1
|
Marraudino M, Nasini S, Porte C, Bonaldo B, Macchi E, Ponti G, Keller M, Gotti S. Infant mice fed soy-based formulas exhibit alterations in anxiety-like behaviours and the 5-HT system. Toxicology 2025; 511:154035. [PMID: 39708922 DOI: 10.1016/j.tox.2024.154035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Genistein (GEN) is a phytoestrogen with oestrogen-like activity found in many plants. Classified as an endocrine disruptor, GEN is potentially hazardous, particularly during developmental stages. It induces alterations in anxious behaviour, fertility, and energy metabolism, alongside modifications in specific brain circuits. As the serotonin (5-HT) system is critically involved in many of these behaviours, we hypothesised that some of GEN's behavioural effects might results from disruptions in the development of the 5-HT system. To test this, we examined the impact of early postnatal exposure to GEN at a dose of 50 mg/kg body weight, mimicking the exposure level of infants consuming soy-based formulas, on anxiety-related behaviours and 5-HT neuronal populations in the raphe nucleus. Male and female CD1 mice were treated orally with GEN or a vehicle during the first 8 days of life. On postnatal day 60, one cohort underwent anxiety behaviour testing, while another was euthanised for immunohistochemical analysis. Behavioural testing revealed that male control mice exhibited higher anxiety levels than females, whereas GEN exposure produced sex-specific effects: anxiolytic in males and anxiogenic in females. Immunohistochemical analysis of the raphe nuclei demonstrated significant alterations in 5-HT neuronal numbers in GEN-treated animals. Specifically, GEN exposure affected dorsal and median raphe 5-HT neuronal populations in a sexually dimorphic manner, with females showing a reduction and males an increase in 5-HT neurones compared to controls. These findings indicate that the regulation of anxiety-related behaviours and the 5-HT system are key targets of early phytoestrogen exposure at levels comparable to those in soy-based infant formulas.
Collapse
Affiliation(s)
- M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy
| | - S Nasini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Largo Meneghetti 2, Padua, PD 35131, Italy
| | - C Porte
- UMR Physiologie de la Reproduction et des Comportements, Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly 37380, France
| | - B Bonaldo
- Department of Health Sciences and Research Center on Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale (UPO), Novara, Italy
| | - E Macchi
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, Grugliasco, Torino, Italy
| | - G Ponti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy
| | - M Keller
- UMR Physiologie de la Reproduction et des Comportements, Institut National de Recherche pour l'agriculture, l'Alimentation et l'Environnement (INRAE), Centre National de la Recherche Scientifique (CNRS), Institut Français du Cheval et de l'Equitation (IFCE), Université de Tours, Nouzilly 37380, France
| | - S Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, Orbassano, Torino 10043, Italy; Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Via Cherasco 15, Torino 10126, Italy.
| |
Collapse
|
2
|
Wang M, Hu S, Fu X, Zhou H, Yang S, Yang C. Neurosteroids: A potential target for neuropsychiatric disorders. J Steroid Biochem Mol Biol 2024; 239:106485. [PMID: 38369032 DOI: 10.1016/j.jsbmb.2024.106485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/20/2024]
Abstract
Neurosteroids are steroids produced by endocrine glands and subsequently entering the brain, and also include steroids synthesis in the brain. It has been widely known that neurosteroids influence many neurological functions, including neuronal signaling, synaptic adaptations, and neuroprotective effects. In addition, abnormality in the synthesis and function of neurosteroids has been closely linked to neuropsychiatric disorders, such as Alzheimer's disease (AD), schizophrenia (SZ), and epilepsy. Given their important role in brain pathophysiology and disorders, neurosteroids offer potential therapeutic targets for a variety of neuropsychiatric diseases, and that therapeutic strategies targeting neurosteroids probably exert beneficial effects. We therefore summarized the role of neurosteroids in brain physiology and neuropsychiatric disorders, and introduced the recent findings of synthetic neurosteroid analogues for potential treatment of neuropsychiatric disorders, thereby providing insights for further research in the future.
Collapse
Affiliation(s)
- Mengyu Wang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Suwan Hu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xinghuo Fu
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huixuan Zhou
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Siqi Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
3
|
Dickinson SY, Kelly DA, Padilla SL, Bergan JF. From Reductionism Toward Integration: Understanding How Social Behavior Emerges From Integrated Circuits. Front Integr Neurosci 2022; 16:862437. [PMID: 35431824 PMCID: PMC9010670 DOI: 10.3389/fnint.2022.862437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Complex social behaviors are emergent properties of the brain's interconnected and overlapping neural networks. Questions aimed at understanding how brain circuits produce specific and appropriate behaviors have changed over the past half century, shifting from studies of gross anatomical and behavioral associations, to manipulating and monitoring precisely targeted cell types. This technical progression has enabled increasingly deep insights into the regulation of perception and behavior with remarkable precision. The capacity of reductionist approaches to identify the function of isolated circuits is undeniable but many behaviors require rapid integration of diverse inputs. This review examines progress toward understanding integrative social circuits and focuses on specific nodes of the social behavior network including the medial amygdala, ventromedial hypothalamus (VMH) and medial preoptic area of the hypothalamus (MPOA) as examples of broad integration between multiple interwoven brain circuits. Our understanding of mechanisms for producing social behavior has deepened in conjunction with advances in technologies for visualizing and manipulating specific neurons and, here, we consider emerging strategies to address brain circuit function in the context of integrative anatomy.
Collapse
Affiliation(s)
- Sarah Y. Dickinson
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
| | - Diane A. Kelly
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| | - Stephanie L. Padilla
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, United States
| | - Joseph F. Bergan
- Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
4
|
Medger K, Bennett NC, Chimimba CT, Oosthuizen MK, Mikkelsen JD, Coen CW. Analysis of gonadotrophin-releasing hormone-1 and kisspeptin neuronal systems in the nonphotoregulated seasonally breeding eastern rock elephant-shrew (Elephantulus myurus). J Comp Neurol 2018; 526:2388-2405. [PMID: 30004584 DOI: 10.1002/cne.24498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 06/08/2018] [Accepted: 06/19/2018] [Indexed: 12/18/2022]
Abstract
Of the 18 sub-Saharan elephant-shrew species, only eastern rock elephant-shrews reproduce seasonally throughout their distribution, a process seemingly independent of photoperiod. The present study characterizes gonadal status and location/intensity of gonadotrophin-releasing hormone-1 (GnRH-1) and kisspeptin immunoreactivities in this polyovulating species in the breeding and nonbreeding seasons. GnRH-1-immunoreactive (ir) cell bodies are predominantly in the medial septum, diagonal band, and medial preoptic area; processes are generally sparse except in the external median eminence. Kisspeptin-ir cell bodies are detected only within the arcuate nucleus; the density of processes is generally low, except in the septohypothalamic nucleus, ventromedial bed nucleus of the stria terminalis, arcuate nucleus, and internal and external median eminence. Kisspeptin-ir processes are negligible at locations containing GnRH-1-ir cell bodies. The external median eminence is the only site with conspicuously overlapping distributions of the respective immunoreactivities and, accordingly, a putative site for kisspeptin's regulation of GnRH-1 release in this species. In the nonbreeding season in males, there is an increase in the rostral population of GnRH-1-ir cell bodies and density of GnRH-1-ir processes in the median eminence. In both sexes, the breeding season is associated with increased kisspeptin-ir process density in the rostral periventricular area of the third ventricle and arcuate nucleus; at the latter site, this is positively correlated with gonadal mass. Cross-species comparisons lead us to hypothesize differential mechanisms within these peptidergic systems: that increased GnRH-1 immunoreactivity during the nonbreeding season reflects increased accumulation with reduced release; that increased kisspeptin immunoreactivity during the breeding season reflects increased synthesis with increased release.
Collapse
Affiliation(s)
- Katarina Medger
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Nigel C Bennett
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Christian T Chimimba
- Department of Zoology and Entomology, DST-NRF Centre of Excellence for Invasion Biology (CIB), University of Pretoria, Pretoria, South Africa
| | - Maria K Oosthuizen
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Jens D Mikkelsen
- Neurobiology Research Unit, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Clive W Coen
- Reproductive Neurobiology, Division of Women's Health, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Morford JJ, Wu S, Mauvais-Jarvis F. The impact of androgen actions in neurons on metabolic health and disease. Mol Cell Endocrinol 2018; 465:92-102. [PMID: 28882554 PMCID: PMC5835167 DOI: 10.1016/j.mce.2017.09.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 08/25/2017] [Accepted: 09/01/2017] [Indexed: 01/03/2023]
Abstract
The male hormone testosterone exerts different effects on glucose and energy homeostasis in males and females. Testosterone deficiency predisposes males to visceral obesity, insulin resistance and type 2 diabetes. However, testosterone excess predisposes females to similar metabolic dysfunction. Here, we review the effects of testosterone actions in the central nervous system on metabolic function in males and females. In particular, we highlight changes within the hypothalamus that control glucose and energy homeostasis. We distinguish the organizational effects of testosterone in the programming of neural circuitry during development from the activational effects of testosterone during adulthood. Finally, we explore potential sites where androgen might be acting to impact metabolism within the central nervous system.
Collapse
Affiliation(s)
- Jamie J Morford
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA
| | - Sheng Wu
- Department of Pediatrics and Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Franck Mauvais-Jarvis
- Department of Medicine, Section of Endocrinology and Metabolism, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
6
|
Kranz GS, Hahn A, Kaufmann U, Tik M, Ganger S, Seiger R, Hummer A, Windischberger C, Kasper S, Lanzenberger R. Effects of testosterone treatment on hypothalamic neuroplasticity in female-to-male transgender individuals. Brain Struct Funct 2018; 223:321-328. [PMID: 28819863 PMCID: PMC5772168 DOI: 10.1007/s00429-017-1494-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/04/2017] [Indexed: 11/26/2022]
Abstract
Diffusion-weighted imaging (DWI) is used to measure gray matter tissue density and white matter fiber organization/directionality. Recent studies show that DWI also allows for assessing neuroplastic adaptations in the human hypothalamus. To this end, we investigated a potential influence of testosterone replacement therapy on hypothalamic microstructure in female-to-male (FtM) transgender individuals. 25 FtMs were measured at baseline, 4 weeks, and 4 months past treatment start and compared to 25 female and male controls. Our results show androgenization-related reductions in mean diffusivity in the lateral hypothalamus. Significant reductions were observed unilaterally after 1 month and bilaterally after 4 months of testosterone treatment. Moreover, treatment induced increases in free androgen index and bioavailable testosterone were significantly associated with the magnitude of reductions in mean diffusivity. These findings imply microstructural plasticity and potentially related changes in neural activity by testosterone in the adult human hypothalamus and suggest that testosterone replacement therapy in FtMs changes hypothalamic microstructure towards male proportions.
Collapse
Affiliation(s)
- Georg S Kranz
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Andreas Hahn
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Ulrike Kaufmann
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Martin Tik
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Sebastian Ganger
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - René Seiger
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Allan Hummer
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Christian Windischberger
- MR Centre of Excellence, Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria
| | - Siegfried Kasper
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Rupert Lanzenberger
- Neuroimaging Labs (NIL) PET, MRI, EEG and Chemical Lab, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
7
|
Boghozian R, McKenzie BA, Saito LB, Mehta N, Branton WG, Lu J, Baker GB, Noorbakhsh F, Power C. Suppressed oligodendrocyte steroidogenesis in multiple sclerosis: Implications for regulation of neuroinflammation. Glia 2017; 65:1590-1606. [PMID: 28707358 DOI: 10.1002/glia.23179] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 05/26/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system (CNS). Neurosteroids are reported to exert anti-inflammatory effects in several neurological disorders. We investigated the expression and actions of the neurosteroid, dehydroepiandrosterone (DHEA), and its more stable 3β-sulphated ester, DHEA-S, in MS and associated experimental models. CNS tissues from patients with MS and animals with experimental autoimmune encephalomyelitis (EAE) displayed reduced DHEA concentrations, accompanied by diminished expression of the DHEA-synthesizing enzyme CYP17A1 in oligodendrocytes (ODCs), in association with increased expression of inflammatory genes including interferon (IFN)-γ and interleukin (IL)-1β. CYP17A1 was expressed variably in different human neural cell types but IFN-γ exposure selectively reduced CYP17A1 detection in ODCs. DHEA-S treatment reduced IL-1β and -6 release from activated human myeloid cells with minimal effect on lymphocyte viability. Animals with EAE receiving DHEA-S treatment showed reduced Il1b and Ifng transcript levels in spinal cord compared to vehicle-treated animals with EAE. DHEA-S treatment also preserved myelin basic protein immunoreactivity and reduced axonal loss in animals with EAE, relative to vehicle-treated EAE animals. Neurobehavioral deficits were reduced in DHEA-S-treated EAE animals compared with vehicle-treated animals with EAE. Thus, CYP17A1 expression in ODCs and its product DHEA were downregulated in the CNS during inflammatory demyelination while DHEA-S provision suppressed neuroinflammation, demyelination, and axonal injury that was evident as improved neurobehavioral performance. These findings indicate that DHEA production is an immunoregulatory pathway within the CNS and its restoration represents a novel treatment approach for neuroinflammatory diseases.
Collapse
Affiliation(s)
- Roobina Boghozian
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada.,Department of Medical Microbiology & Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Brienne A McKenzie
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - Leina B Saito
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - Ninad Mehta
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada
| | - William G Branton
- Department of, Medicine, University of Alberta Edmonton, Alberta, Canada
| | - JianQiang Lu
- Department of Laboratory Medicine & Pathology, University of Alberta Edmonton, Alberta, Canada
| | - Glen B Baker
- Depatment of Psychiatry, University of Alberta Edmonton, Alberta, Canada
| | - Farshid Noorbakhsh
- Department of Medical Microbiology & Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Christopher Power
- Department of Medical Microbiology & Immunology, University of Alberta Edmonton, Alberta, Canada.,Department of, Medicine, University of Alberta Edmonton, Alberta, Canada.,Depatment of Psychiatry, University of Alberta Edmonton, Alberta, Canada
| |
Collapse
|
8
|
Moore AM, Campbell RE. Polycystic ovary syndrome: Understanding the role of the brain. Front Neuroendocrinol 2017; 46:1-14. [PMID: 28551304 DOI: 10.1016/j.yfrne.2017.05.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/19/2017] [Accepted: 05/20/2017] [Indexed: 01/09/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder and the leading cause of anovulatory infertility. Characterised by hyperandrogenism, menstrual dysfunction and polycystic ovaries, PCOS is a broad-spectrum disorder unlikely to stem from a single common origin. Although commonly considered an ovarian disease, the brain is now a prime suspect in both the ontogeny and pathology of PCOS. We discuss here the neuroendocrine impairments present in PCOS that implicate involvement of the brain and review evidence gained from pre-clinical models of the syndrome about the specific brain circuitry involved. In particular, we focus on the impact that developmental androgen excess and adult hyperandrogenemia have in programming and regulating brain circuits important in the central regulation of fertility. The studies discussed here provide compelling support for the importance of the brain in PCOS ontogeny and pathophysiology and highlight the need for a better understanding of the underlying mechanisms involved.
Collapse
Affiliation(s)
- Aleisha M Moore
- Department of Neurobiology and Anatomical Sciences, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, Biomedical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
9
|
Tovar Bohórquez MO, Mechaly AS, Hughes LC, Campanella D, Ortí G, Canosa LF, Somoza GM. Kisspeptin system in pejerrey fish (Odontesthes bonariensis). Characterization and gene expression pattern during early developmental stages. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:146-156. [DOI: 10.1016/j.cbpa.2016.11.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/05/2023]
|
10
|
Ponti G, Rodriguez-Gomez A, Farinetti A, Marraudino M, Filice F, Foglio B, Sciacca G, Panzica GC, Gotti S. Early postnatal genistein administration permanently affects nitrergic and vasopressinergic systems in a sex-specific way. Neuroscience 2017; 346:203-215. [PMID: 28131623 DOI: 10.1016/j.neuroscience.2017.01.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/09/2017] [Accepted: 01/12/2017] [Indexed: 12/01/2022]
Abstract
Genistein (GEN) is a natural xenoestrogen (isoflavonoid) that may interfere with the development of estrogen-sensitive neural circuits. Due to the large and increasing use of soy-based formulas for babies (characterized by a high content of GEN), there are some concerns that this could result in an impairment of some estrogen-sensitive neural circuits and behaviors. In a previous study, we demonstrated that its oral administration to female mice during late pregnancy and early lactation induced a significant decrease of nitric oxide synthase-positive cells in the amygdala of their male offspring. In the present study, we have used a different experimental protocol mimicking, in mice, the direct precocious exposure to GEN. Mice pups of both sexes were fed either with oil, estradiol or GEN from birth to postnatal day 8. Nitric oxide synthase and vasopressin neural systems were analyzed in adult mice. Interestingly, we observed that GEN effect was time specific (when compared to our previous study), sex specific, and not always comparable to the effects of estradiol. This last observation suggests that GEN may act through different intracellular pathways. Present results indicate that the effect of natural xenoestrogens on the development of the brain may be highly variable: a plethora of neuronal circuits may be affected depending on sex, time of exposure, intracellular pathway involved, and target cells. This raises concern on the possible long-term effects of the use of soy-based formulas for babies, which may be currently underestimated.
Collapse
Affiliation(s)
- G Ponti
- Department of Veterinary Sciences, Largo Braccini 2, 10095 Grugliasco (TO), University of Torino, Torino, Italy; Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy.
| | - A Rodriguez-Gomez
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - A Farinetti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - F Filice
- Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - B Foglio
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - G Sciacca
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| | - S Gotti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole, 10 - 10043 Orbassano (TO), Torino, Italy; Laboratory of Neuroendocrinology, Department of Neuroscience, Via Cherasco 15, 10126-University of Torino, Torino, Italy
| |
Collapse
|
11
|
Cao J, Dorris DM, Meitzen J. Neonatal Masculinization Blocks Increased Excitatory Synaptic Input in Female Rat Nucleus Accumbens Core. Endocrinology 2016; 157:3181-96. [PMID: 27285859 PMCID: PMC4967116 DOI: 10.1210/en.2016-1160] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/04/2016] [Indexed: 01/18/2023]
Abstract
Steroid sex hormones and genetic sex regulate the phenotypes of motivated behaviors and relevant disorders. Most studies seeking to elucidate the underlying neuroendocrine mechanisms have focused on how 17β-estradiol modulates the role of dopamine in striatal brain regions, which express membrane-associated estrogen receptors. Dopamine action is an important component of striatal function, but excitatory synaptic neurotransmission has also emerged as a key striatal substrate and target of estradiol action. Here, we focus on excitatory synaptic input onto medium spiny neurons (MSNs) in the striatal region nucleus accumbens core (AcbC). In adult AcbC, miniature excitatory postsynaptic current (mEPSC) frequency is increased in female compared with male MSNs. We tested whether increased mEPSC frequency in female MSNs exists before puberty, whether this increased excitability is due to the absence of estradiol or testosterone during the early developmental critical period, and whether it is accompanied by stable neuron intrinsic membrane properties. We found that mEPSC frequency is increased in female compared with male MSNs before puberty. Increased mEPSC frequency in female MSNs is abolished after neonatal estradiol or testosterone exposure. MSN intrinsic membrane properties did not differ by sex. These data indicate that neonatal masculinization via estradiol and/or testosterone action is sufficient for down-regulating excitatory synaptic input onto MSNs. We conclude that excitatory synaptic input onto AcbC MSNs is organized long before adulthood via steroid sex hormone action, providing new insight into a mechanism by which sex differences in motivated behavior and other AbcC functions may be generated or compromised.
Collapse
Affiliation(s)
- Jinyan Cao
- Department of Biological Sciences (J.C., D.M.D., J.M.), North Carolina State University, Raleigh, North Carolina 27695; W.M. Keck Center for Behavioral Biology (J.C., J.M.), North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment (J.M.), North Carolina State University, Raleigh, North Carolina 27695; and Comparative Medicine Institute (J.M.), North Carolina State University, Raleigh, North Carolina 27695
| | - David M Dorris
- Department of Biological Sciences (J.C., D.M.D., J.M.), North Carolina State University, Raleigh, North Carolina 27695; W.M. Keck Center for Behavioral Biology (J.C., J.M.), North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment (J.M.), North Carolina State University, Raleigh, North Carolina 27695; and Comparative Medicine Institute (J.M.), North Carolina State University, Raleigh, North Carolina 27695
| | - John Meitzen
- Department of Biological Sciences (J.C., D.M.D., J.M.), North Carolina State University, Raleigh, North Carolina 27695; W.M. Keck Center for Behavioral Biology (J.C., J.M.), North Carolina State University, Raleigh, North Carolina 27695; Center for Human Health and the Environment (J.M.), North Carolina State University, Raleigh, North Carolina 27695; and Comparative Medicine Institute (J.M.), North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
12
|
Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27306650 DOI: 10.1111/jne.12402] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022]
Abstract
When steroids, such as pregnenolone, progesterone and oestrogen, are synthesised de novo in neural tissues, they are more specifically referred to as neurosteroids. These neurosteroids bind specific receptors to promote essential brain functions. Pregnenolone supports cognition and protects mouse hippocampal cells against glutamate and amyloid peptide-induced cell death. Progesterone promotes myelination, spinogenesis, synaptogenesis, neuronal survival and dendritic growth. Allopregnanolone increases hippocampal neurogenesis, neuronal survival and cognitive functions. Oestrogens, such as oestradiol, regulate synaptic plasticity, reproductive behaviour, aggressive behaviour and learning. In addition, neurosteroids are neuroprotective in animal models of Alzheimer's disease, Parkinson's disease, brain injury and ageing. Using in situ hybridisation and/or immunohistochemistry, steroidogenic enzymes, including cytochrome P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase, cytochrome P450arom, steroid 5α-reductase and 3α-hydroxysteroid dehydrogenase, have been detected in numerous brain regions, including the hippocampus, hypothalamus and cerebral cortex. In the present review, we summarise some of the studies related to the synthesis and function of oestrogens and progestagens in the central nervous system.
Collapse
Affiliation(s)
- M F Rossetti
- Departamento de Bioquímica Clínica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Salud y Ambiente del Litoral, CONICET-Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M J Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M A Holschbach
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - R Cabrera
- Instituto de Investigaciones Biomédicas, INBIOMED-IMBECU-CONICET, Universidad de Mendoza, Mendoza, Argentina
| |
Collapse
|
13
|
Moore AM, Campbell RE. The neuroendocrine genesis of polycystic ovary syndrome: A role for arcuate nucleus GABA neurons. J Steroid Biochem Mol Biol 2016; 160:106-17. [PMID: 26455490 DOI: 10.1016/j.jsbmb.2015.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/25/2015] [Accepted: 10/02/2015] [Indexed: 12/12/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent and distressing endocrine disorder lacking a clearly identified aetiology. Despite its name, PCOS may result from impaired neuronal circuits in the brain that regulate steroid hormone feedback to the hypothalamo-pituitary-gonadal axis. Ovarian function in all mammals is controlled by the gonadotropin-releasing hormone (GnRH) neurons, a small group of neurons that reside in the pre-optic area of the hypothalamus. GnRH neurons drive the secretion of the gonadotropins from the pituitary gland that subsequently control ovarian function, including the production of gonadal steroid hormones. These hormones, in turn, provide important feedback signals to GnRH neurons via a hormone sensitive neuronal network in the brain. In many women with PCOS this feedback pathway is impaired, resulting in the downstream consequences of the syndrome. This review will explore what is currently known from clinical and animal studies about the identity, relative contribution and significance of the individual neuronal components within the GnRH neuronal network that contribute to the pathophysiology of PCOS. We review evidence for the specific neuronal pathways hypothesised to mediate progesterone negative feedback to GnRH neurons, and discuss the potential mechanisms by which androgens may evoke disruptions in these circuits at different developmental time points. Finally, this review discusses data providing compelling support for disordered progesterone-sensitive GABAergic input to GnRH neurons, originating specifically within the arcuate nucleus in prenatal androgen induced forms of PCOS.
Collapse
Affiliation(s)
- Aleisha M Moore
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9054, New Zealand.
| |
Collapse
|
14
|
Gonadal Maturation Changes Chemotaxis Behavior and Neural Processing in the Olfactory Circuit of Caenorhabditis elegans. Curr Biol 2016; 26:1522-1531. [DOI: 10.1016/j.cub.2016.04.058] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/28/2016] [Accepted: 04/20/2016] [Indexed: 01/07/2023]
|
15
|
Yip SH, Boehm U, Herbison AE, Campbell RE. Conditional Viral Tract Tracing Delineates the Projections of the Distinct Kisspeptin Neuron Populations to Gonadotropin-Releasing Hormone (GnRH) Neurons in the Mouse. Endocrinology 2015; 156:2582-94. [PMID: 25856430 DOI: 10.1210/en.2015-1131] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kisspeptin neurons play an essential role in the regulation of fertility through direct regulation of the GnRH neurons. However, the relative contributions of the two functionally distinct kisspeptin neuron subpopulations to this critical regulation are not fully understood. Here we analyzed the specific projection patterns of kisspeptin neurons originating from either the rostral periventricular nucleus of the third ventricle (RP3V) or the arcuate nucleus (ARN) using a cell-specific, viral-mediated tract-tracing approach. We stereotaxically injected a Cre-dependent recombinant adenovirus encoding farnesylated enhanced green fluorescent protein into the ARN or RP3V of adult male and female mice expressing Cre recombinase in kisspeptin neurons. Fibers from ARN kisspeptin neurons projected widely; however, we did not find any evidence for direct contact with GnRH neuron somata or proximal dendrites in either sex. In contrast, we identified RP3V kisspeptin fibers in close contact with GnRH neuron somata and dendrites in both sexes. Fibers originating from both the RP3V and ARN were observed in close contact with distal GnRH neuron processes in the ARN and in the lateral and internal aspects of the median eminence. Furthermore, GnRH nerve terminals were found in close contact with the proximal dendrites of ARN kisspeptin neurons in the ARN, and ARN kisspeptin fibers were found contacting RP3V kisspeptin neurons in both sexes. Together these data delineate selective zones of kisspeptin neuron inputs to GnRH neurons and demonstrate complex interconnections between the distinct kisspeptin populations and GnRH neurons.
Collapse
Affiliation(s)
- Siew Hoong Yip
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Ulrich Boehm
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Allan E Herbison
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand 9054
| | - Rebecca E Campbell
- Centre for Neuroendocrinology and Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand 9054
| |
Collapse
|
16
|
Maruska KP. Social Transitions Cause Rapid Behavioral and Neuroendocrine Changes. Integr Comp Biol 2015; 55:294-306. [PMID: 26037297 DOI: 10.1093/icb/icv057] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In species that form dominance hierarchies, there are often opportunities for low-ranking individuals to challenge high-ranking ones, resulting in a rise or fall in social rank. How does an animal rapidly detect, process, and then respond to these social transitions? This article explores and summarizes how these social transitions can rapidly (within 24 h) impact an individual's behavior, physiology, and brain, using the African cichlid fish, Astatotilapia burtoni, as a model. Male A. burtoni form hierarchies in which a few brightly-colored dominant males defend territories and spawn with females, while the remaining males are subordinate, more drab-colored, do not hold a territory, and have minimal opportunities for reproduction. These social phenotypes are plastic and reversible, meaning that individual males may switch between dominant and subordinate status multiple times within a lifetime. When the social environment is manipulated to create males that either ascend (subordinate to dominant) or descend (dominant to subordinate) in rank, there are rapid changes in behavior, circulating hormones, and levels of gene expression in the brain that reflect the direction of transition. For example, within minutes, males ascending in status show bright coloration, a distinct eye-bar, increased dominance behaviors, activation of brain nuclei in the social behavior network, and higher levels of sex steroids in the plasma. Ascending males also show rapid changes in levels of neuropeptide and steroid receptors in the brain, as well as in the pituitary and testes. To further examine hormone-behavior relationships in this species during rapid social ascent, the present study also measured levels of testosterone, 11-ketotestosterone, estradiol, progestins, and cortisol in the plasma during the first week of social ascent and tested for correlations with behavior. Plasma levels of all steroids were rapidly increased at 30 min after social ascent, but were not correlated with behavior during the initial rise in rank, suggesting that behavior is dissociated from endocrine status. These changes during social ascent are then compared with our current knowledge about males descending in rank, who rapidly show faded coloration, decreased dominance behaviors, increased subordinate behaviors, and higher circulating levels of cortisol. Collectively, this work highlights how the perception of similar social cues that are opposite in value are rapidly translated into adaptive behavioral and neuroendocrine changes that promote survival and reproductive fitness. Finally, future directions are proposed to better understand the mechanisms that govern these rapid changes in social position.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg, Baton Rouge, LA 70803, USA
| |
Collapse
|
17
|
Abstract
Sex differences in brain function underlie robust differences between males and females in both normal and disease states. Although alternative mechanisms exist, sexual differentiation of the male mammalian brain is initiated predominantly by testosterone secreted by the testes during the perinatal period. Despite considerable advances in understanding how testosterone and its metabolite estradiol sexually differentiate the brain, little is known about the mechanism that generates the male-specific perinatal testosterone surge. In mice, we show that a male-specific activation of GnRH neurons occurs 0-2 h following birth and that this correlates with the male-specific surge of testosterone occurring up to 5 h after birth. The necessity of GnRH signaling for the sexually differentiating effects of the perinatal testosterone surge was demonstrated by the persistence of female-like brain characteristics in adult male, GnRH receptor knock-out mice. Kisspeptin neurons have recently been identified to be potent, direct activators of GnRH neurons. We demonstrate that a population of kisspeptin neurons appears in the preoptic area of only the male between E19 and P1. The importance of kisspeptin inputs to GnRH neurons for the process of sexual differentiation was demonstrated by the lack of a normal neonatal testosterone surge, and disordered brain sexual differentiation of male mice in which the kisspeptin receptor was deleted selectively from GnRH neurons. These observations demonstrate the necessity of perinatal GnRH signaling for driving brain sexual differentiation and indicate that kisspeptin inputs to GnRH neurons are essential for this process to occur.
Collapse
|
18
|
Yeo SH, Clarkson J, Herbison AE. Kisspeptin-gpr54 signaling at the GnRH neuron is necessary for negative feedback regulation of luteinizing hormone secretion in female mice. Neuroendocrinology 2014; 100:191-7. [PMID: 25301053 DOI: 10.1159/000368608] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/10/2014] [Indexed: 11/19/2022]
Abstract
Kisspeptin-Gpr54 signaling is critical for regulating the activity of gonadotropin-releasing hormone (GnRH) neurons in mammals. Previous studies have shown that the negative feedback mechanism is disrupted in global Gpr54-null mutants. The present investigation aimed to determine (1) if a lack of cyclical estrogen exposure of the GnRH neuronal network in the life-long hypogonadotropic Gpr54-null mice contributed to their failed negative feedback mechanism and (2) the cellular location of disrupted kisspeptin-Gpr54 signaling. Plasma luteinizing hormone (LH) concentrations were determined in individual adult female mice when intact, following ovariectomy (OVX) and in response to an acute injection of 17β-estradiol (E2). Control mice exhibited a characteristic rise in LH after OVX that was suppressed by acute E2. Global Gpr54-null mice failed to exhibit any post-OVX increase in LH or response to E2. Adult female global Gpr54-null mice given a cyclical regimen of estradiol for three cycles prior to OVX also failed to exhibit any post-OVX increase in LH or response to E2. To address whether Gpr54 signaling at the GnRH neuron itself was necessary for the failed response to OVX in global Gpr54-null animals, adult female mice with a GnRH neuron-selective deletion of Gpr54 were examined. These mice also failed to exhibit any post-OVX increase in LH or response to E2. These experiments demonstrate defective negative feedback in global Gpr54-null mice that cannot be attributed to a lack of prior exposure of the GnRH neuronal network to cyclical estradiol. The absence of negative feedback in GnRH neuron-selective Gpr54-null mice demonstrates the necessity of direct kisspeptin signaling at the GnRH neuron for this mechanism to occur.
Collapse
Affiliation(s)
- Shel-Hwa Yeo
- Centre for Neuroendocrinology, Department of Physiology, School of Medical Sciences, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|