1
|
Greenstreet F, Vergara HM, Johansson Y, Pati S, Schwarz L, Lenzi SC, Geerts JP, Wisdom M, Gubanova A, Rollik LB, Kaur J, Moskovitz T, Cohen J, Thompson E, Margrie TW, Clopath C, Stephenson-Jones M. Dopaminergic action prediction errors serve as a value-free teaching signal. Nature 2025:10.1038/s41586-025-09008-9. [PMID: 40369067 DOI: 10.1038/s41586-025-09008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 04/10/2025] [Indexed: 05/16/2025]
Abstract
Choice behaviour of animals is characterized by two main tendencies: taking actions that led to rewards and repeating past actions1,2. Theory suggests that these strategies may be reinforced by different types of dopaminergic teaching signals: reward prediction error to reinforce value-based associations and movement-based action prediction errors to reinforce value-free repetitive associations3-6. Here we use an auditory discrimination task in mice to show that movement-related dopamine activity in the tail of the striatum encodes the hypothesized action prediction error signal. Causal manipulations reveal that this prediction error serves as a value-free teaching signal that supports learning by reinforcing repeated associations. Computational modelling and experiments demonstrate that action prediction errors alone cannot support reward-guided learning, but when paired with the reward prediction error circuitry they serve to consolidate stable sound-action associations in a value-free manner. Together we show that there are two types of dopaminergic prediction errors that work in tandem to support learning, each reinforcing different types of association in different striatal areas.
Collapse
Affiliation(s)
- Francesca Greenstreet
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Hernando Martinez Vergara
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Yvonne Johansson
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Sthitapranjya Pati
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Laura Schwarz
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Stephen C Lenzi
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Jesse P Geerts
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
- Bioengineering Department, Imperial College London, London, UK
| | - Matthew Wisdom
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Alina Gubanova
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Lars B Rollik
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Jasvin Kaur
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Theodore Moskovitz
- Gatsby Computational Neuroscience Unit, University College London, London, UK
| | - Joseph Cohen
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Emmett Thompson
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Troy W Margrie
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Claudia Clopath
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
- Bioengineering Department, Imperial College London, London, UK
| | - Marcus Stephenson-Jones
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK.
| |
Collapse
|
2
|
Zhang Z, Costa KM, Langdon AJ, Schoenbaum G. The devilish details affecting TDRL models in dopamine research. Trends Cogn Sci 2025; 29:434-447. [PMID: 40016003 PMCID: PMC12058390 DOI: 10.1016/j.tics.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 03/01/2025]
Abstract
Over recent decades, temporal difference reinforcement learning (TDRL) models have successfully explained much dopamine (DA) activity. This success has invited heightened scrutiny of late, with many studies challenging the validity of TDRL models of DA function. Yet, when evaluating the validity of these models, the devil is truly in the details. TDRL is a broad class of algorithms sharing core ideas but differing greatly in implementation and predictions. Thus, it is important to identify the defining aspects of the TDRL framework being tested and to use state spaces and model architectures that capture the known complexity of the behavioral representations and neural systems involved. Here, we discuss several examples that illustrate the importance of these considerations.
Collapse
Affiliation(s)
- Zhewei Zhang
- National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Kauê M Costa
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Angela J Langdon
- National Institute of Mental Health Intramural Research Program, National Institutes of Health, Bethesda, MD 20892, USA
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse Intramural Research Program, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
3
|
Harding R, Singer N, Wall MB, Hendler T, Erritzoe D, Nutt D, Carhart-Harris R, Roseman L. Dissociable effects of psilocybin and escitalopram for depression on processing of musical surprises. Mol Psychiatry 2025:10.1038/s41380-025-03035-8. [PMID: 40281226 DOI: 10.1038/s41380-025-03035-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/26/2025] [Accepted: 04/15/2025] [Indexed: 04/29/2025]
Abstract
Psilocybin therapy (PT) is emerging as an effective intervention for Major Depressive Disorder (MDD), offering comparable efficacy to conventional treatments like selective serotonin reuptake inhibitors (SSRIs). Music, an emotionally evocative stimulus, provides a valuable tool to explore changes in hedonic and predictive processing mechanisms via expectancy violations, or 'surprises'. This study sought to compare behavioural and functional magnetic resonance imaging (fMRI) responses to musical surprises in MDD patients treated with either PT or the SSRI, escitalopram. In this secondary analysis of a trial, 41 MDD patients (with usable fMRI data) were randomly assigned to either PT (n = 22) or escitalopram (n = 19) treatment groups. Participants listened to music during fMRI and tracked their emotional experience, both before and after a 6-week intervention. Surprise-related valence and arousal indices were calculated. Musical surprises were entered as regressors for whole-brain and region of interest fMRI analyses. PT caused a greater decrease in anhedonia scores compared with escitalopram. While escitalopram led to reductions in surprise-related affective responses, PT showed no significant change. Escitalopram was associated with increased activation in memory and emotional processing areas during musical surprises (versus control events) when compared with PT. Following PT, there was greater activation in the ventromedial prefrontal cortex and sensory regions, and reduced activation in the angular gyrus. PT may allow for the subjective response to musical surprises to be maintained through a lasting reduction in the salience of prediction errors, or, alternatively, by increasing hedonic priors. Contrastingly, escitalopram may diminish hedonic priors, highlighting fundamental differences in treatment mechanisms.
Collapse
Affiliation(s)
- Rebecca Harding
- Centre for Psychedelic Research, Division of Brain Sciences, Imperial College London, London, UK.
- Clinical Psychopharmacology Unit, University College London, London, UK.
| | - Neomi Singer
- Sagol Brain Institute and the Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Matthew B Wall
- Centre for Psychedelic Research, Division of Brain Sciences, Imperial College London, London, UK
- Perceptive, Centre for Imaging Sciences, London, UK
| | - Talma Hendler
- Sagol Brain Institute and the Department of Neurology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - David Erritzoe
- Centre for Psychedelic Research, Division of Brain Sciences, Imperial College London, London, UK
| | - David Nutt
- Centre for Psychedelic Research, Division of Brain Sciences, Imperial College London, London, UK
| | - Robin Carhart-Harris
- Centre for Psychedelic Research, Division of Brain Sciences, Imperial College London, London, UK
- Departments of Neurology & Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Leor Roseman
- Centre for Psychedelic Research, Division of Brain Sciences, Imperial College London, London, UK
- Department of Psychology, University of Exeter, Exeter, UK
| |
Collapse
|
4
|
Phillips JM, Afrasiabi M, Kambi NA, Redinbaugh MJ, Steely S, Johnson ER, Cheng X, Fayyad M, Mohanta S, Carís A, Mikell CB, Mofakham S, Saalmann YB. Primate thalamic nuclei select abstract rules and shape prefrontal dynamics. Neuron 2025:S0896-6273(25)00221-1. [PMID: 40233749 DOI: 10.1016/j.neuron.2025.03.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 11/01/2024] [Accepted: 03/17/2025] [Indexed: 04/17/2025]
Abstract
Flexible behavior depends on abstract rules to generalize beyond specific instances and outcome monitoring to adjust actions. Cortical circuits are posited to read out rules from high-dimensional representations of task-relevant variables in prefrontal cortex (PFC). We instead hypothesized that converging inputs from PFC, directly or via basal ganglia (BGs), enable the thalamus to select rules. We measured activity across PFC and connected thalamic nuclei of monkeys applying rules. Abstract rule information first appeared in ventroanterior thalamus (VA)-the main thalamic hub between BG and PFC. Mediodorsal thalamus (MD) also represented rule information before PFC, persisting to help maintain activation of relevant PFC cell ensembles. MD, a major recipient of midbrain dopamine input, was the first to represent information about behavioral outcomes. A PFC-BG-thalamus model reproduced key findings, and thalamic-lesion modeling disrupted PFC rule representations. This suggests that the thalamus selects high-level cognitive information from PFC and monitors behavioral outcomes of these selections.
Collapse
Affiliation(s)
- Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA.
| | - Mohsen Afrasiabi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Summer Steely
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Emily R Johnson
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xi Cheng
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Maath Fayyad
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Asia Carís
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Charles B Mikell
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Sima Mofakham
- Department of Neurosurgery, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA; Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53706, USA; Wisconsin National Primate Research Center, University of Wisconsin-Madison, Madison, WI 53715, USA.
| |
Collapse
|
5
|
Shouval HZ, Kirkwood A. Eligibility traces as a synaptic substrate for learning. Curr Opin Neurobiol 2025; 91:102978. [PMID: 39965463 DOI: 10.1016/j.conb.2025.102978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 02/20/2025]
Abstract
Animals can learn to associate a behavior or a stimulus with a delayed reward, this is essential for survival. A mechanism proposed for bridging this gap are synaptic eligibility traces, which are slowly decaying tags, which can lead to synaptic plasticity if followed by rewards. Recently, experiments have demonstrated the existence of synaptic eligibility traces in diverse neural systems, depending on either neuromodulators or plateau potentials. Evidence for both eligibility trace-dependent potentiation and depression of synaptic efficacies has emerged. We discuss the commonalities and differences of these different results. We show why the existence of both potentiation and depression is important because these opposing forces can lead to a synaptic stopping rule. Without a stopping rule, synapses would saturate at their upper bound thus leading to a loss of selectivity and representational power. We discuss the possible underlying mechanisms of the eligibility traces as well as their functional and theoretical significance.
Collapse
Affiliation(s)
- Harel Z Shouval
- Department of Neurobiology and Anatomy, University of Texas Medical School at Houston, Houston, TX, USA; Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA.
| | - Alfredo Kirkwood
- Mind/Brain Institute, Johns Hopkins University, 3400 North Charles Street, 350 Dunning Hall, Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Mayer S, Saxena P, Crayen MA, Treue S. Establishing In-vivo brain microdialysis for comparing concentrations of a variety of cortical neurotransmitters in the awake rhesus macaque between different cognitive states. J Neurosci Methods 2025; 415:110361. [PMID: 39798806 DOI: 10.1016/j.jneumeth.2025.110361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/02/2025] [Accepted: 01/04/2025] [Indexed: 01/15/2025]
Abstract
BACKGROUND Neuronal activity is modulated by behavior and cognitive processes. The combination of several neurotransmitter systems, acting directly or indirectly on specific populations of neurons, underlie such modulations. Most studies with non-human primates (NHPs) fail to capture this complexity, partly due to the lack of adequate methods for reliably and simultaneously measuring a broad spectrum of neurotransmitters while the animal engages in behavioral tasks. NEW METHOD To address this gap, we introduce a novel implementation of brain microdialysis (MD), employing semi-chronically implanted guides and probes in awake, behaving NHPs facilitated by removable insets within a standard recording chamber over extrastriate visual cortex (here, the visual middle temporal area (MT)). This approach allows flexible access to diverse brain regions, including areas deep within the sulcus. RESULTS Reliable concentration measurements of GABA, glutamate, norepinephrine, epinephrine, dopamine, serotonin, and choline were achieved from small sample volumes (<20 µl) using ultra-performance liquid chromatography with electrospray ionization-mass spectrometry (UPLC-ESI-MS). Comparing two behavioral states - 'active' and 'inactive', we observe subtle concentration variations between the two behavioral states and a greater variability of concentrations in the active state. Additionally, we find positively and negatively correlated concentration changes for neurotransmitter pairs between the behavioral states. CONCLUSIONS Therefore, this MD setup allows insights into the neurochemical dynamics in awake primates, facilitating comprehensive investigations into the roles and the complex interplay of neurotransmitters in cognitive and behavioral functions.
Collapse
Affiliation(s)
- Stella Mayer
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, Goettingen 37077 Germany.
| | - Pankhuri Saxena
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, Goettingen 37077 Germany
| | - Max Arwed Crayen
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Goettingen Graduate Center for Neurosciences, Biophysics, and Molecular Biosciences, University of Goettingen, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, Goettingen 37077 Germany
| | - Stefan Treue
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, Goettingen 37077 Germany
| |
Collapse
|
7
|
Hilz EN, Schnurer C, Bhamidipati S, Deka J, Thompson LM, Gore AC. Cognitive effects of early life exposure to PCBs in rats: Sex-specific behavioral, hormonal and neuromolecular mechanisms involving the brain dopamine system. Horm Behav 2025; 169:105697. [PMID: 39923265 PMCID: PMC11908942 DOI: 10.1016/j.yhbeh.2025.105697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/11/2025]
Abstract
Endocrine-disrupting chemicals (EDCs) are environmental toxicants that disrupt hormonal and neurodevelopmental processes. Among these chemicals, polychlorinated biphenyls (PCBs) are particularly concerning due to their resistance to biodegradation and tendency to bioaccumulate. PCBs affect neurodevelopmental function and disrupt the brain's dopamine (DA) system, which is crucial for attentional, affective, and reward processing. These disruptions may contribute to the rising prevalence of DA-mediated neuropsychiatric disorders such as ADHD, depression, and substance use disorders. Notably, these behaviors are sexually dimorphic in part due to differences in sex hormones and their receptors, which are targets of estrogenic PCBs. Therefore, this study determined effects of early life PCB exposure on behaviors and neurochemistry related to potential disruption of dopaminergic signaling. Male and female Sprague Dawley rats were exposed to the PCB mixture Aroclor 1221 (A1221) or vehicle perinatally and then underwent a series of behavioral tests in adulthood, including the sucrose preference test to measure anhedonia, conditioned orienting to assess incentive-motivational phenotype, and attentional set-shifting to evaluate cognitive flexibility and response latency. Following these tests, rats were euthanized, and serum estradiol (E2), DA cells in the midbrain ventral tegmental area (VTA) and substantia nigra (SN), and gene expression from those combined midbrain nuclei were measured. Female rats exposed perinatally to A1221 exhibited decreased sucrose preference, and both male and female A1221 rats had reduced response latency in the attentional set-shifting task compared to vehicle counterparts. Conditioned orienting and serum estradiol (E2)were not affected in either sex; however, A1221-exposed rats of both sexes displayed higher TH+ cell numbers in the VTA and increased expression of dopamine receptor 1 (Drd1) in the combined midbrain nuclei. Additionally, E2 uniquely predicted behavioral outcomes and VTA DAergic cell numbers in A1221-exposed female rats, whereas DA signaling genes were predictive of behavioral outcomes in males. These data highlight sex-specific effects of A1221 on neuromolecular and behavioral phenotypes.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Cameron Schnurer
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Swati Bhamidipati
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Jahnabi Deka
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Lindsay M Thompson
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America
| | - Andrea C Gore
- The University of Texas at Austin, College of Pharmacy, Pharmacology and Toxicology, Austin, TX, United States of America.
| |
Collapse
|
8
|
Jin Y, Zheng D, Gu R, Fan Q, Dietz M, Wang C, Li X, Chen J, Hu Y, Zhou Y. Substantial Heritability Underlies Fairness Norm Adaptation Capability and its Neural Basis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411070. [PMID: 39679781 PMCID: PMC11884581 DOI: 10.1002/advs.202411070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/26/2024] [Indexed: 12/17/2024]
Abstract
The present research uncovers the shared genetic underpinnings of fairness norm adaptation capability, its neural correlates, and long-term mental health outcomes. One hundred and eighty-six twins are recruited and played as responders in the Ultimatum Game (UG) while undergoing fMRI scanning in their early adulthood (Study-1) and are measured on depressive symptoms eight years later (Study-2). With computational modeling, the process of norm adaptation is differentiated from that of fairness valuation in UG. The two processes both have moderate levels of heritability. The anterior insula has a significant phenotypic correlation, whereas the Supplementary Motor Area/Medial Frontal Gyrus (SMA/mSFG) shows both a significant phenotypic correlation and a shared genetic influence with the learning rate, an index for norm adaptation. The dopaminergic DRD2 polymorphisms correlate with both the learning rate and the SMA/mSFG encoding of prediction error, constituting of their common genetic basis. Regional gene expression analysis reveals the high expression of dopamine-related genes in the SMA/mSFG. Moreover, the learning rate can predict depressive symptom severity eight years later, with the DRD2 polymorphisms constituting their shared genetic basis. This suggests that heritability is a non-negligible driving force behind norm adaptation, which facilitates the learning of social norms in changing environments and preserves long-term mental health.
Collapse
Affiliation(s)
- Yuening Jin
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Dang Zheng
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of Early Childhood EducationChina National Children's CenterBeijing100035China
| | - Ruolei Gu
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Qingchen Fan
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Martin Dietz
- Center of Functionally Integrative NeuroscienceInstitute of Clinical MedicineAarhus UniversityUniversitetsbyen 3Aarhus8000Denmark
| | - Changshuo Wang
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Sino‐Danish CenterUniversity of Chinese Academy of SciencesBeijing100049China
- Brainnetome CenterInstitute of AutomationChinese Academy of SciencesBeijing100190China
| | - Xinying Li
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Mental HealthInstitute of PsychologyChinese Academy of SciencesBeijing100101China
| | - Jie Chen
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Mental HealthInstitute of PsychologyChinese Academy of SciencesBeijing100101China
| | - Yuanyuan Hu
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yuan Zhou
- CAS Key Laboratory of Behavioral ScienceInstitute of PsychologyChinese Academy of SciencesBeijing100101China
- Department of PsychologyUniversity of Chinese Academy of SciencesBeijing100049China
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental DisordersBeijing Anding HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
9
|
Pérez-Garci E, Pysanenko K, Rizzi G, Studer F, Ulrich D, Fritzius T, Früh S, Porcu A, Besseyrias V, Melichar A, Gassmann M, Barkat TR, Tureček R, Tan KR, Bettler B. Binding of HCN channels to GABA B receptors in dopamine neurons of the VTA limits synaptic inhibition and prevents the development of anxiety. Neurobiol Dis 2025; 206:106831. [PMID: 39914775 DOI: 10.1016/j.nbd.2025.106831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/23/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025] Open
Abstract
During GABAergic synaptic transmission, G protein-coupled GABAB receptors (GBRs) activate K+ channels that prolong the duration of inhibitory postsynaptic potentials (IPSPs). We now show that KCTD16, an auxiliary GBR subunit, anchors hyperpolarization-activated cyclic nucleotide-gated (HCN) channels containing HCN2/HCN3 subunits to GBRs. In dopamine neurons of the VTA (DAVTA neurons), this interaction facilitates activation of HCN channels via hyperpolarization during IPSPs, counteracting the GBR-mediated late phase of these IPSPs. Consequently, disruption of the GBR/HCN complex in KCTD16-/- mice leads to prolonged optogenetic inhibition of DAVTA neuron firing. KCTD16-/- mice exhibit increased anxiety-like behavior in response to stress - a behavior replicated by CRISPR/Cas9-mediated KCTD16 ablation in DAVTA neurons or by intra-VTA infusion of an HCN antagonist in wild-type mice. Our findings support that the retention of HCN channels at GABAergic synapses by GBRs in DAVTA neurons provides a negative feedback mechanism that restricts IPSP duration and mitigates the development of anxiety.
Collapse
Affiliation(s)
- Enrique Pérez-Garci
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Kateryna Pysanenko
- Department of Auditory Neuroscience, Institute of Experimental Medicine, CAS, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Giorgio Rizzi
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Florian Studer
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Daniel Ulrich
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Thorsten Fritzius
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Simon Früh
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Alessandra Porcu
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Valérie Besseyrias
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Adolf Melichar
- Department of Auditory Neuroscience, Institute of Experimental Medicine, CAS, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Martin Gassmann
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Tania Rinaldi Barkat
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland
| | - Rostislav Tureček
- Department of Auditory Neuroscience, Institute of Experimental Medicine, CAS, Videnska 1083, 14220 Prague 4, Czech Republic
| | - Kelly R Tan
- Biozentrum, University of Basel, Spitalstrasse 41, CH-4056 Basel, Switzerland
| | - Bernhard Bettler
- Department of Biomedicine, Pharmazentrum, University of Basel, Klingelbergstrasse 50, CH-4056 Basel, Switzerland.
| |
Collapse
|
10
|
Engeln M, Ahmed SH. Remission from addiction: erasing the wrong circuits or making new ones? Nat Rev Neurosci 2025; 26:115-130. [PMID: 39663409 DOI: 10.1038/s41583-024-00886-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2024] [Indexed: 12/13/2024]
Abstract
Chronic relapse is a hallmark of substance-use disorders (SUDs), but many people with SUDs do recover and eventually enter remission. Many preclinical studies in this field aim to identify interventions that can precipitate recovery by reversing or erasing the neuronal circuit changes caused by chronic drug use. A better understanding of remission from SUDs can also come from preclinical studies that model factors known to influence recovery in humans, such as the negative consequences of drug use and positive environmental influences. In this Perspective we discuss human neuroimaging studies that have provided information about recovery from SUDs and highlight mechanisms identified in preclinical studies - such as the reconfiguration of neuronal circuits - that could contribute to remission. We also analyse how studies of memory and forgetting can provide insights into the mechanisms of remission. Overall, we propose that remission can be driven by the introduction of new neuronal changes (which outcompete those induced by drugs) as well as by the erasure of drug-induced changes.
Collapse
Affiliation(s)
- Michel Engeln
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France.
| | - Serge H Ahmed
- Univ. Bordeaux, CNRS, INCIA, UMR 5287, Bordeaux, France
| |
Collapse
|
11
|
van Dooren R, Jongkees BJ, Sellaro R. Self-prioritization in working memory gating. Atten Percept Psychophys 2025; 87:399-414. [PMID: 38491316 PMCID: PMC11865181 DOI: 10.3758/s13414-024-02869-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2024] [Indexed: 03/18/2024]
Abstract
Working memory (WM) involves a dynamic interplay between temporary maintenance and updating of goal-relevant information. The balance between maintenance and updating is regulated by an input-gating mechanism that determines which information should enter WM (gate opening) and which should be kept out (gate closing). We investigated whether updating and gate opening/closing are differentially sensitive to the kind of information to be encoded and maintained in WM. Specifically, since the social salience of a stimulus is known to affect cognitive performance, we investigated if self-relevant information differentially impacts maintenance, updating, or gate opening/closing. Participants first learned to associate two neutral shapes with two social labels (i.e., "you" vs. "stranger"), respectively. Subsequently they performed the reference-back paradigm, a well-established WM task that disentangles WM updating, gate opening, and gate closing. Crucially, the shapes previously associated with the self or a stranger served as target stimuli in the reference-back task. We replicated the typical finding of a repetition benefit when consecutive trials require opening the gate to WM. In Study 1 (N = 45) this advantage disappeared when self-associated stimuli were recently gated into WM and immediately needed to be replaced by stranger-associated stimuli. However, this was not replicated in a larger sample (Study 2; N = 90), where a repetition benefit always occurred on consecutive gate-opening trials. Overall, our results do not provide evidence that the self-relevance of stimuli modulates component processes of WM. We discuss possible reasons for this null finding, including the importance of continuous reinstatement and task-relevance of the shape-label associations.
Collapse
Affiliation(s)
- Roel van Dooren
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Bryant J Jongkees
- Cognitive Psychology Unit, Institute of Psychology and Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Roberta Sellaro
- Department of Developmental Psychology and Socialization and Padova Neuroscience Center, University of Padova, Padova, Italy.
| |
Collapse
|
12
|
Banihosseini R, Abdoli B, Kavyani M. Implicit and explicit learning strategies and fatigue: an evaluation of throwing task performance. Front Psychol 2025; 16:1438313. [PMID: 39958770 PMCID: PMC11825830 DOI: 10.3389/fpsyg.2025.1438313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 01/17/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction This study aimed to determine the effects of implicit (errorless) and explicit (errorful) training strategies on a throwing task under physiological and mental fatigue conditions. Methods Thirty-two participants, equally divided between the explicit and implicit learning groups, participated in a throwing task. The explicit learning group began at a significant distance from the target and gradually moved closer. In contrast, the implicit learning group started close to the target and progressively increased their distance. The initial session referred to as the acquisition phase, comprised 150 throws from five different distances. Subsequent sessions included a retention test and two transfer tests conducted under conditions of both physiological and mental fatigue. Mental fatigue was induced using a 30-minute color-word Stroop task, while physical fatigue was elicited by requiring subjects to maintain 50% of their maximum voluntary isometric contraction (MVC) in elbow extension for a 2-minute duration. Results The results revealed that the implicit learning group exhibited improved performance under fatigue conditions and outperformed the explicit learning group significantly, regardless of the type of fatigue. Conclusion This results suggests that implicit learning may improve motor performance even under fatigue conditions.
Collapse
Affiliation(s)
| | | | - Maryam Kavyani
- Faculty of Sport Sciences and Health, Department of Cognitive and Behavioral Sciences and Technology in Sport, Shahid Beheshti University of Tehran, Tehran, Iran
| |
Collapse
|
13
|
Mehr SR, Nakhaei B, Soleimani H, Madadlou SK, Abbasi Maleky A, Abbasi-Maleki S. Addiction and stress: Exploring the reward pathways in brain affected by different drugs. PROGRESS IN BRAIN RESEARCH 2025; 291:381-404. [PMID: 40222788 DOI: 10.1016/bs.pbr.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
This chapter delves into the complex interplay among addiction, stress, and the reward pathways in the brain, emphasizing the ways in which various drugs affect these systems and exacerbate SUD. Drugs have physiological effects that can be both pleasurable and unpleasant. These effects change behavior through both positive and negative reinforcement. A person's genetic predisposition to addiction is mostly determined by factors such as biological sex, age of first usage, and dopamine receptor density. Drug use behaviors are also greatly influenced by environmental stressors, media exposure, and substance accessibility; nevertheless, protective variables including social support, participation in healthy activities, and preventative programs serve to reduce the dangers associated with drug use. The reinforcement of addictive behaviors is mostly dependent on the brain's reward circuits, which include the nucleus accumbens, ventral tegmental region, and prefrontal cortex, in addition to neurotransmitters such as dopamine, serotonin, and endorphins. Stress makes addiction worse by intensifying cravings and raising the possibility of relapsing. Examined are the impacts of several drug types, such as opioids, stimulants, depressants, and hallucinogens, emphasizing the long-term consequences on brain function and susceptibility to addiction. In order to create individualized interventions that target the environmental and neurological components of addiction and eventually improve treatment results, a thorough understanding of these elements is important.
Collapse
Affiliation(s)
- Samira Rostami Mehr
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Babak Nakhaei
- Department of Pathobiology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran
| | - Hossein Soleimani
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pathobiology, Faculty of Veterinary Medicine, Urmia Branch, Islamic Azad University, Urmia, Iran; Research and Development Unit (R&D), Daana Pharmaceutical Co, Tabriz, Iran; Department of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran; Department of Pharmacology & Toxicology, School of Pharmacy, Kermanshah University of Medical Science, Kermanshah, Iran
| | | | - Asghar Abbasi Maleky
- Department of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saeid Abbasi-Maleki
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Pharmacology & Toxicology, School of Pharmacy, Kermanshah University of Medical Science, Kermanshah, Iran.
| |
Collapse
|
14
|
Ji S, Zhang H, Zhou C, Liu X, Liu C, Yu H. Resting-state voxel-wise dynamic effective connectivity predicts risky decision-making in patients with bipolar disorder type I. Neuroscience 2025; 564:135-143. [PMID: 39577688 DOI: 10.1016/j.neuroscience.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Patients with Bipolar Disorder type I (BD-I) exhibit maladaptive risky decision-making, which is related to impulsivity, suicide attempts, and aggressive behavior. Currently, there is a lack of effective predictive methods for early intervention in risky behaviors for patients with BD-I. This study aimed to predict risky behavior in patients with BD-I using resting-state functional magnetic resonance imaging (rs-fMRI). We included 48 patients with BD-I and 124 healthy controls (HC) and constructed voxel-wise functional connectivity (FC), dynamic FC (dFC), effective connectivity (EC), and dynamic EC (dEC) for each subject. The Balloon Analogue Risk Task (BART) was employed to measure the risky decision-making of all participants. We applied connectome-based predictive modeling (CPM) with five regression algorithms to predict risky behaviors as well as Barratt Impulsivity Scale (BIS) scores. Results showed that the BD-I had significantly lower risky adjusted pump scores compared to HC. The dEC-based linear regression-CPM model exhibited significant predictive ability for the adjusted pump scores in BD-I, while no significant predictive power was observed in HC. Furthermore, this model successfully predicted non-planning impulsiveness, motor impulsiveness, and BIS total score, but failed for attentional impulsiveness in BD-I. These findings provide a foundation for future work in predicting risky behaviors of psychiatric patients by using voxel-wise dEC underlying resting state.
Collapse
Affiliation(s)
- Shanling Ji
- Institute of Mental Health, Jining Medical University, Shandong, China
| | - Hongyong Zhang
- Medical Imaging Department, Shandong Daizhuang Hospital, Shandong, China
| | - Cong Zhou
- Institute of Mental Health, Jining Medical University, Shandong, China
| | - Xia Liu
- Hebei University of Economics and Businesses, Hebei, China
| | - Chuanxin Liu
- Institute of Mental Health, Jining Medical University, Shandong, China.
| | - Hao Yu
- Institute of Mental Health, Jining Medical University, Shandong, China.
| |
Collapse
|
15
|
Quan Y, Wang J, Wang Y, Kang G. The effect of reward and voluntary choice on the motor learning of serial reaction time task. Front Psychol 2025; 15:1493434. [PMID: 39839919 PMCID: PMC11747785 DOI: 10.3389/fpsyg.2024.1493434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/16/2024] [Indexed: 01/23/2025] Open
Abstract
Objective Reward and voluntary choice facilitate motor skill learning through motivation. However, it remains unclear how their combination influences motor skill learning. The purpose of the present study is to investigate the effects of reward and voluntary choice on motor skill learning in a serial reaction time task (SRTT). Methods Participants completed six parts of SRTT, including pre-test, training phase, immediate post-test, a random session, delayed post-test, and retention test on the following day. During the training phase, participants were divided into four groups (reward_choice, reward_no-choice, no-reward_choice, no-reward_no-choice). In the reward condition, participants received reward for correct and faster (than a baseline) responses while those in the no-reward groups did not. For the choice manipulation, participants in the voluntary choice groups chose the color of the target, whereas in the forced choice groups, the same color was assigned by the computer. Results The results showed that the four groups did not exhibit any significant differences in reaction time and error rate in the pre-test phase. Importantly, both reward and voluntary choice significantly enhanced sequence-specific learning effects, while no interaction was found. No significant effects of reward and voluntary choice were observed in the retention test. Conclusions These findings suggest that reward and voluntary choice enhance motor skill performance and training independently, potentially at the action-selection level, which implies different mechanisms underlying the influences of reward and voluntary choice.
Collapse
Affiliation(s)
- Yanghui Quan
- School of Psychology, Beijing Sport University, Beijing, China
| | - Jiayue Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Yandong Wang
- School of Psychology, Beijing Sport University, Beijing, China
| | - Guanlan Kang
- School of Psychology, Beijing Sport University, Beijing, China
- Laboratory of Sports Stress and Adaptation of General Administration of Sport, Beijing Sport University, Beijing, China
| |
Collapse
|
16
|
Jacquin-Piques A. The pleasantness of foods. Neurophysiol Clin 2025; 55:103031. [PMID: 39644807 DOI: 10.1016/j.neucli.2024.103031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/07/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024] Open
Abstract
Food pleasantness is largely based on the palatability of food and is linked to taste. Along with homeostatic and cognitive control, it forms part of the control of food intake (hedonic control), and does not only correspond to the pleasure that can be described of food intake. There are many factors that cause variations in eating pleasantness between individuals, such as age, sex, culture, co-morbidities, treatments, environmental factors or the specific characteristics of foods. The control of food intake is based on four determinants: conditioned satiety, the reward system, sensory specific satiety and alliesthesia. These four determinants follow one another over time, in the per-prandial and inter-prandial periods, and complement one another. There are many cerebral areas involved in the hedonic control of food intake. The most involved brain areas are the orbitofrontal and anterior cingulate cortices, which interact with deep neural structures (amygdala, striatum, substantia nigra) for the reward circuit, with the hippocampi for memorising pleasant foods, and even with the hypothalamus and insula, brain areas more recently involved in the physiology of food pleasantness. Changes in brain activity secondary to modulation of food pleasantness can be measured objectively by recording taste-evoked potentials, an electroencephalography technique with very good temporal resolution.
Collapse
Affiliation(s)
- Agnès Jacquin-Piques
- Centre des Sciences du Goût et de l'Alimentation (CSGA) - UMR CNRS 6265, INRAE 1324, University of Burgundy, L'institut Agro - 9E, Boulevard Jeanne d'Arc - 21000 DIJON, France; University Hospital of Dijon, Bourgogne - Department of Neurology - Clinical Neurophysiology - 14, rue Paul Gaffarel - 21000 DIJON, France.
| |
Collapse
|
17
|
Li L, Dong K, Li L, Li Q, Su Y, Zong C. Adverse effects of thimerosal on the early life stages of zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110046. [PMID: 39307513 DOI: 10.1016/j.cbpc.2024.110046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/19/2024] [Indexed: 09/26/2024]
Abstract
Thimerosal (THI) is an organic mercury compound that is widely used in drugs, vaccines and antibacterial products. Its extensive production and use have resulted in significant environmental contamination, posing a considerable threat to aquatic life. However, the knowledge of the toxicity of THI to aquatic organisms is still insufficient. In this study, we conducted a 5-day THI exposure experiment using zebrafish, from 0 to 5 days post fertilization (dpf). The possible adverse effects of THI on the early-life stages of zebrafish were explored by investigating variations in their physiological parameters, behavioral traits, and neurotransmitter levels. The results showed THI exhibited significant developmental toxicity to aquatic organisms. Exposure to THI significantly induced serious malformation (at 50 μg/L), accelerated hatching, and elevated heart rate (at 5 and 50 μg/L). The behavioral traits of zebrafish larvae had an increased first and then decreased relationship with increasing concentration of THI, which induced hyperactivity at 0.5 μg/L but opposite at 50 μg/L. Furthermore, exposure to 50 μg/L THI significantly raised levels of 5-HT, 5-HIAA, DA, DOPAC and ACH in zebrafish larvae. In addition, several significant correlations between behavioral traits and the neurotransmitter contents were detected, which seemed to reveal an important mechanism of the neurobehavioral toxicity of THI to fish.
Collapse
Affiliation(s)
- Lixia Li
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Kejun Dong
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - LeYan Li
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Qingchen Li
- College of Environment, Hohai University, Nanjing, China
| | - Youqin Su
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chenrui Zong
- The school of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
18
|
Papalini S. Stress-induced overeating behaviors explained from a (transitory) relief-learning perspective. Physiol Behav 2024; 287:114707. [PMID: 39349091 DOI: 10.1016/j.physbeh.2024.114707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 08/18/2024] [Accepted: 09/27/2024] [Indexed: 10/02/2024]
Abstract
People use various behaviors to cope with stressful events. These behaviors are mostly adaptive, as they allow a successful release of stress without impacting other aspects of life: How nice is it to have a break with a few spoons of that favorite ice cream during a hectic working day? However, when excessive consumption of high-sugar/salt ultra-processed food becomes the gateway to find relief from stress, eating loses this adaptive function and may escalate to binge eating, lead to obesity, and other medical conditions linked to overweight. Several etiological models attempt to explain stress-induced eating and excessive overeating behaviors characterizing these clinical conditions. The popular Emotional Eating Theory proposes that stress-related (over-)eating, a major predictor of obesity and diagnosed binge eating disorders, develops based on negative reinforcement learning since food consumption regulates the negative affective state associated with stressful circumstances. Differently, the prominent Incentive Sensitization Theory explains overeating, binge eating disorders (including bulimia), and obesity in terms of excessive amplification of reward 'wanting', which is thought to emerge from overexposure to obesogenic (food)cues. The several studies oriented by these theories have paved the way to better understand stress-related (over-)eating and its clinical excesses. However, a deep mechanistic understanding of how and why stress-induced (over-)eating can escalate till clinical forms of overeating remain elusive. A well-funded connection of the mechanisms proposed by the Emotional Eating Theory and the Incentive Sensitization Theory might address this etiological open question. To avoid erroneous arguments, it is however essential to first address the internal theoretical and methodological shortcomings of each theory and connected studies. These shortcomings stem from conceptual fallacies and poorly implemented designs, which might partially explain the 'high variability and low replicability' problem of empirical findings. Next, the formulation of a new integrative model could provide fresh insight into the deep learning and biological mechanisms of this escalation. A successful formalization of this model could then create the much-needed impact in clinical and preventive research since excessive overeating is a behavior hard to change once established. In this opinion paper, I propose to apply recent insights we gathered on the role of relief from the field of safety learning to stress (over-)eating. I will present a new relief-based model that, as a starting point, has the potential to connect the Emotional Eating Theory with the Incentive Sensitization Theory, setting the base for more integrative science.
Collapse
Affiliation(s)
- Silvia Papalini
- Laboratory of Biological Psychology, Faculty of Psychology and Educational Sciences, KU Leuven, Belgium; Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Cognitive Neuroscience Department.
| |
Collapse
|
19
|
Prange S, Thobois S. Imaging of impulse control disorders in Parkinson's disease. Rev Neurol (Paris) 2024; 180:1078-1086. [PMID: 39341756 DOI: 10.1016/j.neurol.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 08/05/2024] [Accepted: 09/02/2024] [Indexed: 10/01/2024]
Abstract
Impulse control disorders (ICD) are frequent and cumbersome behavioral disorders in patients with Parkinson's disease (PD). Understanding their pathophysiological underpinnings is crucial. Molecular imaging using positron emission tomography (PET) and single-photon emission computed tomography (SPECT) clearly indicates preexisting vulnerability and abnormal sensitization of the pre- and postsynaptic dopaminergic system. Functional magnetic resonance imaging (fMRI) studies reveal abnormal connectivity within the reward system involving the ventral striatum and orbitofrontal cortex. These alterations pinpoint the dysfunction of reinforcement learning in ICD, which is biased toward the overvaluation of reward and underestimation of risk, and the deficit in inhibitory control mechanisms related to abnormal connectivity within and between the limbic and the associative and motor networks.
Collapse
Affiliation(s)
- S Prange
- Hospices Civils de Lyon, Pierre-Wertheimer Neurological Hospital, Department of Neurology C, Expert Parkinson Center NS-PARK/FCRIN, Bron, France; CRNL Centre de Recherche en Neurosciences de Lyon, PATHPARK, INSERM U1028 CNRS UMR 5292, Bron, France; Université Lyon, Université Claude-Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud Charles-Mérieux, Oullins, France.
| | - S Thobois
- Hospices Civils de Lyon, Pierre-Wertheimer Neurological Hospital, Department of Neurology C, Expert Parkinson Center NS-PARK/FCRIN, Bron, France; CRNL Centre de Recherche en Neurosciences de Lyon, PATHPARK, INSERM U1028 CNRS UMR 5292, Bron, France; Université Lyon, Université Claude-Bernard Lyon 1, Faculté de Médecine et de Maïeutique Lyon Sud Charles-Mérieux, Oullins, France
| |
Collapse
|
20
|
Chen CS, Mueller D, Knep E, Ebitz RB, Grissom NM. Dopamine and Norepinephrine Differentially Mediate the Exploration-Exploitation Tradeoff. J Neurosci 2024; 44:e1194232024. [PMID: 39214707 PMCID: PMC11529815 DOI: 10.1523/jneurosci.1194-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Dopamine (DA) and norepinephrine (NE) have been repeatedly implicated in neuropsychiatric vulnerability, in part via their roles in mediating the decision-making processes. Although two neuromodulators share a synthesis pathway and are coactivated under states of arousal, they engage in distinct circuits and modulatory roles. However, the specific role of each neuromodulator in decision-making, in particular the exploration-exploitation tradeoff, remains unclear. Revealing how each neuromodulator contributes to exploration-exploitation tradeoff is important in guiding mechanistic hypotheses emerging from computational psychiatric approaches. To understand the differences and overlaps of the roles of these two catecholamine systems in regulating exploration, a direct comparison using the same dynamic decision-making task is needed. Here, we ran male and female mice in a restless two-armed bandit task, which encourages both exploration and exploitation. We systemically administered a nonselective DA antagonist (flupenthixol), a nonselective DA agonist (apomorphine), a NE beta-receptor antagonist (propranolol), and a NE beta-receptor agonist (isoproterenol) and examined changes in exploration within subjects across sessions. We found a bidirectional modulatory effect of dopamine on exploration. Increasing dopamine activity decreased exploration and decreasing dopamine activity increased exploration. The modulatory effect of beta-noradrenergic receptor activity on exploration was mediated by sex. Reinforcement learning model parameters suggested that dopamine modulation affected exploration via decision noise and norepinephrine modulation affected exploration via sensitivity to outcome. Together, these findings suggested that the mechanisms that govern the exploration-exploitation transition are sensitive to changes in both catecholamine functions and revealed differential roles for NE and DA in mediating exploration.
Collapse
Affiliation(s)
- Cathy S Chen
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Dana Mueller
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Evan Knep
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| | - R Becket Ebitz
- Department of Neurosciences, Université de Montréal, Montréal, Quebec H3T 1J4, Canada
| | - Nicola M Grissom
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota 55455
| |
Collapse
|
21
|
Manto M, Adamaszek M, Apps R, Carlson E, Guarque-Chabrera J, Heleven E, Kakei S, Khodakhah K, Kuo SH, Lin CYR, Joshua M, Miquel M, Mitoma H, Larry N, Péron JA, Pickford J, Schutter DJLG, Singh MK, Tan T, Tanaka H, Tsai P, Van Overwalle F, Yamashiro K. Consensus Paper: Cerebellum and Reward. CEREBELLUM (LONDON, ENGLAND) 2024; 23:2169-2192. [PMID: 38769243 DOI: 10.1007/s12311-024-01702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
Cerebellum is a key-structure for the modulation of motor, cognitive, social and affective functions, contributing to automatic behaviours through interactions with the cerebral cortex, basal ganglia and spinal cord. The predictive mechanisms used by the cerebellum cover not only sensorimotor functions but also reward-related tasks. Cerebellar circuits appear to encode temporal difference error and reward prediction error. From a chemical standpoint, cerebellar catecholamines modulate the rate of cerebellar-based cognitive learning, and mediate cerebellar contributions during complex behaviours. Reward processing and its associated emotions are tuned by the cerebellum which operates as a controller of adaptive homeostatic processes based on interoceptive and exteroceptive inputs. Lobules VI-VII/areas of the vermis are candidate regions for the cortico-subcortical signaling pathways associated with loss aversion and reward sensitivity, together with other nodes of the limbic circuitry. There is growing evidence that the cerebellum works as a hub of regional dysconnectivity across all mood states and that mental disorders involve the cerebellar circuitry, including mood and addiction disorders, and impaired eating behaviors where the cerebellum might be involved in longer time scales of prediction as compared to motor operations. Cerebellar patients exhibit aberrant social behaviour, showing aberrant impulsivity/compulsivity. The cerebellum is a master-piece of reward mechanisms, together with the striatum, ventral tegmental area (VTA) and prefrontal cortex (PFC). Critically, studies on reward processing reinforce our view that a fundamental role of the cerebellum is to construct internal models, perform predictions on the impact of future behaviour and compare what is predicted and what actually occurs.
Collapse
Affiliation(s)
- Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, 6000, Charleroi, Belgium.
- Service Des Neurosciences, Université de Mons, 7000, Mons, Belgium.
- Unité Des Ataxies Cérébelleuses, CHU-Charleroi, Service Des Neurosciences, University of Mons, 7000, Mons, Belgium.
| | - Michael Adamaszek
- Department of Clinical and Cognitive Neurorehabilitation, Klinik Bavaria Kreischa, 01731, Kreischa, Germany
| | - Richard Apps
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Erik Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, 98108, USA
- Geriatric Research, Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, 98108, USA
| | - Julian Guarque-Chabrera
- Área de Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, 12071, Castellón de La Plana, Spain
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA
| | - Elien Heleven
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Shinji Kakei
- Department of Anatomy and Physiology, Jissen Women's University, Tokyo, 191-8510, Japan
| | - Kamran Khodakhah
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA
| | - Sheng-Han Kuo
- Department of Neurology, Columbia University Medical Center, New York, NY, 10032, USA
- Initiative of Columbia Ataxia and Tremor, Columbia University Medical Center, New York, NY, 10032, USA
| | - Chi-Ying R Lin
- Alzheimer's Disease and Memory Disorders Center, Department of Neurology, Baylor College of Medicine, Houston, 77030 TX, USA
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, 77030 TX, USA
| | - Mati Joshua
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Marta Miquel
- Área de Psicobiología, Facultat de Ciències de La Salut, Universitat Jaume I, 12071, Castellón de La Plana, Spain
- Dominick Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, 10461, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Noga Larry
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Julie Anne Péron
- Clinical and Experimental Neuropsychology Laboratory, Department of Psychology and Educational Sciences, University of Geneva, 1205, Geneva, Switzerland
| | - Jasmine Pickford
- School of Physiology, Pharmacology & Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, BS8 1TD, UK
| | - Dennis J L G Schutter
- Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Heidelberglaan 1, 3584 CS, Utrecht, The Netherlands
| | - Manpreet K Singh
- Psychiatry and Behavioral Sciences, University of California Davis, 2230 Stockton Blvd, Sacramento, CA, 95817, USA
| | - Tommy Tan
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Hirokazu Tanaka
- Faculty of Information Technology, Tokyo City University, Tokyo, 158-8557, Japan
| | - Peter Tsai
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA
- Departments of Neuroscience, Pediatrics, Psychiatry, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| | - Frank Van Overwalle
- Faculty of Psychology and Center for Neuroscience, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Kunihiko Yamashiro
- Department of Neurology, UT Southwestern Medical Center, Dallas, TX, 75235, USA
| |
Collapse
|
22
|
Rosenberg BM, Moreira JFG, Leal ASM, Saragosa-Harris NM, Gaines E, Meredith WJ, Waizman Y, Ninova E, Silvers JA. Functional connectivity between the nucleus accumbens and amygdala underlies avoidance learning during adolescence: Implications for developmental psychopathology. Dev Psychopathol 2024:1-13. [PMID: 39324228 PMCID: PMC11936845 DOI: 10.1017/s095457942400141x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
BACKGROUND Reward and threat processes work together to support adaptive learning during development. Adolescence is associated with increasing approach behavior (e.g., novelty-seeking, risk-taking) but often also coincides with emerging internalizing symptoms, which are characterized by heightened avoidance behavior. Peaking engagement of the nucleus accumbens (NAcc) during adolescence, often studied in reward paradigms, may also relate to threat mechanisms of adolescent psychopathology. METHODS 47 typically developing adolescents (9.9-22.9 years) completed an aversive learning task during functional magnetic resonance imaging, wherein visual cues were paired with an aversive sound or no sound. Task blocks involved an escapable aversively reinforced stimulus (CS+r), the same stimulus without reinforcement (CS+nr), or a stimulus that was never reinforced (CS-). Parent-reported internalizing symptoms were measured using Revised Child Anxiety and Depression Scales. RESULTS Functional connectivity between the NAcc and amygdala differentiated the stimuli, such that connectivity increased for the CS+r (p = .023) but not for the CS+nr and CS-. Adolescents with greater internalizing symptoms demonstrated greater positive functional connectivity for the CS- (p = .041). CONCLUSIONS Adolescents show heightened NAcc-amygdala functional connectivity during escape from threat. Higher anxiety and depression symptoms are associated with elevated NAcc-amygdala connectivity during safety, which may reflect poor safety versus threat discrimination.
Collapse
Affiliation(s)
- Benjamin M. Rosenberg
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - João F. Guassi Moreira
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Adriana S. Méndez Leal
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | | | - Elizabeth Gaines
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Wesley J. Meredith
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Yael Waizman
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Emilia Ninova
- College of Social Work, Florida State University, Tallahassee, FL, USA
| | - Jennifer A. Silvers
- Department of Psychology, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
23
|
Reybrouck M, Podlipniak P, Welch D. Music Listening as Exploratory Behavior: From Dispositional Reactions to Epistemic Interactions with the Sonic World. Behav Sci (Basel) 2024; 14:825. [PMID: 39336040 PMCID: PMC11429034 DOI: 10.3390/bs14090825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/21/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Listening to music can span a continuum from passive consumption to active exploration, relying on processes of coping with the sounds as well as higher-level processes of sense-making. Revolving around the major questions of "what" and "how" to explore, this paper takes a naturalistic stance toward music listening, providing tools to objectively describe the underlying mechanisms of musical sense-making by weakening the distinction between music and non-music. Starting from a non-exclusionary conception of "coping" with the sounds, it stresses the exploratory approach of treating music as a sound environment to be discovered by an attentive listener. Exploratory listening, in this view, is an open-minded and active process, not dependent on simply recalling pre-existing knowledge or information that reduces cognitive processing efforts but having a high cognitive load due to the need for highly focused attention and perceptual readiness. Music, explored in this way, is valued for its complexity, surprisingness, novelty, incongruity, puzzlingness, and patterns, relying on processes of selection, differentiation, discrimination, and identification.
Collapse
Affiliation(s)
- Mark Reybrouck
- Musicology Research Group, Faculty of Arts, KU Leuven-University of Leuven, 3000 Leuven, Belgium
- Institute for Psychoacoustics and Electronic Music (IPEM), Department of Art History, Musicology and Theatre Studies, 9000 Ghent, Belgium
| | - Piotr Podlipniak
- Institute of Musicology, Adam Mickiewicz University in Poznań, 61-712 Poznań, Poland
| | - David Welch
- Institute Audiology Section, School of Population Health, University of Auckland, Auckland 2011, New Zealand
| |
Collapse
|
24
|
Hilz EN, Schnurer C, Bhamidipati S, Deka J, Thompson LM, Gore AC. Cognitive effects of early life exposure to PCBs: Sex-specific behavioral, hormonal and neuromolecular mechanisms involving the brain dopamine system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612971. [PMID: 39314290 PMCID: PMC11419158 DOI: 10.1101/2024.09.13.612971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are environmental toxicants that disrupt hormonal and neurodevelopmental processes. Among these chemicals, polychlorinated biphenyls (PCBs) are particularly concerning due to their resistance to biodegradation and tendency to bioaccumulate. PCBs affect neurodevelopmental function and disrupt the brain's dopamine (DA) system, which is crucial for attentional, affective, and reward processing. These disruptions may contribute to the rising prevalence of DA-mediated neuropsychiatric disorders such as ADHD, depression, and substance use disorders. Notably, these behaviors are sexually dimorphic, in part due to differences in sex hormones and their receptors, which are targets of estrogenic PCBs. Therefore, this study determined effects of early life PCB exposure on behaviors and neurochemistry related to potential disruption of dopaminergic signaling. Male and female Sprague Dawley rats were exposed to PCBs or vehicle perinatally and then underwent a series of behavioral tests, including the sucrose preference test to measure affect, conditioned orienting to assess incentive-motivational phenotype, and attentional set-shifting to evaluate cognitive flexibility and response latency. Following these tests, rats were euthanized, and we measured serum estradiol (E2), midbrain DA cells, and gene expression in the midbrain. Female rats exposed perinatally to A1221 exhibited decreased sucrose preference, and both male and female A1221 rats had reduced response latency in the attentional set-shifting task compared to vehicle counterparts. Conditioned orienting, serum estradiol (E2), and midbrain DA cell numbers were not affected in either sex; however, A1221-exposed male rats displayed higher expression of estrogen receptor alpha ( Esr1 ) in the midbrain and non-significant effects on other DA-signaling genes. Additionally, E2 uniquely predicted behavioral outcomes and DAergic cell numbers in A1221-exposed female rats, whereas DA signaling genes were predictive of behavioral outcomes in males. These data highlight sex-specific effects of A1221 on neuromolecular and behavioral phenotypes.
Collapse
|
25
|
Ford D, Nieznański M. The effect of value on context and target recollection in memory for truth and falsity. Mem Cognit 2024; 52:1451-1462. [PMID: 38570437 PMCID: PMC11362491 DOI: 10.3758/s13421-024-01554-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/12/2024] [Indexed: 04/05/2024]
Abstract
Memory for truth and falsity has recently been investigated from the perspective of the dual-recollection theory, showing better context and target recollection for truth than falsity. In this paper, we examine whether these memory effects obtained for true statements are similar to the value effect, whereby true statements are given higher priority in encoding. For this purpose, we implemented value-directed remembering (VDR) into the conjoint-recognition paradigm. In our first experiment, the primary goal was to verify how VDR influences the processes defined by dual-recollection theory. At study, prioritized/important items were linked to higher numerical values (e.g., 10), while unimportant ones had lower values (e.g., 1). At test, the participants' task was to recognize whether a particular sentence was important, unimportant, or new. We found that both context and target recollection were better for important items. In the second experiment, the main goal was to study the combined effects of importance and veracity on memory. In the between-subjects design, participants were monetarily rewarded for memorizing true or false sentences. The results demonstrated differences in the ability to prioritize truth over falsity. Specifically, we found a substantial increase in context recollection for prioritized true information but not for prioritized false information. Moreover, we found higher context recollection for true than false sentences in the true-prioritized condition, but not in the false-prioritized condition. These results indicated that people are able to prioritize true information better than false, and suggested that memory for truth may be a special case of the value effect.
Collapse
Affiliation(s)
- Daria Ford
- Institute of Psychology, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland.
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany.
| | - Marek Nieznański
- Institute of Psychology, Cardinal Stefan Wyszyński University in Warsaw, Warsaw, Poland
| |
Collapse
|
26
|
Chen Y, Shen P, He Y, Zeng D, Li Y, Zhang Y, Chen M, Liu C. Bibliometric analysis of functional magnetic resonance imaging studies on chronic pain over the past 20 years. Acta Neurochir (Wien) 2024; 166:307. [PMID: 39060813 DOI: 10.1007/s00701-024-06204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024]
Abstract
PURPOSE The utilization of functional magnetic resonance imaging (fMRI) in studying the mechanisms and treatment of chronic pain has gained significant popularity. However, there is currently a dearth of literature conducting bibliometric analysis on fMRI studies focused on chronic pain. METHODS All the literature included in this study was obtained from the Science Citation Index Expanded of Web of Science Core Collection. We used CiteSpace and VOSviewer to analyze publications, authors, countries or regions, institutions, journals, references and keywords. Additionally, we evaluated the timeline and burst analysis of keywords, as well as the timeline and burst analysis of references. The search was conducted from 2004 to 2023 and completed within a single day on October 4th, 2023. RESULTS A total of 1,327 articles were retrieved. The annual publication shows an overall increasing trend. The United States has the highest number of publications and the main contributing institution is Harvard University. The journal PAIN produces the most articles. In recent years, resting-state fMRI, the prefrontal cortex, nucleus accumbens, thalamus, and migraines have been researched hotspots of fMRI studies on chronic pain. CONCLUSIONS This study provides an in-depth perspective on fMRI for chronic pain research, revealing key points, research hotspots and research trends, which offers valuable ideas for future research activities. It concludes with a summary of advances in clinical practice in this area, pointing out the need for critical evaluation of these findings in the light of guidelines and expert recommendations. It is anticipated that further high-quality research outputs will be generated in the future, which will facilitate the utilization of fMRI in clinical decision-making for chronic pain.
Collapse
Affiliation(s)
- Yiming Chen
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Peifeng Shen
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanan He
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Deyi Zeng
- Department of Radiology, Panyu Health Management Center (Panyu Rehabilitation Hospital), 688 West Yushan Road Shatou Street, Panyu District, Guangzhou, China
| | - Yuanchao Li
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuting Zhang
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mengtong Chen
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chunlong Liu
- Clinical Medical College of Acupuncture Moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
27
|
Kotsyuba E, Dyachuk V. Effects of Chronic Exposure to Low Doses of Rotenone on Dopaminergic and Cholinergic Neurons in the CNS of Hemigrapsus sanguineus. Int J Mol Sci 2024; 25:7159. [PMID: 39000265 PMCID: PMC11241242 DOI: 10.3390/ijms25137159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Rotenone, as a common pesticide and insecticide frequently found in environmental samples, may be present in aquatic habitats worldwide. Exposure to low concentrations of this compound may cause alterations in the nervous system, thus contributing to Parkinsonian motor symptoms in both vertebrates and invertebrates. However, the effects of chronic exposure to low doses of rotenone on the activity of neurotransmitters that govern motor functions and on the specific molecular mechanisms leading to movement morbidity remain largely unknown for many aquatic invertebrates. In this study, we analyzed the effects that rotenone poisoning exerts on the activity of dopamine (DA) and acetylcholine (ACh) synthesis enzymes in the central nervous system (CNS) of Asian shore crab, Hemigrapsus sanguineus (de Haan, 1835), and elucidated the association of its locomotor behavior with Parkinson's-like symptoms. An immunocytochemistry analysis showed a reduction in tyrosine hydroxylase (TH) in the median brain and the ventral nerve cord (VNC), which correlated with the subsequent decrease in the locomotor activity of shore crabs. We also observed a variation in cholinergic neurons' activity, mostly in the ventral regions of the VNC. Moreover, the rotenone-treated crabs showed signs of damage to ChAT-lir neurons in the VNC. These data suggest that chronic treatment with low doses of rotenone decreases the DA level in the VNC and the ACh level in the brain and leads to progressive and irreversible reductions in the crab's locomotor activity, life span, and changes in behavior.
Collapse
Affiliation(s)
- Elena Kotsyuba
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Vyacheslav Dyachuk
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, 690041 Vladivostok, Russia
| |
Collapse
|
28
|
Balsdon T, Pisauro MA, Philiastides MG. Distinct basal ganglia contributions to learning from implicit and explicit value signals in perceptual decision-making. Nat Commun 2024; 15:5317. [PMID: 38909014 PMCID: PMC11193814 DOI: 10.1038/s41467-024-49538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 06/07/2024] [Indexed: 06/24/2024] Open
Abstract
Metacognitive evaluations of confidence provide an estimate of decision accuracy that could guide learning in the absence of explicit feedback. We examine how humans might learn from this implicit feedback in direct comparison with that of explicit feedback, using simultaneous EEG-fMRI. Participants performed a motion direction discrimination task where stimulus difficulty was increased to maintain performance, with intermixed explicit- and no-feedback trials. We isolate single-trial estimates of post-decision confidence using EEG decoding, and find these neural signatures re-emerge at the time of feedback together with separable signatures of explicit feedback. We identified these signatures of implicit versus explicit feedback along a dorsal-ventral gradient in the striatum, a finding uniquely enabled by an EEG-fMRI fusion. These two signals appear to integrate into an aggregate representation in the external globus pallidus, which could broadcast updates to improve cortical decision processing via the thalamus and insular cortex, irrespective of the source of feedback.
Collapse
Affiliation(s)
- Tarryn Balsdon
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
- Laboratory of Perceptual Systems, DEC, ENS, PSL University, CNRS UMR 8248, Paris, France.
| | - M Andrea Pisauro
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK
- School of Psychology, University of Plymouth, Plymouth, UK
| | - Marios G Philiastides
- Centre for Cognitive Neuroimaging, School of Psychology and Neuroscience, University of Glasgow, Glasgow, UK.
| |
Collapse
|
29
|
Hogg JA, Wilkerson GB, Acocello SN, Schlink BR, Liang Y, Wu D, Myer GD, Diekfuss JA. Either Autonomy Support or Enhanced Expectancies Delivered Via Virtual-Reality Benefits Frontal-Plane Single-Leg Squatting Kinematics. Percept Mot Skills 2024; 131:687-706. [PMID: 38657202 PMCID: PMC11148811 DOI: 10.1177/00315125241246361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Our purpose in this study was to determine the effects of a virtual reality intervention delivering specific motivational motor learning manipulations of either autonomy support (AS) or enhanced expectancies (EE) on frontal plane single-leg squatting kinematics. We allocated 45 participants (21 male, 24 female) demonstrating knee, hip, and trunk frontal plane mechanics associated with elevated anterior cruciate ligament injury risk to one of three groups (control, AS, or EE). Participants mimicked an avatar performing five sets of eight repetitions of exemplary single-leg squats. AS participants were given the added option of choosing the color of their avatar. EE participants received real-time biofeedback in the form of green highlights on the avatar that remained on as long as the participant maintained pre-determined 'safe' frontal plane mechanics. We measured peak frontal plane knee, hip, and trunk angles before (baseline) and immediately following (post) the intervention. The control group demonstrated greater increases in knee abduction angle (Δ = +2.3°) than did the AS (Δ = +0.1°) and EE groups (Δ = -0.4°) (p = .003; η2p = .28). All groups demonstrated increased peak hip adduction (p = .01, ηp2 = .18) (control Δ = +1.5°; AS Δ = +3.2°; EE Δ = +0.7°). Hip adduction worsened in all groups. AS and EE motivation strategies appeared to mitigate maladaptive frontal plane knee mechanics.
Collapse
Affiliation(s)
- Jennifer A. Hogg
- Department of Health and Human Performance, University of Tennessee Chattanooga, Chattanooga, TN, USA
| | - Gary B. Wilkerson
- Department of Health and Human Performance, University of Tennessee Chattanooga, Chattanooga, TN, USA
| | - Shellie N. Acocello
- Department of Health and Human Performance, University of Tennessee Chattanooga, Chattanooga, TN, USA
| | | | - Yu Liang
- Department of Computer Science and Engineering, The University of Tennessee Chattanooga, Chattanooga, TN, USA
| | - Dalei Wu
- Department of Computer Science and Engineering, The University of Tennessee Chattanooga, Chattanooga, TN, USA
| | - Gregory D. Myer
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
- The Micheli Center for Sports Injury Prevention, Waltham, MA, USA
- Youth Physical Development Center, Cardiff Metropolitan University, Wales, UK
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA
| | - Jed A. Diekfuss
- Emory Sports Performance And Research Center (SPARC), Flowery Branch, GA, USA
- Emory Sports Medicine Center, Atlanta, GA, USA
- Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
30
|
Zhang Y, Wu P, Xie S, Hou Y, Wu H, Shi H. The neural mechanism of communication between graduate students and advisers in different adviser-advisee relationships. Sci Rep 2024; 14:11741. [PMID: 38778035 PMCID: PMC11111769 DOI: 10.1038/s41598-024-58308-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 03/27/2024] [Indexed: 05/25/2024] Open
Abstract
Communication is crucial in constructing the relationship between students and advisers, ultimately bridging interpersonal interactions. Only a few studies however explore the communication between postgraduate students and advisers. To fill the gaps in the empirical researches, this study uses functional near-infrared spectroscopy (FNIRS) techniques to explore the neurophysiology differences in brain activation of postgraduates with different adviser-advise relationships during simulated communication with their advisers. Results showed significant differences in the activation of the prefrontal cortex between high-quality and the low-quality students during simulating and when communicating with advisers, specifically in the Broca's areas, the frontal pole, and the orbitofrontal and dorsolateral prefrontal cortices. This further elucidated the complex cognitive process of communication between graduate students and advisers.
Collapse
Affiliation(s)
- Yan Zhang
- School of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Research Center for Innovative Education and Critical Thinking, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Peipei Wu
- School of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Simiao Xie
- School of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Mental Health Education Center, Jinan University, Guangzhou, 510631, Guangdong, China
| | - Yan Hou
- School of Education, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
- Mental Health Education Center, Hubei University for Nationalities, Enshi, 450004, Hubei, China
| | - Huifen Wu
- School of Education, Hubei Engineering University, Xiaogan, 432100, Hubei, China.
| | - Hui Shi
- Department of Clinical Psychology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China.
| |
Collapse
|
31
|
Alejandro RJ, Holroyd CB. Hierarchical control over foraging behavior by anterior cingulate cortex. Neurosci Biobehav Rev 2024; 160:105623. [PMID: 38490499 DOI: 10.1016/j.neubiorev.2024.105623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/14/2024] [Accepted: 03/13/2024] [Indexed: 03/17/2024]
Abstract
Foraging is a natural behavior that involves making sequential decisions to maximize rewards while minimizing the costs incurred when doing so. The prevalence of foraging across species suggests that a common brain computation underlies its implementation. Although anterior cingulate cortex is believed to contribute to foraging behavior, its specific role has been contentious, with predominant theories arguing either that it encodes environmental value or choice difficulty. Additionally, recent attempts to characterize foraging have taken place within the reinforcement learning framework, with increasingly complex models scaling with task complexity. Here we review reinforcement learning foraging models, highlighting the hierarchical structure of many foraging problems. We extend this literature by proposing that ACC guides foraging according to principles of model-based hierarchical reinforcement learning. This idea holds that ACC function is organized hierarchically along a rostral-caudal gradient, with rostral structures monitoring the status and completion of high-level task goals (like finding food), and midcingulate structures overseeing the execution of task options (subgoals, like harvesting fruit) and lower-level actions (such as grabbing an apple).
Collapse
Affiliation(s)
| | - Clay B Holroyd
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| |
Collapse
|
32
|
Correia D, Bellot M, Goyenechea J, Prats E, Moro H, Gómez-Canela C, Bedrossiantz J, Tagkalidou N, Ferreira CSS, Raldúa D, Domingues I, Faria M, Oliveira M. Parental exposure to antidepressants has lasting effects on offspring? A case study with zebrafish. CHEMOSPHERE 2024; 355:141851. [PMID: 38579950 DOI: 10.1016/j.chemosphere.2024.141851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/07/2024]
Abstract
Fish have common neurotransmitter pathways with humans, exhibiting a significant degree of conservation and homology. Thus, exposure to fluoxetine makes fish potentially susceptible to biochemical and physiological changes, similarly to what is observed in humans. Over the years, several studies demonstrated the potential effects of fluoxetine on different fish species and at different levels of biological organization. However, the effects of parental exposure to unexposed offspring remain largely unknown. The consequences of 15-day parental exposure to relevant concentrations of fluoxetine (100 and 1000 ng/L) were assessed on offspring using zebrafish as a model organism. Parental exposure resulted in offspring early hatching, non-inflation of the swimming bladder, increased malformation frequency, decreased heart rate and blood flow, and reduced growth. Additionally, a significant behavioral impairment was also found (reduced startle response, basal locomotor activity, and altered non-associative learning during early stages and a negative geotaxis and scototaxis, reduced thigmotaxis, and anti-social behavior at later life stages). These behavior alterations are consistent with decreased anxiety, a significant increase in the expression of the monoaminergic genes slc6a4a (sert), slc6a3 (dat), slc18a2 (vmat2), mao, tph1a, and th2, and altered levels of monoaminergic neurotransmitters. Alterations in behavior, expression of monoaminergic genes, and neurotransmitter levels persisted until offspring adulthood. Given the high conservation of neuronal pathways between fish and humans, data show the possibility of potential transgenerational and multigenerational effects of pharmaceuticals' exposure. These results reinforce the need for transgenerational and multigenerational studies in fish, under realistic scenarios, to provide realistic insights into the impact of these pharmaceuticals.
Collapse
Affiliation(s)
- Daniela Correia
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Marina Bellot
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Júlia Goyenechea
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Eva Prats
- Center for Research and Development, Spanish National Research Council (CSIC), Spain.
| | - Hugo Moro
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Cristian Gómez-Canela
- Department of Analytical Chemistry and Applied (Chromatography Section), School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| | - Juliette Bedrossiantz
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Niki Tagkalidou
- Department of Biochemistry and Biotechnology, University of Thessaly, Greece.
| | - Carla S S Ferreira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Inês Domingues
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - Melissa Faria
- Institute of Environmental Assessment and Water Research, Spanish National Research Council (CSIC), Spain.
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
33
|
Rolls ET. Two what, two where, visual cortical streams in humans. Neurosci Biobehav Rev 2024; 160:105650. [PMID: 38574782 DOI: 10.1016/j.neubiorev.2024.105650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/06/2024]
Abstract
ROLLS, E. T. Two What, Two Where, Visual Cortical Streams in Humans. NEUROSCI BIOBEHAV REV 2024. Recent cortical connectivity investigations lead to new concepts about 'What' and 'Where' visual cortical streams in humans, and how they connect to other cortical systems. A ventrolateral 'What' visual stream leads to the inferior temporal visual cortex for object and face identity, and provides 'What' information to the hippocampal episodic memory system, the anterior temporal lobe semantic system, and the orbitofrontal cortex emotion system. A superior temporal sulcus (STS) 'What' visual stream utilising connectivity from the temporal and parietal visual cortex responds to moving objects and faces, and face expression, and connects to the orbitofrontal cortex for emotion and social behaviour. A ventromedial 'Where' visual stream builds feature combinations for scenes, and provides 'Where' inputs via the parahippocampal scene area to the hippocampal episodic memory system that are also useful for landmark-based navigation. The dorsal 'Where' visual pathway to the parietal cortex provides for actions in space, but also provides coordinate transforms to provide inputs to the parahippocampal scene area for self-motion update of locations in scenes in the dark or when the view is obscured.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK; Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK; Institute of Science and Technology for Brain Inspired Intelligence, Fudan University, Shanghai 200403, China.
| |
Collapse
|
34
|
Aster HC, Waltmann M, Busch A, Romanos M, Gamer M, Maria van Noort B, Beck A, Kappel V, Deserno L. Impaired flexible reward learning in ADHD patients is associated with blunted reinforcement sensitivity and neural signals in ventral striatum and parietal cortex. Neuroimage Clin 2024; 42:103588. [PMID: 38471434 PMCID: PMC10943992 DOI: 10.1016/j.nicl.2024.103588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 02/06/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Reward-based learning and decision-making are prime candidates to understand symptoms of attention deficit hyperactivity disorder (ADHD). However, only limited evidence is available regarding the neurocomputational underpinnings of the alterations seen in ADHD. This concerns flexible behavioral adaption in dynamically changing environments, which is challenging for individuals with ADHD. One previous study points to elevated choice switching in adolescent ADHD, which was accompanied by disrupted learning signals in medial prefrontal cortex. Here, we investigated young adults with ADHD (n = 17) as compared to age- and sex-matched controls (n = 17) using a probabilistic reversal learning experiment during functional magnetic resonance imaging (fMRI). The task requires continuous learning to guide flexible behavioral adaptation to changing reward contingencies. To disentangle the neurocomputational underpinnings of the behavioral data, we used reinforcement learning (RL) models, which informed the analysis of fMRI data. ADHD patients performed worse than controls particularly in trials before reversals, i.e., when reward contingencies were stable. This pattern resulted from 'noisy' choice switching regardless of previous feedback. RL modelling showed decreased reinforcement sensitivity and enhanced learning rates for negative feedback in ADHD patients. At the neural level, this was reflected in a diminished representation of choice probability in the left posterior parietal cortex in ADHD. Moreover, modelling showed a marginal reduction of learning about the unchosen option, which was paralleled by a marginal reduction in learning signals incorporating the unchosen option in the left ventral striatum. Taken together, we show that impaired flexible behavior in ADHD is due to excessive choice switching ('hyper-flexibility'), which can be detrimental or beneficial depending on the learning environment. Computationally, this resulted from blunted sensitivity to reinforcement of which we detected neural correlates in the attention-control network, specifically in the parietal cortex. These neurocomputational findings remain preliminary due to the relatively small sample size.
Collapse
Affiliation(s)
- Hans-Christoph Aster
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany.
| | - Maria Waltmann
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Anika Busch
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany
| | - Marcel Romanos
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany
| | - Matthias Gamer
- Department of Psychology, University of Würzburg, Würzburg, Germany
| | - Betteke Maria van Noort
- Department of Child and Adolescent Psychiatry, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany; MSB Medical School Berlin, Department of Psychology, Germany
| | - Anne Beck
- Department of Psychiatry and Neurosciences, Charité University Medicine, Berlin, Germany; Department of Psychology, Faculty of Health, Health and Medical University, Potsdam, Germany
| | - Viola Kappel
- Department of Child and Adolescent Psychiatry, Charité University Medicine, Campus Virchow Klinikum, Berlin, Germany
| | - Lorenz Deserno
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Hospital Würzburg, Würzburg, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
35
|
Cai J, Jiang Y, Xu Y, Jiang Z, Young C, Li H, Ortiz-Guzman J, Zhuo Y, Li Y, Xu Y, Arenkiel BR, Tong Q. An excitatory projection from the basal forebrain to the ventral tegmental area that underlies anorexia-like phenotypes. Neuron 2024; 112:458-472.e6. [PMID: 38056455 PMCID: PMC10922337 DOI: 10.1016/j.neuron.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/04/2023] [Accepted: 11/03/2023] [Indexed: 12/08/2023]
Abstract
Maladaptation in balancing internal energy needs and external threat cues may result in eating disorders. However, brain mechanisms underlying such maladaptations remain elusive. Here, we identified that the basal forebrain (BF) sends glutamatergic projections to glutamatergic neurons in the ventral tegmental area (VTA) in mice. Glutamatergic neurons in both regions displayed correlated responses to various stressors. Notably, in vivo manipulation of BF terminals in the VTA revealed that the glutamatergic BF → VTA circuit reduces appetite, increases locomotion, and elicits avoidance. Consistently, activation of VTA glutamatergic neurons reduced body weight, blunted food motivation, and caused hyperactivity with behavioral signs of anxiety, all hallmarks of typical anorexia symptoms. Importantly, activation of BF glutamatergic terminals in the VTA reduced dopamine release in the nucleus accumbens. Collectively, our results point to overactivation of the glutamatergic BF → VTA circuit as a potential cause of anorexia-like phenotypes involving reduced dopamine release.
Collapse
Affiliation(s)
- Jing Cai
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX 77030, USA
| | - Yanyan Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Yuanzhong Xu
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiying Jiang
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Claire Young
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongli Li
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA
| | - Yizhou Zhuo
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yong Xu
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Benjamin R Arenkiel
- Department of Molecular and Human Genetics and Department of Neuroscience, Baylor College of Medicine, and Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX 77030, USA; USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | - Qingchun Tong
- Brown Foundation of Molecular Medicine for the Prevention of Human Diseases of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA; MD Anderson Cancer Center & UTHealth Graduate School for Biomedical Sciences, University of Texas Health Science at Houston, Houston, TX 77030, USA; Department of Neurobiology and Anatomy of McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA.
| |
Collapse
|
36
|
Hsu PS, Liu CH, Yang CJ, Lee LC, Li WC, Chao HT, Chen LF, Hsieh JC. Neural adaptation of the reward system in primary dysmenorrhea. Mol Pain 2024; 20:17448069241286466. [PMID: 39259583 PMCID: PMC11423385 DOI: 10.1177/17448069241286466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/02/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024] Open
Abstract
Introduction: The brain's reward system (RS) reacts differently to pain and its alleviation. This study examined the correlation between RS activity and behavior during both painful and pain-free periods in individuals with primary dysmenorrhea (PDM) to elucidate their varying responses throughout the menstrual cycle. Methods: Ninety-two individuals with PDM and 90 control participants underwent resting-state functional magnetic resonance imaging (rsfMRI) scans during their menstrual and peri-ovulatory phases. Regional homogeneity (ReHo) and amplitude of low-frequency fluctuation (ALFF) analyses were used to evaluate RS responses. Psychological evaluations were conducted using the McGill Pain Questionnaire and the Pain Catastrophizing Scale. Results: ReHo analysis showed higher values in the left putamen and right amygdala of the PDM group during the peri-ovulatory phase compared to the menstrual phase. ALFF analysis revealed lower values in the putamen of the PDM group compared to controls, regardless of phase. ReHo and ALFF values in the putamen, amygdala, and nucleus accumbens were positively correlated with pain scales during menstruation, while ALFF values in the ventral tegmental area inversely correlated with pain intensity. Those with severe PDM (pain intensity ≥7) displayed distinct amygdala ALFF patterns between pain and pain-free phases. PDM participants also had lower ReHo values in the left insula during menstruation, with no direct correlation to pain compared to controls. Discussion: Our study highlights the pivotal role of the RS in dysmenorrhea management, exhibiting varied responses between menstrual discomfort and non-painful periods among individuals with PDM. During menstruation, the RS triggers mechanisms for pain avoidance and cognitive coping strategies, while it transitions to processing rewards during the peri-ovulatory phase. This demonstrates the flexibility of the RS in adapting to the recurring pain experienced by those with PDM.
Collapse
Affiliation(s)
- Pei-Shan Hsu
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Chinese Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Ching-Hsiung Liu
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, Lotung Poh-Ai Hospital, Yilan, Taiwan
| | - Ching-Ju Yang
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Engineering Bioscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Lin-Chien Lee
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, Cheng Hsin General Hospital, Taipei, Taiwan
| | - Wei-Chi Li
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Engineering Bioscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Hsiang-Tai Chao
- Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Li-Fen Chen
- Institute of Brain Science, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institue of Biomedical Informatics, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jen-Chuen Hsieh
- Integrated Brain Research Unit, Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Biological Science and Technology, College of Engineering Bioscience, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
37
|
Albury AW, Bianco R, Gold BP, Penhune VB. Context changes judgments of liking and predictability for melodies. Front Psychol 2023; 14:1175682. [PMID: 38034280 PMCID: PMC10684779 DOI: 10.3389/fpsyg.2023.1175682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 10/23/2023] [Indexed: 12/02/2023] Open
Abstract
Predictability plays an important role in the experience of musical pleasure. By leveraging expectations, music induces pleasure through tension and surprise. However, musical predictions draw on both prior knowledge and immediate context. Similarly, musical pleasure, which has been shown to depend on predictability, may also vary relative to the individual and context. Although research has demonstrated the influence of both long-term knowledge and stimulus features in influencing expectations, it is unclear how perceptions of a melody are influenced by comparisons to other music pieces heard in the same context. To examine the effects of context we compared how listeners' judgments of two distinct sets of stimuli differed when they were presented alone or in combination. Stimuli were excerpts from a repertoire of Western music and a set of experimenter created melodies. Separate groups of participants rated liking and predictability for each set of stimuli alone and in combination. We found that when heard together, the Repertoire stimuli were more liked and rated as less predictable than if they were heard alone, with the opposite pattern being observed for the Experimental stimuli. This effect was driven by a change in ratings between the Alone and Combined conditions for each stimulus set. These findings demonstrate a context-based shift of predictability ratings and derived pleasure, suggesting that judgments stem not only from the physical properties of the stimulus, but also vary relative to other options available in the immediate context.
Collapse
Affiliation(s)
- Alexander W. Albury
- Department of Psychology, Concordia University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) and Center for Research in Brain, Language and Music (CRBLM), Montreal, QC, Canada
| | - Roberta Bianco
- Neuroscience of Perception and Action Laboratory, Italian Institute of Technology, Rome, Italy
| | - Benjamin P. Gold
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, United States
| | - Virginia B. Penhune
- Department of Psychology, Concordia University, Montreal, QC, Canada
- International Laboratory for Brain, Music and Sound Research (BRAMS) and Center for Research in Brain, Language and Music (CRBLM), Montreal, QC, Canada
| |
Collapse
|
38
|
Yamamori Y, Robinson OJ, Roiser JP. Approach-avoidance reinforcement learning as a translational and computational model of anxiety-related avoidance. eLife 2023; 12:RP87720. [PMID: 37963085 PMCID: PMC10645421 DOI: 10.7554/elife.87720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Although avoidance is a prevalent feature of anxiety-related psychopathology, differences in the measurement of avoidance between humans and non-human animals hinder our progress in its theoretical understanding and treatment. To address this, we developed a novel translational measure of anxiety-related avoidance in the form of an approach-avoidance reinforcement learning task, by adapting a paradigm from the non-human animal literature to study the same cognitive processes in human participants. We used computational modelling to probe the putative cognitive mechanisms underlying approach-avoidance behaviour in this task and investigated how they relate to subjective task-induced anxiety. In a large online study (n = 372), participants who experienced greater task-induced anxiety avoided choices associated with punishment, even when this resulted in lower overall reward. Computational modelling revealed that this effect was explained by greater individual sensitivities to punishment relative to rewards. We replicated these findings in an independent sample (n = 627) and we also found fair-to-excellent reliability of measures of task performance in a sub-sample retested 1 week later (n = 57). Our findings demonstrate the potential of approach-avoidance reinforcement learning tasks as translational and computational models of anxiety-related avoidance. Future studies should assess the predictive validity of this approach in clinical samples and experimental manipulations of anxiety.
Collapse
Affiliation(s)
- Yumeya Yamamori
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| | - Oliver J Robinson
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
- Research Department of Clinical, Educational and Health Psychology, University College LondonLondonUnited Kingdom
| | - Jonathan P Roiser
- Institute of Cognitive Neuroscience, University College LondonLondonUnited Kingdom
| |
Collapse
|
39
|
Collomb-Clerc A, Gueguen MCM, Minotti L, Kahane P, Navarro V, Bartolomei F, Carron R, Regis J, Chabardès S, Palminteri S, Bastin J. Human thalamic low-frequency oscillations correlate with expected value and outcomes during reinforcement learning. Nat Commun 2023; 14:6534. [PMID: 37848435 PMCID: PMC10582006 DOI: 10.1038/s41467-023-42380-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 10/09/2023] [Indexed: 10/19/2023] Open
Abstract
Reinforcement-based adaptive decision-making is believed to recruit fronto-striatal circuits. A critical node of the fronto-striatal circuit is the thalamus. However, direct evidence of its involvement in human reinforcement learning is lacking. We address this gap by analyzing intra-thalamic electrophysiological recordings from eight participants while they performed a reinforcement learning task. We found that in both the anterior thalamus (ATN) and dorsomedial thalamus (DMTN), low frequency oscillations (LFO, 4-12 Hz) correlated positively with expected value estimated from computational modeling during reward-based learning (after outcome delivery) or punishment-based learning (during the choice process). Furthermore, LFO recorded from ATN/DMTN were also negatively correlated with outcomes so that both components of reward prediction errors were signaled in the human thalamus. The observed differences in the prediction signals between rewarding and punishing conditions shed light on the neural mechanisms underlying action inhibition in punishment avoidance learning. Our results provide insight into the role of thalamus in reinforcement-based decision-making in humans.
Collapse
Affiliation(s)
- Antoine Collomb-Clerc
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
| | - Maëlle C M Gueguen
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Department of Psychiatry, Brain Health Institute and University Behavioral Health Care, Rutgers University-New Brunswick, Piscataway, NJ, USA
| | - Lorella Minotti
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Philippe Kahane
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurology Department, University Hospital of Grenoble, Grenoble, France
| | - Vincent Navarro
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau, ICM, INSERM, CNRS, AP-HP, Pitié-Salpêtrière Hospital, Paris, France
| | - Fabrice Bartolomei
- Timone University Hospital, Sleep Unit, Epileptology and Cerebral Rhythmology, University Hospital of Marseille, Marseille, France
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
| | - Romain Carron
- Aix Marseille University, Inserm, Institut de Neurosciences des Systèmes, Marseille, France
- Timone University Hospital, Department of functional and stereotactic neurosurgery, University Hospital of Marseille, Marseille, France
| | - Jean Regis
- Neurosurgery Department, University Hospital of Marseille, Marseille, France
| | - Stephan Chabardès
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France
- Neurosurgery Department, University Hospital of Grenoble, Grenoble, France
| | - Stefano Palminteri
- Laboratoire de Neurosciences Cognitives Computationnelles, Département d'Etudes Cognitives, ENS, PSL, INSERM, Paris, France
| | - Julien Bastin
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, 38000, Grenoble, France.
| |
Collapse
|
40
|
Wardle MC, Hoots JK, Miloslavich K, Nunez C, Dios CD, Holden C, Ahluwahlia A, Green CE, Lane SD, Schmitz JM. Deficits in consummatory reward relate to severity of cocaine use. Drug Alcohol Depend 2023; 249:109950. [PMID: 37301068 PMCID: PMC10405525 DOI: 10.1016/j.drugalcdep.2023.109950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/26/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND AND AIMS Identifying modifiable neuropsychological factors associated with more severe CUD could improve CUD treatment. Impairments in processing of non-drug rewards may be one such factor. This study assessed the relationship between reward functioning and cocaine use severity using multi-modal measures of three distinct reward functions: consummatory reward (pleasure or "liking"); motivational reward ("wanting") and reward learning. METHODS Fifty-three adults with at least moderate CUD completed self-report and behavioral measures of consummatory reward, motivational reward and reward learning, and a composite cocaine use severity measure including quantity, frequency and life impacts of cocaine use. We conducted parallel Frequentist and Bayesian multiple regressions with measures of reward functioning as predictors of cocaine use severity. RESULTS Less self-reported ability to experience pleasure, a hypothesized measure of consummatory reward, significantly predicted greater severity after adjustment for covariates and multiple hypothesis testing, β = 0.39, t(38) = 2.86, p = 0.007. Bayesian analyses confirmed a highly likely association between severity and ability to experience pleasure, and provided moderate evidence for associations with willingness to exert effort and reward learning. CONCLUSIONS Our results suggest that less experience of subjective pleasure is related to greater cocaine use severity. This cross-sectional study cannot establish whether differences in consummatory reward are pre-existing, a result of CUD, or both. However, these results suggest interventions focused on increasing subjective pleasure, such as mindful "savoring", should be investigated for CUD.
Collapse
Affiliation(s)
- Margaret C Wardle
- Psychology Department, University of Illinois Chicago, 1007 W. Harrison St, Chicago, IL60607, United States.
| | - Jennifer K Hoots
- Psychology Department, University of Illinois Chicago, 1007 W. Harrison St, Chicago, IL60607, United States
| | - Krista Miloslavich
- Psychology Department, University of Illinois Chicago, 1007 W. Harrison St, Chicago, IL60607, United States
| | - Cecilia Nunez
- Psychology Department, University of Illinois Chicago, 1007 W. Harrison St, Chicago, IL60607, United States
| | - Constanza de Dios
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX77054, United States
| | - Christopher Holden
- Department of Psychiatry, University of Illinois Hospital and Health Sciences System, 1740 W. Taylor St, Chicago, IL60612, United States
| | - Aneet Ahluwahlia
- Department of Psychiatry, University of Illinois Hospital and Health Sciences System, 1740 W. Taylor St, Chicago, IL60612, United States
| | - Charles E Green
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX77054, United States
| | - Scott D Lane
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX77054, United States
| | - Joy M Schmitz
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, 1941 East Rd, Houston, TX77054, United States
| |
Collapse
|
41
|
Monje MH, Mañez‐Miró JU, Obeso JA. The Apparent Impunity of the Basal Ganglia to Therapeutic Lesioning: Clinical and Scientific Lessons. Mov Disord Clin Pract 2023; 10:S42-S46. [PMID: 37637986 PMCID: PMC10448138 DOI: 10.1002/mdc3.13787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 08/29/2023] Open
Affiliation(s)
- Mariana H.G. Monje
- HM CINAC (Centro Integral de Neurociencias Abarca Campal)Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- Ken and Ruth Davee Department of NeurologyNorthwestern University, Feinberg School of MedicineChicagoIllinoisUSA
| | - Jorge U. Mañez‐Miró
- HM CINAC (Centro Integral de Neurociencias Abarca Campal)Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- PhD Program in NeuroscienceAutónoma de Madrid University‐Cajal InstituteMadridSpain
- Neurology Department, IMED HospitalesValenciaSpain
| | - José A. Obeso
- HM CINAC (Centro Integral de Neurociencias Abarca Campal)Hospital Universitario HM Puerta del Sur, HM HospitalesMadridSpain
- Universidad San Pablo‐CEUMadridSpain
- CIBERNED, Instituto de Salud Carlos IIIMadridSpain
| |
Collapse
|
42
|
Chen CS, Mueller D, Knep E, Ebitz RB, Grissom NM. Dopamine and norepinephrine differentially mediate the exploration-exploitation tradeoff. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523322. [PMID: 36711959 PMCID: PMC9881999 DOI: 10.1101/2023.01.09.523322] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The catecholamines dopamine (DA) and norepinephrine (NE) have been repeatedly implicated in neuropsychiatric vulnerability, in part via their roles in mediating the decision making processes. Although the two neuromodulators share a synthesis pathway and are co-activated under states of arousal, they engage in distinct circuits and roles in modulating neural activity across the brain. However, in the computational neuroscience literature, they have been assigned similar roles in modulating the latent cognitive processes of decision making, in particular the exploration-exploitation tradeoff. Revealing how each neuromodulator contributes to this explore-exploit process will be important in guiding mechanistic hypotheses emerging from computational psychiatric approaches. To understand the differences and overlaps of the roles of these two catecholamine systems in regulating exploration and exploitation, a direct comparison using the same dynamic decision making task is needed. Here, we ran mice in a restless two-armed bandit task, which encourages both exploration and exploitation. We systemically administered a nonselective DA receptor antagonist (flupenthixol), a nonselective DA receptor agonist (apomorphine), a NE beta-receptor antagonist (propranolol), and a NE beta-receptor agonist (isoproterenol), and examined changes in exploration within subjects across sessions. We found a bidirectional modulatory effect of dopamine receptor activity on the level of exploration. Increasing dopamine activity decreased exploration and decreasing dopamine activity increased exploration. Beta-noradrenergic receptor activity also modulated exploration, but the modulatory effect was mediated by sex. Reinforcement learning model parameters suggested that dopamine modulation affected exploration via decision noise and norepinephrine modulation affected exploration via outcome sensitivity. Together, these findings suggested that the mechanisms that govern the transition between exploration and exploitation are sensitive to changes in both catecholamine functions and revealed differential roles for NE and DA in mediating exploration.
Collapse
|
43
|
Béreau M, Van Waes V, Servant M, Magnin E, Tatu L, Anheim M. Apathy in Parkinson's Disease: Clinical Patterns and Neurobiological Basis. Cells 2023; 12:1599. [PMID: 37371068 DOI: 10.3390/cells12121599] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Apathy is commonly defined as a loss of motivation leading to a reduction in goal-directed behaviors. This multidimensional syndrome, which includes cognitive, emotional and behavioral components, is one of the most prevalent neuropsychiatric features of Parkinson's disease (PD). It has been established that the prevalence of apathy increases as PD progresses. However, the pathophysiology and anatomic substrate of this syndrome remain unclear. Apathy seems to be underpinned by impaired anatomical structures that link the prefrontal cortex with the limbic system. It can be encountered in the prodromal stage of the disease and in fluctuating PD patients receiving bilateral chronic subthalamic nucleus stimulation. In these stages, apathy may be considered as a disorder of motivation that embodies amotivational behavioral syndrome, is underpinned by combined dopaminergic and serotonergic denervation and is dopa-responsive. In contrast, in advanced PD patients, apathy may be considered as cognitive apathy that announces cognitive decline and PD dementia, is underpinned by diffuse neurotransmitter system dysfunction and Lewy pathology spreading and is no longer dopa-responsive. In this review, we discuss the clinical patterns of apathy and their treatment, the neurobiological basis of apathy, the potential role of the anatomical structures involved and the pathways in motivational and cognitive apathy.
Collapse
Affiliation(s)
- Matthieu Béreau
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Vincent Van Waes
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Mathieu Servant
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Eloi Magnin
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
| | - Laurent Tatu
- Département de Neurologie, CHU de Besançon, 25000 Besançon, France
- Université de Franche-Comté, LINC Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive, 25000 Besançon, France
- Laboratoire d'Anatomie, Université de Franche-Comté, 25000 Besançon, France
| | - Mathieu Anheim
- Département de Neurologie, CHU de Strasbourg, 67200 Strasbourg, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, 67000 Strasbourg, France
- Institut de génétique Et de Biologie Moléculaire Et Cellulaire (IGBMC), INSERM-U964, CNRS-UMR7104, Université de Strasbourg, 67400 Illkirch-Graffenstaden, France
| |
Collapse
|
44
|
Rolls ET. Emotion, motivation, decision-making, the orbitofrontal cortex, anterior cingulate cortex, and the amygdala. Brain Struct Funct 2023; 228:1201-1257. [PMID: 37178232 PMCID: PMC10250292 DOI: 10.1007/s00429-023-02644-9] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/12/2023] [Indexed: 05/15/2023]
Abstract
The orbitofrontal cortex and amygdala are involved in emotion and in motivation, but the relationship between these functions performed by these brain structures is not clear. To address this, a unified theory of emotion and motivation is described in which motivational states are states in which instrumental goal-directed actions are performed to obtain rewards or avoid punishers, and emotional states are states that are elicited when the reward or punisher is or is not received. This greatly simplifies our understanding of emotion and motivation, for the same set of genes and associated brain systems can define the primary or unlearned rewards and punishers such as sweet taste or pain. Recent evidence on the connectivity of human brain systems involved in emotion and motivation indicates that the orbitofrontal cortex is involved in reward value and experienced emotion with outputs to cortical regions including those involved in language, and is a key brain region involved in depression and the associated changes in motivation. The amygdala has weak effective connectivity back to the cortex in humans, and is implicated in brainstem-mediated responses to stimuli such as freezing and autonomic activity, rather than in declarative emotion. The anterior cingulate cortex is involved in learning actions to obtain rewards, and with the orbitofrontal cortex and ventromedial prefrontal cortex in providing the goals for navigation and in reward-related effects on memory consolidation mediated partly via the cholinergic system.
Collapse
Affiliation(s)
- Edmund T Rolls
- Oxford Centre for Computational Neuroscience, Oxford, UK.
- Department of Computer Science, University of Warwick, Coventry, UK.
| |
Collapse
|
45
|
Hutchings J, Williams ME, Leijten P. Attachment, behavior problems and interventions. FRONTIERS IN CHILD AND ADOLESCENT PSYCHIATRY 2023; 2:1156407. [PMID: 39816864 PMCID: PMC11731626 DOI: 10.3389/frcha.2023.1156407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/31/2023] [Indexed: 01/18/2025]
Abstract
This paper puts forward an explanation for the frequent co-occurrence of attachment and behavior problems in children and the implications of this for interventions; presents preliminary evidence that some behaviorally based parenting programs reduce child behavior problems through two separate, but mutually reinforcing, processes-improved attachment relationships and increased parental use of behavior management techniques; and suggests next steps for the field to improve outcomes for those children who, without interventions that addresses both relationship building and behavior management, are at risk of significant long-term difficulties.
Collapse
Affiliation(s)
- Judy Hutchings
- Centre for Evidence Based Early Intervention (CEBEI), School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Margiad E. Williams
- Centre for Evidence Based Early Intervention (CEBEI), School of Human and Behavioural Sciences, Bangor University, Bangor, United Kingdom
| | - Patty Leijten
- Research Institute of Child Development and Education, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
46
|
Xie T, Huang C, Zhang Y, Liu J, Yao H. Influence of Recent Trial History on Interval Timing. Neurosci Bull 2023; 39:559-575. [PMID: 36209314 PMCID: PMC10073370 DOI: 10.1007/s12264-022-00954-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 07/10/2022] [Indexed: 11/30/2022] Open
Abstract
Interval timing is involved in a variety of cognitive behaviors such as associative learning and decision-making. While it has been shown that time estimation is adaptive to the temporal context, it remains unclear how interval timing behavior is influenced by recent trial history. Here we found that, in mice trained to perform a licking-based interval timing task, a decrease of inter-reinforcement interval in the previous trial rapidly shifted the time of anticipatory licking earlier. Optogenetic inactivation of the anterior lateral motor cortex (ALM), but not the medial prefrontal cortex, for a short time before reward delivery caused a decrease in the peak time of anticipatory licking in the next trial. Electrophysiological recordings from the ALM showed that the response profiles preceded by short and long inter-reinforcement intervals exhibited task-engagement-dependent temporal scaling. Thus, interval timing is adaptive to recent experience of the temporal interval, and ALM activity during time estimation reflects recent experience of interval.
Collapse
Affiliation(s)
- Taorong Xie
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Can Huang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yijie Zhang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haishan Yao
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| |
Collapse
|
47
|
Fornari L, Ioumpa K, Nostro AD, Evans NJ, De Angelis L, Speer SPH, Paracampo R, Gallo S, Spezio M, Keysers C, Gazzola V. Neuro-computational mechanisms and individual biases in action-outcome learning under moral conflict. Nat Commun 2023; 14:1218. [PMID: 36878911 PMCID: PMC9988878 DOI: 10.1038/s41467-023-36807-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 02/17/2023] [Indexed: 03/08/2023] Open
Abstract
Learning to predict action outcomes in morally conflicting situations is essential for social decision-making but poorly understood. Here we tested which forms of Reinforcement Learning Theory capture how participants learn to choose between self-money and other-shocks, and how they adapt to changes in contingencies. We find choices were better described by a reinforcement learning model based on the current value of separately expected outcomes than by one based on the combined historical values of past outcomes. Participants track expected values of self-money and other-shocks separately, with the substantial individual difference in preference reflected in a valuation parameter balancing their relative weight. This valuation parameter also predicted choices in an independent costly helping task. The expectations of self-money and other-shocks were biased toward the favored outcome but fMRI revealed this bias to be reflected in the ventromedial prefrontal cortex while the pain-observation network represented pain prediction errors independently of individual preferences.
Collapse
Affiliation(s)
- Laura Fornari
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Kalliopi Ioumpa
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Alessandra D Nostro
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Nathan J Evans
- School of Psychology, University of Queensland, Brisbane, QLD, Australia
| | - Lorenzo De Angelis
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Sebastian P H Speer
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Riccardo Paracampo
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Selene Gallo
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands
| | - Michael Spezio
- Psychology, Neuroscience, & Data Science, Scripps College, 1030 Columbia Ave, CA 91711, Claremont, CA, USA
| | - Christian Keysers
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands.,Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, KNAW, Meibergdreef 47, 1105BA, Amsterdam, The Netherlands. .,Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129-B, 1018 WT, Amsterdam, The Netherlands.
| |
Collapse
|
48
|
Milton AL, Das RK, Merlo E. The challenge of memory destabilisation: From prediction error to prior expectations and biomarkers. Brain Res Bull 2023; 194:100-104. [PMID: 36708846 DOI: 10.1016/j.brainresbull.2023.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/22/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
The re-ignition of memory reconsolidation research sparked by Karim Nader in the early 2000s led to great excitement that 'reconsolidation-based' interventions might be developed for mental health disorders such as post-traumatic stress disorder and substance use disorder. Two decades on, it is clear that reconsolidation-based interventions have been more challenging to translate to the clinic than initially thought. We argue that this challenge could be addressed with a better understanding of how prior expectations interact with information presented in a putative memory reactivation / cue reminder session, and through the identification of non-invasive biomarkers for memory destabilisation that would allow reminder sessions to be 'tuned' to enhance memory lability in an ad hoc manner.
Collapse
Affiliation(s)
- Amy L Milton
- Department of Psychology, University of Cambridge, Downing Site, Cambridge, UK.
| | - Ravi K Das
- Clinical Psychopharmacology Unit, University College London, London, UK
| | - Emiliano Merlo
- School of Psychology, University of Sussex, Brighton, UK
| |
Collapse
|
49
|
Blockade of dopamine D3 receptor in ventral tegmental area attenuating contextual fear memory. Biomed Pharmacother 2023; 158:114179. [PMID: 36592493 DOI: 10.1016/j.biopha.2022.114179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/01/2023] Open
Abstract
The abnormal fear memory will lead to the onset of stress disorders, such as post-traumatic stress disorder (PTSD) and so on. Therefore, the intervention in the formation of abnormal fear memory will provide a new strategy for the prevention and treatment of PTSD. In our previous studies, we found that blockade of dopamine D3 receptor (DRD3) with highly selective antagonist YQA14 or knockout of DRD3 was able to attenuate the expression or retrieval of fear memory in PTSD animal models. However, the neurobiological mechanism of regulation of DRD3 in fear is unclear. In the present research, we clarified that DRD3 was expressed in the dopaminergic (DAergic) neurons in the ventral tegmental area (VTA). Then, we identified that microinjection of YQA14 (1 μg/0.2 μl/side) in VTA before the aversive stimuli in the training session or during days subsequent to the shock significantly meliorated the freezing behaviors in the inescapable electric foot-shock model. At last, using fiber photometry system, we found that microinjection of YQA14 in VTA promoted the dopamine neurotransmitter release in the basolateral amygdala (BLA), and pre-training YQA14 infusion in VTA lowered the increase of dopamine (DA) in BLA induced by shock during the training session or by context during the retrieval session. All above the results demonstrated that YQA14 attenuated the fear learning through the blockade of DRD3 in VTA decreasing the excitability of the projection to BLA. This study may provide new mechanisms and potential intervention targets for stress disorders with abnormal fear memory.
Collapse
|
50
|
Hilz EN, Lee HJ. Estradiol and progesterone in female reward-learning, addiction, and therapeutic interventions. Front Neuroendocrinol 2023; 68:101043. [PMID: 36356909 DOI: 10.1016/j.yfrne.2022.101043] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, Department of Pharmacology, USA.
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, USA; The University of Texas at Austin, Institute for Neuroscience, USA
| |
Collapse
|