1
|
Lee S, Pyun SB, Sim Y, Um S, Tae WS, Nam EC. Voxel-Based Morphometry and Subfield Volumetry Analysis Reveal Limbic System Involvement in Tinnitus. J Neuroimaging 2025; 35:e70008. [PMID: 39789953 DOI: 10.1111/jon.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/24/2024] [Accepted: 12/26/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND AND PURPOSE Tinnitus is a condition in which individuals perceive sounds, such as ringing or buzzing, without any external source. Although the exact cause is not fully understood, recent studies have indicated the involvement of nonauditory brain structures, including the limbic system. We aimed to compare the volumes of specific brain structures between patients with tinnitus and controls. METHODS Voxel-based morphometry and subfield volumetry were applied to analyze the brain structures of 53 patients with tinnitus and 52 age- and sex-matched controls. The volumes of the amygdala, hippocampus, and thalamus were measured and compared between the groups. RESULTS Patients with tinnitus had larger volumes in the whole amygdala, basal nucleus, right lateral nucleus, and left paralaminar nucleus compared with controls. In addition, the subiculum head, left fimbria, and left presubiculum head in the hippocampus were larger in patients with tinnitus. No differences were found in the total thalamic volume or thalamic subnuclei between groups. The gray matter volumes in the thalamus, amygdala, and hippocampus were significantly high in the tinnitus group. The cortical thicknesses of both of the marginal branches of the cingulate sulcus, the left superior parietal lobule, and the left subparietal sulcus were also high in the tinnitus group. CONCLUSIONS These findings indicate the involvement of the limbic system in tinnitus, and enhance our understanding of the condition. The subfield volumetry technique used in this study may aid in identifying the structural differences associated with specific neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Sekwang Lee
- Department of Physical Medicine and Rehabilitation, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sung-Bom Pyun
- Department of Physical Medicine and Rehabilitation, Anam Hospital, Korea University College of Medicine, Seoul, Republic of Korea
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Youngbo Sim
- Department of Pediatrics, Mattel Children's Hospital at UCLA, Los Angeles, California, USA
| | - Sangwon Um
- Digital Healthcare Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Woo-Suk Tae
- Brain Convergence Research Center, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Eui-Cheol Nam
- Department of Otorhinolaryngology, School of Medicine, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
2
|
Li Y, Wan X, Zhang Y, Song W. Modulation of electroencephalogram brain activity dynamics by 10 Hz parietal repetitive transcranial magnetic stimulation: Implications for recovery of the minimally conscious state. Neurosci Lett 2024; 842:137986. [PMID: 39260738 DOI: 10.1016/j.neulet.2024.137986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/02/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
BACKGROUND AND OBJECTIVES Despite the fact that the parietal cortex is associated with consciousness, the underlying mechanisms of parietal repetitive transcranial magnetic stimulation (rTMS) have not yet been specifically investigated. The present study aims to examine the effects of parietal rTMS on patients with disorders of consciousness (DoC) and identify a novel potential target. METHODS Twenty minimally conscious state (MCS) patients were stochastically assigned to a real or sham rTMS group in a controlled trial. The real rTMS group was administered over the parietal cortex, with a frequency of 10 Hz and a rest motor threshold of 90 %. The sham rTMS group was identical to the real rTMS group without magnetic stimulation over the cortex. Pre- and post-treatment resting-state electrophysiological (EEG) data and coma recovery scale-revised (CRS-R) score were gathered. Microstate analyses were calculated to evaluate the brain activity dynamics. RESULTS The real rTMS treatment improved the CRS-R scores. There were notable alterations in the mean microstate duration (MMD) of microstate B in the real rTMS group. The sham rTMS group did not exhibit such changes in CRS-R score or EEG results, which were not statistically significant. Furthermore, the MMD and RTC of microstate E were found to be negatively correlated with baseline CRS-R scores. CONCLUSION Parietal rTMS can induce behavioral improvement and brain activity dynamics in patients with MCS. EEG microstates can be used as a valuable method to study neurophysiological mechanisms behind MCS. And the parietal cortex represents an alternative for rTMS therapy protocols.
Collapse
Affiliation(s)
- Yanhua Li
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Xiaoping Wan
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Ye Zhang
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China
| | - Weiqun Song
- Department of Rehabilitation Medicine, Xuan Wu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
3
|
Zhou X, Sun B. CPR-Induced Consciousness during Ventricular Fibrillation: Case Report and Literature Review. Emerg Med Int 2024; 2024:2834376. [PMID: 39372548 PMCID: PMC11455598 DOI: 10.1155/2024/2834376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/17/2024] [Indexed: 10/08/2024] Open
Abstract
Introduction Over the years, numerous studies have suggested the occurrence of a peculiar phenomenon known as "CPRIC" during the revival process. The revelation of this phenomenon has ignited widespread discussion and investigation, yet many enigmas remain unsolved. This study describes the case of a 52-year-old man diagnosed with acute anterior myocardial infarction, who experienced ventricular fibrillation while awaiting further treatment. Despite ultimately not regaining spontaneous circulation, he remained conscious for a period during chest compressions and showed signs of resistance. Methods PubMed and Web of Science were searched until July 11, 2024. We included original studies and case reports relevant to CPRIC. For case reports, we extracted information on the author (year), country, patients, location, compression, signs of CPRIC, treatment of CPRIC, and patient outcomes. For other studies, we included the author (year), country, participants, and results. The extracted data were synthesized using a narrative approach. Results Of 3038 articles, 32 were included, i.e., 18 case reports (24 cases), 9 cross-sectional surveys, and 5 cohort studies. In CPRIC cases, patients exhibited various manifestations including opening their eyes, speaking, and moving. Other included studies explored healthcare workers' awareness and experiences of CPRIC, the incidence and manifestations of CPRIC, the impact of CPRIC on patient outcomes, memories and perceptions of cardiac arrest indicating consciousness, the effects of CPRIC on rescuers, and the management of CPRIC. Conclusions There is an urgent need to establish a globally recognized definition of CPRIC. It is crucial to develop clear algorithms that focus not only on identifying this phenomenon but also on determining the best approaches to manage it. Furthermore, CPRIC can cause multiple interruptions during CPR, making it essential to differentiate whether these interruptions are due to CPRIC or indicative of a return of spontaneous circulation.
Collapse
Affiliation(s)
- Xiaoqing Zhou
- Emergency DepartmentShengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Boru Sun
- Emergency DepartmentShengjing Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
4
|
Vaz A, Wathen C, Miranda S, Thomas R, Darlington T, Jabarkheel R, Tomlinson S, Arena J, Bond K, Salwi S, Ajmera S, Bachschmid-Romano L, Gugger J, Sandsmark D, Diaz-Arrastia R, Schuster J, Ramayya AG, Cajigas I, Pesaran B, Chen HI, Petrov D. Return of intracranial beta oscillations and traveling waves with recovery from traumatic brain injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604293. [PMID: 39091808 PMCID: PMC11291083 DOI: 10.1101/2024.07.19.604293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Traumatic brain injury (TBI) remains a pervasive clinical problem associated with significant morbidity and mortality. However, TBI remains clinically and biophysically ill-defined, and prognosis remains difficult even with the standardization of clinical guidelines and advent of multimodality monitoring. Here we leverage a unique data set from TBI patients implanted with either intracranial strip electrodes during craniotomy or quad-lumen intracranial bolts with depth electrodes as part of routine clinical practice. By extracting spectral profiles of this data, we found that the presence of narrow-band oscillatory activity in the beta band (12-30 Hz) closely corresponds with the neurological exam as quantified with the standard Glasgow Coma Scale (GCS). Further, beta oscillations were distributed over the cortical surface as traveling waves, and the evolution of these waves corresponded to recovery from coma, consistent with the putative role of waves in perception and cognitive activity. We consequently propose that beta oscillations and traveling waves are potential biomarkers of recovery from TBI. In a broader sense, our findings suggest that emergence from coma results from recovery of thalamo-cortical interactions that coordinate cortical beta rhythms.
Collapse
Affiliation(s)
- Alex Vaz
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Surgical Neurology Branch, NINDS, National Institutes of Health, Bethesda, MD 20892, USA
| | - Connor Wathen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Stephen Miranda
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rachel Thomas
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Timothy Darlington
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Rashad Jabarkheel
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Samuel Tomlinson
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - John Arena
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Kamila Bond
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sanjana Salwi
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sonia Ajmera
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - James Gugger
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Danielle Sandsmark
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - James Schuster
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ashwin G Ramayya
- Department of Neurosurgery, Stanford University, Palo Alto, CA, 94305, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Bijan Pesaran
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - H Isaac Chen
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
5
|
Ihalainen R, Annen J, Gosseries O, Cardone P, Panda R, Martial C, Thibaut A, Laureys S, Chennu S. Lateral frontoparietal effective connectivity differentiates and predicts state of consciousness in a cohort of patients with traumatic disorders of consciousness. PLoS One 2024; 19:e0298110. [PMID: 38968195 PMCID: PMC11226086 DOI: 10.1371/journal.pone.0298110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/13/2024] [Indexed: 07/07/2024] Open
Abstract
Neuroimaging studies have suggested an important role for the default mode network (DMN) in disorders of consciousness (DoC). However, the extent to which DMN connectivity can discriminate DoC states-unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS)-is less evident. Particularly, it is unclear whether effective DMN connectivity, as measured indirectly with dynamic causal modelling (DCM) of resting EEG can disentangle UWS from healthy controls and from patients considered conscious (MCS+). Crucially, this extends to UWS patients with potentially "covert" awareness (minimally conscious star, MCS*) indexed by voluntary brain activity in conjunction with partially preserved frontoparietal metabolism as measured with positron emission tomography (PET+ diagnosis; in contrast to PET- diagnosis with complete frontoparietal hypometabolism). Here, we address this gap by using DCM of EEG data acquired from patients with traumatic brain injury in 11 UWS (6 PET- and 5 PET+) and in 12 MCS+ (11 PET+ and 1 PET-), alongside with 11 healthy controls. We provide evidence for a key difference in left frontoparietal connectivity when contrasting UWS PET- with MCS+ patients and healthy controls. Next, in a leave-one-subject-out cross-validation, we tested the classification performance of the DCM models demonstrating that connectivity between medial prefrontal and left parietal sources reliably discriminates UWS PET- from MCS+ patients and controls. Finally, we illustrate that these models generalize to an unseen dataset: models trained to discriminate UWS PET- from MCS+ and controls, classify MCS* patients as conscious subjects with high posterior probability (pp > .92). These results identify specific alterations in the DMN after severe brain injury and highlight the clinical utility of EEG-based effective connectivity for identifying patients with potential covert awareness.
Collapse
Affiliation(s)
- Riku Ihalainen
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, United States of America
- School of Computing, University of Kent, Canterbury, United Kingdom
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
- Department of Data Analysis, University of Ghent, Ghent, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- Centre du Cerveau, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness Research Unit, University and University Hospital of Liège, Liège, Belgium
- CERVO Brain Research Centre, de la Canardière, Québec, Canada
- Consciousness Science Institute, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Srivas Chennu
- School of Computing, University of Kent, Canterbury, United Kingdom
| |
Collapse
|
6
|
Leo DG, Keller SS, Proietti R. "Close your eyes and relax": the role of hypnosis in reducing anxiety, and its implications for the prevention of cardiovascular diseases. Front Psychol 2024; 15:1411835. [PMID: 39035095 PMCID: PMC11258040 DOI: 10.3389/fpsyg.2024.1411835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/21/2024] [Indexed: 07/23/2024] Open
Abstract
Anxiety is the most common form of mental health disorder, affecting millions of people worldwide. Psychosocial interventions such as mindfulness and cognitive behavioral therapy (CBT) have been suggested as an effective treatment in the management of general anxiety and anxiety disorders, with emerging evidence also suggesting the effectiveness of hypnosis. Moreover, anxiety has shown to be linked to the onset and development of several cardiovascular diseases (CVD), which are the leading cause of global death. In this paper, we review the current literature to examine the role that anxiety has on the onset and development of CVD and summarize the current knowledge on the role that hypnosis and hypnotherapy have in reducing anxiety, also explaining how this can impact the cardiovascular system and the prevention of CVD. Review of the evidence suggests that hypnosis and hypnotherapy are effective in treating anxiety and may positively affect the heart and the cardiovascular system, reducing sympathetic activation and increasing parasympathetic tone, potentially preventing the onset of CVD related to increased sympathetic activation. However, further studies are required to further understand how hypnosis and hypnotherapy affect the cardiovascular system through investigation of the neurophysiological components of the hypnotic state and of the mind-body relationship. Healthcare systems should embed mental health screening in patients at risk of developing CVD as part of the clinical pathway and consider the role that hypnosis and hypnotherapy may play in the management of CVD.
Collapse
Affiliation(s)
- Donato Giuseppe Leo
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| | - Simon S. Keller
- Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Riccardo Proietti
- Department of Cardiovascular and Metabolic Medicine, Institute of Life Course and Medical Sciences, Faculty of Health and Life Science, University of Liverpool, Liverpool, United Kingdom
- Liverpool Centre for Cardiovascular Science, University of Liverpool and Liverpool Heart and Chest Hospital, Liverpool, United Kingdom
| |
Collapse
|
7
|
Cai L, Wei X, Qing Y, Lu M, Yi G, Wang J, Dong Y. Assessment of impaired consciousness using EEG-based connectivity features and convolutional neural networks. Cogn Neurodyn 2024; 18:919-930. [PMID: 38826674 PMCID: PMC11143130 DOI: 10.1007/s11571-023-09944-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/18/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Growing electroencephalogram (EEG) studies have linked the abnormities of functional brain networks with disorders of consciousness (DOC). However, due to network data's high-dimensional and non-Euclidean properties, it is difficult to exploit the brain connectivity information that can effectively detect the consciousness levels of DOC patients via deep learning. To take maximum advantage of network information in assessing impaired consciousness, we utilized the functional connectivity with convolutional neural network (CNN) and employed three rearrangement schemes to improve the evaluation performance of brain networks. In addition, the gradient-weighted class activation mapping (Grad-CAM) was adopted to visualize the classification contributions of connections among different areas. We demonstrated that the classification performance was significantly enhanced by applying network rearrangement techniques compared to those obtained by the original connectivity matrix (with an accuracy of 75.0%). The highest classification accuracy (87.2%) was achieved by rearranging the alpha network based on the anatomical regions. The inter-region connections (i.e., frontal-parietal and frontal-occipital connectivity) played dominant roles in the classification of patients with different consciousness states. The effectiveness of functional connectivity in revealing individual differences in brain activity was further validated by the correlation between behavioral performance and connections among specific regions. These findings suggest that our proposed assessment model could detect the residual consciousness of patients.
Collapse
Affiliation(s)
- Lihui Cai
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Xile Wei
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Yang Qing
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Meili Lu
- School of Information Technology Engineering, Tianjin University of Technology and Education, Tianjin, China
| | - Guosheng Yi
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Jiang Wang
- School of Electrical and Information Engineering, Tianjin University, Tianjin, China
| | - Yueqing Dong
- Xincheng Hospital of Tianjin University, Tianjin, China
| |
Collapse
|
8
|
Storm JF, Klink PC, Aru J, Senn W, Goebel R, Pigorini A, Avanzini P, Vanduffel W, Roelfsema PR, Massimini M, Larkum ME, Pennartz CMA. An integrative, multiscale view on neural theories of consciousness. Neuron 2024; 112:1531-1552. [PMID: 38447578 DOI: 10.1016/j.neuron.2024.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/20/2023] [Accepted: 02/05/2024] [Indexed: 03/08/2024]
Abstract
How is conscious experience related to material brain processes? A variety of theories aiming to answer this age-old question have emerged from the recent surge in consciousness research, and some are now hotly debated. Although most researchers have so far focused on the development and validation of their preferred theory in relative isolation, this article, written by a group of scientists representing different theories, takes an alternative approach. Noting that various theories often try to explain different aspects or mechanistic levels of consciousness, we argue that the theories do not necessarily contradict each other. Instead, several of them may converge on fundamental neuronal mechanisms and be partly compatible and complementary, so that multiple theories can simultaneously contribute to our understanding. Here, we consider unifying, integration-oriented approaches that have so far been largely neglected, seeking to combine valuable elements from various theories.
Collapse
Affiliation(s)
- Johan F Storm
- The Brain Signaling Group, Division of Physiology, IMB, Faculty of Medicine, University of Oslo, Domus Medica, Sognsvannsveien 9, Blindern, 0317 Oslo, Norway.
| | - P Christiaan Klink
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, 3584 CS Utrecht, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France
| | - Jaan Aru
- Institute of Computer Science, University of Tartu, Tartu, Estonia
| | - Walter Senn
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Oxfordlaan 55, 6229 EV Maastricht, The Netherlands
| | - Andrea Pigorini
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, Milan 20122, Italy
| | - Pietro Avanzini
- Istituto di Neuroscienze, Consiglio Nazionale delle Ricerche, 43125 Parma, Italy
| | - Wim Vanduffel
- Department of Neurosciences, Laboratory of Neuro and Psychophysiology, KU Leuven Medical School, 3000 Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02144, USA
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, the Netherlands; Laboratory of Visual Brain Therapy, Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris 75012, France; Department of Integrative Neurophysiology, VU University, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands; Department of Neurosurgery, Academisch Medisch Centrum, Postbus 22660, 1100 DD Amsterdam, the Netherlands
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", Università degli Studi di Milano, Milan 20157, Italy; Istituto di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan 20122, Italy; Azrieli Program in Brain, Mind and Consciousness, Canadian Institute for Advanced Research (CIFAR), Toronto, ON M5G 1M1, Canada
| | - Matthew E Larkum
- Institute of Biology, Humboldt University Berlin, Berlin, Germany; Neurocure Center for Excellence, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Cyriel M A Pennartz
- Swammerdam Institute for Life Sciences, Center for Neuroscience, Faculty of Science, University of Amsterdam, Sciencepark 904, Amsterdam 1098 XH, the Netherlands; Research Priority Program Brain and Cognition, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
9
|
Dagnino PC, Escrichs A, López-González A, Gosseries O, Annen J, Sanz Perl Y, Kringelbach ML, Laureys S, Deco G. Re-awakening the brain: Forcing transitions in disorders of consciousness by external in silico perturbation. PLoS Comput Biol 2024; 20:e1011350. [PMID: 38701063 PMCID: PMC11068192 DOI: 10.1371/journal.pcbi.1011350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 03/31/2024] [Indexed: 05/05/2024] Open
Abstract
A fundamental challenge in neuroscience is accurately defining brain states and predicting how and where to perturb the brain to force a transition. Here, we investigated resting-state fMRI data of patients suffering from disorders of consciousness (DoC) after coma (minimally conscious and unresponsive wakefulness states) and healthy controls. We applied model-free and model-based approaches to help elucidate the underlying brain mechanisms of patients with DoC. The model-free approach allowed us to characterize brain states in DoC and healthy controls as a probabilistic metastable substate (PMS) space. The PMS of each group was defined by a repertoire of unique patterns (i.e., metastable substates) with different probabilities of occurrence. In the model-based approach, we adjusted the PMS of each DoC group to a causal whole-brain model. This allowed us to explore optimal strategies for promoting transitions by applying off-line in silico probing. Furthermore, this approach enabled us to evaluate the impact of local perturbations in terms of their global effects and sensitivity to stimulation, which is a model-based biomarker providing a deeper understanding of the mechanisms underlying DoC. Our results show that transitions were obtained in a synchronous protocol, in which the somatomotor network, thalamus, precuneus and insula were the most sensitive areas to perturbation. This motivates further work to continue understanding brain function and treatments of disorders of consciousness.
Collapse
Affiliation(s)
- Paulina Clara Dagnino
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Ane López-González
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau 2, University Hospital of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
- Centre du Cerveau 2, University Hospital of Liège, Liège, Belgium
| | - Yonatan Sanz Perl
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Steven Laureys
- Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University of Laval, Québec, Québec, Canada
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Catalonia, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Diezig S, Denzer S, Achermann P, Mast FW, Koenig T. EEG Microstate Dynamics Associated with Dream-Like Experiences During the Transition to Sleep. Brain Topogr 2024; 37:343-355. [PMID: 36402917 PMCID: PMC10884123 DOI: 10.1007/s10548-022-00923-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/21/2022] [Indexed: 11/21/2022]
Abstract
Consciousness always requires some representational content; that is, one can only be conscious about something. However, the presence of conscious experience (awareness) alone does not determine whether its content is in line with the external and physical world. Dreams, apart from certain forms of hallucinations, typically consist of non-veridical percepts, which are not recognized as false, but rather considered real. This type of experiences have been described as a state of dissociation between phenomenal and reflective awareness. Interestingly, during the transition to sleep, reflective awareness seems to break down before phenomenal awareness as conscious experience does not immediately fade with reduced wakefulness but is rather characterized by the occurrence of uncontrolled thinking and perceptual images, together with a reduced ability to recognize the internal origin of the experience. Relative deactivation of the frontoparietal and preserved activity in parieto-occipital networks has been suggested to account for dream-like experiences during the transition to sleep. We tested this hypothesis by investigating subjective reports of conscious experience and large-scale brain networks using EEG microstates in 45 healthy young subjects during the transition to sleep. We observed an inverse relationship between cognitive effects and physiological activation; dream-like experiences were associated with an increased presence of a microstate with sources in the superior and middle frontal gyrus and precuneus. Additionally, the presence of a microstate associated with higher-order visual areas was decreased. The observed inverse relationship might therefore indicate a disengagement of cognitive control systems that is mediated by specific, inhibitory EEG microstates.
Collapse
Affiliation(s)
- Sarah Diezig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Simone Denzer
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Peter Achermann
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Fred W Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Thomas Koenig
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
De Pascalis V. Brain Functional Correlates of Resting Hypnosis and Hypnotizability: A Review. Brain Sci 2024; 14:115. [PMID: 38391691 PMCID: PMC10886478 DOI: 10.3390/brainsci14020115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024] Open
Abstract
This comprehensive review delves into the cognitive neuroscience of hypnosis and variations in hypnotizability by examining research employing functional magnetic resonance imaging (fMRI), positron emission tomography (PET), and electroencephalography (EEG) methods. Key focus areas include functional brain imaging correlations in hypnosis, EEG band oscillations as indicators of hypnotic states, alterations in EEG functional connectivity during hypnosis and wakefulness, drawing critical conclusions, and suggesting future research directions. The reviewed functional connectivity findings support the notion that disruptions in the available integration between different components of the executive control network during hypnosis may correspond to altered subjective appraisals of the agency during the hypnotic response, as per dissociated and cold control theories of hypnosis. A promising exploration avenue involves investigating how frontal lobes' neurochemical and aperiodic components of the EEG activity at waking-rest are linked to individual differences in hypnotizability. Future studies investigating the effects of hypnosis on brain function should prioritize examining distinctive activation patterns across various neural networks.
Collapse
Affiliation(s)
- Vilfredo De Pascalis
- Department of Psychology, La Sapienza University of Rome, 00185 Rome, Italy;
- School of Psychology, University of New England, Armidale, NSW 2351, Australia
| |
Collapse
|
12
|
Gott JA, Stücker S, Kanske P, Haaker J, Dresler M. Acetylcholine and metacognition during sleep. Conscious Cogn 2024; 117:103608. [PMID: 38042119 DOI: 10.1016/j.concog.2023.103608] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/03/2023] [Accepted: 11/16/2023] [Indexed: 12/04/2023]
Abstract
Acetylcholine is a neurotransmitter and neuromodulator involved in a variety of cognitive functions. Additionally, acetylcholine is involved in the regulation of REM sleep: cholinergic neurons in the brainstem and basal forebrain project to and innervate wide areas of the cerebral cortex, and reciprocally interact with other neuromodulatory systems, to produce the sleep-wake cycle and different sleep stages. Consciousness and cognition vary considerably across and within sleep stages, with metacognitive capacity being strikingly reduced even during aesthetically and emotionally rich dream experiences. A notable exception is the phenomenon of lucid dreaming-a rare state whereby waking levels of metacognitive awareness are restored during sleep-resulting in individuals becoming aware of the fact that they are dreaming. The role of neurotransmitters in these fluctuations of consciousness and cognition during sleep is still poorly understood. While recent studies using acetylcholinesterase inhibitors suggest a potential role of acetylcholine in the occurrence of lucid dreaming, the underlying mechanisms by which this effect is produced remains un-modelled and unknown; with the causal link between cholinergic mechanisms and upstream psychological states being complex and elusive. Several theories and approaches targeting the association between acetylcholine and metacognition during wakefulness and sleep are highlighted in this review, moving through microscopic, mesoscopic and macroscopic levels of analysis to detail this phenomenon at several organisational scales. Several exploratory hypotheses will be developed to guide future research towards fully articulating how metacognition is affected by activity at the acetylcholine receptor.
Collapse
Affiliation(s)
- Jarrod A Gott
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sina Stücker
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Philipp Kanske
- Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Jan Haaker
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Dresler
- Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
13
|
Melillo RJ, Leisman G, Machado C, Carmeli E. Identification and reduction of retained primitive reflexes by sensory stimulation in autism spectrum disorder: effects on qEEG networks and cognitive functions. BMJ Case Rep 2023; 16:e255285. [PMID: 38154865 PMCID: PMC10759118 DOI: 10.1136/bcr-2023-255285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2023] [Indexed: 12/30/2023] Open
Abstract
Several authors have reported finding retained primitive reflexes (RPRs) in individuals with autism spectrum disorders (ASD). This case report describes the reduction of RPRs and changes in cognitive function after transcutaneous electrical nerve stimulation (TENS) of muscle. Three individuals were examined in a study at the Institute for Neurology and Neurosurgery in Havana, Cuba. Two child neurologists, not involved in the study, conducted clinical examinations on each participant and diagnosed each with ASD based on DSM-V criteria and the Autism Diagnostic Interview-Revised (an autism evaluation tool). Each child with ASD possessed a triad of impairments in three domains: social interaction, communication, and repetitive behaviour. Individuals were evaluated by quantitative electroencephalographic measures and tested by standardised cognitive function tests before and after 12 weeks of intervention. These interventions were associated with reduced ASD symptoms in the three domains, significant changes in qEEG network connectivity and significantly improved performance on standardised cognitive tests.
Collapse
Affiliation(s)
- Robert John Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa Faculty of Social Welfare and Health Sciences, Haifa, Israel
| | - Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa Faculty of Social Welfare and Health Sciences, Haifa, Israel
- Institute for Neurology and Neurosurgery, Universidad de Ciencias Medicas de La Habana, La Habana, Cuba
| | - Calixto Machado
- Clinical Neurophysiology, Instituto de Neurologia y Neurocirugia, La Habana, Cuba
| | - Eli Carmeli
- Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
14
|
Boulakis PA, Mortaheb S, van Calster L, Majerus S, Demertzi A. Whole-Brain Deactivations Precede Uninduced Mind-Blanking Reports. J Neurosci 2023; 43:6807-6815. [PMID: 37643862 PMCID: PMC10552942 DOI: 10.1523/jneurosci.0696-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/11/2023] [Accepted: 08/07/2023] [Indexed: 08/31/2023] Open
Abstract
Mind-blanking (MB) is termed as the inability to report our immediate-past mental content. In contrast to mental states with reportable content, such as mind-wandering or sensory perceptions, the neural correlates of MB started getting elucidated only recently. A notable particularity that pertains to MB studies is the way MB is instructed for reporting, like by deliberately asking participants to "empty their minds." Such instructions were shown to induce fMRI activations in frontal brain regions, typically associated with metacognition and self-evaluative processes, suggesting that MB may be a result of intentional mental content suppression. Here, we aim at examining this hypothesis by determining the neural correlates of MB without induction. Using fMRI combined with experience-sampling in 31 participants (22 female), univariate analysis of MB reports revealed deactivations in occipital, frontal, parietal, and thalamic areas, but no activations in prefrontal regions. These findings were confirmed using Bayesian region-of-interest analysis on areas previously shown to be implicated in induced MB, where we report evidence for frontal deactivations during MB reports compared with other mental states. Contrast analysis between reports of MB and content-oriented mental states also revealed deactivations in the left angular gyrus. We propose that these effects characterize a neuronal profile of MB, where key thalamocortical nodes are unable to communicate and formulate reportable content. Collectively, we show that study instructions for MB lead to differential neural activation. These results provide mechanistic insights linked to the phenomenology of MB and point to the possibility of MB being expressed in different forms.SIGNIFICANCE STATEMENT This study explores how brain activity changes when individuals report unidentifiable thoughts, a phenomenon known as mind-blanking (MB). It aims to detect changes in brain activations and deactivations when MB is reported spontaneously, as opposed to the neural responses that have been previously reported when MB is induced. By means of brain imaging and experience-sampling, the study points to reduced brain activity in a wide number of regions, including those mesio-frontally which were previously detected as activated during induced MB. These results enhance our understanding of the complexity of spontaneous thinking and contribute to broader discussions on consciousness and reportable experience.
Collapse
Affiliation(s)
- Paradeisios Alexandros Boulakis
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - Sepehr Mortaheb
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - Laurens van Calster
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
- GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels 1200, Belgium
| | - Steve Majerus
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
- GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
| | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium
- National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium
| |
Collapse
|
15
|
Yin M, Lee EJ. Planet earth calling: unveiling the brain's response to awe and driving eco-friendly consumption. Front Neurosci 2023; 17:1251685. [PMID: 37849890 PMCID: PMC10577226 DOI: 10.3389/fnins.2023.1251685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/13/2023] [Indexed: 10/19/2023] Open
Abstract
Eco-friendly consumption is important for solving climate crisis and moving humanity toward a better future. However, few consumers are willing to pay premiums for eco-friendly products. We investigated the psychological and neural factors that can increase eco-friendly consumption. We propose an experience of awe, in which the individual self is temporarily attenuated as the importance of beings other than oneself increases. Behavioral (Study 1) and functional magnetic resonance imaging (fMRI; Study 2) experiments were conducted to explore the awe mechanisms through which climate crisis messages lead to eco-friendly consumption. In Study 1, we found participants felt awe when exposed to climate crisis messages, and their choice of eco-friendly consumption increased. In Study 2, we found that when individuals were exposed to messages depicting the climate crisis (as opposed to a control stimulus), their brains exhibited a lower level of activation in the self-awareness processing and a higher level of activation in external attention processing areas. These results suggest that the awe experience plays an important role in promoting eco-friendly consumption. Marketing must evolve from satisfying basic individual needs to a high level for the well-being of humanity, the planet, and the biosphere. This study sheds light on our understanding of human perceptions of the climate crisis and suggests an effective communication strategy to increase individuals' eco-friendly actions.
Collapse
Affiliation(s)
- Meiling Yin
- Business School, Sungkyunkwan University, Seoul, Republic of Korea
| | - Eun-Ju Lee
- Business School, Sungkyunkwan University, Seoul, Republic of Korea
- Neuro Intelligence Center, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
16
|
Panda R, Vanhaudenhuyse A, Piarulli A, Annen J, Demertzi A, Alnagger N, Chennu S, Laureys S, Faymonville ME, Gosseries O. Altered Brain Connectivity and Network Topological Organization in a Non-ordinary State of Consciousness Induced by Hypnosis. J Cogn Neurosci 2023; 35:1394-1409. [PMID: 37315333 DOI: 10.1162/jocn_a_02019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hypnosis has been shown to be of clinical utility; however, its underlying neural mechanisms remain unclear. This study aims to investigate altered brain dynamics during the non-ordinary state of consciousness induced by hypnosis. We studied high-density EEG in 9 healthy participants during eyes-closed wakefulness and during hypnosis, induced by a muscle relaxation and eyes fixation procedure. Using hypotheses based on internal and external awareness brain networks, we assessed region-wise brain connectivity between six ROIs (right and left frontal, right and left parietal, upper and lower midline regions) at the scalp level and compared across conditions. Data-driven, graph-theory analyses were also carried out to characterize brain network topology in terms of brain network segregation and integration. During hypnosis, we observed (1) increased delta connectivity between left and right frontal, as well as between right frontal and parietal regions; (2) decreased connectivity for alpha (between right frontal and parietal and between upper and lower midline regions) and beta-2 bands (between upper midline and right frontal, frontal and parietal, also between upper and lower midline regions); and (3) increased network segregation (short-range connections) in delta and alpha bands, and increased integration (long-range connections) in beta-2 band. This higher network integration and segregation was measured bilaterally in frontal and right parietal electrodes, which were identified as central hub regions during hypnosis. This modified connectivity and increased network integration-segregation properties suggest a modification of the internal and external awareness brain networks that may reflect efficient cognitive-processing and lower incidences of mind-wandering during hypnosis.
Collapse
Affiliation(s)
| | | | | | - Jitka Annen
- University of Liège, Belgium
- University Hospital of Liège, Belgium
| | | | - Naji Alnagger
- University of Liège, Belgium
- University Hospital of Liège, Belgium
| | | | - Steven Laureys
- University of Liège, Belgium
- University Hospital of Liège, Belgium
- Laval University, Québec, Canada
| | | | - Olivia Gosseries
- University of Liège, Belgium
- University Hospital of Liège, Belgium
| |
Collapse
|
17
|
Annen J, Frasso G, van der Lande GJM, Bonin EAC, Vitello MM, Panda R, Sala A, Cavaliere C, Raimondo F, Bahri MA, Schiff ND, Gosseries O, Thibaut A, Laureys S. Cerebral electrometabolic coupling in disordered and normal states of consciousness. Cell Rep 2023; 42:112854. [PMID: 37498745 DOI: 10.1016/j.celrep.2023.112854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 06/02/2023] [Accepted: 07/08/2023] [Indexed: 07/29/2023] Open
Abstract
We assess cerebral integrity with cortical and subcortical FDG-PET and cortical electroencephalography (EEG) within the mesocircuit model framework in patients with disorders of consciousness (DoCs). The mesocircuit hypothesis proposes that subcortical activation facilitates cortical function. We find that the metabolic balance of subcortical mesocircuit areas is informative for diagnosis and is associated with four EEG-based power spectral density patterns, cortical metabolism, and α power in healthy controls and patients with a DoC. Last, regional electrometabolic coupling at the cortical level can be identified in the θ and α ranges, showing positive and negative relations with glucose uptake, respectively. This relation is inverted in patients with a DoC, potentially related to altered orchestration of neural activity, and may underlie suboptimal excitability states in patients with a DoC. By understanding the neurobiological basis of the pathophysiology underlying DoCs, we foresee translational value for diagnosis and treatment of patients with a DoC.
Collapse
Affiliation(s)
- Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium.
| | | | - Glenn J M van der Lande
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Estelle A C Bonin
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Marie M Vitello
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Arianna Sala
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | | | - Federico Raimondo
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium; Joint International Research Unit on Consciousness, CERVO Brain Research Centre, University Laval, Quebec City, QC, Canada
| |
Collapse
|
18
|
Xiong B, Liu Z, Li J, Huang X, Yang J, Xu W, Chen YC, Cai Y, Zheng Y. Abnormal Functional Connectivity Within Default Mode Network and Salience Network Related to Tinnitus Severity. J Assoc Res Otolaryngol 2023; 24:453-462. [PMID: 37436592 PMCID: PMC10504230 DOI: 10.1007/s10162-023-00905-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/19/2023] [Indexed: 07/13/2023] Open
Abstract
BACKGROUND Previous studies have demonstrated that tinnitus is associated with neural changes in the cerebral cortex. This study is aimed at investigating the central nervous characteristics of tinnitus patients with different severity by using a rs-EEG. PARTICIPANTS AND METHODS rs-EEG was recorded in fifty-seven patients with chronic tinnitus and twenty-seven healthy controls. Tinnitus patients were divided into moderate-to-severe tinnitus group and slight-to-mild tinnitus group based on their Tinnitus Handicap Inventory (THI) scores. Source localization and functional connectivity analyses were used to measure the changes in central levels and examine the altered network patterns. The correlation between functional connectivity and tinnitus severity was analyzed. RESULT Compared to the healthy controls, all tinnitus patients showed significant activation in the auditory cortex (middle temporal lobe, BA 21), while moderate-to-severe tinnitus group showed enhanced connectivity between the parahippocampus and posterior cingulate gyrus. Moreover, the moderate-to-severe tinnitus group had enhanced functional connectivity between auditory cortex and insula compared to the slight-to-mild tinnitus group. The connections between the insula and the parahippocampal and posterior cingulate gyrus were positively correlated with THI scores. CONCLUSION The current study reveals that patients with moderate-to-severe tinnitus demonstrate greater changes in the central brain areas, including the auditory cortex, insula, parahippocampus and posterior cingulate gyrus. In addition, enhanced connections were found between the insula and the auditory cortex, as well as the posterior cingulate gyrus and the parahippocampus, which suggests abnormality in the auditory network, salience network, and default mode network. Specifically, the insula is the core region of the neural pathway that is composed of the auditory cortex, insula, and parahippocampus/posterior cingulate gyrus. This suggests that the severity of tinnitus is affected by multiple brain regions.
Collapse
Affiliation(s)
- Binbin Xiong
- Zhuhai Hospital Affiliated with Jinan University, Zhuhai, Guangdong, 519000, China
- Center for Hearing and Balance, Zhuhai Hospital of Integrated of Traditional Chinese Medicine and Western Medicine, Zhuhai, Guangdong, 519000, China
| | - Zhao Liu
- Center for Hearing and Balance, Zhuhai Hospital of Integrated of Traditional Chinese Medicine and Western Medicine, Zhuhai, Guangdong, 519000, China
| | - Jiahong Li
- The First Clinical Medical College of Jinan University, Guangzhou, 510630, China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, 510120, Guangzhou, China
| | - Xiayin Huang
- The First Clinical Medical College of Jinan University, Guangzhou, 510630, China
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, 510120, Guangzhou, China
| | - Jing Yang
- Center for Hearing and Balance, Zhuhai Hospital of Integrated of Traditional Chinese Medicine and Western Medicine, Zhuhai, Guangdong, 519000, China
| | - Wenqiang Xu
- Center for Hearing and Balance, Zhuhai Hospital of Integrated of Traditional Chinese Medicine and Western Medicine, Zhuhai, Guangdong, 519000, China
| | - Yu-Chen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yuexin Cai
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, 510120, Guangzhou, China.
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.
| | - Yiqing Zheng
- The First Clinical Medical College of Jinan University, Guangzhou, 510630, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yan Jiang West Road, 510120, Guangzhou, China.
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China.
| |
Collapse
|
19
|
Veyrié A, Noreña A, Sarrazin JC, Pezard L. Information-Theoretic Approaches in EEG Correlates of Auditory Perceptual Awareness under Informational Masking. BIOLOGY 2023; 12:967. [PMID: 37508397 PMCID: PMC10376775 DOI: 10.3390/biology12070967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
In informational masking paradigms, the successful segregation between the target and masker creates auditory perceptual awareness. The dynamics of the build-up of auditory perception is based on a set of interactions between bottom-up and top-down processes that generate neuronal modifications within the brain network activity. These neural changes are studied here using event-related potentials (ERPs), entropy, and integrated information, leading to several measures applied to electroencephalogram signals. The main findings show that the auditory perceptual awareness stimulated functional activation in the fronto-temporo-parietal brain network through (i) negative temporal and positive centro-parietal ERP components; (ii) an enhanced processing of multi-information in the temporal cortex; and (iii) an increase in informational content in the fronto-central cortex. These different results provide information-based experimental evidence about the functional activation of the fronto-temporo-parietal brain network during auditory perceptual awareness.
Collapse
Affiliation(s)
- Alexandre Veyrié
- Centre National de la Recherche Scientifique (UMR 7291), Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, 13331 Marseille, France
- ONERA, The French Aerospace Lab, 13300 Salon de Provence, France
| | - Arnaud Noreña
- Centre National de la Recherche Scientifique (UMR 7291), Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, 13331 Marseille, France
| | | | - Laurent Pezard
- Centre National de la Recherche Scientifique (UMR 7291), Laboratoire de Neurosciences Cognitives, Aix-Marseille Université, 13331 Marseille, France
| |
Collapse
|
20
|
Deng F, Taylor N, Owen AM, Cusack R, Naci L. Responsiveness variability during anaesthesia relates to inherent differences in brain structure and function of the frontoparietal networks. Hum Brain Mapp 2023; 44:2142-2157. [PMID: 36617994 PMCID: PMC10028637 DOI: 10.1002/hbm.26199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/30/2022] [Accepted: 12/18/2022] [Indexed: 01/10/2023] Open
Abstract
Anaesthesia combined with functional neuroimaging provides a powerful approach for understanding the brain mechanisms of consciousness. Although propofol is used ubiquitously in clinical interventions that reversibly suppress consciousness, it shows large inter-individual variability, and the brain bases of this variability remain poorly understood. We asked whether three networks key to conscious cognition-the dorsal attention (DAN), executive control (ECN), and default mode (DMN)-underlie responsiveness variability under anaesthesia. Healthy participants (N = 17) were moderately anaesthetized during narrative understanding and resting-state conditions inside the Magnetic Resonance Imaging scanner. A target detection task measured behavioural responsiveness. An independent behavioural study (N = 25) qualified the attention demands of narrative understanding. Then, 30% of participants were unaffected in their response times, thus thwarting a key aim of anaesthesia-the suppression of behavioural responsiveness. Individuals with stronger functional connectivity within the DAN and ECN, between them, and to the DMN, and with larger grey matter volume in frontal regions were more resilient to anaesthesia. For the first time, we show that responsiveness variability during propofol anaesthesia relates to inherent differences in brain structure and function of the frontoparietal networks, which can be predicted prior to sedation. Results highlight novel markers for improving awareness monitoring during clinical anaesthesia.
Collapse
Affiliation(s)
- Feng Deng
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Nicola Taylor
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Adrian M Owen
- Brain and Mind Institute, Western University, London, Canada
- Department of Physiology and Pharmacology and Department of Psychology, Western University, London, Canada
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
21
|
Jang SH, Cho MJ. Transcutaneous auricular vagus nerve stimulation in disorders of consciousness: A mini-narrative review. Medicine (Baltimore) 2022; 101:e31808. [PMID: 36550876 PMCID: PMC9771208 DOI: 10.1097/md.0000000000031808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
In this mini review, 6 studies that investigated the effects of transcutaneous auricular vagus nerve stimulation (taVNS) in patients with disorders of consciousness (DOC) were reviewed. Generally, the application of taVNS in patients with DOC appears to be effective (positive results in 5 of 6 studies) and safe. Furthermore, 4 studies that evaluated changes in the brain following taVNS reported positive results (2 studies, functional magnetic resonance imaging and 2 studies, electroencephalography). Based on our review of the 6 studies, we believe that research and clinical application of taVNS in DOC are in the initial stages and have the following limitations. First, there is a shortage of studies on this topic, with only 6 studies, 2 of which were case reports. Second, 5 studies were performed without control or sham groups. Third, there was no standardization of treatment schedules and electrical stimulation parameters. Therefore, further studies to overcome the above limitations should be encouraged; further original studies involving a larger number of patients in the control or sham groups are needed. However, studies on the optimal conditions (treatment schedule and electrical stimulation parameters) for taVNS in patients with DOC are necessary. Furthermore, neuroimaging studies should be undertaken to elucidate the neurological mechanisms for the recovery of impaired consciousness in DOC and the lasting effects of taVNS on the brain.
Collapse
Affiliation(s)
- Sung Ho Jang
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu, Republic of Korea
| | - Min Jye Cho
- Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, Namku, Taegu, Republic of Korea
- * Correspondence: Min Jye Cho, Department of Physical Medicine and Rehabilitation, College of Medicine, Yeungnam University, 317-1, Daemyung dong, Namgu, Daegu 705-717, Republic of Korea (e-mail: )
| |
Collapse
|
22
|
Smeele SJ, Adhia DB, De Ridder D. Feasibility and Safety of High-Definition Infraslow Pink Noise Stimulation for Treating Chronic Tinnitus—A Randomized Placebo-Controlled Trial. Neuromodulation 2022:S1094-7159(22)01339-3. [DOI: 10.1016/j.neurom.2022.10.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 12/03/2022]
|
23
|
Lee SJ, Park J, Lee SY, Koo JW, Vanneste S, De Ridder D, Lim S, Song JJ. Triple network activation causes tinnitus in patients with sudden sensorineural hearing loss: A model-based volume-entropy analysis. Front Neurosci 2022; 16:1028776. [PMID: 36466160 PMCID: PMC9714300 DOI: 10.3389/fnins.2022.1028776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/02/2022] [Indexed: 11/04/2023] Open
Abstract
Tinnitus can be defined as the conscious perception of phantom sounds in the absence of corresponding external auditory signals. Tinnitus can develop in the setting of sudden sensorineural hearing loss (SSNHL), but the underlying mechanism is largely unknown. Using electroencephalography, we investigated differences in afferent node capacity between 15 SSNHL patients without tinnitus (NT) and 30 SSNHL patients with tinnitus (T). Where the T group showed increased afferent node capacity in regions constituting a "triple brain network" [default mode network (DMN), central executive network (CEN), and salience network (SN)], the NT group showed increased information flow in regions implicated in temporal auditory processing and noise-canceling pathways. Our results demonstrate that when all components of the triple network are activated due to sudden-onset auditory deprivation, tinnitus ensues. By contrast, auditory processing-associated and tinnitus-suppressing networks are highly activated in the NT group, to overcome the activation of the triple network and effectively suppress the generation of tinnitus.
Collapse
Affiliation(s)
- Seung Jae Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
| | - Jaemin Park
- Department of Mathematical Sciences, Seoul National University, Seoul, South Korea
| | - Sang-Yeon Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Hospital, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
| | - Ja-Won Koo
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Sven Vanneste
- Lab for Clinical and Integrative Neuroscience, Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Dirk De Ridder
- Unit of Neurosurgery, Department of Surgical Sciences, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Seonhee Lim
- Department of Mathematical Sciences, Seoul National University, Seoul, South Korea
| | - Jae-Jin Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
- Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, South Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University Bundang Hospital, Seongnam, South Korea
| |
Collapse
|
24
|
Panda R, Thibaut A, Lopez-Gonzalez A, Escrichs A, Bahri MA, Hillebrand A, Deco G, Laureys S, Gosseries O, Annen J, Tewarie P. Disruption in structural-functional network repertoire and time-resolved subcortical fronto-temporoparietal connectivity in disorders of consciousness. eLife 2022; 11:e77462. [PMID: 35916363 PMCID: PMC9385205 DOI: 10.7554/elife.77462] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Understanding recovery of consciousness and elucidating its underlying mechanism is believed to be crucial in the field of basic neuroscience and medicine. Ideas such as the global neuronal workspace (GNW) and the mesocircuit theory hypothesize that failure of recovery in conscious states coincide with loss of connectivity between subcortical and frontoparietal areas, a loss of the repertoire of functional networks states and metastable brain activation. We adopted a time-resolved functional connectivity framework to explore these ideas and assessed the repertoire of functional network states as a potential marker of consciousness and its potential ability to tell apart patients in the unresponsive wakefulness syndrome (UWS) and minimally conscious state (MCS). In addition, the prediction of these functional network states by underlying hidden spatial patterns in the anatomical network, that is so-called eigenmodes, was supplemented as potential markers. By analysing time-resolved functional connectivity from functional MRI data, we demonstrated a reduction of metastability and functional network repertoire in UWS compared to MCS patients. This was expressed in terms of diminished dwell times and loss of nonstationarity in the default mode network and subcortical fronto-temporoparietal network in UWS compared to MCS patients. We further demonstrated that these findings co-occurred with a loss of dynamic interplay between structural eigenmodes and emerging time-resolved functional connectivity in UWS. These results are, amongst others, in support of the GNW theory and the mesocircuit hypothesis, underpinning the role of time-resolved thalamo-cortical connections and metastability in the recovery of consciousness.
Collapse
Affiliation(s)
- Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, University of LiègeLiègeBelgium
- Centre du Cerveau, University Hospital of LiègeLiègeBelgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of LiègeLiègeBelgium
- Centre du Cerveau, University Hospital of LiègeLiègeBelgium
| | - Ane Lopez-Gonzalez
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu FabraBracelonaSpain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu FabraBracelonaSpain
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of LiègeLiègeBelgium
| | - Arjan Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam NeuroscienceAmsterdamNetherlands
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu FabraBracelonaSpain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA)BarcelonaSpain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- School of Psychological Sciences, Monash UniversityMelbourneAustralia
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of LiègeLiègeBelgium
- Centre du Cerveau, University Hospital of LiègeLiègeBelgium
- CERVO Research Center, Laval UniversityQuébecCanada
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of LiègeLiègeBelgium
- Centre du Cerveau, University Hospital of LiègeLiègeBelgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of LiègeLiègeBelgium
- Centre du Cerveau, University Hospital of LiègeLiègeBelgium
| | - Prejaas Tewarie
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Clinical Neurophysiology and MEG Center, Amsterdam NeuroscienceAmsterdamNetherlands
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of NottinghamNottinghamUnited Kingdom
| |
Collapse
|
25
|
Melillo R, Leisman G, Machado C, Machado-Ferrer Y, Chinchilla-Acosta M, Kamgang S, Melillo T, Carmeli E. Retained Primitive Reflexes and Potential for Intervention in Autistic Spectrum Disorders. Front Neurol 2022; 13:922322. [PMID: 35873782 PMCID: PMC9301367 DOI: 10.3389/fneur.2022.922322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
We provide evidence to support the contention that many aspects of Autistic Spectrum Disorder (ASD) are related to interregional brain functional disconnectivity associated with maturational delays in the development of brain networks. We think a delay in brain maturation in some networks may result in an increase in cortical maturation and development in other networks, leading to a developmental asynchrony and an unevenness of functional skills and symptoms. The paper supports the close relationship between retained primitive reflexes and cognitive and motor function in general and in ASD in particular provided to indicate that the inhibition of RPRs can effect positive change in ASD.
Collapse
Affiliation(s)
- Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
- Department of Neurology, University of the Medical Sciences of Havana, Havana, Cuba
| | - Calixto Machado
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | - Yanin Machado-Ferrer
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | | | - Shanine Kamgang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ty Melillo
- Northeast College of the Health Sciences, Seneca Falls, New York, NY, United States
| | - Eli Carmeli
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
26
|
Sgourdou P. The Consciousness of Pain: A Thalamocortical Perspective. NEUROSCI 2022; 3:311-320. [PMID: 39483367 PMCID: PMC11523681 DOI: 10.3390/neurosci3020022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2024] Open
Abstract
Deep, dreamless sleep is considered the only "normal" state under which consciousness is lost. The main reason for the voluntary, external induction of an unconscious state, via general anesthesia, is to silence the brain circuitry of nociception. In this article, I describe the perception of pain as a neural and behavioral correlate of consciousness. I briefly mention the brain areas and parameters that are connected to the presence of consciousness, mainly by virtue of their absence under deep anesthesia, and parallel those to brain areas responsible for the perception of pain. Activity in certain parts of the cortex and thalamus, and the interaction between them, will be the main focus of discussion as they represent a common ground that connects our general conscious state and our ability to sense the environment around us, including the painful stimuli. A plethora of correlative and causal evidence has been described thus far to explain the brain's involvement in consciousness and nociception. Despite the great advancement in our current knowledge, the manifestation and true nature of the perception of pain, or any conscious experience, are far from being fully understood.
Collapse
Affiliation(s)
- Paraskevi Sgourdou
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA; or
| |
Collapse
|
27
|
Dynamic reconfiguration of human brain networks across altered states of consciousness. Behav Brain Res 2022; 419:113685. [PMID: 34838931 DOI: 10.1016/j.bbr.2021.113685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/29/2021] [Accepted: 11/20/2021] [Indexed: 01/01/2023]
Abstract
Consciousness is supported by rich neuronal dynamics to orchestrate behaviors and conscious processing can be disrupted by general anesthetics. Previous studies suggested that dynamic reconfiguration of large-scale functional network is critical for learning and higher-order cognitive function. During altered states of consciousness, how brain functional networks are dynamically changed and reconfigured at the whole-brain level is still unclear. To fill this gap, using multilayer network approach and functional magnetic resonance imaging (fMRI) data of 21 healthy subjects, we investigated the dynamic network reconfiguration in three different states of consciousness: wakefulness, dexmedetomidine-induced sedation, and recovery. Applying time-varying community detection algorithm, we constructed multilayer modularity networks to track and quantify dynamic interactions among brain areas that span time and space. We compared four high-level network features (i.e., switching, promiscuity, integration, and recruitment) derived from multilayer modularity across the three conditions. We found that sedation state is primarily characterized by increased switching rates as well as decreased integration, representing a whole-brain pattern with higher modular dynamics and more fragmented communication; such alteration can be mostly reversed after the recovery of consciousness. Thus, our work can provide additional insights to understand the modular network reconfiguration across different states of consciousness and may provide some clinical implications for disorders of consciousness.
Collapse
|
28
|
Gutierrez-Barragan D, Singh NA, Alvino FG, Coletta L, Rocchi F, De Guzman E, Galbusera A, Uboldi M, Panzeri S, Gozzi A. Unique spatiotemporal fMRI dynamics in the awake mouse brain. Curr Biol 2022; 32:631-644.e6. [PMID: 34998465 PMCID: PMC8837277 DOI: 10.1016/j.cub.2021.12.015] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022]
Abstract
Human imaging studies have shown that spontaneous brain activity exhibits stereotypic spatiotemporal reorganization in awake, conscious conditions with respect to minimally conscious states. However, whether and how this phenomenon can be generalized to lower mammalian species remains unclear. Leveraging a robust protocol for resting-state fMRI (rsfMRI) mapping in non-anesthetized, head-fixed mice, we investigated functional network topography and dynamic structure of spontaneous brain activity in wakeful animals. We found that rsfMRI networks in the awake state, while anatomically comparable to those observed under anesthesia, are topologically configured to maximize interregional communication, departing from the underlying community structure of the mouse axonal connectome. We further report that rsfMRI activity in wakeful animals exhibits unique spatiotemporal dynamics characterized by a state-dependent, dominant occurrence of coactivation patterns encompassing a prominent participation of arousal-related forebrain nuclei and functional anti-coordination between visual-auditory and polymodal cortical areas. We finally show that rsfMRI dynamics in awake mice exhibits a stereotypical temporal structure, in which state-dominant coactivation patterns are configured as network attractors. These findings suggest that spontaneous brain activity in awake mice is critically shaped by state-specific involvement of basal forebrain arousal systems and document that its dynamic structure recapitulates distinctive, evolutionarily relevant principles that are predictive of conscious states in higher mammalian species. fMRI networks in awake mice depart from underlying anatomical structure fMRI dynamics in wakeful mice is critically shaped by arousal-related nuclei Occurrence and topography of rsfMRI coactivation patterns define conscious states fMRI coactivation dynamics defines a signature of consciousness in the mouse brain
Collapse
Affiliation(s)
- Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Neha Atulkumar Singh
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Filomena Grazia Alvino
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Ludovico Coletta
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy; Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Federico Rocchi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy; Center for Mind and Brain Sciences, University of Trento, Rovereto, Italy
| | - Elizabeth De Guzman
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alberto Galbusera
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | | | - Stefano Panzeri
- Department of Excellence for Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Neural Computation Laboratory, Center for Neuroscience and Cognitive Systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy.
| |
Collapse
|
29
|
Regional Homogeneity Alterations in Patients with Impaired Consciousness. An Observational Resting-State fMRI Study. Neuroradiology 2022; 64:1391-1399. [PMID: 35107592 DOI: 10.1007/s00234-022-02911-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/29/2022] [Indexed: 10/19/2022]
Abstract
PURPOSE It is always challenging to correctly differentiate between minimally conscious state (MCS) and vegetative state/unresponsive wakefulness syndrome (VS/UWS) among disorders of consciousness (DOC) patients. However, the underlying neural mechanisms of awareness identification remain incompletely understood. METHODS Using regional homogeneity (ReHo) analysis, we evaluated how regional connectivity of brain regions is disrupted in MCS and VS/UWS patients. Resting-state functional magnetic resonance imaging was conducted in 14 MCS patients, 25 VS/UWS patients, and 30 age-matched healthy individuals. RESULTS We found that MCS and VS/UWS patients demonstrated DOC-dependent reduced ReHo within widespread brain regions including posterior cingulate cortices (PCC), medial prefrontal cortices (mPFC), and bilateral fronto-parieto-temporal cortices and showed increased ReHo in limbic structures. Moreover, a positive correlation between Coma Recovery Scale-Revised (CRS-R) total scores and reduced ReHo in the left precuneus was observed in VS/UWS patients, despite the linear trend was not found in MCS patients. In addition, ReHo were also observed reduced in three mainly intrinsic connectivity networks (ICNs), including default mode network (DMN), executive control network (ECN), and salience network (SN). Notably, as the clinical symptoms of consciousness disorders worsen from MCS to VS/UWS, ReHo in dorsal DMN, left ECN, and posterior SN became significantly reduced. CONCLUSION These findings make a further understanding of the underlying neural mechanism of regional connectivity among DOC patients and provide additional neuroimaging-based biomarkers for the clinical diagnosis of MCS and VS/UWS patients.
Collapse
|
30
|
Hu H, Cusack R, Naci L. OUP accepted manuscript. Brain Commun 2022; 4:fcac071. [PMID: 35425900 PMCID: PMC9006044 DOI: 10.1093/braincomms/fcac071] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 12/29/2021] [Accepted: 03/16/2022] [Indexed: 11/12/2022] Open
Abstract
One of the great frontiers of consciousness science is understanding how early consciousness arises in the development of the human infant. The reciprocal relationship between the default mode network and fronto-parietal networks—the dorsal attention and executive control network—is thought to facilitate integration of information across the brain and its availability for a wide set of conscious mental operations. It remains unknown whether the brain mechanism of conscious awareness is instantiated in infants from birth. To address this gap, we investigated the development of the default mode and fronto-parietal networks and of their reciprocal relationship in neonates. To understand the effect of early neonate age on these networks, we also assessed neonates born prematurely or before term-equivalent age. We used the Developing Human Connectome Project, a unique Open Science dataset which provides a large sample of neonatal functional MRI data with high temporal and spatial resolution. Resting state functional MRI data for full-term neonates (n = 282, age 41.2 weeks ± 12 days) and preterm neonates scanned at term-equivalent age (n = 73, 40.9 weeks ± 14.5 days), or before term-equivalent age (n = 73, 34.6 weeks ± 13.4 days), were obtained from the Developing Human Connectome Project, and for a reference adult group (n = 176, 22–36 years), from the Human Connectome Project. For the first time, we show that the reciprocal relationship between the default mode and dorsal attention network was present at full-term birth or term-equivalent age. Although different from the adult networks, the default mode, dorsal attention and executive control networks were present as distinct networks at full-term birth or term-equivalent age, but premature birth was associated with network disruption. By contrast, neonates before term-equivalent age showed dramatic underdevelopment of high-order networks. Only the dorsal attention network was present as a distinct network and the reciprocal network relationship was not yet formed. Our results suggest that, at full-term birth or by term-equivalent age, infants possess key features of the neural circuitry that enables integration of information across diverse sensory and high-order functional modules, giving rise to conscious awareness. Conversely, they suggest that this brain infrastructure is not present before infants reach term-equivalent age. These findings improve understanding of the ontogeny of high-order network dynamics that support conscious awareness and of their disruption by premature birth.
Collapse
Affiliation(s)
- Huiqing Hu
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Rhodri Cusack
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
- Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
- Correspondence to: Lorina Naci School of Psychology Trinity College Institute of Neuroscience Global Brain Health Institute Trinity College Dublin Dublin, Ireland E-mail:
| |
Collapse
|
31
|
Lei L, Liu K, Yang Y, Doubliez A, Hu X, Xu Y, Zhou Y. Spatio-temporal analysis of EEG features during consciousness recovery in patients with disorders of consciousness. Clin Neurophysiol 2021; 133:135-144. [PMID: 34864400 DOI: 10.1016/j.clinph.2021.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/10/2021] [Accepted: 08/29/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVE As consciousness recovery is not only dynamic but also involves interactions between various brain regions, elucidating the mechanism of recovery requires tracking cortical activity in spatio-temporal dimensions. METHODS We tracked the cortical activities of 40 patients (mean age: 54.38 years; 28 males; 21 patients with minimally conscious states) with disorders of consciousness, and collected a total of 156 electroencephalographic signals. We investigated the longitudinal changes in EEG nonlinear dynamic features (i.e., approximate entropy, sample entropy, and Lempel-Ziv complexity) and relative wavelet energy along with consciousness recovery. RESULTS Global EEG features showed a non-monotonic trend during consciousness recovery (P < 0.05). When the level of consciousness of patients was transferred to a minimally conscious state from an unresponsive wakefulness syndrome/ vegetative state, an inflection point appeared in the EEG features. The EEG feature change trends between the injured and uninjured areas were dissimilar (P < 0.05). Importantly, the degree of dissimilarity increased non-monotonically across the levels of consciousness (P < 0.05). CONCLUSIONS EEG recovery was non-monotonic and dissimilar in spatio-temporal dimensions, with an inflection point. SIGNIFICANCE These findings further clarify the process of consciousness recovery and provide assistance in exploring the mechanism of consciousness recovery.
Collapse
Affiliation(s)
- Ling Lei
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Kehong Liu
- Wu Jing Hospital, Rehabilitation Center, Hangzhou, Zhejiang 310051, China
| | - Yong Yang
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China.
| | - Alice Doubliez
- Paris Descartes University, 45 rue des Saints-Peres, Paris 75006, France
| | - Xiaohua Hu
- Wu Jing Hospital, Rehabilitation Center, Hangzhou, Zhejiang 310051, China
| | - Ying Xu
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, China
| | - Yixing Zhou
- First People's Hospital of Zhaoqing City, No. 9 Donggang East Road, Duanzhou District, Zhaoqing 526060, China.
| |
Collapse
|
32
|
Lyu D, Pappas I, Menon DK, Stamatakis EA. A Precuneal Causal Loop Mediates External and Internal Information Integration in the Human Brain. J Neurosci 2021; 41:9944-9956. [PMID: 34675087 PMCID: PMC8638689 DOI: 10.1523/jneurosci.0647-21.2021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/29/2021] [Accepted: 09/14/2021] [Indexed: 11/21/2022] Open
Abstract
Human brains interpret external stimuli based on internal representations. One untested hypothesis is that the default-mode network (DMN), widely considered responsible for internally oriented cognition, can decode external information. Here, we posit that the unique structural and functional fingerprint of the precuneus (PCu) supports a prominent role for the posterior part of the DMN in this process. By analyzing the imaging data of 100 participants performing two attention-demanding tasks, we found that the PCu is functionally divided into dorsal and ventral subdivisions. We then conducted a comprehensive examination of their connectivity profiles and found that at rest, both the ventral PCu (vPCu) and dorsal PCu (dPCu) are mainly connected with the DMN but also are differentially connected with internally oriented networks (IoN) and externally oriented networks (EoN). During tasks, the double associations between the v/dPCu and the IoN/EoN are correlated with task performance and can switch depending on cognitive demand. Furthermore, dynamic causal modeling (DCM) revealed that the strength and direction of the effective connectivity (EC) between v/dPCu is modulated by task difficulty in a manner potentially dictated by the balance of internal versus external cognitive demands. Our study provides evidence that the posterior medial part of the DMN may drive interactions between large-scale networks, potentially allowing access to stored representations for moment-to-moment interpretation of an ever-changing environment.SIGNIFICANCE STATEMENT The default-mode network (DMN) is widely known for its association with internalized thinking processes, e.g., spontaneous thoughts, which is the most interesting but least understood component in human consciousness. The precuneus (PCu), a posteromedial DMN hub, is thought to play a role in this, but a mechanistic explanation has not yet been established. In this study we found that the associations between ventral PCu (vPCu)/dorsal PCu (dPCu) subdivisions and internally oriented network (IoN)/externally oriented network (EoN) are flexibly modulated by cognitive demand and correlate with task performance. We further propose that the recurrent causal connectivity between the ventral and dorsal PCu supports conscious processing by constantly interpreting external information based on an internal model, meanwhile updating the internal model with the incoming information.
Collapse
Affiliation(s)
- Dian Lyu
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
| | - Ioannis Pappas
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720
| | - David K Menon
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge CB2 0QQ, United Kingdom
| | - Emmanuel A Stamatakis
- University Division of Anaesthesia, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
- Department of Clinical Neuroscience, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0SP, United Kingdom
| |
Collapse
|
33
|
A Pilot Trial Examining the Merits of Combining Amantadine and Repetitive Transcranial Magnetic Stimulation as an Intervention for Persons With Disordered Consciousness After TBI. J Head Trauma Rehabil 2021; 35:371-387. [PMID: 33165151 DOI: 10.1097/htr.0000000000000634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
OBJECTIVE Report pilot findings of neurobehavioral gains and network changes observed in persons with disordered consciousness (DoC) who received repetitive transcranial magnetic stimulation (rTMS) or amantadine (AMA), and then rTMS+AMA. PARTICIPANTS Four persons with DoC 1 to 15 years after traumatic brain injury (TBI). DESIGN Alternate treatment-order, within-subject, baseline-controlled trial. MAIN MEASURES For group and individual neurobehavioral analyses, predetermined thresholds, based on mixed linear-effects models and conditional minimally detectable change, were used to define meaningful neurobehavioral change for the Disorders of Consciousness Scale-25 (DOCS) total and Auditory-Language measures. Resting-state functional connectivity (rsFC) of the default mode and 6 other networks was examined. RESULTS Meaningful gains in DOCS total measures were observed for 75% of treatment segments and auditory-language gains were observed after rTMS, which doubled when rTMS preceded rTMS+AMA. Neurobehavioral changes were reflected in rsFC for language, salience, and sensorimotor networks. Between networks interactions were modulated, globally, after all treatments. CONCLUSIONS For persons with DoC 1 to 15 years after TBI, meaningful neurobehavioral gains were observed after provision of rTMS, AMA, and rTMS+AMA. Sequencing and combining of treatments to modulate broad-scale neural activity, via differing mechanisms, merits investigation in a future study powered to determine efficacy of this approach to enabling neurobehavioral recovery.
Collapse
|
34
|
López-González A, Panda R, Ponce-Alvarez A, Zamora-López G, Escrichs A, Martial C, Thibaut A, Gosseries O, Kringelbach ML, Annen J, Laureys S, Deco G. Loss of consciousness reduces the stability of brain hubs and the heterogeneity of brain dynamics. Commun Biol 2021; 4:1037. [PMID: 34489535 PMCID: PMC8421429 DOI: 10.1038/s42003-021-02537-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/11/2021] [Indexed: 01/07/2023] Open
Abstract
Low-level states of consciousness are characterized by disruptions of brain activity that sustain arousal and awareness. Yet, how structural, dynamical, local and network brain properties interplay in the different levels of consciousness is unknown. Here, we study fMRI brain dynamics from patients that suffered brain injuries leading to a disorder of consciousness and from healthy subjects undergoing propofol-induced sedation. We show that pathological and pharmacological low-level states of consciousness display less recurrent, less connected and more segregated synchronization patterns than conscious state. We use whole-brain models built upon healthy and injured structural connectivity to interpret these dynamical effects. We found that low-level states of consciousness were associated with reduced network interactions, together with more homogeneous and more structurally constrained local dynamics. Notably, these changes lead the structural hub regions to lose their stability during low-level states of consciousness, thus attenuating the differences between hubs and non-hubs brain dynamics. López-González et al study the fMRI brain dynamics and their underlying mechanism from patients that suffered brain injuries leading to a disorder of consciousness as well as from healthy subjects undergoing propofol-induced sedation. They show that pathological and pharmacological low-level states of consciousness display disrupted synchronization patterns, higher constraint to the anatomy and a loss of heterogeneity and stability in the structural hubs compared to conscious states.
Collapse
Affiliation(s)
- Ane López-González
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.
| | - Rajanikant Panda
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Adrián Ponce-Alvarez
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Gorka Zamora-López
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anira Escrichs
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Charlotte Martial
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK.,Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus C, Denmark.,Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga, Portugal
| | - Jitka Annen
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- GIGA-Consciousness, Coma Science Group, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Gustavo Deco
- Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
35
|
Han ME, Park SY, Oh SO. Large-scale functional brain networks for consciousness. Anat Cell Biol 2021; 54:152-164. [PMID: 33967030 PMCID: PMC8225483 DOI: 10.5115/acb.20.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/14/2021] [Accepted: 01/28/2021] [Indexed: 11/27/2022] Open
Abstract
The generation and maintenance of consciousness are fundamental but difficult subjects in the fields of psychology, philosophy, neuroscience, and medicine. However, recent developments in neuro-imaging techniques coupled with network analysis have greatly advanced our understanding of consciousness. The present review focuses on large-scale functional brain networks based on neuro-imaging data to explain the awareness (contents) and wakefulness of consciousness. Despite limitations, neuroimaging data suggests brain maps for important psychological and cognitive processes such as attention, language, self-referential, emotion, motivation, social behavior, and wakefulness. We considered a review of these advancements would provide new insights into research on the neural correlates of consciousness.
Collapse
Affiliation(s)
- Myoung-Eun Han
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Korea
| | - Si-Young Park
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Korea
| | - Sae-Ock Oh
- Department of Anatomy, School of Medicine, Pusan National University, Yangsan, Korea
- Gene & Cell Therapy Research Center for Vessel-Associated Diseases, Pusan National University, Yangsan, Korea
| |
Collapse
|
36
|
Moser J, Schleger F, Weiss M, Sippel K, Semeia L, Preissl H. Magnetoencephalographic signatures of conscious processing before birth. Dev Cogn Neurosci 2021; 49:100964. [PMID: 34023644 PMCID: PMC8163957 DOI: 10.1016/j.dcn.2021.100964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/31/2022] Open
Abstract
The concept of fetal consciousness is a widely discussed topic. In this study, we applied a hierarchical rule learning paradigm to investigate the possibility of fetal conscious processing during the last trimester of pregnancy. We used fetal magnetoencephalography, to assess fetal brain activity in 56 healthy fetuses between gestational week 25 and 40, during an auditory oddball paradigm containing first- and second-order regularities. The comparison of fetal brain responses towards standard and deviant tones revealed that the investigated fetuses show signs of hierarchical rule learning, and thus the formation of a memory trace for the second-order regularity. This ability develops over the course of the last trimester of gestation, in accordance with processes in physiological brain development and was only reliably present in fetuses older than week 35 of gestation. Analysis of fetal autonomic nervous system activity replicates findings in newborns, showing importance of activity state for cognitive processes. On the whole, our results support the assumption that fetuses in the last weeks of gestation are capable of consciously processing stimuli that reach them from outside the womb.
Collapse
Affiliation(s)
- Julia Moser
- IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany.
| | - Franziska Schleger
- IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany
| | - Magdalene Weiss
- IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Obstetrics and Gynecology, University Hospital of Tübingen, Tübingen, Germany
| | - Katrin Sippel
- IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany
| | - Lorenzo Semeia
- IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany; Graduate Training Centre of Neuroscience, International Max Planck Research School, University of Tübingen, Tübingen, Germany
| | - Hubert Preissl
- IDM/fMEG Center of the Helmholtz Center Munich at the University of Tübingen, University of Tübingen, German Center for Diabetes Research (DZD), Tübingen, Germany; Department of Internal Medicine IV, University Hospital of Tübingen, Tübingen, Germany; Department of Pharmacy and Biochemistry, Interfaculty Centre for Pharmacogenomics and Pharma Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Shea TB. An Overview of Studies Demonstrating that ex vivo Neuronal Networks Display Multiple Complex Behaviors: Emergent Properties of Nearest-Neighbor Interactions of Excitatory and Inhibitory Neurons. Open Neurol J 2021. [DOI: 10.2174/1874205x02115010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The responsiveness of the human nervous system ranges from the basic sensory interpretation and motor regulation to so-called higher-order functions such as emotion and consciousness. Aspects of higher-order functions are displayed by other mammals and birds. In efforts to understand how neuronal interaction can generate such a diverse functionality, murine embryonic cortical neurons were cultured on Petri dishes containing multi-electrode arrays that allowed recording and stimulation of neuronal activity. Despite the lack of major architectural features that govern nervous system development in situ, this overview of multiple studies demonstrated that these 2-dimensional ex vivo neuronal networks nevertheless recapitulate multiple key aspects of nervous system development and activity in situ, including density-dependent, the spontaneous establishment of a functional network that displayed complex signaling patterns, and responsiveness to environmental stimulation including generation of appropriate motor output and long-term potentiation. These findings underscore that the basic interplay of excitatory and inhibitory neuronal activity underlies all aspects of nervous system functionality. This reductionist system may be useful for further examination of neuronal function under developmental, homeostatic, and neurodegenerative conditions.
Collapse
|
38
|
Abstract
The pathophysiological mechanisms that underlie the generation and maintenance of tinnitus are being unraveled progressively. Based on this knowledge, a large variety of different neuromodulatory interventions have been developed and are still being designed, adapting to the progressive mechanistic insights in the pathophysiology of tinnitus. rTMS targeting the temporal, temporoparietal, and the frontal cortex has been the mainstay of non-invasive neuromodulation. Yet, the evidence is still unclear, and therefore systematic meta-analyses are needed for drawing conclusions on the effectiveness of rTMS in chronic tinnitus. Different forms of transcranial electrical stimulation (tDCS, tACS, tRNS), applied over the frontal and temporal cortex, have been investigated in tinnitus patients, also without robust evidence for universal efficacy. Cortex and deep brain stimulation with implanted electrodes have shown benefit, yet there is insufficient data to support their routine clinical use. Recently, bimodal stimulation approaches have revealed promising results and it appears that targeting different sensory modalities in temporally combined manners may be more promising than single target approaches.While most neuromodulatory approaches seem promising, further research is required to help translating the scientific outcomes into routine clinical practice.
Collapse
|
39
|
Foundations of Human Consciousness: Imaging the Twilight Zone. J Neurosci 2020; 41:1769-1778. [PMID: 33372062 PMCID: PMC8115882 DOI: 10.1523/jneurosci.0775-20.2020] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022] Open
Abstract
What happens in the brain when conscious awareness of the surrounding world fades? We manipulated consciousness in two experiments in a group of healthy males and measured brain activity with positron emission tomography. Measurements were made during wakefulness, escalating and constant levels of two anesthetic agents (experiment 1, n = 39), and during sleep-deprived wakefulness and non-rapid eye movement sleep (experiment 2, n = 37). In experiment 1, the subjects were randomized to receive either propofol or dexmedetomidine until unresponsiveness. In both experiments, forced awakenings were applied to achieve rapid recovery from an unresponsive to a responsive state, followed by immediate and detailed interviews of subjective experiences during the preceding unresponsive condition. Unresponsiveness rarely denoted unconsciousness, as the majority of the subjects had internally generated experiences. Unresponsive anesthetic states and verified sleep stages, where a subsequent report of mental content included no signs of awareness of the surrounding world, indicated a disconnected state. Functional brain imaging comparing responsive and connected versus unresponsive and disconnected states of consciousness during constant anesthetic exposure revealed that activity of the thalamus, cingulate cortices, and angular gyri are fundamental for human consciousness. These brain structures were affected independent from the pharmacologic agent, drug concentration, and direction of change in the state of consciousness. Analogous findings were obtained when consciousness was regulated by physiological sleep. State-specific findings were distinct and separable from the overall effects of the interventions, which included widespread depression of brain activity across cortical areas. These findings identify a central core brain network critical for human consciousness. SIGNIFICANCE STATEMENT Trying to understand the biological basis of human consciousness is currently one of the greatest challenges of neuroscience. While the loss and return of consciousness regulated by anesthetic drugs and physiological sleep are used as model systems in experimental studies on consciousness, previous research results have been confounded by drug effects, by confusing behavioral “unresponsiveness” and internally generated consciousness, and by comparing brain activity levels across states that differ in several other respects than only consciousness. Here, we present carefully designed studies that overcome many previous confounders and for the first time reveal the neural mechanisms underlying human consciousness and its disconnection from behavioral responsiveness, both during anesthesia and during normal sleep, and in the same study subjects.
Collapse
|
40
|
Fauchon C, Meunier D, Faillenot I, Pomares FB, Bastuji H, Garcia-Larrea L, Peyron R. The Modular Organization of Pain Brain Networks: An fMRI Graph Analysis Informed by Intracranial EEG. Cereb Cortex Commun 2020; 1:tgaa088. [PMID: 34296144 PMCID: PMC8152828 DOI: 10.1093/texcom/tgaa088] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/05/2020] [Accepted: 11/16/2020] [Indexed: 11/14/2022] Open
Abstract
Intracranial EEG (iEEG) studies have suggested that the conscious perception of pain builds up from successive contributions of brain networks in less than 1 s. However, the functional organization of cortico-subcortical connections at the multisecond time scale, and its accordance with iEEG models, remains unknown. Here, we used graph theory with modular analysis of fMRI data from 60 healthy participants experiencing noxious heat stimuli, of whom 36 also received audio stimulation. Brain connectivity during pain was organized in four modules matching those identified through iEEG, namely: 1) sensorimotor (SM), 2) medial fronto-cingulo-parietal (default mode-like), 3) posterior parietal-latero-frontal (central executive-like), and 4) amygdalo-hippocampal (limbic). Intrinsic overlaps existed between the pain and audio conditions in high-order areas, but also pain-specific higher small-worldness and connectivity within the sensorimotor module. Neocortical modules were interrelated via “connector hubs” in dorsolateral frontal, posterior parietal, and anterior insular cortices, the antero-insular connector being most predominant during pain. These findings provide a mechanistic picture of the brain networks architecture and support fractal-like similarities between the micro-and macrotemporal dynamics associated with pain. The anterior insula appears to play an essential role in information integration, possibly by determining priorities for the processing of information and subsequent entrance into other points of the brain connectome.
Collapse
Affiliation(s)
- Camille Fauchon
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Jean Monnet, Saint-Étienne 42100, France
| | - David Meunier
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,Aix Marseille Université, CNRS, INT (Institute of Neuroscience de la Timone), Marseille 13005 France
| | - Isabelle Faillenot
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Jean Monnet, Saint-Étienne 42100, France
| | - Florence B Pomares
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montreal, QC H3W 1W6, Canada
| | - Hélène Bastuji
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Claude Bernard Lyon 1, Villeurbanne 69100, France.,Hospices Civils de Lyon, Lyon 69002, France
| | - Luis Garcia-Larrea
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Claude Bernard Lyon 1, Villeurbanne 69100, France
| | - Roland Peyron
- Central Integration of Pain in Humans (NeuroPain-lab), Inserm U1028, CNRS UMR5292, Lyon Neuroscience Research Center, Bron 69500, France.,University Jean Monnet, Saint-Étienne 42100, France.,Service de Neurologie et Centre de la Douleur du CHU de St-Etienne, St-Etienne 42055, France
| |
Collapse
|
41
|
A multi-domain prognostic model of disorder of consciousness using resting-state fMRI and laboratory parameters. Brain Imaging Behav 2020; 15:1966-1976. [PMID: 33040258 DOI: 10.1007/s11682-020-00390-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVES Although laboratory parameters have long been recognized as indicators of outcome of traumatic brain injury (TBI), it remains a challenge to predict the recovery of disorder of consciousness (DOC) in severe brain injury including TBI. Recent advances have shown an association between alterations in brain connectivity and recovery from DOC. In the present study, we developed a prognostic model of DOC recovery via a combination of laboratory parameters and resting-state functional magnetic resonance imaging (fMRI). METHODS Fifty-one patients with DOC (age = 52.3 ± 15.2 y, male/female = 31/20) were recruited from Hangzhou Hospital of Zhejiang CAPR and were sub-grouped into conscious (n = 34) and unconscious (n = 17) groups based upon their Glasgow Outcome Scale-Extended (GOS-E) scores at 12-month follow-ups after injury. Resting-state functional connectivity, network nodal measures (centrality), and laboratory parameters were obtained from each patient and served as features for support vector machine (SVM) classifications. RESULTS We found that functional connectivity was the most accurate single-domain model (ACC: 70.1% ± 4.5%, P = 0.038, 1000 permutations), followed by degree centrality, betweenness centrality, and laboratory parameters. The stacked multi-domain prognostic model (ACC: 73.4% ± 3.1%, P = 0.005, 1000 permutations) combining all single-domain models yielded a significantly higher accuracy compared to that of the best-performing single-domain model (P = 0.002). CONCLUSION Our results suggest that laboratory parameters only contribute to the outcome prediction of DOC patients, whereas combining information from neuroimaging and clinical parameters may represent a strategy to achieve a more accurate prognostic model, which may further provide better guidance for clinical management of DOC patients.
Collapse
|
42
|
Keshmiri S. Entropy and the Brain: An Overview. ENTROPY (BASEL, SWITZERLAND) 2020; 22:E917. [PMID: 33286686 PMCID: PMC7597158 DOI: 10.3390/e22090917] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/25/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022]
Abstract
Entropy is a powerful tool for quantification of the brain function and its information processing capacity. This is evident in its broad domain of applications that range from functional interactivity between the brain regions to quantification of the state of consciousness. A number of previous reviews summarized the use of entropic measures in neuroscience. However, these studies either focused on the overall use of nonlinear analytical methodologies for quantification of the brain activity or their contents pertained to a particular area of neuroscientific research. The present study aims at complementing these previous reviews in two ways. First, by covering the literature that specifically makes use of entropy for studying the brain function. Second, by highlighting the three fields of research in which the use of entropy has yielded highly promising results: the (altered) state of consciousness, the ageing brain, and the quantification of the brain networks' information processing. In so doing, the present overview identifies that the use of entropic measures for the study of consciousness and its (altered) states led the field to substantially advance the previous findings. Moreover, it realizes that the use of these measures for the study of the ageing brain resulted in significant insights on various ways that the process of ageing may affect the dynamics and information processing capacity of the brain. It further reveals that their utilization for analysis of the brain regional interactivity formed a bridge between the previous two research areas, thereby providing further evidence in support of their results. It concludes by highlighting some potential considerations that may help future research to refine the use of entropic measures for the study of brain complexity and its function. The present study helps realize that (despite their seemingly differing lines of inquiry) the study of consciousness, the ageing brain, and the brain networks' information processing are highly interrelated. Specifically, it identifies that the complexity, as quantified by entropy, is a fundamental property of conscious experience, which also plays a vital role in the brain's capacity for adaptation and therefore whose loss by ageing constitutes a basis for diseases and disorders. Interestingly, these two perspectives neatly come together through the association of entropy and the brain capacity for information processing.
Collapse
Affiliation(s)
- Soheil Keshmiri
- The Thomas N. Sato BioMEC-X Laboratories, Advanced Telecommunications Research Institute International (ATR), Kyoto 619-0237, Japan
| |
Collapse
|
43
|
De Ridder D, Vanneste S. The Bayesian brain in imbalance: Medial, lateral and descending pathways in tinnitus and pain: A perspective. PROGRESS IN BRAIN RESEARCH 2020; 262:309-334. [PMID: 33931186 DOI: 10.1016/bs.pbr.2020.07.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tinnitus and pain share similarities in their anatomy, pathophysiology, clinical picture and treatments. Based on what is known in the pain field, a heuristic model can be proposed for the pathophysiolgy of tinnitus. This heuristic pathophysiological model suggests that pain and tinnitus are the consequence of an imbalance between two pain/tinnitus evoking pathways, i.e., a lateral sensory pathway and a medial affective pathway, both of which are not balanced anymore by a pain/noise inhibitory pathway. Mechanistically, based on the Bayesian brain concept, it can be explained by a switch occuring under influence of the rostral to dorsal anterior cingulate cortex of its prior predictions, i.e., a reference resetting, in which the pain/tinnitus state is considered as the new reference state. This reference resetting is confirmed by the nucleus accumbens as part of the reward system and maintained by connectivity changes between the nucleus accumbens and the pregenual anterior cingulate cortex. As a consequence it can be suggested to treat pain/tinnitus via reconditioning, either surgically or non-surgically. The model can also be used to develop objective measures for tinnitus and pain via supervised machine learning.
Collapse
Affiliation(s)
- Dirk De Ridder
- Department of Surgical Sciences, Section of Neurosurgery, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
| | - Sven Vanneste
- Global Brain Health Institute & Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
44
|
Heuschkel K, Kuypers KP. Depression, Mindfulness, and Psilocybin: Possible Complementary Effects of Mindfulness Meditation and Psilocybin in the Treatment of Depression. A Review. Front Psychiatry 2020; 11:224. [PMID: 32296353 PMCID: PMC7136554 DOI: 10.3389/fpsyt.2020.00224] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 03/06/2020] [Indexed: 12/28/2022] Open
Abstract
Depression is a major public health problem that affects approximately 4.4% of the global population. Since conventional pharmacotherapies and psychotherapies are only partially effective, as demonstrated by the number of patients failing to achieve remission, alternative treatments are needed. Mindfulness meditation (MM) and psilocybin represent two promising novel treatments that might even have complementary therapeutic effects when combined. Since the current literature is limited to theoretical and empirical underpinnings of either treatment alone, the present review aimed to identify possible complementary effects that may be relevant to the treatment of depression. To that end, the individual effects of MM and psilocybin, and their underlying working mechanisms, were compared on a non-exhaustive selection of six prominent psychological and biological processes that are well known to show impairments in patients suffering from major depression disorder, that is mood, executive functioning, social skills, neuroplasticity, core neural networks, and neuroendocrine and neuroimmunological levels. Based on predefined search strings used in two online databases (PubMed and Google Scholar) 1129 articles were identified. After screening title and abstract for relevance related to the question, 82 articles were retained and 11 were added after reference list search, resulting in 93 articles included in the review. Findings show that MM and psilocybin exert similar effects on mood, social skills, and neuroplasticity; different effects were found on executive functioning, neural core networks, and neuroendocrine and neuroimmune system markers. Potential mechanisms of MM's effects are enhanced affective self-regulation through mental strategies, optimization of stress reactivity, and structural and functional adjustments of prefrontal and limbic areas; psilocybin's effects might be established via attenuation of cognitive associations through deep personal insights, cognitive disinhibition, and global neural network disintegration. It is suggested that, when used in combination, MM and psilocybin could exert complementary effects by potentiating or prolonging mutual positive effects, for example, MM potentially facilitating psilocybin-induced peak experiences. Future placebo-controlled double-blind randomized trials focusing on psilocybin-assisted mindfulness-based therapy will provide knowledge about whether the proposed combination of therapies maximizes their efficacy in the treatment of depression or depressive symptomatology.
Collapse
Affiliation(s)
| | - Kim P.C. Kuypers
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
45
|
Huang Z, Zhang J, Wu J, Mashour GA, Hudetz AG. Temporal circuit of macroscale dynamic brain activity supports human consciousness. SCIENCE ADVANCES 2020; 6:eaaz0087. [PMID: 32195349 PMCID: PMC7065875 DOI: 10.1126/sciadv.aaz0087] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/16/2019] [Indexed: 05/29/2023]
Abstract
The ongoing stream of human consciousness relies on two distinct cortical systems, the default mode network and the dorsal attention network, which alternate their activity in an anticorrelated manner. We examined how the two systems are regulated in the conscious brain and how they are disrupted when consciousness is diminished. We provide evidence for a "temporal circuit" characterized by a set of trajectories along which dynamic brain activity occurs. We demonstrate that the transitions between default mode and dorsal attention networks are embedded in this temporal circuit, in which a balanced reciprocal accessibility of brain states is characteristic of consciousness. Conversely, isolation of the default mode and dorsal attention networks from the temporal circuit is associated with unresponsiveness of diverse etiologies. These findings advance the foundational understanding of the functional role of anticorrelated systems in consciousness.
Collapse
Affiliation(s)
- Zirui Huang
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jun Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - George A. Mashour
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Anthony G. Hudetz
- Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
46
|
Martinez-Banaclocha M. Astroglial Isopotentiality and Calcium-Associated Biomagnetic Field Effects on Cortical Neuronal Coupling. Cells 2020; 9:cells9020439. [PMID: 32069981 PMCID: PMC7073214 DOI: 10.3390/cells9020439] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/07/2020] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Synaptic neurotransmission is necessary but does not sufficiently explain superior cognitive faculties. Growing evidence has shown that neuron-astroglial chemical crosstalk plays a critical role in the processing of information, computation, and memory. In addition to chemical and electrical communication among neurons and between neurons and astrocytes, other nonsynaptic mechanisms called ephaptic interactions can contribute to the neuronal synchronization from different brain regions involved in the processing of information. New research on brain astrocytes has clearly shown that the membrane potential of these cells remains very stable among neighboring and distant astrocytes due to the marked bioelectric coupling between them through gap junctions. This finding raises the possibility that the neocortical astroglial network exerts a guiding template modulating the excitability and synchronization of trillions of neurons by astroglial Ca2+-associated bioelectromagnetic interactions. We propose that bioelectric and biomagnetic fields of the astroglial network equalize extracellular local field potentials (LFPs) and associated local magnetic field potentials (LMFPs) in the cortical layers of the brain areas involved in the processing of information, contributing to the adequate and coherent integration of external and internal signals. This article reviews the current knowledge of ephaptic interactions in the cerebral cortex and proposes that the isopotentiality of cortical astrocytes is a prerequisite for the maintenance of the bioelectromagnetic crosstalk between neurons and astrocytes in the neocortex.
Collapse
|
47
|
Having a Conscious Patient During Cardiopulmonary Resuscitation: Is It Not Time to Consider Sedation Protocol?: A Case Report. A A Pract 2020; 13:250-252. [PMID: 31265444 DOI: 10.1213/xaa.0000000000001037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A middle-aged man with acute inferior wall myocardial infarction was admitted in cardiac arrest and in an unresponsive state to the hospital. Cardiopulmonary resuscitation (CPR) was initiated. Patient showed signs of consciousness throughout the CPR. The impact of awareness during CPR on the neuropsychological status of a patient with a favorable neurological outcome is yet to be studied on a large scale. Sedation protocol without compromising hemodynamic status may prove a fair choice in such cases.
Collapse
|
48
|
Calabrò RS, Chillura A, Billeri L, Cannavò A, Buda A, Molonia F, Manuli A, Bramanti P, Naro A. Peri-Personal Space Tracing by Hand-Blink Reflex Modulation in Patients with Chronic Disorders of Consciousness. Sci Rep 2020; 10:1712. [PMID: 32015445 PMCID: PMC6997168 DOI: 10.1038/s41598-020-58625-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/17/2020] [Indexed: 12/14/2022] Open
Abstract
The assessment of awareness in patients with chronic Disorders of Consciousness (DoC), including Unresponsive Wakefulness Syndrome (UWS) and Minimally Conscious State (MCS), is challenging. The level of awareness impairment may depend on the degree of deterioration of the large-scale cortical-thalamo-cortical networks induced by brain injury. Electrophysiological approaches may shed light on awareness presence in patients with DoC by estimating cortical functions related to the cortical-thalamo-cortical networks including, for example, the cortico-subcortical processes generating motor responses to the perturbation of the peri-personal space (PPS). We measured the amplitude, latency, and duration of the hand-blink reflex (HBR) responses by recording electromyography (EMG) signals from both the orbicularis oculi muscles while electrically stimulating the median nerve at the wrist. Such a BR is thought to be mediated by a neural circuit at the brainstem level. Despite its defensive-response nature, HBR can be modulated by the distance between the stimulated hand and the face. This suggests a functional top-down control of HBR as reflected by HBR features changes (latency, amplitude, and magnitude). We therefore estimated HBR responses in a sample of patients with DoC (8 MCS and 12 UWS, compared to 15 healthy controls -HC) while performing a motor task targeting the PPS. This consisted of passive movements in which the hand of the subject was positioned at different distances from the participant's face. We aimed at demonstrating a residual top-down modulation of HBR properties, which could be useful to differentiate patients with DoC and, potentially, demonstrate awareness preservation. We found a decrease in latency, and an increase in duration and magnitude of HBR responses, which were all inversely related to the hand-to-face distance in HC and patients with MCS, but not in individuals with UWS. Our data suggest that only patients with MCS have preserved, residual, top-down modulation of the processes related to the PPS from higher-order cortical areas to sensory-motor integration network. Although the sample size was relatively small, being thus our data preliminary, HBR assessment seems a rapid, easy, and first-level tool to differentiate patients with MCS from those with UWS. We may also hypothesize that such a HBR modulation suggests awareness preservation.
Collapse
Affiliation(s)
| | | | - Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | - Antonio Buda
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| | | | | | | | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy
| |
Collapse
|
49
|
Aubinet C, Cassol H, Gosseries O, Bahri MA, Larroque SK, Majerus S, Martial C, Martens G, Carrière M, Chatelle C, Laureys S, Thibaut A. Brain Metabolism but Not Gray Matter Volume Underlies the Presence of Language Function in the Minimally Conscious State (MCS): MCS+ Versus MCS- Neuroimaging Differences. Neurorehabil Neural Repair 2020; 34:172-184. [PMID: 31971884 DOI: 10.1177/1545968319899914] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Background. The minimally conscious state (MCS) is subcategorized into MCS- and MCS+, depending on the absence or presence, respectively, of high-level behavioral responses such as command-following. Objective. We aim to investigate the functional and structural neuroanatomy underlying the presence of these responses in MCS- and MCS+ patients. Methods. In this cross-sectional retrospective study, chronic MCS patients were diagnosed using repeated Coma Recovery Scale-Revised assessments. Fluorodeoxyglucose-positron emission tomography data were acquired on 57 patients (16 MCS-; 41 MCS+) and magnetic resonance imaging with voxel-based morphometry analysis was performed on 66 patients (17 MCS-; 49 MCS+). Brain glucose metabolism and gray matter integrity were compared between patient groups and control groups. A metabolic functional connectivity analysis testing the hypothesis of preserved language network in MCS+ compared with MCS- was also done. Results. Patients in MCS+ presented higher metabolism mainly in the left middle temporal cortex, known to be important for semantic processing, compared with the MCS- group. The left angular gyrus was also functionally disconnected from the left prefrontal cortex in MCS- compared with MCS+ group. No significant differences were found in gray matter volume between patient groups. Conclusions. The clinical subcategorization of MCS is supported by differences in brain metabolism but not in gray matter structure, suggesting that brain function in the language network is the main support for recovery of command-following, intelligible verbalization and/or intentional communication in the MCS. Better characterizing the neural correlates of residual cognitive abilities of MCS patients contributes to reduce their misdiagnosis and to adapt therapeutic approaches.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Helena Cassol
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Mohamed Ali Bahri
- GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liege, Belgium
| | - Stephen Karl Larroque
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Steve Majerus
- Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liege, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Géraldine Martens
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Camille Chatelle
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, University of Liège, Liege, Belgium.,Centre du Cerveau², University Hospital of Liège, Liege, Belgium
| |
Collapse
|
50
|
Billeri L, Filoni S, Russo EF, Portaro S, Militi D, Calabrò RS, Naro A. Toward Improving Diagnostic Strategies in Chronic Disorders of Consciousness: An Overview on the (Re-)Emergent Role of Neurophysiology. Brain Sci 2020; 10:brainsci10010042. [PMID: 31936844 PMCID: PMC7016627 DOI: 10.3390/brainsci10010042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/03/2020] [Accepted: 01/08/2020] [Indexed: 12/13/2022] Open
Abstract
The differential diagnosis of patients with Disorder of Consciousness (DoC), in particular in the chronic phase, is significantly difficult. Actually, about 40% of patients with unresponsive wakefulness syndrome (UWS) and the minimally conscious state (MCS) are misdiagnosed. Indeed, only advanced paraclinical approaches, including advanced EEG analyses, can allow achieving a more reliable diagnosis, that is, discovering residual traces of awareness in patients with UWS (namely, functional Locked-In Syndrome (fLIS)). These approaches aim at capturing the residual brain network models, at rest or that may be activated in response to relevant stimuli, which may be appropriate for awareness to emerge (despite their insufficiency to generate purposeful motor behaviors). For this, different brain network models have been studied in patients with DoC by using sensory stimuli (i.e., passive tasks), probing response to commands (i.e., active tasks), and during resting-state. Since it can be difficult for patients with DoC to perform even simple active tasks, this scoping review aims at summarizing the current, innovative neurophysiological examination methods in resting state/passive modality to differentiate and prognosticate patients with DoC. We conclude that the electrophysiologically-based diagnostic procedures represent an important resource for diagnosis, prognosis, and, therefore, management of patients with DoC, using advance passive and resting state paradigm analyses for the patients who lie in the “greyzones” between MCS, UWS, and fLIS.
Collapse
Affiliation(s)
- Luana Billeri
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | - Serena Filoni
- Padre Pio Foundation and Rehabilitation Centers, San Giovanni Rotondo, 71013 Foggia, Italy;
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | | | - Simona Portaro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| | | | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
- Correspondence: (S.F.); (R.S.C.); Tel.: +39-090-6012-8166 (R.S.C.)
| | - Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, 98124 Messina, Italy; (L.B.); (S.P.); (A.N.)
| |
Collapse
|