1
|
Haas CB, Jordahl KM, Nance RM, Whitney BM, Wang L, Delaney JAC, Ruderman S, Jia T, Mathews WC, Saag MS, Lee SA, Napravnik S, Jacobson JM, Chander G, McCall EM, Moore RD, Mayer KH, Mukherjee S, Lee WJ, Crane PK, Crane H, Peter I, Lindström S. Assessing the associations between known genetic variants and substance use in people with HIV in the United States. PLoS One 2023; 18:e0292068. [PMID: 37796845 PMCID: PMC10553320 DOI: 10.1371/journal.pone.0292068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/05/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND The prevalence of substance use in people with HIV (PWH) in the United States is higher than in the general population and is an important driver of HIV-related outcomes. We sought to assess if previously identified genetic associations that contribute to substance use are also observed in a population of PWH. METHODS We performed genome-wide association studies (GWAS) of alcohol, smoking, and cannabis use phenotypes in a multi-ancestry population of 7,542 PWH from the Center for AIDS Research Network of Integrated Clinical Systems (CNICS). We conducted multi-ancestry GWAS for individuals of African (n = 3,748), Admixed American (n = 1,334), and European (n = 2,460) ancestry. Phenotype data were self-reported and collected using patient reported outcomes (PROs) and three questions from AUDIT-C, an alcohol screening tool. We analyzed nine phenotypes: 1) frequency of alcohol consumption, 2) typical number of drinks on a day when drinking alcohol, 3) frequency of five or more alcoholic drinks in a 30-day period, 4) smoking initiation, 5) smoking cessation, 6) cigarettes per day, 7) cannabis use initiation, 8) cannabis use cessation, 9) frequency of cannabis use during the previous 30 days. For each phenotype we considered a) variants previously identified as associated with a substance use trait and b) novel associations. RESULTS We observed evidence for effects of previously reported single nucleotide polymorphisms (SNPs) related to alcohol (rs1229984, p = 0.001), tobacco (rs11783093, p = 2.22E-4), and cannabis use (rs2875907, p = 0.005). We also report two novel loci (19p13.2, p = 1.3E-8; and 20p11.21, p = 2.1E-8) associated with cannabis use cessation. CONCLUSIONS Our analyses contribute to understanding the genetic bases of substance use in a population with relatively higher rates of use compared to the general population.
Collapse
Affiliation(s)
- Cameron B. Haas
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - Kristina M. Jordahl
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - Robin M. Nance
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Bridget M. Whitney
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Lu Wang
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, United States of America
| | | | - Stephanie Ruderman
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - Tongqiu Jia
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
| | - Wm. Christopher Mathews
- Department of Medicine, University of California at San Diego, San Diego, CA, United States of America
| | - Michael S. Saag
- Department of Medicine at the School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States of America
| | - Sulggi A. Lee
- Department of Medicine, University of California at San Francisco, San Francisco, CA, United States of America
| | - Sonia Napravnik
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, United States of America
| | - Jeffrey M. Jacobson
- Center for AIDS Research, Case Western Reserve University/University Hospitals Case Medical Center, Cleveland, OH, United States of America
| | - Geetanjali Chander
- Department of Medicine, University of Washington, Seattle, WA, United States of America
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Elizabeth M. McCall
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Richard D. Moore
- Department of Medicine, Johns Hopkins University, Baltimore, MD, United States of America
| | - Kenneth H. Mayer
- Harvard Medical School, Beth Israel Deaconess Medical Center, Fenway Health, Boston, MA, United States of America
| | - Shubhabrata Mukherjee
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Won Jun Lee
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Paul K. Crane
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Heidi Crane
- Department of Medicine, University of Washington, Seattle, WA, United States of America
| | - Inga Peter
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Sara Lindström
- Department of Epidemiology, University of Washington, Seattle, WA, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States of America
| |
Collapse
|
2
|
Dong J, Zhang P, Xie J, Xie T, Zhu X, Zhangsun D, Yu J, Luo S. Loop2 Size Modification Reveals Significant Impacts on the Potency of α-Conotoxin TxID. Mar Drugs 2023; 21:md21050286. [PMID: 37233480 DOI: 10.3390/md21050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/27/2023] [Accepted: 04/29/2023] [Indexed: 05/27/2023] Open
Abstract
α4/6-conotoxin TxID, which was identified from Conus textile, simultaneously blocks rat (r) α3β4 and rα6/α3β4 nicotinic acetylcholine receptors (nAChRs) with IC50 values of 3.6 nM and 33.9 nM, respectively. In order to identify the effects of loop2 size on the potency of TxID, alanine (Ala) insertion and truncation mutants were designed and synthesized in this study. An electrophysiological assay was used to evaluate the activity of TxID and its loop2-modified mutants. The results showed that the inhibition of 4/7-subfamily mutants [+9A]TxID, [+10A]TxID, [+14A]TxID, and all the 4/5-subfamily mutants against rα3β4 and rα6/α3β4 nAChRs decreased. Overall, ala-insertion or truncation of the 9th, 10th, and 11th amino acid results in a loss of inhibition and the truncation of loop2 has more obvious impacts on its functions. Our findings have strengthened the understanding of α-conotoxin, provided guidance for further modifications, and offered a perspective for future studies on the molecular mechanism of the interaction between α-conotoxins and nAChRs.
Collapse
Affiliation(s)
- Jianying Dong
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Panpan Zhang
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Junjie Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Ting Xie
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Laboratory for Marine Drugs of Haikou, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
Zhu X, Wang S, Kaas Q, Yu J, Wu Y, Harvey PJ, Zhangsun D, Craik DJ, Luo S. Discovery, Characterization, and Engineering of LvIC, an α4/4-Conotoxin That Selectively Blocks Rat α6/α3β4 Nicotinic Acetylcholine Receptors. J Med Chem 2023; 66:2020-2031. [PMID: 36682014 DOI: 10.1021/acs.jmedchem.2c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
α6β4 nicotinic acetylcholine receptors (nAChRs) are expressed in the central and peripheral nervous systems, but their functions are not fully understood, largely because of a lack of specific ligands. Here, we characterized a novel α-conotoxin, LvIC, and designed a series of analogues to probe structure-activity relationships at the α6β4 nAChR. The potency and selectivity of these conotoxins were tested using two-electrode voltage-clamp recording on nAChR subtypes expressed in Xenopus laevis oocytes. One of the analogues, [D1G,ΔQ14]LvIC, potently blocked α6/α3β4 nAChRs (α6/α3 is a chimera) with an IC50 of 19 nM, with minimal activity at other nAChR subtypes, including the structurally similar α6/α3β2β3 and α3β4 subtypes. Using NMR, molecular docking, and receptor mutation, structure-activity relationships of [D1G,ΔQ14]LvIC at the α6/α3β4 nAChR were defined. It is a potent and specific antagonist of α6β4 nAChRs that could potentially serve as a novel molecular probe to explore α6β4 nAChR-related neurophysiological and pharmacological functions.
Collapse
Affiliation(s)
- Xiaopeng Zhu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Shuai Wang
- Center for Novel Target and Therapeutic Intervention, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China
| | - Quentin Kaas
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Jinpeng Yu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Yong Wu
- School of Medicine, Guangxi University, Nanning 530004, China
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Dongting Zhangsun
- School of Medicine, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane 4072, Queensland, Australia
| | - Sulan Luo
- School of Medicine, Guangxi University, Nanning 530004, China.,Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou 570228, China
| |
Collapse
|
4
|
Carstens E, Carstens MI. Sensory Effects of Nicotine and Tobacco. Nicotine Tob Res 2022; 24:306-315. [PMID: 33955474 PMCID: PMC8842437 DOI: 10.1093/ntr/ntab086] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/28/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Ingestion of nicotine by smoking, vaping, or other means elicits various effects including reward, antinociception, and aversion due to irritation, bitter taste, and unpleasant side effects such as nausea and dizziness. AIMS AND METHODS Here we review the sensory effects of nicotine and the underlying neurobiological processes. RESULTS AND CONCLUSIONS Nicotine elicits oral irritation and pain via the activation of neuronal nicotinic acetylcholine receptors (nAChRs) expressed by trigeminal nociceptors. These nociceptors excite neurons in the trigeminal subnucleus caudalis (Vc) and other brainstem regions in a manner that is significantly reduced by the nAChR antagonist mecamylamine. Vc neurons are excited by lingual application of nicotine and exhibit a progressive decline in firing to subsequent applications, consistent with desensitization of peripheral sensory neurons and progressively declining ratings of oral irritation in human psychophysical experiments. Nicotine also elicits a nAChR-mediated bitter taste via excitation of gustatory afferents. Nicotine solutions are avoided even when sweeteners are added. Studies employing oral self-administration have yielded mixed results: Some studies show avoidance of nicotine while others report increased nicotine intake over time, particularly in adolescents and females. Nicotine is consistently reported to increase human pain threshold and tolerance levels. In animal studies, nicotine is antinociceptive when delivered by inhalation of tobacco smoke or systemic infusion, intrathecally, and by intracranial microinjection in the pedunculopontine tegmentum, ventrolateral periaqueductal gray, and rostral ventromedial medulla. The antinociception is thought to be mediated by descending inhibition of spinal nociceptive transmission. Menthol cross-desensitizes nicotine-evoked oral irritation, reducing harshness that may account for its popularity as a flavor additive to tobacco products. IMPLICATIONS Nicotine activates brain systems underlying reward and antinociception, but at the same time elicits aversive sensory effects including oral irritation and pain, bitter taste, and other unpleasant side effects mediated largely by nicotinic acetylcholine receptors (nAChRs). This review discusses the competing aversive and antinociceptive effects of nicotine and exposure to tobacco smoke, and the underlying neurobiology. An improved understanding of the interacting effects of nicotine will hopefully inform novel approaches to mitigate nicotine and tobacco use.
Collapse
Affiliation(s)
- Earl Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| | - M Iodi Carstens
- Department of Neurobiology, Physiology and Behavior University of California, Davis, CA, USA
| |
Collapse
|
5
|
Wu R, Liu J, Li JX. Trace amine-associated receptor 1 and drug abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 93:373-401. [PMID: 35341572 PMCID: PMC9826737 DOI: 10.1016/bs.apha.2021.10.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Trace amine-associated receptor 1 (TAAR1) is the best characterized receptor selectively activated by trace amines. It is broadly expressed in the monoaminergic system in the brain including ventral tegmental area (VTA), nucleus accumbens (NAc), dorsal raphe (DR) and substantial nigra (SN). Extensive studies have suggested that TAAR1 plays an important role in the modulation of monoaminergic system, especially dopamine (DA) transmission which may underlie the mechanisms by which TAAR1 interventions affect drug abuse-like behaviors. TAAR1 activation inhibits the rewarding and reinforcing effects of drugs from different classes including psychostimulants, opioid and alcohol as well as drug-induced increase in DA accumulation. The mechanisms of TAAR1's function in mediating drug abuse-like behaviors are not clear. However, it is hypothesized that TAAR1 interaction with DA transporter (DAT) and dopamine D2 receptor (D2) and the subsequent modulation of cellular cascades may contribute to the effects of TAAR1 in regulating drug abuse. Further studies are needed to investigate the role of TAAR1 in other drugs of abuse-related behaviors and its safety and efficacy for prolonged medications. Together, TAAR1 inhibits drug-induced DA transmission and drug abuse-related behaviors. Therefore, TAAR1 may be a promising therapeutic target for the treatment of drug addiction.
Collapse
Affiliation(s)
- Ruyan Wu
- Medical College of Yangzhou University, Yangzhou, China,Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA
| | - Jianfeng Liu
- Department of Psychological and Brain Sciences, College of Liberal Arts, Texas A&M University, College Station, TX, USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo, NY, USA,Corresponding authors: Dr. Jun-Xu Li, , Department of Pharmacology and Toxicology, University at Buffalo, The State University of New York, 955 Main Street, Buffalo, NY 14214. Tel: +1 716 829 2482; Fax: +1 716 829 2801
| |
Collapse
|
6
|
Saravia R, Ten-Blanco M, Pereda-Pérez I, Berrendero F. New Insights in the Involvement of the Endocannabinoid System and Natural Cannabinoids in Nicotine Dependence. Int J Mol Sci 2021; 22:13316. [PMID: 34948106 PMCID: PMC8715672 DOI: 10.3390/ijms222413316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/14/2022] Open
Abstract
Nicotine, the main psychoactive component in tobacco smoke, plays a major role in tobacco addiction, producing a high morbidity and mortality in the world. A great amount of research has been developed to elucidate the neural pathways and neurotransmitter systems involved in such a complex addictive behavior. The endocannabinoid system, which has been reported to participate in the addictive properties of most of the prototypical drugs of abuse, is also implicated in nicotine dependence. This review summarizes and updates the main behavioral and biochemical data involving the endocannabinoid system in the rewarding properties of nicotine as well as in nicotine withdrawal and relapse to nicotine-seeking behavior. Promising results from preclinical studies suggest that manipulation of the endocannabinoid system could be a potential therapeutic strategy for treating nicotine addiction.
Collapse
Affiliation(s)
- Rocio Saravia
- Laboratory of Neuropharmacology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, PRBB, 08003 Barcelona, Spain;
| | - Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Pozuelo de Alarcón, 28223 Madrid, Spain; (M.T.-B.); (I.P.-P.)
| |
Collapse
|
7
|
Abstract
The α7-type nicotinic acetylcholine receptor is one of the most unique and interesting of all the members of the cys-loop superfamily of ligand-gated ion channels. Since it was first identified initially as a binding site for α-bungarotoxin in mammalian brain and later as a functional homomeric receptor with relatively high calcium permeability, it has been pursued as a potential therapeutic target for numerous indications, from Alzheimer disease to asthma. In this review, we discuss the history and state of the art for targeting α7 receptors, beginning with subtype-selective agonists and the basic pharmacophore for the selective activation of α7 receptors. A key feature of α7 receptors is their rapid desensitization by standard "orthosteric" agonist, and we discuss insights into the conformational landscape of α7 receptors that has been gained by the development of ligands binding to allosteric sites. Some of these sites are targeted by positive allosteric modulators that have a wide range of effects on the activation profile of the receptors. Other sites are targeted by direct allosteric agonist or antagonists. We include a perspective on the potential importance of α7 receptors for metabotropic as well as ionotropic signaling. We outline the challenges that exist for future development of drugs to target this important receptor and approaches that may be considered to address those challenges. SIGNIFICANCE STATEMENT: The α7-type nicotinic acetylcholine receptor (nAChR) is acknowledged as a potentially important therapeutic target with functional properties associated with both ionotropic and metabotropic signaling. The functional properties of α7 nAChR can be regulated in diverse ways with the variety of orthosteric and allosteric ligands described in this review.
Collapse
Affiliation(s)
- Roger L Papke
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| | - Nicole A Horenstein
- Departments of Pharmacology and Therapeutics (R.L.P) and Chemistry (N.A.H.), University of Florida, Gainesville, FL
| |
Collapse
|
8
|
Synthesis and evaluation of disulfide-rich cyclic α-conotoxin [S9A]TxID analogues as novel α3β4 nAChR antagonists. Bioorg Chem 2021; 112:104875. [PMID: 33823404 DOI: 10.1016/j.bioorg.2021.104875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 12/30/2022]
Abstract
Head-to-tail cyclization is an effective strategy to improve the biological stability of peptides. The α-conotoxin [S9A]TxID is a peptide that inhibits α3β4 nAChR with high activity and selectivity. Herein, we established a method for cyclizing and oxidative folding of [S9A]TxID, and six cyclic analogues of [S9A]TxID were chemically synthesized with various linker lengths. We used the electrophysiology assay to measure activity values of these cyclic analogues, and obtained the most potent analogue c[S9A]TxID-6, which was more stable than native [S9A]TxID against proteinase K.
Collapse
|
9
|
Nonhuman animal models of substance use disorders: Translational value and utility to basic science. Drug Alcohol Depend 2020; 206:107733. [PMID: 31790978 PMCID: PMC6980671 DOI: 10.1016/j.drugalcdep.2019.107733] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 11/10/2019] [Accepted: 11/11/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The National Institute on Drug Abuse (NIDA) recently released a Request for Information (RFI) soliciting comments on nonhuman animal models of substance use disorders (SUD). METHODS A literature review was performed to address the four topics outlined in the RFI and one topic inspired by the RFI: (1) animal models that best recapitulate SUD, (2) animal models that best balance the trade-offs between resources and ecological validity, (3) animal models whose translational value are frequently misrepresented or overrepresented by the scientific community, (4) aspects of SUD that are not currently being modeled in animals, and (5) animal models that are optimal for examining the basic mechanisms by which drugs produce their abuse-related effects. RESULTS Models that employ response-contingent drug administration, use complex schedules of reinforcement, measure behaviors that mimic the distinguishing features of SUD, and use animals that are phylogenetically similar to humans have the greatest translational value. Models that produce stable and reproducible baselines of behavior, lessen the number of uncontrolled variables, and minimize the influence of extraneous factors are best at examining basic mechanisms contributing to drug reward and reinforcement. CONCLUSIONS Nonhuman animal models of SUD have undergone significant refinements to increase their utility for basic science and translational value for SUD. The existing literature describes numerous examples of how these models may best be utilized to answer mechanistic questions of drug reward and identify potential therapeutic interventions for SUD. Progress in the field could be accelerated by further collaborations between researchers using animals versus humans.
Collapse
|
10
|
Bloom AJ, Upadhyaya P, Kharasch ED. Strain-specific altered nicotine metabolism in 3,3'-diindolylmethane (DIM) exposed mice. Biopharm Drug Dispos 2019; 40:188-194. [PMID: 31016737 DOI: 10.1002/bdd.2182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/02/2019] [Accepted: 04/08/2019] [Indexed: 12/25/2022]
Abstract
Two indole compounds, indole-3-carbinol (I3C) and its acid condensation product, 3,3'-diindolymethane (DIM), have been shown to suppress the expression of flavin-containing monooxygenases (FMO) and to induce some hepatic cytochrome P450s (CYPs) in rats. In liver microsomes prepared from rats fed I3C or DIM, FMO-mediated nicotine N-oxygenation was decreased, whereas CYP-mediated nicotine metabolism to nicotine iminium and subsequently to cotinine was unchanged. Therefore, it was hypothesized that in mice DIM would also suppress nicotine N-oxygenation without affecting CYP-mediated nicotine metabolism. Liver microsomes were produced from male and female C57BL/6 J and CD1 mice fed 2500 parts per million (ppm) DIM for 14 days. In liver microsomes from DIM-fed mice, FMO-mediated nicotine N-oxygenation did not differ from the controls, but CYP-mediated nicotine metabolism was significantly increased, with results varying by sex and strain. To confirm the effects of DIM in vivo, control and DIM-fed CD1 male mice were injected subcutaneously with nicotine, and the plasma concentrations of nicotine, cotinine and nicotine-N-oxide were measured over 30 minutes. The DIM-fed mice showed greater cotinine concentrations compared with the controls 10 minutes following injection. It is concluded that the effects of DIM on nicotine metabolism in vitro and in vivo differ between mice and rats and between mouse strains, and that DIM is an effective inducer of CYP-mediated nicotine metabolism in commonly studied mouse strains.
Collapse
Affiliation(s)
- A Joseph Bloom
- Department of Genetics, Washington University, St Louis, MO
| | | | - Evan D Kharasch
- Department of Anesthesiology, Duke University School of Medicine, Durham, NC
| |
Collapse
|
11
|
Liu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, Datta G, Davila-Velderrain J, McGuire D, Tian C, Zhan X, Choquet H, Docherty AR, Faul JD, Foerster JR, Fritsche LG, Gabrielsen ME, Gordon SD, Haessler J, Hottenga JJ, Huang H, Jang SK, Jansen PR, Ling Y, Mägi R, Matoba N, McMahon G, Mulas A, Orrù V, Palviainen T, Pandit A, Reginsson GW, Skogholt AH, Smith JA, Taylor AE, Turman C, Willemsen G, Young H, Young KA, Zajac GJM, Zhao W, Zhou W, Bjornsdottir G, Boardman JD, Boehnke M, Boomsma DI, Chen C, Cucca F, Davies GE, Eaton CB, Ehringer MA, Esko T, Fiorillo E, Gillespie NA, Gudbjartsson DF, Haller T, Harris KM, Heath AC, Hewitt JK, Hickie IB, Hokanson JE, Hopfer CJ, Hunter DJ, Iacono WG, Johnson EO, Kamatani Y, Kardia SLR, Keller MC, Kellis M, Kooperberg C, Kraft P, Krauter KS, Laakso M, Lind PA, Loukola A, Lutz SM, Madden PAF, Martin NG, McGue M, McQueen MB, Medland SE, Metspalu A, Mohlke KL, Nielsen JB, Okada Y, Peters U, Polderman TJC, Posthuma D, Reiner AP, Rice JP, Rimm E, Rose RJ, Runarsdottir V, Stallings MC, Stančáková A, Stefansson H, Thai KK, Tindle HA, Tyrfingsson T, Wall TL, et alLiu M, Jiang Y, Wedow R, Li Y, Brazel DM, Chen F, Datta G, Davila-Velderrain J, McGuire D, Tian C, Zhan X, Choquet H, Docherty AR, Faul JD, Foerster JR, Fritsche LG, Gabrielsen ME, Gordon SD, Haessler J, Hottenga JJ, Huang H, Jang SK, Jansen PR, Ling Y, Mägi R, Matoba N, McMahon G, Mulas A, Orrù V, Palviainen T, Pandit A, Reginsson GW, Skogholt AH, Smith JA, Taylor AE, Turman C, Willemsen G, Young H, Young KA, Zajac GJM, Zhao W, Zhou W, Bjornsdottir G, Boardman JD, Boehnke M, Boomsma DI, Chen C, Cucca F, Davies GE, Eaton CB, Ehringer MA, Esko T, Fiorillo E, Gillespie NA, Gudbjartsson DF, Haller T, Harris KM, Heath AC, Hewitt JK, Hickie IB, Hokanson JE, Hopfer CJ, Hunter DJ, Iacono WG, Johnson EO, Kamatani Y, Kardia SLR, Keller MC, Kellis M, Kooperberg C, Kraft P, Krauter KS, Laakso M, Lind PA, Loukola A, Lutz SM, Madden PAF, Martin NG, McGue M, McQueen MB, Medland SE, Metspalu A, Mohlke KL, Nielsen JB, Okada Y, Peters U, Polderman TJC, Posthuma D, Reiner AP, Rice JP, Rimm E, Rose RJ, Runarsdottir V, Stallings MC, Stančáková A, Stefansson H, Thai KK, Tindle HA, Tyrfingsson T, Wall TL, Weir DR, Weisner C, Whitfield JB, Winsvold BS, Yin J, Zuccolo L, Bierut LJ, Hveem K, Lee JJ, Munafò MR, Saccone NL, Willer CJ, Cornelis MC, David SP, Hinds DA, Jorgenson E, Kaprio J, Stitzel JA, Stefansson K, Thorgeirsson TE, Abecasis G, Liu DJ, Vrieze S. Association studies of up to 1.2 million individuals yield new insights into the genetic etiology of tobacco and alcohol use. Nat Genet 2019; 51:237-244. [PMID: 30643251 PMCID: PMC6358542 DOI: 10.1038/s41588-018-0307-5] [Show More Authors] [Citation(s) in RCA: 1274] [Impact Index Per Article: 212.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 11/06/2018] [Indexed: 12/21/2022]
Abstract
Tobacco and alcohol use are leading causes of mortality that influence risk for many complex diseases and disorders1. They are heritable2,3 and etiologically related4,5 behaviors that have been resistant to gene discovery efforts6-11. In sample sizes up to 1.2 million individuals, we discovered 566 genetic variants in 406 loci associated with multiple stages of tobacco use (initiation, cessation, and heaviness) as well as alcohol use, with 150 loci evidencing pleiotropic association. Smoking phenotypes were positively genetically correlated with many health conditions, whereas alcohol use was negatively correlated with these conditions, such that increased genetic risk for alcohol use is associated with lower disease risk. We report evidence for the involvement of many systems in tobacco and alcohol use, including genes involved in nicotinic, dopaminergic, and glutamatergic neurotransmission. The results provide a solid starting point to evaluate the effects of these loci in model organisms and more precise substance use measures.
Collapse
Affiliation(s)
- Mengzhen Liu
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Yu Jiang
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Institute of Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Robbee Wedow
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Sociology, University of Colorado Boulder, Boulder, CO, USA
- Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
| | - Yue Li
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David M Brazel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
- Interdisciplinary Quantitative Biology Graduate Group, University of Colorado Boulder, Boulder, CO, USA
| | - Fang Chen
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Institute of Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Gargi Datta
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Jose Davila-Velderrain
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel McGuire
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Institute of Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Chao Tian
- 23andMe, Inc., Mountain View, CA, USA
| | - Xiaowei Zhan
- Quantitative Biomedical Research Center, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for the Genetics of Host Defense, Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hélène Choquet
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Anna R Docherty
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry and Human Genetics, University of Utah, Salt Lake City, UT, USA
| | - Jessica D Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Johanna R Foerster
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Lars G Fritsche
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Maiken Elvestad Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Scott D Gordon
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jeffrey Haessler
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jouke-Jan Hottenga
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hongyan Huang
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Seon-Kyeong Jang
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Philip R Jansen
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Child and Adolescent Psychiatry, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Yueh Ling
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Reedik Mägi
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Nana Matoba
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
| | - George McMahon
- Department of Population Health Science, Bristol Medical School, Oakfield Grove, Bristol, UK
| | - Antonella Mulas
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Valeria Orrù
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Anita Pandit
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | | | - Anne Heidi Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jennifer A Smith
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Amy E Taylor
- Department of Population Health Science, Bristol Medical School, Oakfield Grove, Bristol, UK
| | - Constance Turman
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gonneke Willemsen
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Hannah Young
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Kendra A Young
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Gregory J M Zajac
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhou
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | | | - Jason D Boardman
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Sociology, University of Colorado Boulder, Boulder, CO, USA
- Institute of Behavioral Science, University of Colorado Boulder, Boulder, CO, USA
| | - Michael Boehnke
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Chu Chen
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | | | - Charles B Eaton
- Department of Family Medicine and Community Health, Alpert Medical School, Brown University, Providence, RI, USA
| | - Marissa A Ehringer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Tõnu Esko
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche, Monserrato, Italy
| | - Nathan A Gillespie
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Toomas Haller
- Estonian Genome Center, University of Tartu, Tartu, Estonia
| | - Kathleen Mullan Harris
- Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Population Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Andrew C Heath
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - John K Hewitt
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Ian B Hickie
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
| | - John E Hokanson
- Department of Epidemiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Christian J Hopfer
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychiatry, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - David J Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - William G Iacono
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Eric O Johnson
- Fellows Program, RTI International, Research Triangle Park, NC, USA
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew C Keller
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Manolis Kellis
- Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Kenneth S Krauter
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Markku Laakso
- Department of Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Penelope A Lind
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Sharon M Lutz
- Department of Biostatistics and Bioinformatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Pamela A F Madden
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Nicholas G Martin
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Matt McGue
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Matthew B McQueen
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Karen L Mohlke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jonas B Nielsen
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences, Yokohama City, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Tinca J C Polderman
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Clinical Genetics, VU Medical Centre Amsterdam, Amsterdam, the Netherlands
| | - Alexander P Reiner
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - John P Rice
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Eric Rimm
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Richard J Rose
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | | | - Michael C Stallings
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, USA
| | - Alena Stančáková
- Department of Internal Medicine, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | | | - Khanh K Thai
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Hilary A Tindle
- Department of Medicine, Vanderbilt University, Nashville, TN, USA
| | | | - Tamara L Wall
- Department of Psychiatry, University of California, San Diego, San Diego, CA, USA
| | - David R Weir
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Constance Weisner
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - John B Whitfield
- Genetic Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Jie Yin
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Luisa Zuccolo
- Department of Population Health Science, Bristol Medical School, Oakfield Grove, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Laura J Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - James J Lee
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- UK Centre for Tobacco and Alcohol Studies, School of Psychological Science, University of Bristol, Bristol, UK
| | - Nancy L Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Cristen J Willer
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Marilyn C Cornelis
- Department of Preventative Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sean P David
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
- Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | | | - Gonçalo Abecasis
- Department of Biostatistics, Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Dajiang J Liu
- Department of Public Health Sciences, College of Medicine, Pennsylvania State University, Hershey, PA, USA.
- Institute of Personalized Medicine, College of Medicine, Pennsylvania State University, Hershey, PA, USA.
| | - Scott Vrieze
- Department of Psychology, University of Minnesota Twin Cities, Minneapolis, MN, USA.
| |
Collapse
|
12
|
Liu JF, Seaman R, Siemian JN, Bhimani R, Johnson B, Zhang Y, Zhu Q, Hoener MC, Park J, Dietz DM, Li JX. Role of trace amine-associated receptor 1 in nicotine's behavioral and neurochemical effects. Neuropsychopharmacology 2018; 43:2435-2444. [PMID: 29472642 PMCID: PMC6180004 DOI: 10.1038/s41386-018-0017-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/18/2018] [Accepted: 01/20/2018] [Indexed: 12/21/2022]
Abstract
Nicotine addiction and abuse remains a global health issue. To date, the fundamental neurobiological mechanism of nicotine addiction remains incompletely understood. Trace amine-associated receptor 1 (TAAR1) is thought to directly modulate dopaminergic system and are thought to be a neural substrate underlying addictive-like behaviors. We aimed to investigate the role of TAAR1 in nicotine addictive-like behaviors. TAAR1 expression after nicotine treatment was evaluated by western blotting. c-Fos immunofluorescence and in vivo fast-scan cyclic voltammetry were used to examine the activation of brain regions and dopamine release, respectively. We then thoroughly and systematically examined the role of TAAR1 in mediating nicotine-induced sensitization, nicotine discrimination, nicotine self-administration, nicotine demand curve, and the reinstatement of nicotine-seeking. Local pharmacological manipulation was conducted to determine the role of TAAR1 in the nucleus accumbens (NAcs) in the reinstatement of nicotine-seeking. We found that the expression of TAAR1 protein was selectively downregulated in the NAc, with no change in either dorsal striatum or prefrontal cortex. TAAR1 activation was sufficient to block nicotine-induced c-Fos expression in the NAc, while also reducing nicotine-induced dopamine release in the NAc. Systemic administration of TAAR1 agonists attenuated the expression and development of nicotine-induced sensitization, nicotine self-administration, the reinstatement of nicotine-seeking, and increased the elasticity of nicotine demand curve, while intra-NAc infusions of a TAAR1 agonist was sufficient to attenuate nicotine reinstatement. Moreover, TAAR1-knockout rats showed augmented cue-induced and drug-induced reinstatement of nicotine-seeking. These results indicated that modulation of TAAR1 activity regulates nicotine addictive-like behaviors and TAAR1 represents a novel target towards the treatment of nicotine addiction.
Collapse
Affiliation(s)
- Jian-Feng Liu
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA ,0000 0000 9530 8833grid.260483.bSchool of Pharmacy, Nantong University, 226001 Nantong, China
| | - Robert Seaman
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Justin N. Siemian
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Rohan Bhimani
- 0000 0004 1936 9887grid.273335.3Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214 USA
| | - Bernard Johnson
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Yanan Zhang
- 0000000100301493grid.62562.35Research Triangle Institute, Research Triangle Park, NC 27709 USA
| | - Qing Zhu
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA ,0000 0000 9530 8833grid.260483.bSchool of Pharmacy, Nantong University, 226001 Nantong, China
| | - Marius C. Hoener
- 0000 0004 0374 1269grid.417570.0Neuroscience, Ophthalmology and Rare Disease DTA, pRED, Roche Innovation Center Basel, F Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Jinwoo Park
- 0000 0004 1936 9887grid.273335.3Department of Biotechnical and Clinical Laboratory Sciences, University at Buffalo, Buffalo, NY 14214 USA
| | - David M. Dietz
- 0000 0004 1936 9887grid.273335.3Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY 14214 USA
| | - Jun-Xu Li
- Department of Pharmacology and Toxicology; Program in Neuroscience, University at Buffalo, Buffalo, NY, 14214, USA.
| |
Collapse
|
13
|
Zoli M, Pucci S, Vilella A, Gotti C. Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. Curr Neuropharmacol 2018; 16:338-349. [PMID: 28901280 PMCID: PMC6018187 DOI: 10.2174/1570159x15666170912110450] [Citation(s) in RCA: 182] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/08/2017] [Accepted: 09/03/2017] [Indexed: 02/08/2023] Open
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) belong to a super-family of Cys-loop ligand-gated ion chan-nels that respond to endogenous acetylcholine (ACh) or other cholinergic ligands. These receptors are also the targets of drugs such as nicotine (the main addictive agent delivered by cigarette smoke) and are involved in a variety of physiological and pathophysiological processes. Numerous studies have shown that the expression and/or function of nAChRs is com-promised in many neurological and psychiatric diseases. Furthermore, recent studies have shown that neuronal nAChRs are found in a large number of non-neuronal cell types in-cluding endothelial cells, glia, immune cells, lung epithelia and cancer cells where they regulate cell differentiation, prolifera-tion and inflammatory responses. The aim of this review is to describe the most recent findings concerning the structure and function of native nAChRs inside and outside the nervous system.
Collapse
Affiliation(s)
- Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Susanna Pucci
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Antonietta Vilella
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Modena, Italy
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| |
Collapse
|
14
|
Wu Y, Zhangsun D, Zhu X, Kaas Q, Zhangsun M, Harvey PJ, Craik DJ, McIntosh JM, Luo S. α-Conotoxin [S9A]TxID Potently Discriminates between α3β4 and α6/α3β4 Nicotinic Acetylcholine Receptors. J Med Chem 2017; 60:5826-5833. [PMID: 28603989 DOI: 10.1021/acs.jmedchem.7b00546] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
α3β4 nAChRs have been implicated in various pathophysiological conditions. However, the expression profile of α3β4 nAChRs and α6/α3β4 nAChRs overlap in a variety of tissues. To distinguish between these two subtypes, we redesigned peptide 1 (α-conotoxin TxID), which inhibits α3β4 and α6/α3β4 nAChR subtypes. We systematically mutated 1 to evaluate analogue selectivity for α3β4 vs α6/α3β4 nAChRs expressed in Xenopus laevis oocytes. One analogue, peptide 7 ([S9A]TxID), had 46-fold greater potency for α3β4 versus α6/α3β4 nAChRs. Peptide 7 had IC50s > 10 μM for other nAChR subtypes. Molecular dynamics simulations suggested that Ser-9 of TxID was involved in a weak hydrogen bond with β4 Lys-81 in the α6β4 binding site but not in the α3β4 binding site. When Ser-9 was substituted by an Ala, this hydrogen bond interaction was disrupted. These results provide further molecular insights into the selectivity of 7 and provide a guide for designing ligands that block α3β4 nAChRs.
Collapse
Affiliation(s)
- Yong Wu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| | - Dongting Zhangsun
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| | - Xiaopeng Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| | - Quentin Kaas
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - Manqi Zhangsun
- Departments of Biology and Psychiatry, University of Utah , Salt Lake City, Utah 84112, United States
| | - Peta J Harvey
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, The University of Queensland , Brisbane, Queensland 4072, Australia
| | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah , Salt Lake City, Utah 84112, United States.,George E. Wahlen Veterans Affairs Medical Center , Salt Lake City, Utah 84108, United States
| | - Sulan Luo
- Key Laboratory of Tropical Biological Resources, Ministry of Education, Key Lab for Marine Drugs of Haikou, Hainan University , Haikou, Hainan 570228 China
| |
Collapse
|
15
|
Marks MJ, O'Neill HC, Wynalda-Camozzi KM, Ortiz NC, Simmons EE, Short CA, Butt CM, McIntosh JM, Grady SR. Chronic treatment with varenicline changes expression of four nAChR binding sites in mice. Neuropharmacology 2015; 99:142-55. [PMID: 26192545 DOI: 10.1016/j.neuropharm.2015.07.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Chronic treatment with nicotine is known to increase the α4β2-nAChR sites in brain, to decrease α6β2-nAChR sites and to have minimal effect on α3β4-and α7-nAChR populations. Varenicline is now used as a smoking cessation treatment, with and without continued smoking or nicotine replacement therapy. Varenicline, like nicotine, upregulates the α4β2-nAChR sites; however, it is not known whether varenicline treatment changes expression of the other nAChR subtypes. METHODS Using a mouse model, chronic treatments (10 days) with varenicline (0.12 mg/kg/h) and/or nicotine (1 mg/kg/hr), alone or in combination, were compared for plasma and brain levels of drugs, tolerance to subsequent acute nicotine and expression of four subtypes of nAChR using autoradiography. RESULTS The upregulation of α4β2-nAChR sites elicited by chronic varenicline was very similar to that elicited by chronic nicotine. Treatment with both drugs somewhat increased up-regulation, indicating that these doses were not quite at maximum effect. Similar down-regulation was seen for α6β2-nAChR sites. Varenicline significantly increased both α3β4-and α7-nAChR sites while nicotine had less effect on these sites. The drug combination was similar to varenicline alone for α3β4-nAChR sites, while for α7 sites the drug combination was less effective than varenicline alone. Varenicline had small but significant effects on tolerance to acute nicotine. CONCLUSIONS Effects of varenicline in vivo may not be limited to the α4β2*-nAChR subtype. In addition, smoking cessation treatment with varenicline may not allow receptor numbers to be restored to baseline and may, in addition, change expression of other receptor subtypes.
Collapse
Affiliation(s)
- Michael J Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA; Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA.
| | - Heidi C O'Neill
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| | | | - Nick C Ortiz
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| | - Emily E Simmons
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| | - Caitlin A Short
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| | | | - J Michael McIntosh
- Departments of Biology and Psychiatry, University of Utah, Salt Lake City, UT, USA.
| | - Sharon R Grady
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO, USA.
| |
Collapse
|
16
|
Piper ME. Withdrawal: Expanding a Key Addiction Construct. Nicotine Tob Res 2015; 17:1405-15. [PMID: 25744958 DOI: 10.1093/ntr/ntv048] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 02/16/2015] [Indexed: 02/03/2023]
Abstract
Withdrawal is an essential component of classical addiction theory; it is a vital manifestation of dependence and motivates relapse. However, the traditional conceptualization of withdrawal as a cohesive collection of symptoms that emerge during drug deprivation and decline with either the passage of time or reinstatement of drug use, may be inadequate to explain scientific findings or fit with modern theories of addiction. This article expands the current understanding of tobacco withdrawal by examining: (1) withdrawal variability; (2) underlying causes of withdrawal variability, including biological and person factors, environmental influences, and the influence of highly routinized behavioral patterns; (3) new withdrawal symptoms that allow for enhanced characterization of the withdrawal experience; and (4) withdrawal-related cognitive processes. These topics provide guidance regarding the optimal assessment of withdrawal and illustrate the potential impact modern withdrawal conceptualization and assessment could have on identifying treatment targets.
Collapse
Affiliation(s)
- Megan E Piper
- Center for Tobacco Research and Intervention, University of Wisconsin School of Medicine and Public Health, Madison, WI
| |
Collapse
|
17
|
Shorey-Kendrick LE, Ford MM, Allen DC, Kuryatov A, Lindstrom J, Wilhelm L, Grant KA, Spindel ER. Nicotinic receptors in non-human primates: Analysis of genetic and functional conservation with humans. Neuropharmacology 2015; 96:263-73. [PMID: 25661700 PMCID: PMC4486519 DOI: 10.1016/j.neuropharm.2015.01.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 01/18/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are highly conserved between humans and non-human primates. Conservation exists at the level of genomic structure, protein structure and epigenetics. Overall homology of nAChRs at the protein level is 98% in macaques versus 89% in mice, which is highly relevant for evaluating subtype-specific ligands that have different affinities in humans versus rodents. In addition to conservation at the protein level, there is high conservation of genomic structure in terms of intron and exon size and placement of CpG sites that play a key role in epigenetic regulation. Analysis of single nucleotide polymorphisms (SNPs) shows that while the majority of SNPs are not conserved between humans and macaques, some functional polymorphisms are. Most significantly, cynomolgus monkeys express a similar α5 nAChR Asp398Asn polymorphism to the human α5 Asp398Asn polymorphism that has been linked to greater nicotine addiction and smoking related disease. Monkeys can be trained to readily self-administer nicotine, and in an initial study we have demonstrated that cynomolgus monkeys bearing the α5 D398N polymorphism show a reduced behavioral sensitivity to oral nicotine and tend to consume it in a different pattern when compared to wild-type monkeys. Thus the combination of highly homologous nAChR, higher cortical functions and capacity for complex training makes non-human primates a unique model to study in vivo functions of nicotinic receptors. In particular, primate studies on nicotine addiction and evaluation of therapies to prevent or overcome nicotine addiction are likely to be highly predictive of treatment outcomes in humans.
Collapse
Affiliation(s)
- Lyndsey E Shorey-Kendrick
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Matthew M Ford
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Daicia C Allen
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Alexander Kuryatov
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Larry Wilhelm
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Kathleen A Grant
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| | - Eliot R Spindel
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health &, Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
18
|
Picciotto MR, Lewis AS, van Schalkwyk GI, Mineur YS. Mood and anxiety regulation by nicotinic acetylcholine receptors: A potential pathway to modulate aggression and related behavioral states. Neuropharmacology 2015; 96:235-43. [PMID: 25582289 DOI: 10.1016/j.neuropharm.2014.12.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/02/2014] [Accepted: 12/16/2014] [Indexed: 12/22/2022]
Abstract
The co-morbidity between smoking and mood disorders is striking. Preclinical and clinical studies of nicotinic effects on mood, anxiety, aggression, and related behaviors, such as irritability and agitation, suggest that smokers may use the nicotine in tobacco products as an attempt to self-medicate symptoms of affective disorders. The role of nicotinic acetylcholine receptors (nAChRs) in circuits regulating mood and anxiety is beginning to be elucidated in animal models, but the mechanisms underlying the effects of nicotine on aggression-related behavioral states (ARBS) are still not understood. Clinical trials of nicotine or nicotinic medications for neurological and psychiatric disorders have often found effects of nicotinic medications on ARBS, but few trials have studied these outcomes systematically. Similarly, the increase in ARBS resulting from smoking cessation can be resolved by nicotinic agents, but the effects of nicotinic medications on these types of mental states and behaviors in non-smokers are less well understood. Here we review the literature on the role of nAChRs in regulating mood and anxiety, and subsequently on the closely related construct of ARBS. We suggest avenues for future study to identify how nAChRs and nicotinic agents may play a role in these clinically important areas. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Collapse
Affiliation(s)
| | - Alan S Lewis
- Department of Psychiatry, Yale University, New Haven, CT 06508, USA
| | | | - Yann S Mineur
- Department of Psychiatry, Yale University, New Haven, CT 06508, USA
| |
Collapse
|
19
|
Varani AP, Pedrón VT, Machado LM, Antonelli MC, Bettler B, Balerio GN. Lack of GABAB receptors modifies behavioural and biochemical alterations induced by precipitated nicotine withdrawal. Neuropharmacology 2014; 90:90-101. [PMID: 25479464 DOI: 10.1016/j.neuropharm.2014.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 11/19/2014] [Accepted: 11/22/2014] [Indexed: 01/09/2023]
Abstract
The nicotine (NIC) withdrawal syndrome is considered to be a major cause of the high relapse rate among individuals undergoing smoking cessation. The aim of the present study was to evaluate a possible role of GABAB receptors in NIC withdrawal, by comparing GABAB1 knockout mice and their wild-type littermates. We analysed the time course of the global withdrawal score, the anxiety-like effects, monoamine concentrations, the brain-derived neurotrophic factor (BDNF) expression, the corticosterone plasmatic levels and [(3)H]epibatidine binding sites during NIC withdrawal precipitated by mecamylamine, a nicotinic receptor antagonist (MEC). In NIC withdrawn wild-type mice, we observed a global withdrawal score, an anxiety-like effect in the elevated plus maze, a decrease of the striatal dopamine and 3,4-dihydroxyphenylacetic acid concentrations, an increase of corticosterone plasma levels, a reduction of BDNF expression in several brain areas and an increase of [(3)H]epibatidine binding sites in specific brain regions. Interestingly, the effects found in NIC withdrawn wild-type mice were absent in GABAB1 knockout mice, suggesting that GABAB1 subunit of the GABAB receptor is involved in the regulation of the behavioural and biochemical alterations induced by NIC withdrawal in mice. These results reveal an interaction between the GABAB receptors and the neurochemical systems through which NIC exerts its long-term effects.
Collapse
Affiliation(s)
- Andrés P Varani
- Instituto de Investigaciones Farmacológicas (CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - Valeria T Pedrón
- Instituto de Investigaciones Farmacológicas (CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - Lirane Moutinho Machado
- Instituto de Investigaciones Farmacológicas (CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina
| | - Marta C Antonelli
- Instituto de Química y Fisicoquímica Biológicas (UBA-CONICET), Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Bernhard Bettler
- Department of Biomedicine, Institute of Physiology, Pharmazentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056 Basel, Switzerland
| | - Graciela N Balerio
- Instituto de Investigaciones Farmacológicas (CONICET), Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina; Cátedra de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 5° Piso, Buenos Aires C1113AAD, Argentina.
| |
Collapse
|
20
|
Kompella SN, Hung A, Clark RJ, Marí F, Adams DJ. Alanine scan of α-conotoxin RegIIA reveals a selective α3β4 nicotinic acetylcholine receptor antagonist. J Biol Chem 2014; 290:1039-48. [PMID: 25411242 DOI: 10.1074/jbc.m114.605592] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of the α3β4 nicotinic acetylcholine receptor (nAChR) subtype has recently been implicated in the pathophysiology of various conditions, including development and progression of lung cancer and in nicotine addiction. As selective α3β4 nAChR antagonists, α-conotoxins are valuable tools to evaluate the functional roles of this receptor subtype. We previously reported the discovery of a new α4/7-conotoxin, RegIIA. RegIIA was isolated from Conus regius and inhibits acetylcholine (ACh)-evoked currents mediated by α3β4, α3β2, and α7 nAChR subtypes. The current study used alanine scanning mutagenesis to understand the selectivity profile of RegIIA at the α3β4 nAChR subtype. [N11A] and [N12A] RegIIA analogs exhibited 3-fold more selectivity for the α3β4 than the α3β2 nAChR subtype. We also report synthesis of [N11A,N12A]RegIIA, a selective α3β4 nAChR antagonist (IC50 of 370 nM) that could potentially be used in the treatment of lung cancer and nicotine addiction. Molecular dynamics simulations of RegIIA and [N11A,N12A]RegIIA bound to α3β4 and α3β2 suggest that destabilization of toxin contacts with residues at the principal and complementary faces of α3β2 (α3-Tyr(92), Ser(149), Tyr(189), Cys(192), and Tyr(196); β2-Trp(57), Arg(81), and Phe(119)) may form the molecular basis for the selectivity shift.
Collapse
Affiliation(s)
- Shiva N Kompella
- From the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | - Andrew Hung
- From the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia
| | - Richard J Clark
- the School of Biomedical Sciences, The University of Queensland, Brisbane, Queensland 4072, Australia, and
| | - Frank Marí
- the Department of Chemistry & Biochemistry, Florida Atlantic University, Boca Raton, Florida 33431
| | - David J Adams
- From the Health Innovations Research Institute, RMIT University, Melbourne, Victoria 3083, Australia,
| |
Collapse
|
21
|
Pistillo F, Clementi F, Zoli M, Gotti C. Nicotinic, glutamatergic and dopaminergic synaptic transmission and plasticity in the mesocorticolimbic system: focus on nicotine effects. Prog Neurobiol 2014; 124:1-27. [PMID: 25447802 DOI: 10.1016/j.pneurobio.2014.10.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/08/2014] [Accepted: 10/24/2014] [Indexed: 01/11/2023]
Abstract
Cigarette smoking is currently the leading cause of preventable deaths and disability throughout the world, being responsible for about five million premature deaths/year. Unfortunately, fewer than 10% of tobacco users who try to stop smoking actually manage to do so. The main addictive agent delivered by cigarette smoke is nicotine, which induces psychostimulation and reward, and reduces stress and anxiety. The use of new technologies (including optogenetics) and the development of mouse models characterised by cell-specific deletions of receptor subtype genes or the expression of gain-of-function nAChR subunits has greatly increased our understanding of the molecular mechanisms and neural substrates of nicotine addiction first revealed by classic electrophysiological, neurochemical and behavioural approaches. It is now becoming clear that various aspects of nicotine dependence are mediated by close interactions of the glutamatergic, dopaminergic and γ-aminobutyric acidergic systems in the mesocorticolimbic system. This review is divided into two parts. The first provides an updated overview of the circuitry of the ventral tegmental area, ventral striatum and prefrontal cortex, the neurotransmitter receptor subtypes expressed in these areas, and their physiological role in the mesocorticolimbic system. The second will focus on the molecular, functional and behavioural mechanisms involved in the acute and chronic effects of nicotine on the mesocorticolimbic system.
Collapse
Affiliation(s)
- Francesco Pistillo
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Francesco Clementi
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Section of Physiology and Neurosciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Cecilia Gotti
- CNR, Neuroscience Institute-Milano, Biometra University of Milan, Milan, Italy.
| |
Collapse
|
22
|
Vandenbergh DJ, Schlomer GL. Finding genomic function for genetic associations in nicotine addiction research: the ENCODE project's role in future pharmacogenomic analysis. Pharmacol Biochem Behav 2014; 123:34-44. [PMID: 24486638 PMCID: PMC4117825 DOI: 10.1016/j.pbb.2014.01.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 01/17/2014] [Accepted: 01/22/2014] [Indexed: 11/16/2022]
Abstract
Tobacco-related behaviors and the underlying addiction to nicotine are complex tangles of genetic and environmental factors. Efforts to understand the genetic component of these traits have identified sites in the genome (single nucleotide polymorphisms, or SNPs) that might account for some part of the role of genetics in nicotine addiction. Encouragingly, some of these candidate SNPs remain significant in meta-analyses. However, genetic associations cannot be fully assessed, regardless of statistical significance, without an understanding of the functional consequences of the alleles present at these SNPs. The proper experimental test for allelic function can be very difficult to define, representing a roadblock in translating genetic results into treatment to prevent smoking and other nicotine-related behaviors. This roadblock can be navigated in part with a new web-based tool, the Encyclopedia of DNA Elements (ENCODE). ENCODE is a compilation of searchable data on several types of biochemical functions or "marks" across the genome. These data can be queried for the co-localization of a candidate SNP and a biochemical mark. The presence of a SNP within a marked region of DNA enables the generation of better-informed hypotheses to test possible functional roles of alleles at a candidate SNP. Two examples of such co-localizations are presented. One example reveals ENCODE's ability to relate a candidate SNP's function with a gene very far from the physical location of the SNP. The second example reveals a new potential function of the SNP, rs4105144, that has been genetically associated with the number of cigarettes smoked per day. Details for accessing the ENCODE data for this SNP are provided to serve as a tutorial. By serving as a bridge between genetic associations and biochemical function, ENCODE has the power to propel progress in untangling the genetic aspects of nicotine addiction - a major public health concern.
Collapse
Affiliation(s)
- David J Vandenbergh
- Department of Biobehavioral Health, The Pennsylvania State University, 219 Biobehavioral Health Building, University Park, PA 16802, USA; Penn State Institute of the Neurosciences, 101 Life Sciences Building, University Park, PA 16802, USA.
| | - Gabriel L Schlomer
- Department of Human Development and Family Studies, The Pennsylvania State University, 315 Health and Human Development, East, University Park, PA 16802, USA.
| |
Collapse
|
23
|
Giordimaina AM, Sheldon JP, Petty EM. Anticipated motivation for genetic testing among smokers, nonsmokers, and former smokers: an exploratory qualitative study of decision making. Public Health Genomics 2014; 17:228-39. [PMID: 25059656 DOI: 10.1159/000364803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Accepted: 05/23/2014] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES This qualitative study explores the public's interest in genetic testing related to cigarette smoking, comparing the public's motivations with researchers' intentions for this technology. METHODS Adult nonsmokers (n=463), former smokers (n=163), and current smokers (n=129) completed an online survey. Within a hypothetical scenario, respondents decided whether they desired genetic testing related to smoking and explained their decision making. A non-parametric Kruskal-Wallis test was used to compare the interest in genetic testing by smoking history group. Inductive content analysis was used to investigate respondents' explanations for their testing decisions. RESULTS Most nonsmokers (64%) and former smokers (58%) did not want genetic testing. While most current daily smokers were interested in testing (56%), most current occasional smokers were not (52%). Respondents' decision-making explanations were categorized into 3 major themes: Causality, Relevancy and Utility (e.g. personal benefits or harms). The use of causality, relevancy and utility explanations varied by smoking history. Notable perceived benefits of testing included recreation and altruism. Notable perceived harms included fear of fatalistic thoughts and concern about genetic discrimination. CONCLUSIONS Interest in genetic testing was highest among current daily smokers, despite potential utility in other groups. Although respondents' motivations for testing paralleled researchers' intentions of tailoring smoking cessation therapies and increasing motivation to quit or abstain, respondents also raised alternative motivations and fears that healthcare providers would need to address.
Collapse
Affiliation(s)
- Alicia M Giordimaina
- Department of Health Behavior and Health Education, University of Michigan, Ann Arbor, Mich., USA
| | | | | |
Collapse
|
24
|
Simmons SJ, Gould TJ. Involvement of neuronal β2 subunit-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal: implications for pharmacotherapies. J Clin Pharm Ther 2014; 39:457-67. [PMID: 24828779 DOI: 10.1111/jcpt.12171] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/14/2014] [Indexed: 11/28/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVE Tobacco smoking remains a major health problem. Nicotine binds to nicotinic acetylcholine receptors (nAChRs), which can cause addiction and withdrawal symptoms upon cessation of nicotine administration. Pharmacotherapies for nicotine addiction target brain alterations that underlie withdrawal symptoms. This review will delineate the involvement of the β2 subunit of neuronal nAChRs in nicotine reward and in generating withdrawal symptoms to better understand the efficacy of smoking cessation pharmacotherapies. COMMENT Chronic nicotine desensitizes and upregulates β2 subunit-containing nAChRs, and the prolonged upregulation of receptors may underlie symptoms of withdrawal. Experimental research has demonstrated that the β2 subunit of neuronal nAChRs is necessary for generating nicotine reward and withdrawal symptoms. WHAT IS NEW AND CONCLUSION Smoking cessation pharmacotherapies act on β2 subunit-containing nAChRs to reduce nicotine reward and withdrawal symptom severity.
Collapse
Affiliation(s)
- Steven J Simmons
- Department of Psychology, Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| | | |
Collapse
|
25
|
Crooks PA, Bardo MT, Dwoskin LP. Nicotinic receptor antagonists as treatments for nicotine abuse. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2014; 69:513-51. [PMID: 24484986 DOI: 10.1016/b978-0-12-420118-7.00013-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite the proven efficacy of current pharmacotherapies for tobacco dependence, relapse rates continue to be high, indicating that novel medications are needed. Currently, several smoking cessation agents are available, including varenicline (Chantix®), bupropion (Zyban®), and cytisine (Tabex®). Varenicline and cytisine are partial agonists at the α4β2* nicotinic acetylcholine receptor (nAChR). Bupropion is an antidepressant but is also an antagonist at α3β2* ganglionic nAChRs. The rewarding effects of nicotine are mediated, in part, by nicotine-evoked dopamine (DA) release leading to sensitization, which is associated with repeated nicotine administration and nicotine addiction. Receptor antagonists that selectivity target central nAChR subtypes mediating nicotine-evoked DA release should have efficacy as tobacco use cessation agents with the therapeutic advantage of a limited side-effect profile. While α-conotoxin MII (α-CtxMII)-insensitive nAChRs (e.g., α4β2*) contribute to nicotine-evoked DA release, these nAChRs are widely distributed in the brain, and inhibition of these receptors may lead to nonselective and untoward effects. In contrast, α-CtxMII-sensitive nAChRs mediating nicotine-evoked DA release offer an advantage as targets for smoking cessation, due to their more restricted localization primarily to dopaminergic neurons. Small drug-like molecules that are selective antagonists at α-CtxMII-sensitive nAChR subtypes that contain α6 and β2 subunits have now been identified. Early research identified a variety of quaternary ammonium analogs that were potent and selective antagonists at nAChRs mediating nicotine-evoked DA release. More recent data have shown that novel, nonquaternary bis-1,2,5,6-tetrahydropyridine analogs potently inhibit (IC50<1nM) nicotine-evoked DA release in vitro by acting as antagonists at α-CtxMII-sensitive nAChR subtypes; these compounds also decrease NIC self-administration in rats.
Collapse
Affiliation(s)
- Peter A Crooks
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, Arizona, USA.
| | - Michael T Bardo
- Department of Psychology, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| | - Linda P Dwoskin
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
26
|
Li X, Semenova S, D'Souza MS, Stoker AK, Markou A. Involvement of glutamatergic and GABAergic systems in nicotine dependence: Implications for novel pharmacotherapies for smoking cessation. Neuropharmacology 2014; 76 Pt B:554-65. [PMID: 23752091 PMCID: PMC3830589 DOI: 10.1016/j.neuropharm.2013.05.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 05/14/2013] [Accepted: 05/15/2013] [Indexed: 01/29/2023]
Abstract
Tobacco smoking continues to be a major global health hazard despite significant public awareness of its harmful consequences. Although several treatment options are currently available for smoking cessation, these medications are effective in only a small subset of smokers, and relapse rates continue to be high. Therefore, a better understanding of the neurobiological mechanisms that mediate tobacco dependence is essential for the development of effective smoking cessation medications. Nicotine is the primary psychoactive component of tobacco that drives the harmful tobacco smoking habit. Nicotine binds to nicotinic acetylcholine receptors (nAChRs) in the brain, resulting in the release of a wide range of neurotransmitters, including glutamate and γ-aminobutyric acid (GABA). This review article focuses on the role of the excitatory glutamate system and inhibitory GABA system in nicotine dependence. Accumulating evidence suggests that blockade of glutamatergic transmission or facilitation of GABAergic transmission attenuates the positive reinforcing and incentive motivational aspects of nicotine, inhibits the reward-enhancing and conditioned rewarding effects of nicotine, and blocks nicotine-seeking behavior. Chronic nicotine exposure produced long-term neuroadaptations that contribute to nicotine withdrawal, but the role of GABA and glutamate transmission in nicotine withdrawal is less understood. Overall, the findings presented in this review provide strong converging evidence for the potential effectiveness of glutamatergic and GABAergic medications in nicotine dependence. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
Affiliation(s)
| | | | | | - Astrid K. Stoker
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Athina Markou
- Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| |
Collapse
|
27
|
Sakhi K, Belle MDC, Gossan N, Delagrange P, Piggins HD. Daily variation in the electrophysiological activity of mouse medial habenula neurones. J Physiol 2013; 592:587-603. [PMID: 24247982 PMCID: PMC3934703 DOI: 10.1113/jphysiol.2013.263319] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
AbstractIntrinsic daily or circadian rhythms arise through the outputs of the master circadian clock in the brain's suprachiasmatic nuclei (SCN) as well as circadian oscillators in other brain sites and peripheral tissues. SCN neurones contain an intracellular molecular clock that drives these neurones to exhibit pronounced day–night differences in their electrical properties. The epithalamic medial habenula (MHb) expresses clock genes, but little is known about the bioelectric properties of mouse MHb neurones and their potential circadian characteristics. Therefore, in this study we used a brain slice preparation containing the MHb to determine the basic electrical properties of mouse MHb neurones with whole-cell patch clamp electrophysiology, and investigated whether these vary across the day–night cycle. MHb neurones (n = 230) showed heterogeneity in electrophysiological state, ranging from highly depolarised cells (∼ −25 to −30 mV) that are silent with no membrane activity or display depolarised low-amplitude membrane oscillations, to neurones that were moderately hyperpolarised (∼40 mV) and spontaneously discharging action potentials. These electrical states were largely intrinsically regulated and were influenced by the activation of small-conductance calcium-activated potassium channels. When considered as one population, MHb neurones showed significant circadian variation in their spontaneous firing rate and resting membrane potential. However, in recordings of MHb neurones from mice lacking the core molecular circadian clock, these temporal differences in MHb activity were absent, indicating that circadian clock signals actively regulate the timing of MHb neuronal states. These observations add to the extracellularly recorded rhythms seen in other brain areas and establish that circadian mechanisms can influence the membrane properties of neurones in extra-SCN sites. Collectively, the results of this study indicate that the MHb may function as an intrinsic secondary circadian oscillator in the brain, which can shape daily information flow in key brain processes, such as reward and addiction.
Collapse
Affiliation(s)
- Kanwal Sakhi
- AV Hill 2.016, Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | | | | | | | |
Collapse
|
28
|
Kabbani N. Not so Cool? Menthol's discovered actions on the nicotinic receptor and its implications for nicotine addiction. Front Pharmacol 2013; 4:95. [PMID: 23898298 PMCID: PMC3720998 DOI: 10.3389/fphar.2013.00095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/08/2013] [Indexed: 01/01/2023] Open
Abstract
Nicotine cigarette smoke is a large public health burden worldwide, contributing to various types of disease. Anti-tobacco media campaigns and control programs have significantly reduced smoking in the United States, yet trends for menthol cigarette smoking have not been as promising. Menthol cigarette smoking is particularly prevalent among young adults and African Americans, with implications for long-term impacts on health care. Continuing high rates of menthol cigarette addiction call into question the role of menthol in nicotine addiction. To date, a biological basis for the high rate of addiction and relapse among menthol cigarette smokers has not been defined. Studies have demonstrated a role for menthol in the metabolism of nicotine in the body. More recent findings now reveal an interaction between menthol and the nicotinic acetylcholine (nACh) receptor in cells. This receptor is central to the actions of nicotine in the brain, and plays an important role in nicotine addiction. The newly discovered effect of menthol on nACh receptors may begin to explain the unique addictive properties of menthol cigarettes.
Collapse
Affiliation(s)
- Nadine Kabbani
- Department of Molecular Neuroscience, Krasnow Institute for Advanced Study, George Mason University Fairfax, VA, USA
| |
Collapse
|
29
|
Marks MJ. Genetic matters: thirty years of progress using mouse models in nicotinic research. Biochem Pharmacol 2013; 86:1105-13. [PMID: 23747348 DOI: 10.1016/j.bcp.2013.05.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 05/30/2013] [Accepted: 05/30/2013] [Indexed: 02/06/2023]
Abstract
This research update summarizes thirty years of studies on genetic influences on responses to the acute or chronic administration of nicotine. Early studies established that various inbred mice are differentially sensitive to the effects of the drug. Classical genetic analyses confirmed that nicotine effects on locomotion, body temperature and seizures are heritable. A significant inverse correlation between the locomotor and hypothermic effects and the density of nicotine binding sites suggested that differential expression α4β2-neuronal nicotinic acetylcholine receptor (nAChR) mediated some of this genetic variability. Subsequent studies with α4 and β2 nAChR null (decreased sensitivity) and gain of function mutants (increased sensitivity) supports the role of the α4β2*nAChR subtype. However, null mutant mice still respond to nicotine, indicating that other nAChR subtypes also mediate these responses. Mice differing in initial sensitivity to nicotine also differ in tolerance development following chronic treatment: those mice that are initially more sensitive to nicotine develop tolerance at lower treatment doses than less sensitive mice, indicating that tolerance is an adaptive response to the effects of nicotine. In contrast, the sensitivity of mice to pre-pulse inhibition of acoustic startle response is correlated with the expression of α7-nAChR. While genetic variability in nAChR expression and function is an important factor contributing to differences in response to nicotine, the observations that altered activity of opioid, glutamate, and cannabinoid receptors among others also change nicotine sensitivity reinforces the proposal that the genetics of nicotine response is more complex than differences in nAChRs.
Collapse
Affiliation(s)
- Michael J Marks
- Institute for Behavioral Genetics and Department of Psychology and Neuroscience, University of Colorado, Boulder, CO, USA.
| |
Collapse
|