset and the achievement of an adult-like gait. This approach could significantly expand our knowledge of the biology and behavior of fossil species.
Collapse
Affiliation(s)
- Jaap P P Saers
- Department of Archaeology, Cambridge University, Cambridge, UK
| | - Adam D Gordon
- Department of Anthropology, University at Albany, SUNY, Albany, New York, USA
| | - Timothy M Ryan
- Department of Anthropology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Jay T Stock
- Department of Archaeology, Cambridge University, Cambridge, UK.,Department of Anthropology, Western University, London, Ontario, Canada
| |
Collapse
|
23
|
Intramuscle Synergies: Their Place in the Neural Control Hierarchy. Motor Control 2022; 27:402-441. [PMID: 36543175 DOI: 10.1123/mc.2022-0094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/03/2022] [Accepted: 10/24/2022] [Indexed: 12/24/2022]
Abstract
We accept a definition of synergy introduced by Nikolai Bernstein and develop it for various actions, from those involving the whole body to those involving a single muscle. Furthermore, we use two major theoretical developments in the field of motor control—the idea of hierarchical control with spatial referent coordinates and the uncontrolled manifold hypothesis—to discuss recent studies of synergies within spaces of individual motor units (MUs) recorded within a single muscle. During the accurate finger force production tasks, MUs within hand extrinsic muscles form robust groups, with parallel scaling of the firing frequencies. The loading factors at individual MUs within each of the two main groups link them to the reciprocal and coactivation commands. Furthermore, groups are recruited in a task-specific way with gains that covary to stabilize muscle force. Such force-stabilizing synergies are seen in MUs recorded in the agonist and antagonist muscles but not in the spaces of MUs combined over the two muscles. These observations reflect inherent trade-offs between synergies at different levels of a control hierarchy. MU-based synergies do not show effects of hand dominance, whereas such effects are seen in multifinger synergies. Involuntary, reflex-based, force changes are stabilized by intramuscle synergies but not by multifinger synergies. These observations suggest that multifinger (multimuscle synergies) are based primarily on supraspinal circuitry, whereas intramuscle synergies reflect spinal circuitry. Studies of intra- and multimuscle synergies promise a powerful tool for exploring changes in spinal and supraspinal circuitry across patient populations.
Collapse
|
24
|
Kerkman JN, Zandvoort CS, Daffertshofer A, Dominici N. Body Weight Control Is a Key Element of Motor Control for Toddlers' Walking. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:844607. [PMID: 36926099 PMCID: PMC10013000 DOI: 10.3389/fnetp.2022.844607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/10/2022] [Indexed: 01/21/2023]
Abstract
New-borns can step when supported for about 70-80% of their own body weight. Gravity-related sensorimotor information might be an important factor in developing the ability to walk independently. We explored how body weight support alters motor control in toddlers during the first independent steps and in toddlers with about half a year of walking experience. Sixteen different typically developing children were assessed during (un)supported walking on a running treadmill. Electromyography of 18-24 bilateral leg and back muscles and vertical ground reaction forces were recorded. Strides were grouped into four levels of body weight support ranging from no (<10%), low (10-35%), medium (35-55%), and high (55-95%) support. We constructed muscle synergies and muscle networks and assessed differences between levels of support and between groups. In both groups, muscle activities could be described by four synergies. As expected, the mean activity decreased with body weight support around foot strikes. The younger first-steps group showed changes in the temporal pattern of the synergies when supported for more than 35% of their body weight. In this group, the muscle network was dense with several interlimb connections. Apparently, the ability to process gravity-related information is not fully developed at the onset of independent walking causing motor control to be fairly disperse. Synergy-specific sensitivity for unloading implies distinct neural mechanisms underlying (the emergence of) these synergies.
Collapse
Affiliation(s)
- Jennifer N Kerkman
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Coen S Zandvoort
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Andreas Daffertshofer
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Nadia Dominici
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Science Institute (AMS) and Institute for Brain and Behaviour Amsterdam (iBBA), Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
25
|
Biomechanical Characteristics of Vertical Jumping of Preschool Children in China Based on Motion Capture and Simulation Modeling. SENSORS 2021; 21:s21248376. [PMID: 34960462 PMCID: PMC8706245 DOI: 10.3390/s21248376] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/29/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022]
Abstract
Vertical jumping is one of the basic motor skills, and it is an essential part of many sports. The main purpose of this paper is to investigate characteristics of vertical jumping of children. This paper uses a motion capture system, three-dimensional platforms, and a simulation modeling system to analyze the kinematics and dynamics performance of children's vertical jumping. The compression time increases from 3 to 4 years old, and flight height and time increases with age and stage gradually. In the compression phase and pushing phase, the hip and knee joint play a major role; in the landing phase, the knee and ankle joint play a major role. Muscle forces are mainly affected by age, and the three types of muscle force had two different trends. The muscle force of the shank and thigh increased with age, and the pelvic girdle muscles showed an "low-high-low" trend. The regression model suggests that the force of GMiP and the hip angular velocity have a great influence on jumping ability. Therefore, if we want to improve the jumping ability of preschool children, we should pay more attention to hip exercises. We should integrate the hip exercises into interesting games, which are more in line with their physical and mental health.
Collapse
|
26
|
Madarshahian S, Latash ML. Reciprocal and coactivation commands at the level of individual motor units in an extrinsic finger flexor-extensor muscle pair. Exp Brain Res 2021; 240:321-340. [PMID: 34725732 DOI: 10.1007/s00221-021-06255-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/23/2021] [Indexed: 11/28/2022]
Abstract
We explored the synergic organization of motor units in extrinsic finger muscles, flexor digitorum superficialis (FDS), and extensor digitorum communis (EDC). Healthy subjects produced accurate cyclical force by pressing with the middle phalanges of one of the three fingers (Index, Middle, and Ring) and all three together. Two wireless sensor arrays were used to record and identify motor unit action potentials in FDS and EDC. Stable motor unit groups were identified within each muscle and across both muscles. Analysis of motor units combined over the two muscles showed one of the first two motor unit groups with consistently opposite signs of the loading factors for the FDS and EDC motor units, and the other group with consistently same signs of the loading factors for the two muscles. We interpret the two motor unit groups as reflections of the reciprocal and co-activation commands within the theory of control with spatial referent coordinates. Force changes within the cycle were primarily associated with the modulation of the co-activation motor unit group. Analysis of inter-cycle variance within the spaces of motor unit groups defined for FDS and EDC separately showed force-stabilizing synergies across both single-finger and three-finger tasks. In contrast, analysis within the motor unit groups defined across both muscles failed to show force-stabilizing synergies. We interpret these results as a reflection of the trade-off across levels within a hierarchical control system.
Collapse
Affiliation(s)
- Shirin Madarshahian
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA
| | - Mark L Latash
- Department of Kinesiology, The Pennsylvania State University, Rec.Hall-267, University Park, PA, 16802, USA.
| |
Collapse
|
27
|
Hospodar CM, Hoch JE, Lee DK, Shrout PE, Adolph KE. Practice and proficiency: Factors that facilitate infant walking skill. Dev Psychobiol 2021; 63:e22187. [PMID: 34674233 DOI: 10.1002/dev.22187] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 01/07/2023]
Abstract
Infant walking skill improves with practice-crudely estimated by elapsed time since walk onset. However, despite the robust relation between elapsed time (months walking) and skill, practice is likely constrained and facilitated by infants' home environments, sociodemographic influences, and spontaneous activity. Individual pathways are tremendously diverse in the timing of walk onset and the trajectory of improvement, and presumably, in the amount and type of practice. So, what factors affect the development of walking skill? We examined the role of months walking, walk onset age, spontaneous locomotor activity, body dimensions, and environmental factors on the development of walking skill in two sociodemographically distinct samples (ns = 38 and 44) of 13-, 15-, and 19-month-old infants. Months walking best predicted how well infants walked, but environmental factors and spontaneous activity explained additional variance in walking skill. Specifically, less crowded homes, a larger percentage of time in spontaneous walking, and a smaller percentage of short walking bouts predicted more mature walking. Walk onset age differed by sample but did not affect walking skill. Findings indicate that elapsed time since walk onset remains a robust predictor of walking skill, but environmental factors and spontaneous activity also contribute to infants' practice, thereby affecting walking skill.
Collapse
Affiliation(s)
| | - Justine E Hoch
- Department of Psychology, New York University, New York, New York, USA
| | - Do Kyeong Lee
- Department of Kinesiology, California State University, Fullerton, California, USA
| | - Patrick E Shrout
- Department of Psychology, New York University, New York, New York, USA
| | - Karen E Adolph
- Department of Psychology, New York University, New York, New York, USA
| |
Collapse
|
28
|
Elazeem MRA, Eltohamy AM, Ali MS. Association between body mass index and spatial gait parameters in primary school children. BULLETIN OF FACULTY OF PHYSICAL THERAPY 2021. [DOI: 10.1186/s43161-021-00037-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Increasing BMI is associated with increased risk of mortality, cardiovascular disease, and some cancers whereas a lower BMI is associated with an increased risk of mortality, postsurgical complications, infection, and length of hospital stay as a result. Locomotion is a unique feature of the animal kingdom. It allows individuals to meet others, to find better food and a better climate, to pursue prey, or to escape impending danger. The aim of the current study was to determine the correlation between body mass index (BMI) and spatial gait parameters in primary school children.
Results
A total of 320 healthy children from primary schools were enrolled. The participants comprised 185 boys and 135 girls with a mean age of 10.05 ± 0.95 years, mean weight of 38.49 ± 12.2 kg, a mean height of 139.25 ± 10.12 cm, and a mean BMI of 19.35 ± 4.55 kg/m2. BMI was evaluated by the KINLEE Electronic Personal Scale with Height Measurement and CDC charts for boys and girls and equation of BMI. Spatial gait parameters were evaluated by a pediatric run-based anaerobic sprint test with an Omron pedometer to assess step and stride length.
Statistical analysis was performed by Pearson’s correlation coefficient to study the relationship between variables. A correlation was performed between the variables, and the coefficient of determination was calculated. The significance level was set at 5% for all analyses. There was no significant relationship between BMI and spatial gait parameters (step length and stride length) (r = 0.008, p = 0.88 and r = 0.02, p = 0.7, respectively).
Conclusion
According to the results, we concluded that there was no significant relationship between BMI and the measured gait parameters (step length and stride length).
Collapse
|
29
|
Latash ML. One more time about motor (and non-motor) synergies. Exp Brain Res 2021; 239:2951-2967. [PMID: 34383080 DOI: 10.1007/s00221-021-06188-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 08/03/2021] [Indexed: 11/28/2022]
Abstract
We revisit the concept of synergy based on the recently translated classical book by Nikolai Bernstein (On the construction of movements, Medgiz, Moscow 1947; Latash, Bernstein's Construction of Movements, Routledge, Abingdon 2020b) and progress in understanding the physics and neurophysiology of biological action. Two aspects of synergies are described: organizing elements into stable groups (modes) and ensuring dynamical stability of salient performance variables. The ability of the central nervous system to attenuate synergies in preparation for a quick action-anticipatory synergy adjustments-is emphasized. Recent studies have demonstrated synergies at the level of hypothetical control variables associated with spatial referent coordinates for effectors. Overall, the concept of synergies fits naturally the hierarchical scheme of control with referent coordinates with an important role played by back-coupling loops within the central nervous system and from peripheral sensory endings. Further, we review studies showing non-trivial changes in synergies with development, aging, fatigue, practice, and a variety of neurological disorders. Two aspects of impaired synergic control-impaired stability and impaired agility-are introduced. The recent generalization of the concept of synergies for non-motor domains, including perception, is discussed. We end the review with a list of unresolved and troubling issues.
Collapse
Affiliation(s)
- Mark L Latash
- Department of Kinesiology, Rec.Hall-268N, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
30
|
Jequier Gygax M, Maillard AM, Favre J. Could Gait Biomechanics Become a Marker of Atypical Neuronal Circuitry in Human Development?-The Example of Autism Spectrum Disorder. Front Bioeng Biotechnol 2021; 9:624522. [PMID: 33796508 PMCID: PMC8009281 DOI: 10.3389/fbioe.2021.624522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 02/19/2021] [Indexed: 12/28/2022] Open
Abstract
This perspective paper presents converging recent knowledge in neurosciences (motor neurophysiology, neuroimaging and neuro cognition) and biomechanics to outline the relationships between maturing neuronal network, behavior, and gait in human development. Autism Spectrum Disorder (ASD) represents a particularly relevant neurodevelopmental disorder (NDD) to study these convergences, as an early life condition presenting with sensorimotor and social behavioral alterations. ASD diagnosis relies solely on behavioral criteria. The absence of biological marker in ASD is a main challenge, and hampers correlations between behavioral development and standardized data such as brain structure alterations, brain connectivity, or genetic profile. Gait, as a way to study motor system development, represents a well-studied, early life ability that can be characterized through standardized biomechanical analysis. Therefore, developmental gait biomechanics might appear as a possible motor phenotype and biomarker, solid enough to be correlated to neuronal network maturation, in normal and atypical developmental trajectories—like in ASD.
Collapse
Affiliation(s)
- Marine Jequier Gygax
- Service des Troubles du Spectre de l'Autisme, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Favre
- Swiss BioMotion Lab, Department of Musculoskeletal Medicine, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
31
|
Dewolf AH, Sylos Labini F, Ivanenko Y, Lacquaniti F. Development of Locomotor-Related Movements in Early Infancy. Front Cell Neurosci 2021; 14:623759. [PMID: 33551751 PMCID: PMC7858268 DOI: 10.3389/fncel.2020.623759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
This mini-review focuses on the emergence of locomotor-related movements in early infancy. In particular, we consider multiples precursor behaviors of locomotion as a manifestation of the development of the neuronal networks and their link in the establishment of precocious locomotor skills. Despite the large variability of motor behavior observed in human babies, as in animals, afferent information is already processed to shape the behavior to specific situations and environments. Specifically, we argue that the closed-loop interaction between the neural output and the physical dynamics of the mechanical system should be considered to explore the complexity and flexibility of pattern generation in human and animal neonates.
Collapse
Affiliation(s)
- Arthur H Dewolf
- Department of Systems Medicine, Center of Space Biomedicine, Faculty of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy
| | | | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Department of Systems Medicine, Center of Space Biomedicine, Faculty of Medicine and Surgery, University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
32
|
Vanden Hole C, Ayuso M, Aerts P, Van Cruchten S, Thymann T, Sangild PT, Van Ginneken C. Preterm Birth Affects Early Motor Development in Pigs. Front Pediatr 2021; 9:731877. [PMID: 34692609 PMCID: PMC8529956 DOI: 10.3389/fped.2021.731877] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Preterm infants frequently show neuromotor dysfunctions, but it is not clear how reduced gestational age at birth may induce developmental coordination disorders. Advancing postnatal age, not only post-conceptional age, may determine neuromuscular development, and early interventions in preterm newborns may improve their later motor skills. An animal model of preterm birth that allows early postnatal detection of movement patterns may help to investigate this hypothesis. Methods: Using pigs as a model for moderately preterm infants, preterm (106-day gestation, equivalent to 90% of normal gestation time; n = 38) and term (115-day gestation, equivalent to 99% of normal gestation time; n = 20) individuals were delivered by cesarean section and artificially reared until postnatal day 19 (preweaning period). The neuromotor skills of piglets were documented using spatiotemporal gait analyses on video recordings of locomotion at self-selected speed at postnatal age 3, 4, 5, 8, and 18 days. Results were controlled for effects of body weight and sex. Results: Both preterm and term piglets reached mature neuromotor skills and performance between postnatal days 3-5. However, preterm pigs took shorter steps at a higher frequency, than term piglets, irrespective of their body size. Within preterm pigs, males and low birth weight individuals took the shortest steps, and with the highest frequency. Conclusion: Postnatal development of motor skills and gait characteristics in pigs delivered in late gestation may show similarity to the compromised development of gait pattern in preterm infants. Relative to term pigs, the postnatal delay in gait development in preterm pigs was only few days, that is, much shorter than the 10-day reduction in gestation length. This indicates rapid postnatal adaptation of gait pattern after reduced gestational age at birth. Early-life physical training and medical interventions may support both short- and long-term gait development after preterm birth in both pigs and infants.
Collapse
Affiliation(s)
- Charlotte Vanden Hole
- Laboratory of Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Miriam Ayuso
- Laboratory of Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Peter Aerts
- Laboratory of Functional Morphology, Department of Biology, Faculty of Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven Van Cruchten
- Laboratory of Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - Per Torp Sangild
- Comparative Pediatrics and Nutrition, University of Copenhagen, Copenhagen, Denmark
| | - Chris Van Ginneken
- Laboratory of Comparative Perinatal Development, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
33
|
Cappellini G, Sylos-Labini F, Dewolf AH, Solopova IA, Morelli D, Lacquaniti F, Ivanenko Y. Maturation of the Locomotor Circuitry in Children With Cerebral Palsy. Front Bioeng Biotechnol 2020; 8:998. [PMID: 32974319 PMCID: PMC7462003 DOI: 10.3389/fbioe.2020.00998] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 07/30/2020] [Indexed: 12/26/2022] Open
Abstract
The first years of life represent an important phase of maturation of the central nervous system, processing of sensory information, posture control and acquisition of the locomotor function. Cerebral palsy (CP) is the most common group of motor disorders in childhood attributed to disturbances in the fetal or infant brain, frequently resulting in impaired gait. Here we will consider various findings about functional maturation of the locomotor output in early infancy, and how much the dysfunction of gait in children with CP can be related to spinal neuronal networks vs. supraspinal dysfunction. A better knowledge about pattern generation circuitries in infancy may improve our understanding of developmental motor disorders, highlighting the necessity for regulating the functional properties of abnormally developed neuronal locomotor networks as a target for early sensorimotor rehabilitation. Various clinical approaches and advances in biotechnology are also considered that might promote acquisition of the locomotor function in infants at risk for locomotor delays.
Collapse
Affiliation(s)
- Germana Cappellini
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Arthur H Dewolf
- Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Irina A Solopova
- Laboratory of Neurobiology of Motor Control, Institute for Information Transmission Problems, Moscow, Russia
| | - Daniela Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Francesco Lacquaniti
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy.,Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Yury Ivanenko
- Laboratory of Neuromotor Physiology, IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
34
|
Cappellini G, Sylos-Labini F, MacLellan MJ, Assenza C, Libernini L, Morelli D, Lacquaniti F, Ivanenko Y. Locomotor patterns during obstacle avoidance in children with cerebral palsy. J Neurophysiol 2020; 124:574-590. [DOI: 10.1152/jn.00163.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Previous studies mainly evaluated the neuromuscular pattern generation in cerebral palsy (CP) during unobstructed gait. Here we characterized impairments in the obstacle task performance associated with a limited adaptation of the task-relevant muscle module timed to the foot lift during obstacle crossing. Impaired task performance in children with CP may reflect basic developmental deficits in the adaptable control of gait when the locomotor task is superimposed with the voluntary movement.
Collapse
Affiliation(s)
- G. Cappellini
- Laboratory of Neuromotor Physiology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - F. Sylos-Labini
- Laboratory of Neuromotor Physiology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
| | - M. J. MacLellan
- Department of Applied Human Sciences, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - C. Assenza
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - L. Libernini
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - D. Morelli
- Department of Pediatric Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - F. Lacquaniti
- Laboratory of Neuromotor Physiology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
- Centre of Space Bio-medicine and Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Y. Ivanenko
- Laboratory of Neuromotor Physiology, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS) Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
35
|
The effects of fatigue on synergy of selected lower limb muscles during running. J Biomech 2020; 103:109692. [PMID: 32151383 DOI: 10.1016/j.jbiomech.2020.109692] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/11/2020] [Accepted: 02/18/2020] [Indexed: 11/24/2022]
Abstract
The purpose of this study was to investigate the effect of fatigue on selected lower extremity muscles synergy during running using non-negative matrix factorization algorithm method. Sixteen male recreational runners participated in this study. The surface electromyographic activity of rectus femoris (RF), vastus lateralis (VL), vastus medialis (VM), biceps femoris (BF), semitendinosus, gastrocnemius medialis (GM), soleus (SO) and tibialis anterior (TA) were recorded on treadmill at 3.3 m s-1 before and after the fatigue protocol. Synergy pattern and relative muscle weight were calculated by non-negative matrix factorization (NNMF) algorithm method. The results showed that using the VAF method, five muscle synergies were extracted from the emg data during running. After the fatigue, the number of muscular synergies did not show a change, but relative weight of the muscles changed. Fatigue did not have any effect on the structure of muscular synergy, but changed the relative weight of muscles. These changes could be the strategy of the central nervous system to maintain optimal function of the motor system.
Collapse
|
36
|
Petrikov SS, Grechko AV, Shchelkunova IG, Zavaliy YP, Khat'kova SE, Zavaliy LB. [New perspectives of motor rehabilitation of patients after focal brain lesions]. ZHURNAL VOPROSY NEĬROKHIRURGII IMENI N. N. BURDENKO 2020; 83:90-99. [PMID: 32031172 DOI: 10.17116/neiro20198306190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Rehabilitation of patients after focal brain lesions is one of the topical issues of modern medicine. Motor disorders are known to develop in more than 80% of survivors of stroke and traumatic brain injury and be one of the main causes of disability, which necessitates an active search for new effective techniques for correction of motor disorders. Modern rehabilitation includes both traditional techniques for recovery of patients with motor deficit (exercise therapy and physiotherapy) and botulinum therapy, kinesiotherapy, mechanotherapy, etc., which have been developed in recent years. Robotic technologies have been developed, improved, and implemented. Currently, due to progress in computerization, virtual reality-based rehabilitation of patients is of particular interest. The article reviews the key studies in this field. We describe various visualization methods and means of immersion in a virtual environment for recovery of upper and lower extremity function in patients with focal brain lesions. The study provides an assessment of the effectiveness and safety of various virtual reality-based rehabilitation programs in patients with motor disorders after stroke and traumatic brain injury.
Collapse
Affiliation(s)
- S S Petrikov
- Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia; Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - A V Grechko
- Federal Research and Clinical Center for Resuscitation and Rehabilitation, Moscow, Russia
| | - I G Shchelkunova
- Federal Research and Clinical Center for Resuscitation and Rehabilitation, Moscow, Russia
| | - Ya P Zavaliy
- Federal Research and Clinical Center for Resuscitation and Rehabilitation, Moscow, Russia
| | - S E Khat'kova
- Treatment and Rehabilitation Center of the Ministry of Health of the Russia, Moscow, Russia
| | - L B Zavaliy
- Sklifosovsky Research Institute of Emergency Medicine, Moscow, Russia
| |
Collapse
|
37
|
Chan-Viquez D, Hasanbarani F, Zhang L, Anaby D, Turpin NA, Lamontagne A, Feldman AG, Levin MF. Development of vertical and forward jumping skills in typically developing children in the context of referent control of motor actions. Dev Psychobiol 2020; 62:711-722. [PMID: 31957019 DOI: 10.1002/dev.21949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/14/2019] [Accepted: 12/23/2019] [Indexed: 12/20/2022]
Abstract
The empirically based referent control theory of motor actions provides a new framework for understanding locomotor maturation. Mature movement patterns of referent control are characterized by periods of minimization of activity across multiple muscles (global electromyographic [EMG] minima) resulting from transient matching between actual and referent body configurations. We identified whether locomotor maturation in young children was associated with (a) development of referent control and (b) children's frequency of participation in everyday activities evaluated by parents. Kinematics and EMG activity were recorded from typically developing children (n = 15, 3-5 years) and young adults (n = 10, 18-25 years) while walking, vertical or forward jumping. Presence and location of global EMG minima in movement cycles, slopes of ankle vertical/sagittal displacements, and shoulder displacement ratios were evaluated. Children had fewer global EMG minima compared to adults during specific phases of vertical and forward jumps. Ankle displacement profiles for walking and jumping forward were related to each other in adults, whereas those for walking and vertical jumping were related in children. Higher frequency of participation was significantly correlated with more mature jumping patterns in children. A decrease in the number of global EMG minima and changes in ankle movement patterns could be indicators of locomotor immaturity in typically developing children.
Collapse
Affiliation(s)
- Daniela Chan-Viquez
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Fariba Hasanbarani
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Lei Zhang
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Dana Anaby
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Nicolas A Turpin
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| | - Anatol G Feldman
- Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada.,Department of Neuroscience, University of Montreal, Montreal, QC, Canada
| | - Mindy F Levin
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montreal, QC, Canada
| |
Collapse
|
38
|
Gandevia SC, Muceli S, Héroux M. Signing up to motor signatures: a unique link to action. J Appl Physiol (1985) 2019; 127:1163-1164. [PMID: 31556834 DOI: 10.1152/japplphysiol.00643.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Simon C Gandevia
- Neuroscience Research Australia, Sydney, Australia.,University of New South Wales, Sydney, Australia
| | - Silvia Muceli
- Division of Signal Processing and Biomedical Engineering, Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Martin Héroux
- Neuroscience Research Australia, Sydney, Australia.,University of New South Wales, Sydney, Australia
| |
Collapse
|
39
|
Dutta S, Parihar A, Khanna A, Gomez J, Chakraborty W, Jerry M, Grisafe B, Raychowdhury A, Datta S. Programmable coupled oscillators for synchronized locomotion. Nat Commun 2019; 10:3299. [PMID: 31341167 PMCID: PMC6656780 DOI: 10.1038/s41467-019-11198-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 06/21/2019] [Indexed: 01/25/2023] Open
Abstract
The striking similarity between biological locomotion gaits and the evolution of phase patterns in coupled oscillatory network can be traced to the role of central pattern generator located in the spinal cord. Bio-inspired robotics aim at harnessing this control approach for generation of rhythmic patterns for synchronized limb movement. Here, we utilize the phenomenon of synchronization and emergent spatiotemporal pattern from the interaction among coupled oscillators to generate a range of locomotion gait patterns. We experimentally demonstrate a central pattern generator network using capacitively coupled Vanadium Dioxide nano-oscillators. The coupled oscillators exhibit stable limit-cycle oscillations and tunable natural frequencies for real-time programmability of phase-pattern. The ultra-compact 1 Transistor-1 Resistor implementation of oscillator and bidirectional capacitive coupling allow small footprint area and low operating power. Compared to biomimetic CMOS based neuron and synapse models, our design simplifies on-chip implementation and real-time tunability by reducing the number of control parameters. Designing alternative paradigms for bio-inspired analog computing that harnesses collective dynamics remains a challenge. Here, the authors exploit the synchronization dynamics of coupled vanadium dioxide-based insulator-to-metal phase-transition nano-oscillators for adaptive locomotion control.
Collapse
Affiliation(s)
- Sourav Dutta
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA.
| | - Abhinav Parihar
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Abhishek Khanna
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Jorge Gomez
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Wriddhi Chakraborty
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Matthew Jerry
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Benjamin Grisafe
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Arijit Raychowdhury
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Suman Datta
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
40
|
Gueugnon M, Stapley PJ, Gouteron A, Lecland C, Morisset C, Casillas JM, Ornetti P, Laroche D. Age-Related Adaptations of Lower Limb Intersegmental Coordination During Walking. Front Bioeng Biotechnol 2019; 7:173. [PMID: 31380364 PMCID: PMC6652268 DOI: 10.3389/fbioe.2019.00173] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/04/2019] [Indexed: 01/04/2023] Open
Abstract
Lower-limb intersegmental coordination is a complex component of human walking. Aging may result in impairments of motor control and coordination contributing to the decline in mobility inducing loss of autonomy. Investigating intersegmental coordination could therefore provide insights into age-related changes in neuromuscular control of gait. However, it is unknown whether the age-related declines in gait performance relates to intersegmental coordination. The aim of this study was to evaluate the impact of aging on the coordination of lower limb kinematics and kinetics during walking at a conformable speed. We then assessed the body kinematics and kinetics from gait analyses of 84 volunteers from 25 to 85 years old when walking was performed at their self-selected speeds. Principal Component Analysis (PCA) was used to assess lower-limb intersegmental coordination and to evaluate the planar covariation of the Shank-Thigh and Foot-Shank segments. Ankle and knee stiffness were also estimated. Age-related effects on planar covariation parameters was evaluated using multiple linear regressions (i.e., without a priori age group determination) adjusted to normalized self-selected gait velocity. Colinearity between parameters was assessed using a variation inflation factor (VIF) and those with a VIF < 5 were entered in the analysis. Normalized gait velocity significantly decreased with aging (r = −0.24; P = 0.028). Planar covariation of inter-segmental coordination was consistent across age (99.3 ± 0.24% of explained variance of PCA). Significant relationships were found between age and intersegmental foot-shank coordination, range of motion of the ankle, maximal power of the knee, and the ankle. Lower-limb coordination was modified with age, particularly the coordination between foot, and shank. Such modifications may influence the ankle motion and thus, ankle power. This observation may explain the decrease in the ankle plantar flexor strength mainly reported in the literature. We therefore hypothesize that this modification of coordination constitutes a neuromuscular adaptation of gait control accompanying a loss of ankle strength and amplitude by increasing the knee power in order to maintain gait efficiency. We propose that foot-shank coordination might represent a valid outcome measure to estimate the efficacy of rehabilitative strategies and to evaluate their efficiency in restoring lower-limb synergies during walking.
Collapse
Affiliation(s)
- Mathieu Gueugnon
- INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, Dijon, France.,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, Dijon, France
| | - Paul J Stapley
- Neural Control of Movement Laboratory, Faculty of Science, Medicine and Health, School of Medicine, University of Wollongong, Wollongong, NSW, Australia
| | - Anais Gouteron
- CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, Dijon, France.,INSERM, UMR 1093-CAPS, Université de Bourgogne Franche Comté, UFR des Sciences du sport, Dijon, France.,Department of Physical Medicine and Rehabilitation, Dijon-Bourgogne University Hospital, Dijon, France
| | | | - Claire Morisset
- INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, Dijon, France.,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, Dijon, France
| | - Jean-Marie Casillas
- INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, Dijon, France.,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, Dijon, France.,INSERM, UMR 1093-CAPS, Université de Bourgogne Franche Comté, UFR des Sciences du sport, Dijon, France.,Department of Physical Medicine and Rehabilitation, Dijon-Bourgogne University Hospital, Dijon, France
| | - Paul Ornetti
- INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, Dijon, France.,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, Dijon, France.,INSERM, UMR 1093-CAPS, Université de Bourgogne Franche Comté, UFR des Sciences du sport, Dijon, France.,Department of Rheumatology, Dijon University Hospital, Dijon, France
| | - Davy Laroche
- INSERM, CIC 1432, Module Plurithematique, Plateforme d'Investigation Technologique, Dijon, France.,CHU Dijon-Bourgogne, Centre d'Investigation Clinique, Module Plurithématique, Plateforme d'Investigation Technologique, Dijon, France.,INSERM, UMR 1093-CAPS, Université de Bourgogne Franche Comté, UFR des Sciences du sport, Dijon, France
| |
Collapse
|
41
|
Owen E, Fatone S, Hansen A. Effect of walking in footwear with varying heel sole differentials on shank and foot segment kinematics. Prosthet Orthot Int 2018; 42:394-401. [PMID: 28884616 DOI: 10.1177/0309364617728119] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND When walking in footwear with a positive "heel sole differential", the sagittal kinematics of the base of the footwear appear to mimic normal barefoot foot kinematics, creating an "effective foot," yet sagittal shank, thigh, and trunk kinematics appear to remain unchanged. These observations have not been quantified. OBJECTIVES To quantify these observations by assessing the effect of different heel sole differentials on sagittal shank and foot segment kinematics of able-bodied walking. STUDY DESIGN Cross-sectional study. METHODS Gait data from 10 nondisabled females were collected while they walked with no-heel (mean heel sole differential = 0 (standard deviation = 0) mm), mid-heel (mean heel sole differential = 37 (standard deviation = 10) mm), and high-heel shoes (mean heel sole differential = 71 (standard deviation = 17) mm) to calculate the shank-to-vertical angle and foot-to-horizontal angle. RESULTS There were no significant differences between shoe conditions in stride lengths ( p = 0.056) or shank kinematics between 0% and 50% gait cycle ( p = 0.079). There were significant differences in foot kinematics ( p = 0.000), with foot segment angle increasing with increasing heel sole differential. CONCLUSION The ankle joint and actual foot segment adapt their kinematics to maintain consistent shank kinematics. The finding that heel sole differential and foot segment angle can be varied without influencing shank segment kinematics has implications for orthotic and prosthetic practice. Clinical relevance Heel sole differentials of footwear can be varied without implications for shank kinematics, which is relevant for both orthotics and prosthetics. Assessments and interventions with varying heel sole differential footwear may be helpful in patients with short calf muscle or restricted ankle motion who may walk more normally if an appropriate heel sole differential were provided.
Collapse
Affiliation(s)
| | | | - Andrew Hansen
- 3 Minneapolis VA Health Care System, Minneapolis, MN, USA.,4 University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
42
|
Adolph KE, Hoch JE, Cole WG. Development (of Walking): 15 Suggestions. Trends Cogn Sci 2018; 22:699-711. [PMID: 30032744 PMCID: PMC6145857 DOI: 10.1016/j.tics.2018.05.010] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/02/2018] [Accepted: 05/28/2018] [Indexed: 01/25/2023]
Abstract
Although a fundamental goal of developmental science is to identify general processes of change, developmental scientists rarely generalize beyond their specific content domains. As a first step toward a more unified approach to development, we offer 15 suggestions gleaned from a century of research on infant walking. These suggestions collectively address the multi-leveled nature of change processes, cascades of real-time and developmental events, the diversity of developmental trajectories, inter- and intraindividual variability, starting and ending points of development, the natural input for learning, and the roles of body, environment, and sociocultural context. We argue that these 15 suggestions are not limited to motor development, and we encourage researchers to consider them within their own areas of research.
Collapse
Affiliation(s)
- Karen E Adolph
- Psychology Department, 4 Washington Place, Room 415, New York University, New York, NY 10003, USA.
| | - Justine E Hoch
- Psychology Department, 4 Washington Place, Room 415, New York University, New York, NY 10003, USA
| | - Whitney G Cole
- Psychology Department, 4 Washington Place, Room 415, New York University, New York, NY 10003, USA
| |
Collapse
|
43
|
Hadders-Algra M. Early human motor development: From variation to the ability to vary and adapt. Neurosci Biobehav Rev 2018; 90:411-427. [PMID: 29752957 DOI: 10.1016/j.neubiorev.2018.05.009] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/01/2018] [Accepted: 05/04/2018] [Indexed: 12/17/2022]
Abstract
This review summarizes early human motor development. From early fetal age motor behavior is based on spontaneous neural activity: activity of networks in the brainstem and spinal cord that is modulated by supraspinal activity. The supraspinal activity, first primarily brought about by the cortical subplate, later by the cortical plate, induces movement variation. Initially, movement variation especially serves exploration; its associated afferent information is primarily used to sculpt the developing nervous system, and less to adapt motor behavior. In the next phase, beginning at function-specific ages, movement variation starts to serve adaptation. In sucking and swallowing, this phase emerges shortly before term age. In speech, gross and fine motor development, it emerges from 3 to 4 months post-term onwards, i.e., when developmental focus in the primary sensory and motor cortices has shifted to the permanent cortical circuitries. With increasing age and increasing trial-and-error exploration, the infant improves its ability to use adaptive and efficicient forms of upright gross motor behavior, manual activities and vocalizations belonging to the native language.
Collapse
Affiliation(s)
- Mijna Hadders-Algra
- University of Groningen, University Medical Center Groningen, Dept. Pediatrics - Section Developmental Neurology, Groningen, The Netherlands.
| |
Collapse
|
44
|
Mignardot JB, Le Goff CG, van den Brand R, Capogrosso M, Fumeaux N, Vallery H, Anil S, Lanini J, Fodor I, Eberle G, Ijspeert A, Schurch B, Curt A, Carda S, Bloch J, von Zitzewitz J, Courtine G. A multidirectional gravity-assist algorithm that enhances locomotor control in patients with stroke or spinal cord injury. Sci Transl Med 2018; 9:9/399/eaah3621. [PMID: 28724575 DOI: 10.1126/scitranslmed.aah3621] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/26/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022]
Abstract
Gait recovery after neurological disorders requires remastering the interplay between body mechanics and gravitational forces. Despite the importance of gravity-dependent gait interactions and active participation for promoting this learning, these essential components of gait rehabilitation have received comparatively little attention. To address these issues, we developed an adaptive algorithm that personalizes multidirectional forces applied to the trunk based on patient-specific motor deficits. Implementation of this algorithm in a robotic interface reestablished gait dynamics during highly participative locomotion within a large and safe environment. This multidirectional gravity-assist enabled natural walking in nonambulatory individuals with spinal cord injury or stroke and enhanced skilled locomotor control in the less-impaired subjects. A 1-hour training session with multidirectional gravity-assist improved locomotor performance tested without robotic assistance immediately after training, whereas walking the same distance on a treadmill did not ameliorate gait. These results highlight the importance of precise trunk support to deliver gait rehabilitation protocols and establish a practical framework to apply these concepts in clinical routine.
Collapse
Affiliation(s)
- Jean-Baptiste Mignardot
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Camille G Le Goff
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Rubia van den Brand
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Marco Capogrosso
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.,Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland
| | - Nicolas Fumeaux
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Heike Vallery
- Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Delft, Netherlands
| | - Selin Anil
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | | | | | | | | | | | - Armin Curt
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Stefano Carda
- Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland.,Neurorehabilitation, CHUV, Lausanne, Switzerland
| | - Jocelyne Bloch
- Clinical Neuroscience, University Hospital of Vaud (CHUV), Lausanne, Switzerland.,Neurosurgery, CHUV, Lausanne, Switzerland
| | - Joachim von Zitzewitz
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Grégoire Courtine
- Center for Neuroprosthetics and Brain Mind Institute, School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland. .,Neurosurgery, CHUV, Lausanne, Switzerland
| |
Collapse
|
45
|
Vanden Hole C, Goyens J, Prims S, Fransen E, Ayuso Hernando M, Van Cruchten S, Aerts P, Van Ginneken C. How innate is locomotion in precocial animals? A study on the early development of spatio-temporal gait variables and gait symmetry in piglets. ACTA ACUST UNITED AC 2018; 220:2706-2716. [PMID: 28768747 DOI: 10.1242/jeb.157693] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 05/17/2017] [Indexed: 01/17/2023]
Abstract
Locomotion is one of the most important ecological functions in animals. Precocial animals, such as pigs, are capable of independent locomotion shortly after birth. This raises the question whether coordinated movement patterns and the underlying muscular control in these animals is fully innate or whether there still exists a rapid maturation. We addressed this question by studying gait development in neonatal pigs through the analysis of spatio-temporal gait characteristics during locomotion at self-selected speed. To this end, we made video recordings of piglets walking along a corridor at several time points (from 0 h to 96 h). After digitization of the footfalls, we analysed self-selected speed and spatio-temporal characteristics (e.g. stride and step lengths, stride frequency and duty factor) to study dynamic similarity, intralimb coordination and interlimb coordination. To assess the variability of the gait pattern, left-right asymmetry was studied. To distinguish neuromotor maturation from effects caused by growth, both absolute and normalized data (according to the dynamic similarity concept) were included in the analysis. All normalized spatio-temporal variables reached stable values within 4 h of birth, with most of them showing little change after the age of 2 h. Most asymmetry indices showed stable values, hovering around 10%, within 8 h of birth. These results indicate that coordinated movement patterns are not entirely innate, but that a rapid neuromotor maturation, potentially also the result of the rearrangement or recombination of existing motor modules, takes place in these precocial animals.
Collapse
Affiliation(s)
- Charlotte Vanden Hole
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Jana Goyens
- Laboratory of Functional Morphology, Department of Biology, Faculty of Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Sara Prims
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Erik Fransen
- StatUa Center for Statistics, University of Antwerp, 2000 Antwerp, Belgium
| | - Miriam Ayuso Hernando
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Steven Van Cruchten
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Peter Aerts
- Laboratory of Functional Morphology, Department of Biology, Faculty of Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Chris Van Ginneken
- Laboratory of Applied Veterinary Morphology, Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| |
Collapse
|
46
|
Early manifestation of arm–leg coordination during stepping on a surface in human neonates. Exp Brain Res 2018; 236:1105-1115. [DOI: 10.1007/s00221-018-5201-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/07/2018] [Indexed: 12/23/2022]
|
47
|
Van der Noot N, Ijspeert AJ, Ronsse R. Bio-inspired controller achieving forward speed modulation with a 3D bipedal walker. Int J Rob Res 2018. [DOI: 10.1177/0278364917743320] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Despite all the effort devoted to generating locomotion algorithms for bipedal walkers, robots are still far from reaching the impressive human walking capabilities, for instance regarding robustness and energy consumption. In this paper, we have developed a bio-inspired torque-based controller supporting the emergence of a new generation of robust and energy-efficient walkers. It recruits virtual muscles driven by reflexes and a central pattern generator, and thus requires no computationally intensive inverse kinematics or dynamics modeling. This controller is capable of generating energy-efficient and human-like gaits (both regarding kinematics and dynamics) across a large range of forward speeds, in a 3D environment. After a single off-line optimization process, the forward speed can be continuously commanded within this range by changing high-level parameters, as linear or quadratic functions of the target speed. Sharp speed transitions can then be achieved with no additional tuning, resulting in immediate adaptations of the step length and frequency. In this paper, we particularly embodied this controller on a simulated version of COMAN, a 95 cm tall humanoid robot. We reached forward speed modulations between 0.4 and 0.9 m/s. This covers normal human walking speeds once scaled to the robot size. Finally, the walker demonstrated significant robustness against a large spectrum of unpredicted perturbations: facing external pushes or walking on altered environments, such as stairs, slopes, and irregular ground.
Collapse
Affiliation(s)
- Nicolas Van der Noot
- Center for Research in Mechatronics, Institute of Mechanics, Materials and Civil Engineering, and “Louvain Bionics”, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Auke Jan Ijspeert
- Biorobotics Laboratory, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Renaud Ronsse
- Center for Research in Mechatronics, Institute of Mechanics, Materials and Civil Engineering, and “Louvain Bionics”, Université catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
48
|
Sylos-Labini F, Magnani S, Cappellini G, La Scaleia V, Fabiano A, Picone S, Paolillo P, Di Paolo A, Lacquaniti F, Ivanenko Y. Foot Placement Characteristics and Plantar Pressure Distribution Patterns during Stepping on Ground in Neonates. Front Physiol 2017; 8:784. [PMID: 29066982 PMCID: PMC5641324 DOI: 10.3389/fphys.2017.00784] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/25/2017] [Indexed: 11/13/2022] Open
Abstract
Stepping on ground can be evoked in human neonates, though it is rather irregular and stereotyped heel-to-toe roll-over pattern is lacking. Such investigations can provide insights into the role of contact- or load-related proprioceptive feedback during early development of locomotion. However, the detailed characteristics of foot placements and their association with motor patterns are still incompletely documented. We elicited stepping in 33 neonates supported on a table. Unilateral limb kinematics, bilateral plantar pressure distribution and EMG activity from up to 11 ipsilateral leg muscles were recorded. Foot placement characteristics in neonates showed a wide variation. In ~25% of steps, the swinging foot stepped onto the contralateral foot due to generally small step width. In the remaining steps with separate foot placements, the stance phase could start with forefoot (28%), midfoot (47%), or heel (25%) touchdowns. Despite forefoot or heel initial contacts, the kinematic and loading patterns markedly differed relatively to toe-walking or adult-like two-peaked vertical force profile. Furthermore, while the general stepping parameters (cycle duration, step length, range of motion of proximal joints) were similar, the initial foot contact was consistently associated with specific center-of-pressure excursion, range of motion in the ankle joint, and the center-of-activity of extensor muscles (being shifted by ~5% of cycle toward the end of stance in the "heel" relative to "forefoot" condition). In sum, we found a variety of footfall patterns in conjunction with associated changes in motor patterns. These findings suggest the potential contribution of load-related proprioceptive feedback and/or the expression of variations in the locomotor program already during early manifestations of stepping on ground in human babies.
Collapse
Affiliation(s)
- F Sylos-Labini
- Center of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy.,Neuromotor Physiology Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - S Magnani
- Department of Computer, Control and Management Engineering, Sapienza University of Rome, Rome, Italy
| | - G Cappellini
- Center of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy.,Neuromotor Physiology Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - V La Scaleia
- Center of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy.,Neuromotor Physiology Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy
| | - A Fabiano
- Neonatology and Neonatal Intensive Care Unit, Casilino Hospital, Rome, Italy
| | - S Picone
- Neonatology and Neonatal Intensive Care Unit, Casilino Hospital, Rome, Italy
| | - P Paolillo
- Neonatology and Neonatal Intensive Care Unit, Casilino Hospital, Rome, Italy
| | - A Di Paolo
- Neonatology and Neonatal Intensive Care Unit, Ospedale San Giovanni, Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - F Lacquaniti
- Center of Space BioMedicine, University of Rome Tor Vergata, Rome, Italy.,Neuromotor Physiology Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy.,Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Y Ivanenko
- Neuromotor Physiology Laboratory, Fondazione Santa Lucia (IRCCS), Rome, Italy
| |
Collapse
|
49
|
Active and passive contributions to arm swing: Implications of the restriction of pelvis motion during human locomotion. Hum Mov Sci 2017; 57:314-323. [PMID: 28958710 DOI: 10.1016/j.humov.2017.09.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 09/15/2017] [Accepted: 09/16/2017] [Indexed: 11/22/2022]
Abstract
Current research has yet to determine how passive dynamics and active neural control contribute to upper limb swing during human locomotion. The present study aimed to investigate these contributions by restricting pelvis motion during walking, thereby altering the upward energy transfer from the swinging lower limbs. Ten healthy individuals walked freely on a treadmill (CON) and with an apparatus that reduced pelvis motion (PR) at three walking speeds (0.9, 1.3, and 1.8m/s). Spatiotemporal characteristics of limb movement and muscle activation were recorded and analyzed. When wearing the apparatus, the ranges of the sagittal and transverse rotations of the trunk and shoulders, as well as vertical trunk center of mass movement all decreased. At higher treadmill speeds, the movement amplitudes of the upper and lower limbs increased. This increase was less pronounced in the upper limbs when the apparatus reduced pelvis motion. However, this decrease in arm swing was accompanied with a preservation of upper and lower limb muscle activity amplitudes. The temporal coordination between upper and lower limbs was also conserved irrespective of the PR or CON conditions. Relating shoulder muscle activities to upper limb kinematics suggested these muscles mainly acted eccentrically, providing evidence that passive elements are a significant factor in arm swing control. However, the conserved muscle activity patterns and temporal coupling of limb movements when pelvis motion was reduced are suggestive of an underlying active maintenance of the locomotor pattern via linked upper and lower limb neural networks.
Collapse
|
50
|
Lacquaniti F, Zago M, Farina D. Tick-tock, spinal motor neurons go with the cortical clock in young infants. J Physiol 2017; 595:2405-2406. [PMID: 28155234 DOI: 10.1113/jp273901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Francesco Lacquaniti
- Department of Systems Medicine and Center of Space BioMedicine of the University of Rome Tor Vergata, Rome, Italy.,Laboratory of Neuromotor Physiology of the IRCCS Santa Lucia Foundation, Rome, Italy
| | - Myrka Zago
- Laboratory of Neuromotor Physiology of the IRCCS Santa Lucia Foundation, Rome, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|