1
|
Chen Y, Yang Z, Nian B, Yu C, Maimaiti D, Chai M, Yang X, Zang X, Xu D. Mechanisms of Neurotoxicity of Organophosphate Pesticides and Their Relation to Neurological Disorders. Neuropsychiatr Dis Treat 2024; 20:2237-2254. [PMID: 39588175 PMCID: PMC11587806 DOI: 10.2147/ndt.s479757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/12/2024] [Indexed: 11/27/2024] Open
Abstract
Organophosphates (OPs) refers to a diverse group of phosphorus-containing organic compounds; they are widely used all over the world and have had an important beneficial impact on industrial and agricultural production and control of vector transmission. Exposure to OPs of different toxicities (high, moderate, slight, and low toxicity) can all have negative consequences on the nervous system, such as nausea, vomiting, muscle tremors, and convulsions. In severe cases, it can lead to respiratory failure or even death. Notably, OPs induce neuropathy in the nervous system through specific interactions with nicotinic or muscarinic receptors, phosphorylating acetylcholinesterase, or neuropathic target esterases. This review summarizes the possible toxicological mechanisms and their interplay underlying OP pesticide poisoning, including cholinesterase inhibition and non-cholinesterase mechanisms. It outlines the possible links between OP pesticide poisoning and neurological disorders, such as dementia, neurodevelopmental diseases, and Parkinson's disease. Additionally, it explores OP interactions' potential therapeutic implications that may help mitigate the deleterious impact of OPs on the nervous system.
Collapse
Affiliation(s)
- Yixin Chen
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Zhuo Yang
- Department of Emergency Intensive Care Unit of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Bin Nian
- Department of Ultrasonography, Yanbian University Hospital, Yanji, Jilin, People’s Republic of China
| | - Chenglin Yu
- Department of Emergency Medicine, Yanbian University Hospital, Yanji, Jilin, 133000, People’s Republic of China
| | - Dilimulat Maimaiti
- Department of Emergency Medicine, Seventh Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, People’s Republic of China
| | - Min Chai
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Xinran Yang
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Xiuxian Zang
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| | - Dahai Xu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin, 130000, People’s Republic of China
| |
Collapse
|
2
|
Bolz S, Haucke V. Biogenesis and reformation of synaptic vesicles. J Physiol 2024. [PMID: 39367867 DOI: 10.1113/jp286554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/12/2024] [Indexed: 10/07/2024] Open
Abstract
Communication within the nervous system relies on the calcium-triggered release of neurotransmitter molecules by exocytosis of synaptic vesicles (SVs) at defined active zone release sites. While decades of research have provided detailed insight into the molecular machinery for SV fusion, much less is known about the mechanisms that form functional SVs during the development of synapses and that control local SV reformation following exocytosis in the mature nervous system. Here we review the current state of knowledge in the field, focusing on the pathways implicated in the formation and axonal transport of SV precursor organelles and the mechanisms involved in the local reformation of SVs within nerve terminals in mature neurons. We discuss open questions and outline perspectives for future research.
Collapse
Affiliation(s)
- Svenja Bolz
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Molecular Pharmacology and Cell Biology, Leibniz Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
4
|
Dey S, Kumar N, Balakrishnan S, Koushika SP, Ghosh-Roy A. KLP-7/Kinesin-13 orchestrates axon-dendrite checkpoints for polarized trafficking in neurons. Mol Biol Cell 2024; 35:ar115. [PMID: 38985513 PMCID: PMC7616348 DOI: 10.1091/mbc.e23-08-0335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
The polarized nature of neurons depends on their microtubule dynamics and orientation determined by both microtubule-stabilizing and destabilizing factors. The role of destabilizing factors in developing and maintaining neuronal polarity is unclear. We investigated the function of KLP-7, a microtubule depolymerizing motor of the Kinesin-13 family, in axon-dendrite compartmentalization using PVD neurons in Caenorhabditis elegans. Loss of KLP-7 caused a mislocalization of axonal proteins, including RAB-3, SAD-1, and their motor UNC-104, to dendrites. This is rescued by cell-autonomous expression of the KLP-7 or colchicine treatment, indicating the involvement of KLP-7-dependent microtubule depolymerization. The high mobility of KLP-7 is correlated to increased microtubule dynamics in the dendrites, which restricts the enrichment of UNC-44, an integral component of Axon Initial Segment (AIS) in these processes. Due to the loss of KLP-7, ectopic enrichment of UNC-44 in the dendrite potentially redirects axonal traffic into dendrites that include plus-end out microtubules, axonal motors, and cargoes. These observations indicate that KLP-7-mediated depolymerization defines the microtubule dynamics conducive to the specific enrichment of AIS components in dendrites. This further compartmentalizes dendritic and axonal microtubules, motors, and cargoes, thereby influencing neuronal polarity.
Collapse
Affiliation(s)
- Swagata Dey
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurugram, Haryana 122052, India
| | - Nitish Kumar
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurugram, Haryana 122052, India
| | - Supraja Balakrishnan
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurugram, Haryana 122052, India
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Anindya Ghosh-Roy
- Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurugram, Haryana 122052, India
| |
Collapse
|
5
|
Chin M, Kaeser PS. The intracellular C-terminus confers compartment-specific targeting of voltage-gated calcium channels. Cell Rep 2024; 43:114428. [PMID: 38996073 PMCID: PMC11441329 DOI: 10.1016/j.celrep.2024.114428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 07/14/2024] Open
Abstract
To achieve the functional polarization that underlies brain computation, neurons sort protein material into distinct compartments. Ion channel composition, for example, differs between axons and dendrites, but the molecular determinants for their polarized trafficking remain obscure. Here, we identify mechanisms that target voltage-gated Ca2+ channels (CaVs) to distinct subcellular compartments. In hippocampal neurons, CaV2s trigger neurotransmitter release at the presynaptic active zone, and CaV1s localize somatodendritically. After knockout of all three CaV2s, expression of CaV2.1, but not CaV1.3, restores neurotransmitter release. We find that chimeric CaV1.3s with CaV2.1 intracellular C-termini localize to the active zone, mediate synaptic vesicle exocytosis, and render release sensitive to CaV1 blockers. This dominant targeting function of the CaV2.1 C-terminus requires the first EF hand in its proximal segment, and replacement of the CaV2.1 C-terminus with that of CaV1.3 abolishes CaV2.1 active zone localization and function. We conclude that CaV intracellular C-termini mediate compartment-specific targeting.
Collapse
Affiliation(s)
- Morven Chin
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Nadiminti SSP, Dixit SB, Ratnakaran N, Deb A, Hegde S, Boyanapalli SPP, Swords S, Grant BD, Koushika SP. LRK-1/LRRK2 and AP-3 regulate trafficking of synaptic vesicle precursors through active zone protein SYD-2/Liprin-α. PLoS Genet 2024; 20:e1011253. [PMID: 38722918 PMCID: PMC11081264 DOI: 10.1371/journal.pgen.1011253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 04/09/2024] [Indexed: 05/13/2024] Open
Abstract
Synaptic vesicle proteins (SVps) are transported by the motor UNC-104/KIF1A. We show that SVps travel in heterogeneous carriers in C. elegans neuronal processes, with some SVp carriers co-transporting lysosomal proteins (SV-lysosomes). LRK-1/LRRK2 and the clathrin adaptor protein complex AP-3 play a critical role in the sorting of SVps and lysosomal proteins away from each other at the SV-lysosomal intermediate trafficking compartment. Both SVp carriers lacking lysosomal proteins and SV-lysosomes are dependent on the motor UNC-104/KIF1A for their transport. In lrk-1 mutants, both SVp carriers and SV-lysosomes can travel in axons in the absence of UNC-104, suggesting that LRK-1 plays an important role to enable UNC-104 dependent transport of synaptic vesicle proteins. Additionally, LRK-1 acts upstream of the AP-3 complex and regulates its membrane localization. In the absence of the AP-3 complex, the SV-lysosomes become more dependent on the UNC-104-SYD-2/Liprin-α complex for their transport. Therefore, SYD-2 acts to link upstream trafficking events with the transport of SVps likely through its interaction with the motor UNC-104. We further show that the mistrafficking of SVps into the dendrite in lrk-1 and apb-3 mutants depends on SYD-2, likely by regulating the recruitment of the AP-1/UNC-101. SYD-2 acts in concert with AP complexes to ensure polarized trafficking & transport of SVps.
Collapse
Affiliation(s)
- Sravanthi S. P. Nadiminti
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Shirley B. Dixit
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Anushka Deb
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | - Sneha Hegde
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| | | | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Barth D. Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, United States of America
| | - Sandhya P. Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra, India
| |
Collapse
|
7
|
Voeltz GK, Sawyer EM, Hajnóczky G, Prinz WA. Making the connection: How membrane contact sites have changed our view of organelle biology. Cell 2024; 187:257-270. [PMID: 38242082 PMCID: PMC11830234 DOI: 10.1016/j.cell.2023.11.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/13/2023] [Accepted: 11/29/2023] [Indexed: 01/21/2024]
Abstract
The view of organelles and how they operate together has changed dramatically over the last two decades. The textbook view of organelles was that they operated largely independently and were connected by vesicular trafficking and the diffusion of signals through the cytoplasm. We now know that all organelles make functional close contacts with one another, often called membrane contact sites. The study of these sites has moved to center stage in cell biology as it has become clear that they play critical roles in healthy and developing cells and during cell stress and disease states. Contact sites have important roles in intracellular signaling, lipid metabolism, motor-protein-mediated membrane dynamics, organelle division, and organelle biogenesis. Here, we summarize the major conceptual changes that have occurred in cell biology as we have come to appreciate how contact sites integrate the activities of organelles.
Collapse
Affiliation(s)
- G K Voeltz
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - E M Sawyer
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - G Hajnóczky
- MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - W A Prinz
- Department of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
8
|
Petzoldt AG. Presynaptic Precursor Vesicles-Cargo, Biogenesis, and Kinesin-Based Transport across Species. Cells 2023; 12:2248. [PMID: 37759474 PMCID: PMC10527734 DOI: 10.3390/cells12182248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/11/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
The faithful formation and, consequently, function of a synapse requires continuous and tightly controlled delivery of synaptic material. At the presynapse, a variety of proteins with unequal molecular properties are indispensable to compose and control the molecular machinery concerting neurotransmitter release through synaptic vesicle fusion with the presynaptic membrane. As presynaptic proteins are produced mainly in the neuronal soma, they are obliged to traffic along microtubules through the axon to reach the consuming presynapse. This anterograde transport is performed by highly specialised and diverse presynaptic precursor vesicles, membranous organelles able to transport as different proteins such as synaptic vesicle membrane and membrane-associated proteins, cytosolic active zone proteins, ion-channels, and presynaptic membrane proteins, coordinating synaptic vesicle exo- and endocytosis. This review aims to summarise and categorise the diverse and numerous findings describing presynaptic precursor cargo, mode of trafficking, kinesin-based axonal transport and the molecular mechanisms of presynaptic precursor vesicles biogenesis in both vertebrate and invertebrate model systems.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Institute for Biology and Genetics, Freie Universität Berlin, Takustrasse 6, 14195 Berlin, Germany
| |
Collapse
|
9
|
Kandhavivorn W, Glaß H, Herrmannsdörfer T, Böckers TM, Uhlarz M, Gronemann J, Funk RHW, Pietzsch J, Pal A, Hermann A. Restoring Axonal Organelle Motility and Regeneration in Cultured FUS-ALS Motoneurons through Magnetic Field Stimulation Suggests an Alternative Therapeutic Approach. Cells 2023; 12:1502. [PMID: 37296623 PMCID: PMC10252208 DOI: 10.3390/cells12111502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating motoneuron disease characterized by sustained loss of neuromuscular junctions, degenerating corticospinal motoneurons and rapidly progressing muscle paralysis. Motoneurons have unique features, essentially a highly polarized, lengthy architecture of axons, posing a considerable challenge for maintaining long-range trafficking routes for organelles, cargo, mRNA and secretion with a high energy effort to serve crucial neuronal functions. Impaired intracellular pathways implicated in ALS pathology comprise RNA metabolism, cytoplasmic protein aggregation, cytoskeletal integrity for organelle trafficking and maintenance of mitochondrial morphology and function, cumulatively leading to neurodegeneration. Current drug treatments only have marginal effects on survival, thereby calling for alternative ALS therapies. Exposure to magnetic fields, e.g., transcranial magnetic stimulations (TMS) on the central nervous system (CNS), has been broadly explored over the past 20 years to investigate and improve physical and mental activities through stimulated excitability as well as neuronal plasticity. However, studies of magnetic treatments on the peripheral nervous system are still scarce. Thus, we investigated the therapeutic potential of low frequency alternating current magnetic fields on cultured spinal motoneurons derived from induced pluripotent stem cells of FUS-ALS patients and healthy persons. We report a remarkable restoration induced by magnetic stimulation on axonal trafficking of mitochondria and lysosomes and axonal regenerative sprouting after axotomy in FUS-ALS in vitro without obvious harmful effects on diseased and healthy neurons. These beneficial effects seem to derive from improved microtubule integrity. Thus, our study suggests the therapeutic potential of magnetic stimulations in ALS, which awaits further exploration and validation in future long-term in vivo studies.
Collapse
Affiliation(s)
- Wonphorn Kandhavivorn
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
- Institute of Anatomy, Technische Universität Dresden, D-01307 Dresden, Germany
| | - Hannes Glaß
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, D-01307 Dresden, Germany;
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, D-18147 Rostock, Germany
| | - Thomas Herrmannsdörfer
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
| | - Tobias M. Böckers
- Institute of Anatomy and Cell Biology, University of Ulm, D-89081 Ulm, Germany;
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Ulm, D-89081 Ulm, Germany
| | - Marc Uhlarz
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
| | - Jonas Gronemann
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
| | - Richard H. W. Funk
- Institute of Anatomy, Technische Universität Dresden, D-01307 Dresden, Germany
- Dresden International University, D-01067 Dresden, Germany
| | - Jens Pietzsch
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany
- Faculty of Chemistry and Food Chemistry, School of Science, Technische Universität Dresden, D-01069 Dresden, Germany
| | - Arun Pal
- Dresden High Magnetic Field Laboratory (HLD-EMFL), Helmholtz-Zentrum Dresden-Rossendorf, D-01328 Dresden, Germany; (W.K.); (T.H.); (M.U.); (J.G.)
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, D-01307 Dresden, Germany;
| | - Andreas Hermann
- Division for Neurodegenerative Diseases, Department of Neurology, Technische Universität Dresden, D-01307 Dresden, Germany;
- Translational Neurodegeneration Section “Albrecht Kossel”, Department of Neurology, University Medical Center Rostock, University of Rostock, D-18147 Rostock, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE) Rostock/Greifswald, D-18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, D-18147 Rostock, Germany
| |
Collapse
|
10
|
Martin EA, Michel JC, Kissinger JS, Echeverry FA, Lin YP, O'Brien J, Pereda AE, Miller AC. Neurobeachin controls the asymmetric subcellular distribution of electrical synapse proteins. Curr Biol 2023; 33:2063-2074.e4. [PMID: 37172585 PMCID: PMC10266475 DOI: 10.1016/j.cub.2023.04.049] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 01/27/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
The subcellular positioning of synapses and their specialized molecular compositions form the fundamental basis of neural circuits. Like chemical synapses, electrical synapses are constructed from an assortment of adhesion, scaffolding, and regulatory molecules, yet little is known about how these molecules localize to specific neuronal compartments. Here, we investigate the relationship between the autism- and epilepsy-associated gene Neurobeachin, the neuronal gap junction channel-forming Connexins, and the electrical synapse scaffold ZO1. Using the zebrafish Mauthner circuit, we find Neurobeachin localizes to the electrical synapse independently of ZO1 and Connexins. By contrast, we show Neurobeachin is required postsynaptically for the robust localization of ZO1 and Connexins. We demonstrate that Neurobeachin binds ZO1 but not Connexins. Finally, we find Neurobeachin is required to restrict electrical postsynaptic proteins to dendrites, but not electrical presynaptic proteins to axons. Together, the results reveal an expanded understanding of electrical synapse molecular complexity and the hierarchical interactions required to build neuronal gap junctions. Further, these findings provide novel insight into the mechanisms by which neurons compartmentalize the localization of electrical synapse proteins and provide a cell biological mechanism for the subcellular specificity of electrical synapse formation and function.
Collapse
Affiliation(s)
- E Anne Martin
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| | | | - Jane S Kissinger
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA
| | - Fabio A Echeverry
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Ya-Ping Lin
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - John O'Brien
- Department of Ophthalmology & Visual Science, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Alberto E Pereda
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Adam C Miller
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403, USA.
| |
Collapse
|
11
|
Nadiminti SSP, Dixit SB, Ratnakaran N, Hegde S, Swords S, Grant BD, Koushika SP. Active zone protein SYD-2/Liprin- α acts downstream of LRK-1/LRRK2 to regulate polarized trafficking of synaptic vesicle precursors through clathrin adaptor protein complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.26.530068. [PMID: 36865111 PMCID: PMC9980171 DOI: 10.1101/2023.02.26.530068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
Abstract
Synaptic vesicle proteins (SVps) are thought to travel in heterogeneous carriers dependent on the motor UNC-104/KIF1A. In C. elegans neurons, we found that some SVps are transported along with lysosomal proteins by the motor UNC-104/KIF1A. LRK-1/LRRK2 and the clathrin adaptor protein complex AP-3 are critical for the separation of lysosomal proteins from SVp transport carriers. In lrk-1 mutants, both SVp carriers and SVp carriers containing lysosomal proteins are independent of UNC-104, suggesting that LRK-1 plays a key role in ensuring UNC-104-dependent transport of SVps. Additionally, LRK-1 likely acts upstream of the AP-3 complex and regulates the membrane localization of AP-3. The action of AP-3 is necessary for the active zone protein SYD-2/Liprin-α to facilitate the transport of SVp carriers. In the absence of the AP-3 complex, SYD-2/Liprin-α acts with UNC-104 to instead facilitate the transport of SVp carriers containing lysosomal proteins. We further show that the mistrafficking of SVps into the dendrite in lrk-1 and apb-3 mutants depends on SYD-2, likely by regulating the recruitment of the AP-1/UNC-101. We propose that SYD-2 acts in concert with both the AP-1 and AP-3 complexes to ensure polarized trafficking of SVps.
Collapse
Affiliation(s)
- Sravanthi S P Nadiminti
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Shirley B Dixit
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Neena Ratnakaran
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Sneha Hegde
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| | - Sierra Swords
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Barth D Grant
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra - 400 005, India
| |
Collapse
|
12
|
Cohen LD, Ziv T, Ziv NE. Synapse integrity and function: Dependence on protein synthesis and identification of potential failure points. Front Mol Neurosci 2022; 15:1038614. [PMID: 36583084 PMCID: PMC9792512 DOI: 10.3389/fnmol.2022.1038614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 12/14/2022] Open
Abstract
Synaptic integrity and function depend on myriad proteins - labile molecules with finite lifetimes that need to be continually replaced with freshly synthesized copies. Here we describe experiments designed to expose synaptic (and neuronal) properties and functions that are particularly sensitive to disruptions in protein supply, identify proteins lost early upon such disruptions, and uncover potential, yet currently underappreciated failure points. We report here that acute suppressions of protein synthesis are followed within hours by reductions in spontaneous network activity levels, impaired oxidative phosphorylation and mitochondrial function, and, importantly, destabilization and loss of both excitatory and inhibitory postsynaptic specializations. Conversely, gross impairments in presynaptic vesicle recycling occur over longer time scales (days), as does overt cell death. Proteomic analysis identified groups of potentially essential 'early-lost' proteins including regulators of synapse stability, proteins related to bioenergetics, fatty acid and lipid metabolism, and, unexpectedly, numerous proteins involved in Alzheimer's disease pathology and amyloid beta processing. Collectively, these findings point to neuronal excitability, energy supply and synaptic stability as early-occurring failure points under conditions of compromised supply of newly synthesized protein copies.
Collapse
Affiliation(s)
- Laurie D. Cohen
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel
| | - Tamar Ziv
- Smoler Proteomics Center, Lokey Interdisciplinary Center for Life Sciences & Engineering, Technion, Haifa, Israel
| | - Noam E. Ziv
- Technion Faculty of Medicine, Rappaport Institute and Network Biology Research Laboratories, Haifa, Israel,*Correspondence: Noam E. Ziv,
| |
Collapse
|
13
|
Balseiro-Gómez S, Park J, Yue Y, Ding C, Shao L, Ҫetinkaya S, Kuzoian C, Hammarlund M, Verhey KJ, Yogev S. Neurexin and frizzled intercept axonal transport at microtubule minus ends to control synapse formation. Dev Cell 2022; 57:1802-1816.e4. [PMID: 35809561 PMCID: PMC9378695 DOI: 10.1016/j.devcel.2022.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 02/01/2022] [Accepted: 06/13/2022] [Indexed: 01/29/2023]
Abstract
Synapse formation is locally determined by transmembrane proteins, yet synaptic material is synthesized remotely and undergoes processive transport in axons. How local synaptogenic signals intercept synaptic cargo in transport to promote its delivery and synapse formation is unknown. We found that the control of synaptic cargo delivery at microtubule (MT) minus ends mediates pro- and anti-synaptogenic activities of presynaptic neurexin and frizzled in C. elegans and identified the atypical kinesin VAB-8/KIF26 as a key molecule in this process. VAB-8/KIF26 levels at synaptic MT minus ends are controlled by frizzled and neurexin; loss of VAB-8 mimics neurexin mutants or frizzled hyperactivation, and its overexpression can rescue synapse loss in these backgrounds. VAB-8/KIF26 is required for the synaptic localization of other minus-end proteins and promotes the pausing of retrograde transport to allow delivery to synapses. Consistently, reducing retrograde transport rescues synapse loss in vab-8 and neurexin mutants. These results uncover a mechanistic link between synaptogenic signaling and axonal transport.
Collapse
Affiliation(s)
- Santiago Balseiro-Gómez
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Junhyun Park
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Yang Yue
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chen Ding
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Lin Shao
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Selim Ҫetinkaya
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Caroline Kuzoian
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Marc Hammarlund
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shaul Yogev
- Department of Neuroscience, Yale School of Medicine, 295 Congress Avenue, New Haven, CT 06510, USA.
| |
Collapse
|
14
|
Maillard C, Roux CJ, Charbit-Henrion F, Steffann J, Laquerriere A, Quazza F, Buisson NB. Tubulin mutations in human neurodevelopmental disorders. Semin Cell Dev Biol 2022; 137:87-95. [PMID: 35915025 DOI: 10.1016/j.semcdb.2022.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 10/16/2022]
Abstract
Mutations causing dysfunction of tubulins and microtubule-associated proteins, also known as tubulinopathies, are a group of recently described entities that lead to complex brain malformations. Anatomical and functional consequences of the disruption of tubulins include microcephaly, combined with abnormal corticogenesis due to impaired migration or lamination and abnormal growth cone dynamics of projecting and callosal axons. Key imaging features of tubulinopathies are characterized by three major patterns of malformations of cortical development (MCD): lissencephaly, microlissencephaly, and dysgyria. Additional distinctive MRI features include dysmorphism of the basal ganglia, midline commissural structure hypoplasia or agenesis, and cerebellar and brainstem hypoplasia. Tubulinopathies can be diagnosed as early as 21-24 gestational weeks using imaging and neuropathology, with possible extreme microlissencephaly with an extremely thin cortex, lissencephaly with either thick or thin/intermediate cortex, and dysgyria combined with cerebellar hypoplasia, pons hypoplasia and corpus callosum dysgenesis. More than 100 MCD-associated mutations have been reported in TUBA1A, TUBB2B, or TUBB3 genes, whereas fewer than ten are known in other genes such TUBB2A, TUBB or TUBG1. Although these mutations are scattered along the α- and β-tubulin sequences, recurrent mutations are consistently associated with almost identical cortical dysgenesis. Much of the evidence supports that these mutations alter the dynamic properties and functions of microtubules in several fashions. These include diminishing the abundance of functional tubulin heterodimers, altering GTP binding, altering longitudinal and lateral protofilament interactions, and impairing microtubule interactions with kinesin and/or dynein motors or with MAPs. In this review we discuss the recent advances in our understanding of the effects of mutations of tubulins and microtubule-associated proteins on human brain development and the pathogenesis of malformations of cortical development.
Collapse
Affiliation(s)
- Camille Maillard
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France
| | - Charles Joris Roux
- Pediatric Radiology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Fabienne Charbit-Henrion
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Julie Steffann
- Université de Paris, Sorbonne Paris Cité, Imagine INSERM UMR1163, Service de Génétique Moléculaire, Groupe hospitalier Necker-Enfants Malades, AP-HP, France
| | - Annie Laquerriere
- Pathology Laboratory, Rouen University Hospital, Rouen, France; NeoVasc Region-Inserm Team ERI28, Laboratory of Microvascular Endothelium and Neonate Brain Lesions, Institute of Research for Innovation in Biomedicine, University of Rouen, Rouen, France
| | - Floriane Quazza
- Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France
| | - Nadia Bahi Buisson
- Université de Paris, Imagine Institute, Team Genetics and Development of the Cerebral Cortex, F-75015 Paris, France; Université de Paris, Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, F-75014 Paris, France; Pediatric Neurology, Necker Enfants Malades University Hospital, Université de Paris, Paris, France.
| |
Collapse
|
15
|
Expression Analysis of Genes Involved in Transport Processes in Mice with MPTP-Induced Model of Parkinson’s Disease. Life (Basel) 2022; 12:life12050751. [PMID: 35629417 PMCID: PMC9146539 DOI: 10.3390/life12050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/30/2022] Open
Abstract
Processes of intracellular and extracellular transport play one of the most important roles in the functioning of cells. Changes to transport mechanisms in a neuron can lead to the disruption of many cellular processes and even to cell death. It was shown that disruption of the processes of vesicular, axonal, and synaptic transport can lead to a number of diseases of the central nervous system, including Parkinson’s disease (PD). Here, we studied changes in the expression of genes whose protein products are involved in the transport processes (Snca, Drd2, Rab5a, Anxa2, and Nsf) in the brain tissues and peripheral blood of mice with MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced models of PD. We detected changes in the expressions of Drd2, Anxa2, and Nsf at the earliest modeling stages. Additionally, we have identified conspicuous changes in the expression level of Anxa2 in the striatum and substantia nigra of mice with MPTP-induced models of PD in its early stages. These data clearly suggest the involvement of protein products in these genes in the earliest stages of the pathogenesis of PD.
Collapse
|
16
|
Peris L, Parato J, Qu X, Soleilhac JM, Lanté F, Kumar A, Pero ME, Martínez-Hernández J, Corrao C, Falivelli G, Payet F, Gory-Fauré S, Bosc C, Blanca Ramirez M, Sproul A, Brocard J, Di Cara B, Delagrange P, Buisson A, Goldberg Y, Moutin MJ, Bartolini F, Andrieux A. OUP accepted manuscript. Brain 2022; 145:2486-2506. [PMID: 35148384 PMCID: PMC9337816 DOI: 10.1093/brain/awab436] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/04/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Microtubules play fundamental roles in the maintenance of neuronal processes and in synaptic function and plasticity. While dynamic microtubules are mainly composed of tyrosinated tubulin, long-lived microtubules contain detyrosinated tubulin, suggesting that the tubulin tyrosination/detyrosination cycle is a key player in the maintenance of microtubule dynamics and neuronal homeostasis, conditions that go awry in neurodegenerative diseases. In the tyrosination/detyrosination cycle, the C-terminal tyrosine of α-tubulin is removed by tubulin carboxypeptidases and re-added by tubulin tyrosine ligase (TTL). Here we show that TTL heterozygous mice exhibit decreased tyrosinated microtubules, reduced dendritic spine density and both synaptic plasticity and memory deficits. We further report decreased TTL expression in sporadic and familial Alzheimer’s disease, and reduced microtubule dynamics in human neurons harbouring the familial APP-V717I mutation. Finally, we show that synapses visited by dynamic microtubules are more resistant to oligomeric amyloid-β peptide toxicity and that expression of TTL, by restoring microtubule entry into spines, suppresses the loss of synapses induced by amyloid-β peptide. Together, our results demonstrate that a balanced tyrosination/detyrosination tubulin cycle is necessary for the maintenance of synaptic plasticity, is protective against amyloid-β peptide-induced synaptic damage and that this balance is lost in Alzheimer’s disease, providing evidence that defective tubulin retyrosination may contribute to circuit dysfunction during neurodegeneration in Alzheimer’s disease.
Collapse
Affiliation(s)
- Leticia Peris
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Julie Parato
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Natural Sciences, SUNY ESC, Brooklyn, NY 11201, USA
| | - Xiaoyi Qu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jean Marc Soleilhac
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Fabien Lanté
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Atul Kumar
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Maria Elena Pero
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80137 Naples, Italy
| | - José Martínez-Hernández
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Charlotte Corrao
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Giulia Falivelli
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Floriane Payet
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Sylvie Gory-Fauré
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Christophe Bosc
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marian Blanca Ramirez
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Andrew Sproul
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jacques Brocard
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | | | | | - Alain Buisson
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Yves Goldberg
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Marie Jo Moutin
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| | - Francesca Bartolini
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CEA, CNRS, Grenoble Institut Neurosciences, 38000 Grenoble, France
| |
Collapse
|
17
|
Abstract
Axonal transport is an essential component of neuronal function. Several neurodegenerative disorders have been associated with defects in cargo transport. Thus, studying axonal transport is important to understand such disorders. Live imaging of fluorescently labeled cargo is a prevailing technique to study properties of axonal transport. C. elegans is both transparent and genetically amenable, making it an excellent model system to study axonal transport. In this chapter, we describe protocols to live image several neuronal cargo in vivo in C. elegans neurons.
Collapse
Affiliation(s)
| | - Sandhya P Koushika
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India.
| |
Collapse
|
18
|
de Oliveira KC, Camilo C, Gastaldi VD, Sant'Anna Feltrin A, Lisboa BCG, de Jesus Rodrigues de Paula V, Moretto AC, Lafer B, Hoexter MQ, Miguel EC, Maschietto M, Brentani H. Brain areas involved with obsessive-compulsive disorder present different DNA methylation modulation. BMC Genom Data 2021; 22:45. [PMID: 34717534 PMCID: PMC8557022 DOI: 10.1186/s12863-021-00993-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive actions, that presents the involvement of the cortico-striatal areas. The contribution of environmental risk factors to OCD development suggests that epigenetic mechanisms may contribute to its pathophysiology. DNA methylation changes and gene expression were evaluated in post-mortem brain tissues of the cortical (anterior cingulate gyrus and orbitofrontal cortex) and ventral striatum (nucleus accumbens, caudate nucleus and putamen) areas from eight OCD patients and eight matched controls. Results There were no differentially methylated CpG (cytosine-phosphate-guanine) sites (DMSs) in any brain area, nevertheless gene modules generated from CpG sites and protein-protein-interaction (PPI) showed enriched gene modules for all brain areas between OCD cases and controls. All brain areas but nucleus accumbens presented a predominantly hypomethylation pattern for the differentially methylated regions (DMRs). Although there were common transcriptional factors that targeted these DMRs, their targeted differentially expressed genes were different among all brain areas. The protein-protein interaction network based on methylation and gene expression data reported that all brain areas were enriched for G-protein signaling pathway, immune response, apoptosis and synapse biological processes but each brain area also presented enrichment of specific signaling pathways. Finally, OCD patients and controls did not present significant DNA methylation age differences. Conclusions DNA methylation changes in brain areas involved with OCD, especially those involved with genes related to synaptic plasticity and the immune system could mediate the action of genetic and environmental factors associated with OCD. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00993-0.
Collapse
Affiliation(s)
- Kátia Cristina de Oliveira
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil.,Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Caroline Camilo
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.
| | - Vinícius Daguano Gastaldi
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Arthur Sant'Anna Feltrin
- Center of Mathematics, Computation and Cognition, Federal University of ABC, São Bernardo do Campo, Brazil
| | - Bianca Cristina Garcia Lisboa
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Vanessa de Jesus Rodrigues de Paula
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | | | - Beny Lafer
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil
| | - Marcelo Queiroz Hoexter
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Euripedes Constantino Miguel
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | | - Helena Brentani
- Departamento & Instituto de Psiquiatria, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Rua Dr. Ovídio Pires de Campos, 785 - LIM23 (Térreo), São Paulo, 05403-010, Brazil.,Laboratório de Psicopatologia e Terapêutica Psiquiátrica (LIM23), Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
19
|
Zorov DB, Andrianova NV, Babenko VA, Bakeeva LE, Zorov SD, Zorova LD, Pevsner IB, Popkov VA, Plotnikov EY, Silachev DN. Nonphosphorylating Oxidation in Mitochondria and Related Processes. BIOCHEMISTRY (MOSCOW) 2021; 85:1570-1577. [PMID: 33705295 DOI: 10.1134/s0006297920120093] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mechanism of oxidative phosphorylation and its regulation remain one of the main problems of bioenergetics. Efficiency of the mitochondrial energization is determined by the relationship between the rate of generation of electrochemical potential of hydrogen ions and the rate of its expenditure on the synthesis of ATP and the use of ATP in endergonic reactions. Uncoupling (partial or complete), which occurs in the process of uncontrolled and controlled leakage of ions through the inner mitochondrial membrane, on the one hand leads to the decrease in the relative synthesis of ATP, and on the other, being consistent with the law of conservation of energy, leads to the formation of heat, generation of which is an essential function of the organism. In addition to increased thermogenesis, the increase of non-phosphorylating oxidation of various substrates is accompanied by the decrease in transmembrane potential, production of reactive oxygen species, and activation of oxygen consumption, water and carbon dioxide production, increase in the level of intracellular ADP and acidification of the cytosol. In this analysis, each of these factors will be considered separately for its role in regulating metabolism.
Collapse
Affiliation(s)
- D B Zorov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia. .,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - N V Andrianova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - V A Babenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - L E Bakeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - S D Zorov
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119991, Russia
| | - L D Zorova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - I B Pevsner
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - V A Popkov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| | - E Yu Plotnikov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, 119991, Russia
| | - D N Silachev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.,Kulakov National Medical Research Center of Obstetrics, Gynecology and Perinatology, Moscow, 117997, Russia
| |
Collapse
|
20
|
Puri D, Ponniah K, Biswas K, Basu A, Dey S, Lundquist EA, Ghosh-Roy A. Wnt signaling establishes the microtubule polarity in neurons through regulation of Kinesin-13. J Cell Biol 2021; 220:212396. [PMID: 34137792 DOI: 10.1083/jcb.202005080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Neuronal polarization is facilitated by the formation of axons with parallel arrays of plus-end-out and dendrites with the nonuniform orientation of microtubules. In C. elegans, the posterior lateral microtubule (PLM) neuron is bipolar with its two processes growing along the anterior-posterior axis under the guidance of Wnt signaling. Here we found that loss of the Kinesin-13 family microtubule-depolymerizing enzyme KLP-7 led to the ectopic extension of axon-like processes from the PLM cell body. Live imaging of the microtubules and axonal transport revealed mixed polarity of the microtubules in the short posterior process, which is dependent on both KLP-7 and the minus-end binding protein PTRN-1. KLP-7 is positively regulated in the posterior process by planar cell polarity components of Wnt involving rho-1/rock to induce mixed polarity of microtubules, whereas it is negatively regulated in the anterior process by the unc-73/ced-10 cascade to establish a uniform microtubule polarity. Our work elucidates how evolutionarily conserved Wnt signaling establishes the microtubule polarity in neurons through Kinesin-13.
Collapse
Affiliation(s)
- Dharmendra Puri
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Keerthana Ponniah
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Kasturi Biswas
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Atrayee Basu
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Swagata Dey
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Erik A Lundquist
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS
| | - Anindya Ghosh-Roy
- Department of Cellular and Molecular Neuroscience, National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| |
Collapse
|
21
|
Binotti B, Jahn R, Pérez-Lara Á. An overview of the synaptic vesicle lipid composition. Arch Biochem Biophys 2021; 709:108966. [PMID: 34139199 DOI: 10.1016/j.abb.2021.108966] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/10/2021] [Accepted: 06/10/2021] [Indexed: 11/29/2022]
Abstract
Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.
Collapse
Affiliation(s)
- Beyenech Binotti
- Department of Biochemistry, University of Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Reinhard Jahn
- Department of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Am Faßberg 11, 37077, Göttingen, Germany.
| | - Ángel Pérez-Lara
- Department of Physical Chemistry, University of Granada, Campus Universitario de Cartuja, 18071, Granada, Spain.
| |
Collapse
|
22
|
Fabbretti E, Antognolli G, Tongiorgi E. Amyloid-β Impairs Dendritic Trafficking of Golgi-Like Organelles in the Early Phase Preceding Neurite Atrophy: Rescue by Mirtazapine. Front Mol Neurosci 2021; 14:661728. [PMID: 34149353 PMCID: PMC8209480 DOI: 10.3389/fnmol.2021.661728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/30/2021] [Indexed: 12/20/2022] Open
Abstract
Neurite atrophy with loss of neuronal polarity is a pathological hallmark of Alzheimer's disease (AD) and other neurological disorders. While there is substantial agreement that disruption of intracellular vesicle trafficking is associated with axonal pathology in AD, comparatively less is known regarding its role in dendritic atrophy. This is a significant gap of knowledge because, unlike axons, dendrites are endowed with the complete endomembrane system comprising endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), Golgi apparatus, post-Golgi vesicles, and a recycling-degradative route. In this study, using live-imaging of pGOLT-expressing vesicles, indicative of Golgi outposts and satellites, we investigate how amyloid-β (Aβ) oligomers affect the trafficking of Golgi-like organelles in the different dendritic compartments of cultured rat hippocampal neurons. We found that short-term (4 h) treatment with Aβ led to a decrease in anterograde trafficking of Golgi vesicles in dendrites of both resting and stimulated (with 50 mM KCl) neurons. We also characterized the ability of mirtazapine, a noradrenergic and specific serotonergic tetracyclic antidepressant (NaSSA), to rescue Golgi dynamics in dendrites. Mirtazapine treatment (10 μM) increased the number and both anterograde and retrograde motility, reducing the percentage of static Golgi vesicles. Finally, mirtazapine reverted the neurite atrophy induced by 24 h treatment with Aβ oligomers, suggesting that this drug is able to counteract the effects of Aβ by improving the dendritic trafficking of Golgi-related vesicles.
Collapse
Affiliation(s)
- Elsa Fabbretti
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Enrico Tongiorgi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
23
|
Götz TWB, Puchkov D, Lysiuk V, Lützkendorf J, Nikonenko AG, Quentin C, Lehmann M, Sigrist SJ, Petzoldt AG. Rab2 regulates presynaptic precursor vesicle biogenesis at the trans-Golgi. J Cell Biol 2021; 220:211946. [PMID: 33822845 PMCID: PMC8025234 DOI: 10.1083/jcb.202006040] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 11/22/2022] Open
Abstract
Reliable delivery of presynaptic material, including active zone and synaptic vesicle proteins from neuronal somata to synaptic terminals, is prerequisite for successful synaptogenesis and neurotransmission. However, molecular mechanisms controlling the somatic assembly of presynaptic precursors remain insufficiently understood. We show here that in mutants of the small GTPase Rab2, both active zone and synaptic vesicle proteins accumulated in the neuronal cell body at the trans-Golgi and were, consequently, depleted at synaptic terminals, provoking neurotransmission deficits. Ectopic presynaptic material accumulations consisted of heterogeneous vesicles and short tubules of 40 × 60 nm, segregating in subfractions either positive for active zone or synaptic vesicle proteins and LAMP1, a lysosomal membrane protein. Genetically, Rab2 acts upstream of Arl8, a lysosomal adaptor controlling axonal export of precursors. Collectively, we identified a Golgi-associated assembly sequence of presynaptic precursor biogenesis dependent on a Rab2-regulated protein export and sorting step at the trans-Golgi.
Collapse
Affiliation(s)
- Torsten W B Götz
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Veronika Lysiuk
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Janine Lützkendorf
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Christine Quentin
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany.,NeuroCure, Charité, Berlin, Germany
| | - Astrid G Petzoldt
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| |
Collapse
|
24
|
Wong S, Weisman LS. Roles and regulation of myosin V interaction with cargo. Adv Biol Regul 2021; 79:100787. [PMID: 33541831 PMCID: PMC7920922 DOI: 10.1016/j.jbior.2021.100787] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 05/08/2023]
Abstract
A major question in cell biology is, how are organelles and large macromolecular complexes transported within a cell? Myosin V molecular motors play critical roles in the distribution of organelles, vesicles, and mRNA. Mis-localization of organelles that depend on myosin V motors underlie diseases in the skin, gut, and brain. Thus, the delivery of organelles to their proper destination is important for animal physiology and cellular function. Cargoes attach to myosin V motors via cargo specific adaptor proteins, which transiently bridge motors to their cargoes. Regulation of these adaptor proteins play key roles in the regulation of cargo transport. Emerging studies reveal that cargo adaptors play additional essential roles in the activation of myosin V, and the regulation of actin filaments. Here, we review how motor-adaptor interactions are controlled to regulate the proper loading and unloading of cargoes, as well as roles of adaptor proteins in the regulation of myosin V activity and the dynamics of actin filaments.
Collapse
Affiliation(s)
- Sara Wong
- Cell and Molecular Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States
| | - Lois S Weisman
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, United States.
| |
Collapse
|
25
|
|
26
|
Rizalar FS, Roosen DA, Haucke V. A Presynaptic Perspective on Transport and Assembly Mechanisms for Synapse Formation. Neuron 2020; 109:27-41. [PMID: 33098763 DOI: 10.1016/j.neuron.2020.09.038] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 01/01/2023]
Abstract
Neurons are highly polarized cells with a single axon and multiple dendrites derived from the cell body to form tightly associated pre- and postsynaptic compartments. As the biosynthetic machinery is largely restricted to the somatodendritic domain, the vast majority of presynaptic components are synthesized in the neuronal soma, packaged into synaptic precursor vesicles, and actively transported along the axon to sites of presynaptic biogenesis. In contrast with the significant progress that has been made in understanding synaptic transmission and processing of information at the post-synapse, comparably little is known about the formation and dynamic remodeling of the presynaptic compartment. We review here our current understanding of the mechanisms that govern the biogenesis, transport, and assembly of the key components for presynaptic neurotransmission, discuss how alterations in presynaptic assembly may impact nervous system function or lead to disease, and outline key open questions for future research.
Collapse
Affiliation(s)
- Filiz Sila Rizalar
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Dorien A Roosen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany; Faculty of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany.
| |
Collapse
|
27
|
Chou VT, Johnson SA, Van Vactor D. Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 2020; 15:11. [PMID: 32741370 PMCID: PMC7397595 DOI: 10.1186/s13064-020-00147-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/14/2020] [Indexed: 12/12/2022] Open
Abstract
Synapses are the sites of neuron-to-neuron communication and form the basis of the neural circuits that underlie all animal cognition and behavior. Chemical synapses are specialized asymmetric junctions between a presynaptic neuron and a postsynaptic target that form through a series of diverse cellular and subcellular events under the control of complex signaling networks. Once established, the synapse facilitates neurotransmission by mediating the organization and fusion of synaptic vesicles and must also retain the ability to undergo plastic changes. In recent years, synaptic genes have been implicated in a wide array of neurodevelopmental disorders; the individual and societal burdens imposed by these disorders, as well as the lack of effective therapies, motivates continued work on fundamental synapse biology. The properties and functions of the nervous system are remarkably conserved across animal phyla, and many insights into the synapses of the vertebrate central nervous system have been derived from studies of invertebrate models. A prominent model synapse is the Drosophila melanogaster larval neuromuscular junction, which bears striking similarities to the glutamatergic synapses of the vertebrate brain and spine; further advantages include the simplicity and experimental versatility of the fly, as well as its century-long history as a model organism. Here, we survey findings on the major events in synaptogenesis, including target specification, morphogenesis, and the assembly and maturation of synaptic specializations, with a emphasis on work conducted at the Drosophila neuromuscular junction.
Collapse
Affiliation(s)
- Vivian T Chou
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Seth A Johnson
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| | - David Van Vactor
- Department of Cell Biology and Program in Neuroscience, Blavatnik Institute, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
28
|
Moro A, van Woerden GM, Toonen RF, Verhage M. CaMKII controls neuromodulation via neuropeptide gene expression and axonal targeting of neuropeptide vesicles. PLoS Biol 2020; 18:e3000826. [PMID: 32776935 PMCID: PMC7447270 DOI: 10.1371/journal.pbio.3000826] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 08/25/2020] [Accepted: 07/17/2020] [Indexed: 01/03/2023] Open
Abstract
Ca2+/calmodulin-dependent kinase II (CaMKII) regulates synaptic plasticity in multiple ways, supposedly including the secretion of neuromodulators like brain-derived neurotrophic factor (BDNF). Here, we show that neuromodulator secretion is indeed reduced in mouse α- and βCaMKII-deficient (αβCaMKII double-knockout [DKO]) hippocampal neurons. However, this was not due to reduced secretion efficiency or neuromodulator vesicle transport but to 40% reduced neuromodulator levels at synapses and 50% reduced delivery of new neuromodulator vesicles to axons. αβCaMKII depletion drastically reduced neuromodulator expression. Blocking BDNF secretion or BDNF scavenging in wild-type neurons produced a similar reduction. Reduced neuromodulator expression in αβCaMKII DKO neurons was restored by active βCaMKII but not inactive βCaMKII or αCaMKII, and by CaMKII downstream effectors that promote cAMP-response element binding protein (CREB) phosphorylation. These data indicate that CaMKII regulates neuromodulation in a feedback loop coupling neuromodulator secretion to βCaMKII- and CREB-dependent neuromodulator expression and axonal targeting, but CaMKIIs are dispensable for the secretion process itself.
Collapse
Affiliation(s)
- Alessandro Moro
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, the Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, the Netherlands
| | - Geeske M. van Woerden
- Department of Neuroscience, ENCORE Expertise Center for Neurodevelopmental Disorders, Erasmus MC, Rotterdam, the Netherlands
| | - Ruud F. Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, the Netherlands
| | - Matthijs Verhage
- Department of Clinical Genetics, Center for Neurogenomics and Cognitive Research (CNCR), University Medical Center Amsterdam, Amsterdam, the Netherlands
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), Vrije Universiteit (VU) Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
29
|
Radler MR, Suber A, Spiliotis ET. Spatial control of membrane traffic in neuronal dendrites. Mol Cell Neurosci 2020; 105:103492. [PMID: 32294508 PMCID: PMC7317674 DOI: 10.1016/j.mcn.2020.103492] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/24/2020] [Accepted: 04/01/2020] [Indexed: 02/06/2023] Open
Abstract
Neuronal dendrites are highly branched and specialized compartments with distinct structures and secretory organelles (e.g., spines, Golgi outposts), and a unique cytoskeletal organization that includes microtubules of mixed polarity. Dendritic membranes are enriched with proteins, which specialize in the formation and function of the post-synaptic membrane of the neuronal synapse. How these proteins partition preferentially in dendrites, and how they traffic in a manner that is spatiotemporally accurate and regulated by synaptic activity are long-standing questions of neuronal cell biology. Recent studies have shed new insights into the spatial control of dendritic membrane traffic, revealing new classes of proteins (e.g., septins) and cytoskeleton-based mechanisms with dendrite-specific functions. Here, we review these advances by revisiting the fundamental mechanisms that control membrane traffic at the levels of protein sorting and motor-driven transport on microtubules and actin filaments. Overall, dendrites possess unique mechanisms for the spatial control of membrane traffic, which might have specialized and co-evolved with their highly arborized morphology.
Collapse
Affiliation(s)
- Megan R Radler
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Ayana Suber
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA
| | - Elias T Spiliotis
- Department of Biology, Drexel University, 3245 Chestnut St, Philadelphia, PA 19104, USA.
| |
Collapse
|
30
|
Tempes A, Weslawski J, Brzozowska A, Jaworski J. Role of dynein-dynactin complex, kinesins, motor adaptors, and their phosphorylation in dendritogenesis. J Neurochem 2020; 155:10-28. [PMID: 32196676 DOI: 10.1111/jnc.15010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/24/2020] [Accepted: 03/13/2020] [Indexed: 12/21/2022]
Abstract
One of the characteristic features of different classes of neurons that is vital for their proper functioning within neuronal networks is the shape of their dendritic arbors. To properly develop dendritic trees, neurons need to accurately control the intracellular transport of various cellular cargo (e.g., mRNA, proteins, and organelles). Microtubules and motor proteins (e.g., dynein and kinesins) that move along microtubule tracks play an essential role in cargo sorting and transport to the most distal ends of neurons. Equally important are motor adaptors, which may affect motor activity and specify cargo that is transported by the motor. Such transport undergoes very dynamic fine-tuning in response to changes in the extracellular environment and synaptic transmission. Such regulation is achieved by the phosphorylation of motors, motor adaptors, and cargo, among other mechanisms. This review focuses on the contribution of the dynein-dynactin complex, kinesins, their adaptors, and the phosphorylation of these proteins in the formation of dendritic trees by maturing neurons. We primarily review the effects of the motor activity of these proteins in dendrites on dendritogenesis. We also discuss less anticipated mechanisms that contribute to dendrite growth, such as dynein-driven axonal transport and non-motor functions of kinesins.
Collapse
Affiliation(s)
- Aleksandra Tempes
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jan Weslawski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Agnieszka Brzozowska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Warsaw, Poland
| |
Collapse
|
31
|
Mórotz GM, Glennon EB, Greig J, Lau DHW, Bhembre N, Mattedi F, Muschalik N, Noble W, Vagnoni A, Miller CCJ. Kinesin light chain-1 serine-460 phosphorylation is altered in Alzheimer's disease and regulates axonal transport and processing of the amyloid precursor protein. Acta Neuropathol Commun 2019; 7:200. [PMID: 31806024 PMCID: PMC6896704 DOI: 10.1186/s40478-019-0857-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Damage to axonal transport is an early pathogenic event in Alzheimer’s disease. The amyloid precursor protein (APP) is a key axonal transport cargo since disruption to APP transport promotes amyloidogenic processing of APP. Moreover, altered APP processing itself disrupts axonal transport. The mechanisms that regulate axonal transport of APP are therefore directly relevant to Alzheimer’s disease pathogenesis. APP is transported anterogradely through axons on kinesin-1 motors and one route for this transport involves calsyntenin-1, a type-1 membrane spanning protein that acts as a direct ligand for kinesin-1 light chains (KLCs). Thus, loss of calsyntenin-1 disrupts APP axonal transport and promotes amyloidogenic processing of APP. Phosphorylation of KLC1 on serine-460 has been shown to reduce anterograde axonal transport of calsyntenin-1 by inhibiting the KLC1-calsyntenin-1 interaction. Here we demonstrate that in Alzheimer’s disease frontal cortex, KLC1 levels are reduced and the relative levels of KLC1 serine-460 phosphorylation are increased; these changes occur relatively early in the disease process. We also show that a KLC1 serine-460 phosphomimetic mutant inhibits axonal transport of APP in both mammalian neurons in culture and in Drosophila neurons in vivo. Finally, we demonstrate that expression of the KLC1 serine-460 phosphomimetic mutant promotes amyloidogenic processing of APP. Together, these results suggest that increased KLC1 serine-460 phosphorylation contributes to Alzheimer’s disease.
Collapse
|
32
|
Stucchi R, Plucińska G, Hummel JJA, Zahavi EE, Guerra San Juan I, Klykov O, Scheltema RA, Altelaar AFM, Hoogenraad CC. Regulation of KIF1A-Driven Dense Core Vesicle Transport: Ca 2+/CaM Controls DCV Binding and Liprin-α/TANC2 Recruits DCVs to Postsynaptic Sites. Cell Rep 2019; 24:685-700. [PMID: 30021165 PMCID: PMC6077247 DOI: 10.1016/j.celrep.2018.06.071] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/13/2018] [Accepted: 06/15/2018] [Indexed: 01/21/2023] Open
Abstract
Tight regulation of neuronal transport allows for cargo binding and release at specific cellular locations. The mechanisms by which motor proteins are loaded on vesicles and how cargoes are captured at appropriate sites remain unclear. To better understand how KIF1A-driven dense core vesicle (DCV) transport is regulated, we identified the KIF1A interactome and focused on three binding partners, the calcium binding protein calmodulin (CaM) and two synaptic scaffolding proteins: liprin-α and TANC2. We showed that calcium, acting via CaM, enhances KIF1A binding to DCVs and increases vesicle motility. In contrast, liprin-α and TANC2 are not part of the KIF1A-cargo complex but capture DCVs at dendritic spines. Furthermore, we found that specific TANC2 mutations—reported in patients with different neuropsychiatric disorders—abolish the interaction with KIF1A. We propose a model in which Ca2+/CaM regulates cargo binding and liprin-α and TANC2 recruit KIF1A-transported vesicles. KIF1A directly interacts with CaM and with the scaffolds liprin-α and TANC2 KIF1A is regulated by a Ca2+/CaM-dependent mechanism, which allows for DCV loading Liprin-α and TANC2 are static PSD proteins that are not part of the KIF1A-DCV complex KIF1A-driven DCVs are recruited to dendritic spines by liprin-α and TANC2
Collapse
Affiliation(s)
- Riccardo Stucchi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Gabriela Plucińska
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Jessica J A Hummel
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Eitan E Zahavi
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Irune Guerra San Juan
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Oleg Klykov
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 Utrecht, the Netherlands
| | - A F Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands; Netherlands Proteomics Centre, Padualaan 8, 3584 Utrecht, the Netherlands
| | - Casper C Hoogenraad
- Cell Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 Utrecht, the Netherlands.
| |
Collapse
|
33
|
Lipton DM, Maeder CI, Shen K. Rapid Assembly of Presynaptic Materials behind the Growth Cone in Dopaminergic Neurons Is Mediated by Precise Regulation of Axonal Transport. Cell Rep 2019; 24:2709-2722. [PMID: 30184504 PMCID: PMC6179448 DOI: 10.1016/j.celrep.2018.07.096] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 06/21/2018] [Accepted: 07/27/2018] [Indexed: 11/15/2022] Open
Abstract
The proper assembly of neural circuits depends on the process of synaptogenesis, or the formation of synapses between partner neurons. Using the dopaminergic PDE neurons in C. elegans, we developed an in vivo system to study the earliest steps of the formation of en passant presynaptic specializations behind an extending growth cone. We find that presynaptic materials coalesce into puncta in as little as a few minutes and that both synaptic vesicle (SV) and active zone (AZ) proteins arrive nearly simultaneously at the nascent sites of synapse formation. We show that precise regulation of UNC-104/Kinesin-3 determines the distribution of SV proteins along the axon. The localization of AZ proteins to en passant puncta, however, is largely independent of the major axonal kinesins: UNC-104/Kinesin-3 and UNC-116/ Kinesin-1. Moreover, AZ proteins play a crucial role in recruiting and tethering SV precursors (SVPs). Lipton et al. explore the initial steps of synapse formation in vivo. They find that clustering of major presynaptic material occurs extremely rapidly (<5 min). Both synaptic vesicle precursors and active zone proteins accumulate simultaneously at developing puncta. Precise regulation of the Kinesin-3 activation state strongly influences the positioning of vesicles along the axon during development.
Collapse
Affiliation(s)
- David M Lipton
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA; Neurosciences Program, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Celine I Maeder
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA.
| |
Collapse
|
34
|
Miro clusters regulate ER-mitochondria contact sites and link cristae organization to the mitochondrial transport machinery. Nat Commun 2019; 10:4399. [PMID: 31562315 PMCID: PMC6764964 DOI: 10.1038/s41467-019-12382-4] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/03/2019] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial Rho (Miro) GTPases localize to the outer mitochondrial membrane and are essential machinery for the regulated trafficking of mitochondria to defined subcellular locations. However, their sub-mitochondrial localization and relationship with other critical mitochondrial complexes remains poorly understood. Here, using super-resolution fluorescence microscopy, we report that Miro proteins form nanometer-sized clusters along the mitochondrial outer membrane in association with the Mitochondrial Contact Site and Cristae Organizing System (MICOS). Using knockout mouse embryonic fibroblasts we show that Miro1 and Miro2 are required for normal mitochondrial cristae architecture and Endoplasmic Reticulum-Mitochondria Contacts Sites (ERMCS). Further, we show that Miro couples MICOS to TRAK motor protein adaptors to ensure the concerted transport of the two mitochondrial membranes and the correct distribution of cristae on the mitochondrial membrane. The Miro nanoscale organization, association with MICOS complex and regulation of ERMCS reveal new levels of control of the Miro GTPases on mitochondrial functionality. Mitochondrial cristae organization and ER-mitochondria contact sites are critical structures for cellular function. Here, the authors use super-resolution microscopy to show that Miro GTPases form clusters required for normal ER-mitochondria contact sites formation and to link cristae organization to the mitochondrial transport machinery.
Collapse
|
35
|
Gabrych DR, Lau VZ, Niwa S, Silverman MA. Going Too Far Is the Same as Falling Short †: Kinesin-3 Family Members in Hereditary Spastic Paraplegia. Front Cell Neurosci 2019; 13:419. [PMID: 31616253 PMCID: PMC6775250 DOI: 10.3389/fncel.2019.00419] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/02/2019] [Indexed: 01/18/2023] Open
Abstract
Proper intracellular trafficking is essential for neuronal development and function, and when any aspect of this process is dysregulated, the resulting "transportopathy" causes neurological disorders. Hereditary spastic paraplegias (HSPs) are a family of such diseases attributed to over 80 spastic gait genes (SPG), specifically characterized by lower extremity spasticity and weakness. Multiple genes in the trafficking pathway such as those relating to microtubule structure and function and organelle biogenesis are representative disease loci. Microtubule motor proteins, or kinesins, are also causal in HSP, specifically mutations in Kinesin-I/KIF5A (SPG10) and two kinesin-3 family members; KIF1A (SPG30) and KIF1C (SPG58). KIF1A is a motor enriched in neurons, and involved in the anterograde transport of a variety of vesicles that contribute to pre- and post-synaptic assembly, autophagic processes, and neuron survival. KIF1C is ubiquitously expressed and, in addition to anterograde cargo transport, also functions in retrograde transport between the Golgi and the endoplasmic reticulum. Only a handful of KIF1C cargos have been identified; however, many have crucial roles such as neuronal differentiation, outgrowth, plasticity and survival. HSP-related kinesin-3 mutants are characterized mainly as loss-of-function resulting in deficits in motility, regulation, and cargo binding. Gain-of-function mutants are also seen, and are characterized by increased microtubule-on rates and hypermotility. Both sets of mutations ultimately result in misdelivery of critical cargos within the neuron. This likely leads to deleterious cell biological cascades that likely underlie or contribute to HSP clinical pathology and ultimately, symptomology. Due to the paucity of histopathological or cell biological data assessing perturbations in cargo localization, it has been difficult to positively link these mutations to the outcomes seen in HSPs. Ultimately, the goal of this review is to encourage future academic and clinical efforts to focus on "transportopathies" through a cargo-centric lens.
Collapse
Affiliation(s)
- Dominik R Gabrych
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Victor Z Lau
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada.,Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
36
|
The Conserved IgSF9 Protein Borderless Regulates Axonal Transport of Presynaptic Components and Color Vision in Drosophila. J Neurosci 2019; 39:6817-6828. [PMID: 31235647 DOI: 10.1523/jneurosci.0075-19.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 05/15/2019] [Accepted: 06/20/2019] [Indexed: 11/21/2022] Open
Abstract
Normal brain function requires proper targeting of synaptic-vesicle (SV) and active-zone components for presynaptic assembly and function. Whether and how synaptogenic signals (e.g., adhesion) at axo-dendritic contact sites promote axonal transport of presynaptic components for synapse formation, however, remain unclear. In this study, we show that Borderless (Bdl), a member of the conserved IgSF9-family trans-synaptic cell adhesion molecules, plays a novel and specific role in regulating axonal transport of SV components. Loss of bdl disrupts axonal transport of SV components in photoreceptor R8 axons, but does not affect the transport of mitochondria. Genetic mosaic analysis, transgene rescue and cell-type-specific knockdown indicate that Bdl is required both presynaptically and postsynaptically for delivering SV components in R8 axons. Consistent with a role for Bdl in R8 axons, loss of bdl causes a failure of R8-dependent phototaxis response to green light. bdl interacts genetically with imac encoding for a member of the UNC-104/Imac/KIF1A-family motor proteins, and is required for proper localization of Imac in R8 presynaptic terminals. Our results support a model in which Bdl mediates specific axo-dendritic interactions in a homophilic manner, which upregulates the Imac motor in promoting axonal transport of SV components for R8 presynaptic assembly and function.SIGNIFICANCE STATEMENT Whether and how synaptogenic adhesion at axo-dendritic contact sites regulates axonal transport of presynaptic components remain unknown. Here we show for the first time that a trans-synaptic adhesion molecule mediates specific interactions at axo-dendritic contact sites, which is required for upregulating the UNC-104/Imac/KIF1A motor in promoting axonal transport of synaptic-vesicle components for presynaptic assembly and function.
Collapse
|
37
|
Hendi A, Kurashina M, Mizumoto K. Intrinsic and extrinsic mechanisms of synapse formation and specificity in C. elegans. Cell Mol Life Sci 2019; 76:2719-2738. [PMID: 31037336 PMCID: PMC11105629 DOI: 10.1007/s00018-019-03109-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/11/2019] [Accepted: 04/15/2019] [Indexed: 12/18/2022]
Abstract
Precise neuronal wiring is critical for the function of the nervous system and is ultimately determined at the level of individual synapses. Neurons integrate various intrinsic and extrinsic cues to form synapses onto their correct targets in a stereotyped manner. In the past decades, the nervous system of nematode (Caenorhabditis elegans) has provided the genetic platform to reveal the genetic and molecular mechanisms of synapse formation and specificity. In this review, we will summarize the recent discoveries in synapse formation and specificity in C. elegans.
Collapse
Affiliation(s)
- Ardalan Hendi
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mizuki Kurashina
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Kota Mizumoto
- Department of Zoology, The University of British Columbia, 2406-2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
38
|
Fawcett JW, Verhaagen J. Intrinsic Determinants of Axon Regeneration. Dev Neurobiol 2018; 78:890-897. [PMID: 30345655 DOI: 10.1002/dneu.22637] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/16/2018] [Accepted: 09/16/2018] [Indexed: 12/21/2022]
Abstract
The failure of axons to regenerate in the damaged mammalian CNS is the main impediment to functional recovery. There are many molecules and structures in the environment of the injured nervous system that can inhibit regeneration, but even when these are removed or replaced with a permissive environment, most CNS neurons exhibit little regeneration of their axons. This contrasts with the extensive and vigorous axon growth that may occur when embryonic neurons are transplanted into the adult CNS. In the peripheral nervous system, the axons usually respond to axotomy with a vigorous regenerative response accompanied by a regenerative program of gene expression, usually referred to as the regeneration-associated gene (RAG) program. These different responses to axotomy in the mature and immature CNS and the PNS lead to the concept of the intrinsic regenerative response of axons. Analysis of the many mechanisms and issues that affect the intrinsic regenerative response is the topic of this special issue of Developmental Neurobiology. The review articles highlight the control of expression of growth and regeneration-associated genes, emphasizing the role of epigenetic mechanisms. The reviews also discuss changes within axons that lead to the developmental loss of regenerative ability. This is caused by changes in axonal transport and trafficking, in the cytoskeleton and in signaling pathways.
Collapse
Affiliation(s)
- James W Fawcett
- John van Geest Centre for Brain Repair, Department Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, United Kingdom
| | - Joost Verhaagen
- Department of Regeneration of Sensorimotor Systems, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, 1105 BA, The Netherlands
| |
Collapse
|
39
|
Muskelin Coordinates PrP C Lysosome versus Exosome Targeting and Impacts Prion Disease Progression. Neuron 2018; 99:1155-1169.e9. [PMID: 30174115 DOI: 10.1016/j.neuron.2018.08.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 07/04/2018] [Accepted: 08/06/2018] [Indexed: 01/01/2023]
Abstract
Cellular prion protein (PrPC) modulates cell adhesion and signaling in the brain. Conversion to its infectious isoform causes neurodegeneration, including Creutzfeldt-Jakob disease in humans. PrPC undergoes rapid plasma membrane turnover and extracellular release via exosomes. However, the intracellular transport of PrPC and its potential impact on prion disease progression is barely understood. Here we identify critical components of PrPC trafficking that also link intracellular and extracellular PrPC turnover. PrPC associates with muskelin, dynein, and KIF5C at transport vesicles. Notably, muskelin coordinates bidirectional PrPC transport and facilitates lysosomal degradation over exosomal PrPC release. Muskelin gene knockout consequently causes PrPC accumulation at the neuronal surface and on secreted exosomes. Moreover, prion disease onset is accelerated following injection of pathogenic prions into muskelin knockout mice. Our data identify an essential checkpoint in PrPC turnover. They propose a novel connection between neuronal intracellular lysosome targeting and extracellular exosome trafficking, relevant to the pathogenesis of neurodegenerative conditions.
Collapse
|
40
|
Beckers A, Van Dyck A, Bollaerts I, Van houcke J, Lefevere E, Andries L, Agostinone J, Van Hove I, Di Polo A, Lemmens K, Moons L. An Antagonistic Axon-Dendrite Interplay Enables Efficient Neuronal Repair in the Adult Zebrafish Central Nervous System. Mol Neurobiol 2018; 56:3175-3192. [DOI: 10.1007/s12035-018-1292-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 07/31/2018] [Indexed: 11/29/2022]
|
41
|
Klinman E, Tokito M, Holzbaur ELF. CDK5-dependent activation of dynein in the axon initial segment regulates polarized cargo transport in neurons. Traffic 2018; 18:808-824. [PMID: 28941293 DOI: 10.1111/tra.12529] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 02/03/2023]
Abstract
The unique polarization of neurons depends on selective sorting of axonal and somatodendritic cargos to their correct compartments. Axodendritic sorting and filtering occurs within the axon initial segment (AIS). However, the underlying molecular mechanisms responsible for this filter are not well understood. Here, we show that local activation of the neuronal-specific kinase cyclin-dependent kinase 5 (CDK5) is required to maintain AIS integrity, as depletion or inhibition of CDK5 induces disordered microtubule polarity and loss of AIS cytoskeletal structure. Furthermore, CDK5-dependent phosphorylation of the dynein regulator Ndel1 is required for proper re-routing of mislocalized somatodendritic cargo out of the AIS; inhibition of this pathway induces profound mis-sorting defects. While inhibition of the CDK5-Ndel1-Lis1-dynein pathway alters both axonal microtubule polarity and axodendritic sorting, we found that these defects occur on distinct timescales; brief inhibition of dynein disrupts axonal cargo sorting before loss of microtubule polarity becomes evident. Together, these studies identify CDK5 as a master upstream regulator of trafficking in vertebrate neurons, required for both AIS microtubule organization and polarized dynein-dependent sorting of axodendritic cargos, and support an ongoing and essential role for dynein at the AIS.
Collapse
Affiliation(s)
- Eva Klinman
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mariko Tokito
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Erika L F Holzbaur
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
42
|
Schrod N, Vanhecke D, Laugks U, Stein V, Fukuda Y, Schaffer M, Baumeister W, Lucic V. Pleomorphic linkers as ubiquitous structural organizers of vesicles in axons. PLoS One 2018; 13:e0197886. [PMID: 29864134 PMCID: PMC5986143 DOI: 10.1371/journal.pone.0197886] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 05/10/2018] [Indexed: 11/30/2022] Open
Abstract
Many cellular processes depend on a precise structural organization of molecular components. Here, we established that neurons grown in culture provide a suitable system for in situ structural investigations of cellular structures by cryo-electron tomography, a method that allows high resolution, three-dimensional imaging of fully hydrated, vitrified cellular samples. A higher level of detail of cellular components present in our images allowed us to quantitatively characterize presynaptic and cytoskeletal organization, as well as structures involved in axonal transport and endocytosis. In this way we provide a structural framework into which information from other methods need to fit. Importantly, we show that short pleomorphic linkers (tethers and connectors) extensively interconnect different types of spherical vesicles and other lipid membranes in neurons imaged in a close-to-native state. These linkers likely serve to organize and precisely position vesicles involved in endocytosis, axonal transport and synaptic release. Hence, structural interactions via short linkers may serve as ubiquitous vesicle organizers in neuronal cells.
Collapse
Affiliation(s)
- Nikolas Schrod
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Dimitri Vanhecke
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Ulrike Laugks
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Valentin Stein
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | - Yoshiyuki Fukuda
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Miroslava Schaffer
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Wolfgang Baumeister
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| | - Vladan Lucic
- Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Germany
| |
Collapse
|
43
|
Ostroff LE, Watson DJ, Cao G, Parker PH, Smith H, Harris KM. Shifting patterns of polyribosome accumulation at synapses over the course of hippocampal long-term potentiation. Hippocampus 2018; 28:416-430. [PMID: 29575288 DOI: 10.1002/hipo.22841] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 02/28/2018] [Accepted: 03/11/2018] [Indexed: 11/09/2022]
Abstract
Hippocampal long-term potentiation (LTP) is a cellular memory mechanism. For LTP to endure, new protein synthesis is required immediately after induction and some of these proteins must be delivered to specific, presumably potentiated, synapses. Local synthesis in dendrites could rapidly provide new proteins to synapses, but the spatial distribution of translation following induction of LTP is not known. Here, we quantified polyribosomes, the sites of local protein synthesis, in CA1 stratum radiatum dendrites and spines from postnatal day 15 rats. Hippocampal slices were rapidly fixed at 5, 30, or 120 min after LTP induction by theta-burst stimulation (TBS). Dendrites were reconstructed through serial section electron microscopy from comparable regions near the TBS or control electrodes in the same slice, and in unstimulated hippocampus that was perfusion-fixed in vivo. At 5 min after induction of LTP, polyribosomes were elevated in dendritic shafts and spines, especially near spine bases and in spine heads. At 30 min, polyribosomes remained elevated only in spine bases. At 120 min, both spine bases and spine necks had elevated polyribosomes. Polyribosomes accumulated in spines with larger synapses at 5 and 30 min, but not at 120 min. Small spines, meanwhile, proliferated dramatically by 120 min, but these largely lacked polyribosomes. The number of ribosomes per polyribosome is variable and may reflect differences in translation regulation. In dendritic spines, but not shafts, there were fewer ribosomes per polyribosome in the slice conditions relative to in vivo, but this recovered transiently in the 5 min LTP condition. Overall, our data show that LTP induces a rapid, transient upregulation of large polyribosomes in larger spines, and a persistent upregulation of small polyribosomes in the bases and necks of small spines. This is consistent with local translation supporting enlargement of potentiated synapses within minutes of LTP induction.
Collapse
Affiliation(s)
- Linnaea E Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, Connecticut 06269
| | - Deborah J Watson
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Guan Cao
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Patrick H Parker
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Heather Smith
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| | - Kristen M Harris
- Department of Neuroscience, Center for Learning and Memory, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78731
| |
Collapse
|
44
|
Tortosa E, Hoogenraad CC. Polarized trafficking: the palmitoylation cycle distributes cytoplasmic proteins to distinct neuronal compartments. Curr Opin Cell Biol 2018; 50:64-71. [DOI: 10.1016/j.ceb.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
|
45
|
López-Doménech G, Covill-Cooke C, Ivankovic D, Halff EF, Sheehan DF, Norkett R, Birsa N, Kittler JT. Miro proteins coordinate microtubule- and actin-dependent mitochondrial transport and distribution. EMBO J 2018; 37:321-336. [PMID: 29311115 PMCID: PMC5793800 DOI: 10.15252/embj.201696380] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 11/24/2017] [Accepted: 12/04/2017] [Indexed: 11/28/2022] Open
Abstract
In the current model of mitochondrial trafficking, Miro1 and Miro2 Rho-GTPases regulate mitochondrial transport along microtubules by linking mitochondria to kinesin and dynein motors. By generating Miro1/2 double-knockout mouse embryos and single- and double-knockout embryonic fibroblasts, we demonstrate the essential and non-redundant roles of Miro proteins for embryonic development and subcellular mitochondrial distribution. Unexpectedly, the TRAK1 and TRAK2 motor protein adaptors can still localise to the outer mitochondrial membrane to drive anterograde mitochondrial motility in Miro1/2 double-knockout cells. In contrast, we show that TRAK2-mediated retrograde mitochondrial transport is Miro1-dependent. Interestingly, we find that Miro is critical for recruiting and stabilising the mitochondrial myosin Myo19 on the mitochondria for coupling mitochondria to the actin cytoskeleton. Moreover, Miro depletion during PINK1/Parkin-dependent mitophagy can also drive a loss of mitochondrial Myo19 upon mitochondrial damage. Finally, aberrant positioning of mitochondria in Miro1/2 double-knockout cells leads to disruption of correct mitochondrial segregation during mitosis. Thus, Miro proteins can fine-tune actin- and tubulin-dependent mitochondrial motility and positioning, to regulate key cellular functions such as cell proliferation.
Collapse
Affiliation(s)
| | - Christian Covill-Cooke
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Davor Ivankovic
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Els F Halff
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - David F Sheehan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Rosalind Norkett
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Nicol Birsa
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Josef T Kittler
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
46
|
Oeding SJ, Majstrowicz K, Hu XP, Schwarz V, Freitag A, Honnert U, Nikolaus P, Bähler M. Identification of Miro as a mitochondrial receptor for myosin XIX. J Cell Sci 2018; 131:jcs.219469. [DOI: 10.1242/jcs.219469] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 08/02/2018] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial distribution in cells is critical for cellular function and proper inheritance during cell division. In mammalian cells, mitochondria are transported predominantly along microtubules by kinesin and dynein motors that bind indirectly via TRAK1/2 to outer mitochondrial membrane proteins Miro1/2. Here, using proximity labeling, we identified Miro1/2 as potential binding partners of myosin XIX (Myo19). Interaction studies show that Miro1 binds directly to a C-terminal fragment of the Myo19 tail region and that Miro recruits the Myo19 tail in vivo. This recruitment is regulated by the nucleotide-state of the N-terminal Rho-like GTPase domain of Miro. Notably, Myo19 protein stability in cells depends on its association with Miro. Downregulation of Miro or overexpression of the adapter proteins TRAK1 and TRAK2 caused a reduction in Myo19 protein levels. Finally, Myo19 regulates the subcellular distribution of mitochondria. Downregulation, as well as overexpression, of Myo19 induces perinuclear collapse of mitochondria, phenocopying the loss of kinesin KIF5, dynein or their mitochondrial receptor Miro. These results suggest that Miro coordinates microtubule- and actin-based mitochondrial movement.
Collapse
Affiliation(s)
- Stefanie J. Oeding
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Katarzyna Majstrowicz
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Xiao-Ping Hu
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Vera Schwarz
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Angelika Freitag
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Ulrike Honnert
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Petra Nikolaus
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms University Münster, Germany
| |
Collapse
|
47
|
Niwa S, Tao L, Lu SY, Liew GM, Feng W, Nachury MV, Shen K. BORC Regulates the Axonal Transport of Synaptic Vesicle Precursors by Activating ARL-8. Curr Biol 2017; 27:2569-2578.e4. [PMID: 28823680 DOI: 10.1016/j.cub.2017.07.013] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/09/2017] [Accepted: 07/06/2017] [Indexed: 12/23/2022]
Abstract
Axonal transport of synaptic vesicle precursors (SVPs) is essential for synapse development and function. The conserved ARF-like small GTPase ARL-8 is localized to SVPs and directly activates UNC-104/KIF1A, the axonal-transport kinesin for SVPs in C. elegans. It is not clear how ARL-8 is activated in this process. Here we show that part of the BLOC-1-related complex (BORC), previously shown to regulate lysosomal transport, is required to recruit and activate ARL-8 on SVPs. We found mutations in six BORC subunits-blos-1/BLOS1, blos-2/BLOS2, snpn-1/Snapin, sam-4/Myrlysin, blos-7/Lyspersin, and blos-9/MEF2BNB-cause defects in axonal transport of SVPs, leading to ectopic accumulation of synaptic vesicles in the proximal axon. This phenotype is suppressed by constitutively active arl-8 or unc-104 mutants. Furthermore, SAM-4/Myrlysin, a subunit of BORC, promotes the GDP-to-GTP exchange of ARL-8 in vitro and recruits ARL-8 onto SVPs in vivo. Thus, BORC regulates the axonal transport of synaptic materials and synapse formation by controlling the nucleotide state of ARL-8. Interestingly, the other two subunits of BORC essential for lysosomal transport, kxd-1/KXD1 and blos-8/Diaskedin, are not required for the SVP transport, suggesting distinct subunit requirements for lysosomal and SVP trafficking.
Collapse
Affiliation(s)
- Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences and Graduate School of Life Sciences, Tohoku University, Aramaki Aza Aoba 6-3, Aoba-ku, Sendai, Miyagi 980-8578, Japan.
| | - Li Tao
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | - Sharon Y Lu
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA
| | - Gerald M Liew
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA
| | - Wei Feng
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China
| | - Maxence V Nachury
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, Stanford, CA 94305, USA.
| | - Kang Shen
- Howard Hughes Medical Institute, Department of Biology, Stanford University, 385 Serra Mall, Stanford, CA 94305, USA; National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, 15 Datun Road, Chaoyang District, Beijing 100101, China.
| |
Collapse
|
48
|
Koseki H, Donegá M, Lam BY, Petrova V, van Erp S, Yeo GS, Kwok JC, Ffrench-Constant C, Eva R, Fawcett JW. Selective rab11 transport and the intrinsic regenerative ability of CNS axons. eLife 2017; 6:26956. [PMID: 28829741 PMCID: PMC5779230 DOI: 10.7554/elife.26956] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 08/07/2017] [Indexed: 12/12/2022] Open
Abstract
Neurons lose intrinsic axon regenerative ability with maturation, but the mechanism remains unclear. Using an in-vitro laser axotomy model, we show a progressive decline in the ability of cut CNS axons to form a new growth cone and then elongate. Failure of regeneration was associated with increased retraction after axotomy. Transportation into axons becomes selective with maturation; we hypothesized that selective exclusion of molecules needed for growth may contribute to regeneration decline. With neuronal maturity rab11 vesicles (which carry many molecules involved in axon growth) became selectively targeted to the somatodendritic compartment and excluded from axons by predominant retrograde transport However, on overexpression rab11 was mistrafficked into proximal axons, and these axons showed less retraction and enhanced regeneration after axotomy. These results suggest that the decline of intrinsic axon regenerative ability is associated with selective exclusion of key molecules, and that manipulation of transport can enhance regeneration. The nerves in the brain and spinal cord can be damaged by trauma, stroke and other conditions. Damage to these nerve fibres can destroy the connections they form with each other, which may lead to paralysis, loss of sensation and loss of body control. If we could stimulate the regeneration and reconnection of the damaged nerve fibres then neurological function could be restored. However, although embryonic nerve fibres can regenerate when they are transplanted into the adult central nervous system, this regenerative ability appears to be lost as the nerve fibres mature. To investigate when and why nerve fibres lose the ability to regenerate, Koseki et al. first developed a tissue culture assay in which individual nerve fibres were cut with a laser and imaged for several hours to track their regeneration (or failure to regenerate). The results demonstrate that nerve fibres from the central nervous system progressively lose the ability to grow and regenerate as they mature. To investigate why mature nerve fibres cannot regenerate, Koseki et al. measured whether nerve fibres can transport some of the molecules needed for growth and regeneration to sites of damage. This showed that the compartments in which some key growth molecules are transported become excluded from mature nerve fibres. These compartments are marked by a protein called rab11, and Koseki et al. found that forcing rab11 back into mature nerve fibres restored their ability to regenerate. There is still a lot of work needed before these findings can lead to a new regeneration treatment for patients, but it is a crucial step forwards. Furthermore, the assay developed by Koseki et al. could be used to develop and test such treatments.
Collapse
Affiliation(s)
- Hiroaki Koseki
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Matteo Donegá
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Brian Yh Lam
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Veselina Petrova
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Susan van Erp
- MRC Centre of Regenerative Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Giles Sh Yeo
- MRC Metabolic Diseases Unit, Metabolic Research Laboratories, University of Cambridge, Cambridge, United Kingdom
| | - Jessica Cf Kwok
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Richard Eva
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - James W Fawcett
- John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, United Kingdom.,Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom.,Centre of Reconstructive Neuroscience, Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
49
|
Robinson BJ, Stanisavljevic B, Silverman MA, Scalettar BA. Stochastic Subcellular Organization of Dense-Core Vesicles Revealed by Point Pattern Analysis. Biophys J 2017; 111:852-863. [PMID: 27558728 DOI: 10.1016/j.bpj.2016.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 12/20/2022] Open
Abstract
Dense-core vesicles (DCVs) are regulated secretory organelles found in many types of neurons. In neurons of the hippocampus, their cargo includes proteins that mediate several pivotal processes, including differentiation and synaptic plasticity. Motivated by interest in DCV distribution and its impact on cargo action, we have used fluorescence microscopy and statistical analysis to develop a quantitative model of the subcellular organization of DCVs in hippocampal neurons that are spontaneously active (their most prevalent state). We also have tested the functionally motivated hypothesis that these organelles are synaptically enriched. Variance-to-mean ratio, frequency distribution, and Moran's autocorrelation analyses reveal that DCV distribution along shafts, and within synapses, follows Poisson statistics, establishing that stochastically dictated organization sustains cargo function. Occupancy in boutons exceeds that at nearby extrasynaptic axonal sites by approximately threefold, revealing significant local presynaptic enrichment. Widespread stochastic organization is consistent with the emerging functional importance of synaptically and extrasynaptically localized DCVs. Presynaptic enrichment is consistent with the established importance of protecting presynaptic sites from depletion of DCV cargo. These results enhance understanding of the link between DCV organization and mechanisms of cargo action, and they reinforce the emerging theme that randomness is a prevalent aspect of synaptic organization and composition.
Collapse
Affiliation(s)
- Benjamin J Robinson
- Department of Physics, Lewis & Clark College, Portland, Oregon; Department of Mathematics, Lewis & Clark College, Portland, Oregon
| | - Bogdan Stanisavljevic
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Michael A Silverman
- Department of Biological Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bethe A Scalettar
- Department of Physics, Lewis & Clark College, Portland, Oregon; Program in Biochemistry and Molecular Biology, Lewis & Clark College, Portland, Oregon.
| |
Collapse
|
50
|
Golgi trafficking defects in postnatal microcephaly: The evidence for “Golgipathies”. Prog Neurobiol 2017; 153:46-63. [DOI: 10.1016/j.pneurobio.2017.03.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 02/22/2017] [Accepted: 03/29/2017] [Indexed: 12/17/2022]
|