1
|
Mani S, Hurley P, van Schaik A, Monk T. The Leaky Integrate-and-Fire Neuron Is a Change-Point Detector for Compound Poisson Processes. Neural Comput 2025; 37:926-956. [PMID: 40112139 DOI: 10.1162/neco_a_01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/02/2025] [Indexed: 03/22/2025]
Abstract
Animal nervous systems can detect changes in their environments within hundredths of a second. They do so by discerning abrupt shifts in sensory neural activity. Many neuroscience studies have employed change-point detection (CPD) algorithms to estimate such abrupt shifts in neural activity. But very few studies have suggested that spiking neurons themselves are online change-point detectors. We show that a leaky integrate-and-fire (LIF) neuron implements an online CPD algorithm for a compound Poisson process. We quantify the CPD performance of an LIF neuron under various regions of its parameter space. We show that CPD can be a recursive algorithm where the output of one algorithm can be input to another. Then we show that a simple feedforward network of LIF neurons can quickly and reliably detect very small changes in input spiking rates. For example, our network detects a 5% change in input rates within 20 ms on average, and false-positive detections are extremely rare. In a rigorous statistical context, we interpret the salient features of the LIF neuron: its membrane potential, synaptic weight, time constant, resting potential, action potentials, and threshold. Our results potentially generalize beyond the LIF neuron model and its associated CPD problem. If spiking neurons perform change-point detection on their inputs, then the electrophysiological properties of their membranes must be related to the spiking statistics of their inputs. We demonstrate one example of this relationship for the LIF neuron and compound Poisson processes and suggest how to test this hypothesis more broadly. Maybe neurons are not noisy devices whose action potentials must be averaged over time or populations. Instead, neurons might implement sophisticated, optimal, and online statistical algorithms on their inputs.
Collapse
Affiliation(s)
- Shivaram Mani
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| | - Paul Hurley
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| | - Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| |
Collapse
|
2
|
Mattera A, Alfieri V, Granato G, Baldassarre G. Chaotic recurrent neural networks for brain modelling: A review. Neural Netw 2025; 184:107079. [PMID: 39756119 DOI: 10.1016/j.neunet.2024.107079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/25/2024] [Accepted: 12/19/2024] [Indexed: 01/07/2025]
Abstract
Even in the absence of external stimuli, the brain is spontaneously active. Indeed, most cortical activity is internally generated by recurrence. Both theoretical and experimental studies suggest that chaotic dynamics characterize this spontaneous activity. While the precise function of brain chaotic activity is still puzzling, we know that chaos confers many advantages. From a computational perspective, chaos enhances the complexity of network dynamics. From a behavioural point of view, chaotic activity could generate the variability required for exploration. Furthermore, information storage and transfer are maximized at the critical border between order and chaos. Despite these benefits, many computational brain models avoid incorporating spontaneous chaotic activity due to the challenges it poses for learning algorithms. In recent years, however, multiple approaches have been proposed to overcome this limitation. As a result, many different algorithms have been developed, initially within the reservoir computing paradigm. Over time, the field has evolved to increase the biological plausibility and performance of the algorithms, sometimes going beyond the reservoir computing framework. In this review article, we examine the computational benefits of chaos and the unique properties of chaotic recurrent neural networks, with a particular focus on those typically utilized in reservoir computing. We also provide a detailed analysis of the algorithms designed to train chaotic RNNs, tracing their historical evolution and highlighting key milestones in their development. Finally, we explore the applications and limitations of chaotic RNNs for brain modelling, consider their potential broader impacts beyond neuroscience, and outline promising directions for future research.
Collapse
Affiliation(s)
- Andrea Mattera
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy.
| | - Valerio Alfieri
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy; International School of Advanced Studies, Center for Neuroscience, University of Camerino, Via Gentile III Da Varano, 62032, Camerino, Italy
| | - Giovanni Granato
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| | - Gianluca Baldassarre
- Institute of Cognitive Sciences and Technology, National Research Council, Via Romagnosi 18a, I-00196, Rome, Italy
| |
Collapse
|
3
|
Chou CN, Kim R, Arend LA, Yang YY, Mensh BD, Shim WM, Perich MG, Chung S. Geometry Linked to Untangling Efficiency Reveals Structure and Computation in Neural Populations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.26.582157. [PMID: 40236228 PMCID: PMC11996410 DOI: 10.1101/2024.02.26.582157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
From an eagle spotting a fish in shimmering water to a scientist extracting patterns from noisy data, many cognitive tasks require untangling overlapping signals. Neural circuits achieve this by transforming complex sensory inputs into distinct, separable representations that guide behavior. Data-visualization techniques convey the geometry of these transformations, and decoding approaches quantify performance efficiency. However, we lack a framework for linking these two key aspects. Here we address this gap by introducing a data-driven analysis framework, which we call Geometry Linked to Untangling Efficiency (GLUE) with manifold capacity theory, that links changes in the geometrical properties of neural activity patterns to representational untangling at the computational level. We applied GLUE to over seven neuroscience datasets-spanning multiple organisms, tasks, and recording techniques-and found that task-relevant representations untangle in many domains, including along the cortical hierarchy, through learning, and over the course of intrinsic neural dynamics. Furthermore, GLUE can characterize the underlying geometric mechanisms of representational untangling, and explain how it facilitates efficient and robust computation. Beyond neuroscience, GLUE provides a powerful framework for quantifying information organization in data-intensive fields such as structural genomics and interpretable AI, where analyzing high-dimensional representations remains a fundamental challenge.
Collapse
|
4
|
Blanco Malerba S, Pieropan M, Burak Y, Azeredo da Silveira R. Random compressed coding with neurons. Cell Rep 2025; 44:115412. [PMID: 40111998 DOI: 10.1016/j.celrep.2025.115412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 11/20/2023] [Accepted: 02/18/2025] [Indexed: 03/22/2025] Open
Abstract
Classical models of efficient coding in neurons assume simple mean responses-"tuning curves"- such as bell-shaped or monotonic functions of a stimulus feature. Real neurons, however, can be more complex: grid cells, for example, exhibit periodic responses that impart the neural population code with high accuracy. But do highly accurate codes require fine-tuning of the response properties? We address this question with the use of a simple model: a population of neurons with random, spatially extended, and irregular tuning curves. Irregularity enhances the local resolution of the code but gives rise to catastrophic, global errors. For optimal smoothness of the tuning curves, when local and global errors balance out, the neural population compresses information about a continuous stimulus into a low-dimensional representation, and the resulting distributed code achieves exponential accuracy. An analysis of recordings from monkey motor cortex points to such "compressed efficient coding." Efficient codes do not require a finely tuned design-they emerge robustly from irregularity or randomness.
Collapse
Affiliation(s)
- Simone Blanco Malerba
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute for Neural Information Processing, Center for Molecular Neurobiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Mirko Pieropan
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France
| | - Yoram Burak
- Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 9190401, Israel; Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem 9190401, Israel
| | - Rava Azeredo da Silveira
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland; Faculty of Science, University of Basel, 4056 Basel, Switzerland; Department of Economics, University of Zurich, 8001 Zurich, Switzerland.
| |
Collapse
|
5
|
Mill RD, Cole MW. Dynamically shifting from compositional to conjunctive brain representations supports cognitive task learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.27.546751. [PMID: 37425922 PMCID: PMC10327096 DOI: 10.1101/2023.06.27.546751] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
During cognitive task learning, neural representations must be rapidly constructed for novel task performance, then optimized for robust practiced task performance. How the geometry of neural representations changes to enable this transition from novel to practiced performance remains unknown. We hypothesized that practice involves a shift from compositional representations (task-general activity patterns that can be flexibly reused across tasks) to conjunctive representations (task-specific activity patterns specialized for the current task). Functional MRI during learning of multiple complex tasks substantiated this dynamic shift from compositional to conjunctive representations, which was associated with reduced cross-task interference (via pattern separation) and behavioral improvement. Further, we found that conjunctions originated in subcortex (hippocampus and cerebellum) and slowly spread to cortex, extending multiple memory systems theories to encompass cognitive task learning. The strengthening of conjunctive representations hence serves as a computational signature of learning, reflecting cortical-subcortical dynamics that optimize task representations in the human brain. Highlights Learning shifts multi-task representations from compositional to conjunctive formatsCortical conjunctions uniquely associate with improved behavior and pattern separationThese conjunctions strengthen over separated learning events and index switch costsSubcortical regions are critical for cross-region binding of task rule information.
Collapse
|
6
|
O'Sullivan M. Localisation of function in the brain: a rethink. Pract Neurol 2025; 25:109-115. [PMID: 39288985 DOI: 10.1136/pn-2023-003773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
A modular view of brain function dominates the teaching of medical students and clinical psychologists and is implicit in day-to-day clinical practice. This view glosses over a long-standing debate. The extent of one-to-one mappings between region and function remains a controversial topic. For the cortex, localisation of function versus 'cerebral equipotentiality' was debated less than 150 years ago, and traces of this debate remain active in systems neuroscience today. The advent of functional brain imaging led to an explosion of evidence on localisation of function studied in vivo, and a gold rush to map an ever-increasing range of 'functions'. Rapid growth in knowledge was accompanied, to some extent, by a flourishing neuromythology. There are currently few clinical applications of brain mapping techniques, but new areas are emerging. An understanding of the central debate on functional localisation will bring a more nuanced view of problems encountered in clinical practice.
Collapse
Affiliation(s)
- Michael O'Sullivan
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
7
|
Omidi S, Berdichevsky Y. Pathway-like Activation of 3D Neuronal Constructs with an Optical Interface. BIOSENSORS 2025; 15:179. [PMID: 40136976 PMCID: PMC11940104 DOI: 10.3390/bios15030179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Three-dimensional neuronal organoids, spheroids, and tissue mimics are increasingly used to model cognitive processes in vitro. These 3D constructs are also used to model the effects of neurological and psychiatric disorders and to perform computational tasks. The brain's complex network of neurons is activated via feedforward sensory pathways. Therefore, an interface to 3D constructs that models sensory pathway-like inputs is desirable. In this work, an optical interface for 3D neuronal constructs was developed. Dendrites and axons extended by cortical neurons within the 3D constructs were guided into microchannel-confined bundles. These neurite bundles were then optogenetically stimulated, and evoked responses were evaluated by calcium imaging. Optical stimulation was designed to deliver distinct input patterns to the network in the 3D construct, mimicking sensory pathway inputs to cortical areas in the intact brain. Responses of the network to the stimulation possessed features of neuronal population code, including separability by input pattern and mixed selectivity of individual neurons. This work represents the first demonstration of a pathway-like activation of networks in 3D constructs. Another innovation of this work is the development of an all-optical interface to 3D neuronal constructs, which does not require the use of expensive microelectrode arrays. This interface may enable the use of 3D neuronal constructs for investigations into cortical information processing. It may also enable studies into the effects of neurodegenerative or psychiatric disorders on cortical computation.
Collapse
Affiliation(s)
- Saeed Omidi
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
| | - Yevgeny Berdichevsky
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA;
- Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
8
|
Biswas S, Emond MR, Philip GS, Jontes JD. Canalization of circuit assembly by δ-protocadherins in the zebrafish optic tectum. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.29.635523. [PMID: 39975130 PMCID: PMC11838265 DOI: 10.1101/2025.01.29.635523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neurons are precisely and reproducibly assembled into complex networks during development. How genes collaborate to guide this assembly remains an enduring mystery. In humans, large numbers of genes have been implicated in neurodevelopmental disorders that are characterized by variable and overlapping phenotypes. The complexity of the brain, the large number of genes involved and the heterogeneity of the disorders makes understanding the relationships between genes, development and neural function challenging. Waddington suggested the concept of canalization to describe the role of genes in shaping developmental trajectories that lead to precise outcomes1. Here, we show that members of the δ-protocadherin family of homophilic adhesion molecules, Protocadherin-19 and Protocadherin-17, contribute to developmental canalization of visual circuit assembly in the zebrafish. We provided oriented visual stimuli to zebrafish larvae and performed in vivo 2-photon calcium imaging in the optic tectum. The latent dynamics resulting from the population activity were confined to a conserved manifold. Among different wild type larvae, these dynamics were remarkably similar, allowing quantitative comparisons within and among genotypes. In both Protocadherin-19 and Protocadherin-17 mutants, the latent dynamics diverged from wild type. Importantly, these deviations could be averaged away, suggesting that the loss of these adhesion molecules leads to stochastic phenotypic variability and introduced disruptions of circuit organization that varied among individual mutants. These results provide a specific, quantitative example of canalization in the development of a vertebrate neural circuit, and suggest a framework for understanding the observed variability in complex brain disorders.
Collapse
Affiliation(s)
- Sayantanee Biswas
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| | - Michelle R. Emond
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| | - Grace S. Philip
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| | - James D. Jontes
- Department of Biological Chemistry and Pharmacology Ohio State University Wexner College of Medicine Columbus, OH 43210
| |
Collapse
|
9
|
Srinath R, Ni AM, Marucci C, Cohen MR, Brainard DH. Orthogonal neural representations support perceptual judgments of natural stimuli. Sci Rep 2025; 15:5316. [PMID: 39939679 PMCID: PMC11821992 DOI: 10.1038/s41598-025-88910-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
In natural visually guided behavior, observers must separate relevant information from a barrage of irrelevant information. Many studies have investigated the neural underpinnings of this ability using artificial stimuli presented on blank backgrounds. Natural images, however, contain task-irrelevant background elements that might interfere with the perception of object features. Recent studies suggest that visual feature estimation can be modeled through the linear decoding of task-relevant information from visual cortex. So, if the representations of task-relevant and irrelevant features are not orthogonal in the neural population, then variation in the task-irrelevant features would impair task performance. We tested this hypothesis using human psychophysics and monkey neurophysiology combined with parametrically variable naturalistic stimuli. We demonstrate that (1) the neural representation of one feature (the position of an object) in visual area V4 is orthogonal to those of several background features, (2) the ability of human observers to precisely judge object position was largely unaffected by those background features, and (3) many features of the object and the background (and of objects from a separate stimulus set) are orthogonally represented in V4 neural population responses. Our observations are consistent with the hypothesis that orthogonal neural representations can support stable perception of object features despite the richness of natural visual scenes.
Collapse
Affiliation(s)
- Ramanujan Srinath
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - Amy M Ni
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Claire Marucci
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Marlene R Cohen
- Department of Neurobiology and Neuroscience Institute, The University of Chicago, Chicago, IL, 60637, USA
| | - David H Brainard
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
10
|
Nigro M, Tortorelli LS, Garad M, Zlebnik NE, Yang H. Locus coeruleus modulation of single-cell representation and population dynamics in the mouse prefrontal cortex during attentional switching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.13.571356. [PMID: 38168151 PMCID: PMC10760137 DOI: 10.1101/2023.12.13.571356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Behavioral flexibility, the ability to adjust behavioral strategies in response to changing environmental contingencies and internal demands, is fundamental to cognitive functions. Despite a large body of pharmacology and lesion studies, the precise neurophysiological mechanisms that underlie behavioral flexibility are still under active investigations. This work is aimed to determine the role of a brainstem-to-prefrontal cortex circuit in flexible rule switching. We trained mice to perform a set-shifting task, in which they learned to switch attention to distinguish complex sensory cues. Using chemogenetic inhibition, we selectively targeted genetically-defined locus coeruleus (LC) neurons or their input to the medial prefrontal cortex (mPFC). We revealed that suppressing either the LC or its mPFC projections severely impaired switching behavior, establishing the critical role of the LC-mPFC circuit in supporting attentional switching. To uncover the neurophysiological substrates of the behavioral deficits, we paired endoscopic calcium imaging of the mPFC with chemogenetic inhibition of the LC in task-performing mice. We found that mPFC prominently responded to attentional switching and that LC inhibition not only enhanced the engagement of mPFC neurons but also broadened single-neuron tuning in the task. At the population level, LC inhibition disrupted mPFC dynamic changes and impaired the encoding capacity for switching. Our results highlight the profound impact of the ascending LC input on modulating prefrontal dynamics and provide new insights into the cellular and circuit-level mechanisms that support behavioral flexibility.
Collapse
Affiliation(s)
- Marco Nigro
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Lucas Silva Tortorelli
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Machhindra Garad
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
| | - Natalie E Zlebnik
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| | - Hongdian Yang
- Department of Molecular, Cell and Systems Biology, University of California, Riverside, CA 92521, USA
- Neuroscience Graduate Program, University of California, Riverside, CA 92521, USA
| |
Collapse
|
11
|
Price MS, Rastegari E, Gupta R, Vo K, Moore TI, Venkatachalam K. Intracellular Lactate Dynamics in Drosophila Glutamatergic Neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.02.26.582095. [PMID: 38464270 PMCID: PMC10925175 DOI: 10.1101/2024.02.26.582095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Rates of lactate production and consumption reflect the metabolic state of many cell types, including neurons. Here, we investigate the effects of nutrient deprivation on lactate dynamics in Drosophila glutamatergic neurons by leveraging the limiting effects of the diffusion barrier surrounding cells in culture. We found that neurons constitutively consume lactate when availability of trehalose, the glucose disaccharide preferred by insects, is limited by the diffusion barrier. Acute mechanical disruption of the barrier reduced this reliance on lactate. Through kinetic modeling and experimental validation, we demonstrate that neuronal lactate consumption rates correlate inversely with their mitochondrial density. Further, we found that lactate levels in neurons exhibited temporal correlations that allowed prediction of cytosolic lactate dynamics after the disruption of the diffusion barrier from pre-perturbation lactate fluctuations. Collectively, our findings reveal the influence of diffusion barriers on neuronal metabolic preferences, and demonstrate the existence of temporal correlations between lactate dynamics under conditions of nutrient deprivation and those evoked by the subsequent restoration of nutrient availability.
Collapse
Affiliation(s)
- Matthew S. Price
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| | - Elham Rastegari
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Richa Gupta
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Katie Vo
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
| | - Travis I. Moore
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Molecular and Translational Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| | - Kartik Venkatachalam
- Department of Integrative Biology and Pharmacology, McGovern Medical School at the University of Texas Health Sciences Center (UTHealth), Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
- Molecular and Translational Biology Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences
| |
Collapse
|
12
|
Sapountzis P, Antoniadou A, Gregoriou GG. Diverse neuronal activity patterns contribute to the control of distraction in the prefrontal and parietal cortex. PLoS Biol 2025; 23:e3003008. [PMID: 39869632 PMCID: PMC11801722 DOI: 10.1371/journal.pbio.3003008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/06/2025] [Accepted: 01/08/2025] [Indexed: 01/29/2025] Open
Abstract
Goal-directed behavior requires the effective suppression of distractions to focus on the task at hand. Although experimental evidence suggests that brain areas in the prefrontal and parietal lobe contribute to the selection of task-relevant and the suppression of task-irrelevant stimuli, how conspicuous distractors are encoded and effectively ignored remains poorly understood. We recorded neuronal responses from 2 regions in the prefrontal and parietal cortex of macaques, the frontal eye field (FEF) and the lateral intraparietal (LIP) area, during a visual search task, in the presence and absence of a salient distractor. We found that in both areas, salient distractors are encoded by both response enhancement and suppression by distinct neuronal populations. In FEF, a larger proportion of units displayed suppression of responses to the salient distractor compared to LIP, with suppression effects in FEF being correlated with search time. Moreover, in FEF but not in LIP, the suppression for the salient distractor compared to non-salient distractors that shared the target color could not be accounted for by an enhancement of target features. These results reveal a distinct contribution of FEF in the suppression of salient distractors. Critically, we found that in both areas, the population level representations of the target and singleton locations were not orthogonal, suggesting a mechanism of interference from salient stimuli.
Collapse
Affiliation(s)
- Panagiotis Sapountzis
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Alexandra Antoniadou
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgia G. Gregoriou
- Institute of Applied and Computational Mathematics, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece
- Department of Basic Sciences, Faculty of Medicine, University of Crete, Heraklion, Crete, Greece
| |
Collapse
|
13
|
Serrano-Fernández L, Beirán M, Romo R, Parga N. Representation of a perceptual bias in the prefrontal cortex. Proc Natl Acad Sci U S A 2024; 121:e2312831121. [PMID: 39636858 DOI: 10.1073/pnas.2312831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Perception is influenced by sensory stimulation, prior knowledge, and contextual cues, which collectively contribute to the emergence of perceptual biases. However, the precise neural mechanisms underlying these biases remain poorly understood. This study aims to address this gap by analyzing neural recordings from the prefrontal cortex (PFC) of monkeys performing a vibrotactile frequency discrimination task. Our findings provide empirical evidence supporting the hypothesis that perceptual biases can be reflected in the neural activity of the PFC. We found that the state-space trajectories of PFC neuronal activity encoded a warped representation of the first frequency presented during the task. Remarkably, this distorted representation of the frequency aligned with the predictions of its Bayesian estimator. The identification of these neural correlates expands our understanding of the neural basis of perceptual biases and highlights the involvement of the PFC in shaping perceptual experiences. Similar analyses could be employed in other delayed comparison tasks and in various brain regions to explore where and how neural activity reflects perceptual biases during different stages of the trial.
Collapse
Affiliation(s)
- Luis Serrano-Fernández
- Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación Avanzada en Física Fundamental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Beirán
- Center for Theoretical Neuroscience, Department of Neuroscience, Zuckerman Institute, Columbia University, New York, NY 10027
| | | | - Néstor Parga
- Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación Avanzada en Física Fundamental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| |
Collapse
|
14
|
Schuessler F, Mastrogiuseppe F, Ostojic S, Barak O. Aligned and oblique dynamics in recurrent neural networks. eLife 2024; 13:RP93060. [PMID: 39601404 DOI: 10.7554/elife.93060] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2024] Open
Abstract
The relation between neural activity and behaviorally relevant variables is at the heart of neuroscience research. When strong, this relation is termed a neural representation. There is increasing evidence, however, for partial dissociations between activity in an area and relevant external variables. While many explanations have been proposed, a theoretical framework for the relationship between external and internal variables is lacking. Here, we utilize recurrent neural networks (RNNs) to explore the question of when and how neural dynamics and the network's output are related from a geometrical point of view. We find that training RNNs can lead to two dynamical regimes: dynamics can either be aligned with the directions that generate output variables, or oblique to them. We show that the choice of readout weight magnitude before training can serve as a control knob between the regimes, similar to recent findings in feedforward networks. These regimes are functionally distinct. Oblique networks are more heterogeneous and suppress noise in their output directions. They are furthermore more robust to perturbations along the output directions. Crucially, the oblique regime is specific to recurrent (but not feedforward) networks, arising from dynamical stability considerations. Finally, we show that tendencies toward the aligned or the oblique regime can be dissociated in neural recordings. Altogether, our results open a new perspective for interpreting neural activity by relating network dynamics and their output.
Collapse
Affiliation(s)
- Friedrich Schuessler
- Faculty of Electrical Engineering and Computer Science, Technical University of Berlin, Berlin, Germany
- Science of Intelligence, Research Cluster of Excellence, Berlin, Germany
| | | | - Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure-PSL Research University, Paris, France
| | - Omri Barak
- Rappaport Faculty of Medicine and Network Biology Research Laboratories, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
15
|
Johnston WJ, Fine JM, Yoo SBM, Ebitz RB, Hayden BY. Semi-orthogonal subspaces for value mediate a binding and generalization trade-off. Nat Neurosci 2024; 27:2218-2230. [PMID: 39289564 PMCID: PMC12063212 DOI: 10.1038/s41593-024-01758-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 08/09/2024] [Indexed: 09/19/2024]
Abstract
When choosing between options, we must associate their values with the actions needed to select them. We hypothesize that the brain solves this binding problem through neural population subspaces. Here, in macaques performing a choice task, we show that neural populations in five reward-sensitive regions encode the values of offers presented on the left and right in distinct subspaces. This encoding is sufficient to bind offer values to their locations while preserving abstract value information. After offer presentation, all areas encode the value of the first and second offers in orthogonal subspaces; this orthogonalization also affords binding. Our binding-by-subspace hypothesis makes two new predictions confirmed by the data. First, behavioral errors should correlate with spatial, but not temporal, neural misbinding. Second, behavioral errors should increase when offers have low or high values, compared to medium values, even when controlling for value difference. Together, these results support the idea that the brain uses semi-orthogonal subspaces to bind features.
Collapse
Affiliation(s)
- W Jeffrey Johnston
- Center for Theoretical Neuroscience and Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA.
| | - Justin M Fine
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| | - Seng Bum Michael Yoo
- Department of Biomedical Engineering, Sunkyunkwan University, and Center for Neuroscience Imaging Research, Institute of Basic Sciences, Suwon, Republic of Korea
| | - R Becket Ebitz
- Department of Neuroscience, Université de Montréal, Montreal, Quebec, Canada
| | - Benjamin Y Hayden
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Hwang SH, Park D, Lee JW, Lee SH, Kim HF. Convergent representation of values from tactile and visual inputs for efficient goal-directed behavior in the primate putamen. Nat Commun 2024; 15:8954. [PMID: 39448643 PMCID: PMC11502908 DOI: 10.1038/s41467-024-53342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/03/2024] [Indexed: 10/26/2024] Open
Abstract
Animals can discriminate diverse sensory values with a limited number of neurons, raising questions about how the brain utilizes neural resources to efficiently process multi-dimensional inputs for decision-making. Here, we demonstrate that this efficiency is achieved by reducing sensory dimensions and converging towards the value dimension essential for goal-directed behavior in the putamen. Humans and monkeys performed tactile and visual value discrimination tasks while their neural responses were examined. Value information, whether originating from tactile or visual stimuli, was found to be processed within the human putamen using fMRI. Notably, at the single-neuron level in the macaque putamen, half of the individual neurons encode values independently of sensory inputs, while the other half selectively encode tactile or visual value. The responses of bimodal value neurons correlate with value-guided finger insertion behavior in both tasks, whereas modality-selective value neurons show task-specific correlations. Simulation using these neurons reveals that the presence of bimodal value neurons enables value discrimination with a significantly reduced number of neurons compared to simulations without them. Our data indicate that individual neurons in the primate putamen process different values in a convergent manner, thereby facilitating the efficient use of constrained neural resources for value-guided behavior.
Collapse
Affiliation(s)
- Seong-Hwan Hwang
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Doyoung Park
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Institute of Psychological Sciences, Institute of Social Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea
- Department of Psychology, College of Social Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Ji-Woo Lee
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea
| | - Sue-Hyun Lee
- Department of Psychology, College of Social Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
- Institute for Data Innovation in Science, Seoul National University (SNU), Seoul, 08826, Republic of Korea.
| |
Collapse
|
17
|
Johnston WJ, Fusi S. Modular representations emerge in neural networks trained to perform context-dependent tasks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.30.615925. [PMID: 39415994 PMCID: PMC11482777 DOI: 10.1101/2024.09.30.615925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The brain has large-scale modular structure in the form of brain regions, which are thought to arise from constraints on connectivity and the physical geometry of the cortical sheet. In contrast, experimental and theoretical work has argued both for and against the existence of specialized sub-populations of neurons (modules) within single brain regions. By studying artificial neural networks, we show that this local modularity emerges to support context-dependent behavior, but only when the input is low-dimensional. No anatomical constraints are required. We also show when modular specialization emerges at the population level (different modules correspond to orthogonal subspaces). Modularity yields abstract representations, allows for rapid learning and generalization on novel tasks, and facilitates the rapid learning of related contexts. Non-modular representations facilitate the rapid learning of unrelated contexts. Our findings reconcile conflicting experimental results and make predictions for future experiments.
Collapse
Affiliation(s)
- W. Jeffrey Johnston
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
- Mortimer B. Zuckerman Mind, Brain, and Behavior Institute, Columbia University, New York, NY, USA
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
18
|
Kim J, Gim S, Yoo SBM, Woo CW. A computational mechanism of cue-stimulus integration for pain in the brain. SCIENCE ADVANCES 2024; 10:eado8230. [PMID: 39259795 PMCID: PMC11389792 DOI: 10.1126/sciadv.ado8230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 08/02/2024] [Indexed: 09/13/2024]
Abstract
The brain integrates information from pain-predictive cues and noxious inputs to construct the pain experience. Although previous studies have identified neural encodings of individual pain components, how they are integrated remains elusive. Here, using a cue-induced pain task, we examined temporal functional magnetic resonance imaging activities within the state space, where axes represent individual voxel activities. By analyzing the features of these activities at the large-scale network level, we demonstrated that overall brain networks preserve both cue and stimulus information in their respective subspaces within the state space. However, only higher-order brain networks, including limbic and default mode networks, could reconstruct the pattern of participants' reported pain by linear summation of subspace activities, providing evidence for the integration of cue and stimulus information. These results suggest a hierarchical organization of the brain for processing pain components and elucidate the mechanism for their integration underlying our pain perception.
Collapse
Affiliation(s)
- Jungwoo Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Suhwan Gim
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
| | - Seng Bum Michael Yoo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Department of Neurosurgery and McNair Scholar Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Choong-Wan Woo
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Life-inspired Neural Network for Prediction and Optimization Research Group, Suwon, South Korea
| |
Collapse
|
19
|
Marino PJ, Bahureksa L, Fisac CF, Oby ER, Smoulder AL, Motiwala A, Degenhart AD, Grigsby EM, Joiner WM, Chase SM, Yu BM, Batista AP. A posture subspace in primary motor cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.12.607361. [PMID: 39185208 PMCID: PMC11343157 DOI: 10.1101/2024.08.12.607361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
To generate movements, the brain must combine information about movement goal and body posture. Motor cortex (M1) is a key node for the convergence of these information streams. How are posture and goal information organized within M1's activity to permit the flexible generation of movement commands? To answer this question, we recorded M1 activity while monkeys performed a variety of tasks with the forearm in a range of postures. We found that posture- and goal-related components of neural population activity were separable and resided in nearly orthogonal subspaces. The posture subspace was stable across tasks. Within each task, neural trajectories for each goal had similar shapes across postures. Our results reveal a simpler organization of posture information in M1 than previously recognized. The compartmentalization of posture and goal information might allow the two to be flexibly combined in the service of our broad repertoire of actions.
Collapse
Affiliation(s)
- Patrick J. Marino
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
| | - Lindsay Bahureksa
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Carmen Fernández Fisac
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Emily R. Oby
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canda
| | - Adam L. Smoulder
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Asma Motiwala
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Alan D. Degenhart
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Starfish Neuroscience, Bellevue, WA 98004, USA
| | - Erinn M. Grigsby
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Rehab Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Wilsaan M. Joiner
- Dept. of Neurobiology, Physiology, and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Steven M. Chase
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Senior author
- These authors contributed equally
| | - Byron M. Yu
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Dept. of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Dept. Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
- Senior author
- These authors contributed equally
| | - Aaron P. Batista
- Dept. of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA
- Center for the Neural Basis of Cognition, Pittsburgh, PA 15213, USA
- Senior author
- These authors contributed equally
- Lead contact
| |
Collapse
|
20
|
Li Y, Zhu X, Qi Y, Wang Y. Revealing unexpected complex encoding but simple decoding mechanisms in motor cortex via separating behaviorally relevant neural signals. eLife 2024; 12:RP87881. [PMID: 39120996 PMCID: PMC11315449 DOI: 10.7554/elife.87881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024] Open
Abstract
In motor cortex, behaviorally relevant neural responses are entangled with irrelevant signals, which complicates the study of encoding and decoding mechanisms. It remains unclear whether behaviorally irrelevant signals could conceal some critical truth. One solution is to accurately separate behaviorally relevant and irrelevant signals at both single-neuron and single-trial levels, but this approach remains elusive due to the unknown ground truth of behaviorally relevant signals. Therefore, we propose a framework to define, extract, and validate behaviorally relevant signals. Analyzing separated signals in three monkeys performing different reaching tasks, we found neural responses previously considered to contain little information actually encode rich behavioral information in complex nonlinear ways. These responses are critical for neuronal redundancy and reveal movement behaviors occupy a higher-dimensional neural space than previously expected. Surprisingly, when incorporating often-ignored neural dimensions, behaviorally relevant signals can be decoded linearly with comparable performance to nonlinear decoding, suggesting linear readout may be performed in motor cortex. Our findings prompt that separating behaviorally relevant signals may help uncover more hidden cortical mechanisms.
Collapse
Affiliation(s)
- Yangang Li
- Qiushi Academy for Advanced Studies, Zhejiang UniversityHangzhouChina
- Nanhu Brain-Computer Interface InstituteHangzhouChina
- College of Computer Science and Technology, Zhejiang UniversityHangzhouChina
- The State Key Lab of Brain-Machine Intelligence, Zhejiang UniversityHangzhouChina
| | - Xinyun Zhu
- Qiushi Academy for Advanced Studies, Zhejiang UniversityHangzhouChina
- Nanhu Brain-Computer Interface InstituteHangzhouChina
- College of Computer Science and Technology, Zhejiang UniversityHangzhouChina
- The State Key Lab of Brain-Machine Intelligence, Zhejiang UniversityHangzhouChina
| | - Yu Qi
- Nanhu Brain-Computer Interface InstituteHangzhouChina
- College of Computer Science and Technology, Zhejiang UniversityHangzhouChina
- The State Key Lab of Brain-Machine Intelligence, Zhejiang UniversityHangzhouChina
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and the MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of MedicineHangzhouChina
| | - Yueming Wang
- Qiushi Academy for Advanced Studies, Zhejiang UniversityHangzhouChina
- Nanhu Brain-Computer Interface InstituteHangzhouChina
- College of Computer Science and Technology, Zhejiang UniversityHangzhouChina
- The State Key Lab of Brain-Machine Intelligence, Zhejiang UniversityHangzhouChina
- Affiliated Mental Health Center & Hangzhou Seventh People’s Hospital and the MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
21
|
Sihn D, Chae S, Kim SP. A method to find temporal structure of neuronal coactivity patterns with across-trial correlations. J Neurosci Methods 2024; 408:110172. [PMID: 38782124 DOI: 10.1016/j.jneumeth.2024.110172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The across-trial correlation of neurons' coactivity patterns emerges to be important for information coding, but methods for finding their temporal structures remain largely unexplored. NEW METHOD In the present study, we propose a method to find time clusters in which coactivity patterns of neurons are correlated across trials. We transform the multidimensional neural activity at each timing into a coactivity pattern of binary states, and predict the coactivity patterns at different timings. We devise a method suitable for these coactivity pattern predictions, call general event prediction. Cross-temporal prediction accuracy is then used to estimate across-trial correlations between coactivity patterns at two timings. We extract time clusters from the cross-temporal prediction accuracy by a modified k-means algorithm. RESULTS The feasibility of the proposed method is verified through simulations based on ground truth. We apply the proposed method to a calcium imaging dataset recorded from the motor cortex of mice, and demonstrate time clusters of motor cortical coactivity patterns during a motor task. COMPARISON WITH EXISTING METHODS While the existing cosine similarity method, which does not account for across-trial correlation, shows temporal structures only for contralateral neural responses, the proposed method reveals those for both contralateral and ipsilateral neural responses, demonstrating the effect of across-trial correlations. CONCLUSIONS This study introduces a novel method for measuring the temporal structure of neuronal ensemble activity.
Collapse
Affiliation(s)
- Duho Sihn
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Soyoung Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, the Republic of Korea.
| |
Collapse
|
22
|
Serrano-Fernández L, Beirán M, Parga N. Emergent perceptual biases from state-space geometry in trained spiking recurrent neural networks. Cell Rep 2024; 43:114412. [PMID: 38968075 DOI: 10.1016/j.celrep.2024.114412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 04/08/2024] [Accepted: 06/12/2024] [Indexed: 07/07/2024] Open
Abstract
A stimulus held in working memory is perceived as contracted toward the average stimulus. This contraction bias has been extensively studied in psychophysics, but little is known about its origin from neural activity. By training recurrent networks of spiking neurons to discriminate temporal intervals, we explored the causes of this bias and how behavior relates to population firing activity. We found that the trained networks exhibited animal-like behavior. Various geometric features of neural trajectories in state space encoded warped representations of the durations of the first interval modulated by sensory history. Formulating a normative model, we showed that these representations conveyed a Bayesian estimate of the interval durations, thus relating activity and behavior. Importantly, our findings demonstrate that Bayesian computations already occur during the sensory phase of the first stimulus and persist throughout its maintenance in working memory, until the time of stimulus comparison.
Collapse
Affiliation(s)
- Luis Serrano-Fernández
- Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Avanzada en Física Fundamental, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Manuel Beirán
- Center for Theoretical Neuroscience, Zuckerman Institute, Columbia University, New York, NY, USA
| | - Néstor Parga
- Departamento de Física Teórica, Universidad Autónoma de Madrid, 28049 Madrid, Spain; Centro de Investigación Avanzada en Física Fundamental, Universidad Autónoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
23
|
Ostojic S, Fusi S. Computational role of structure in neural activity and connectivity. Trends Cogn Sci 2024; 28:677-690. [PMID: 38553340 DOI: 10.1016/j.tics.2024.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 07/05/2024]
Abstract
One major challenge of neuroscience is identifying structure in seemingly disorganized neural activity. Different types of structure have different computational implications that can help neuroscientists understand the functional role of a particular brain area. Here, we outline a unified approach to characterize structure by inspecting the representational geometry and the modularity properties of the recorded activity and show that a similar approach can also reveal structure in connectivity. We start by setting up a general framework for determining geometry and modularity in activity and connectivity and relating these properties with computations performed by the network. We then use this framework to review the types of structure found in recent studies of model networks performing three classes of computations.
Collapse
Affiliation(s)
- Srdjan Ostojic
- Laboratoire de Neurosciences Cognitives et Computationnelles, INSERM U960, Ecole Normale Superieure - PSL Research University, 75005 Paris, France.
| | - Stefano Fusi
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA; Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, USA; Department of Neuroscience, Columbia University, New York, NY, USA; Kavli Institute for Brain Science, Columbia University, New York, NY, USA
| |
Collapse
|
24
|
Qiu S, Mao H, Wu S, Wang Y. Investigating Internal Dynamics in Monkey's Primary Motor Cortex during Reaching. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039125 DOI: 10.1109/embc53108.2024.10782466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Neural dynamics are processes that describe how neurons in the brain change their activities through time in a coordinated manner. In motor control, neural dynamics, governed by both local dynamics of the motor cortex as well as inputs from other brain regions, drive the population neural state to evolve from an initial value. A notable feature is the emergence of rotation-like dynamics in neural state space. However, the causes of rotational dynamics in motor neural systems remain elusive. In this study, our objective is to investigate the impact of kinematics, specifically, the velocity and acceleration of the monkey's hand reaching movement, on rotational dynamics. We propose to employ a linear model to decompose the overall neural dynamics into one driven by the common input and the internal dynamics using single-trial data. Then, we assess the rotational features by comparing the power of internal dynamics with that of the overall dynamics, and quantifying the rotational strength of internal dynamics vs. the overall dynamics. We implement the proposed method on real M1 neural activities from the monkey's center-out reaching task. Our preliminary results demonstrate that the internal dynamics have much weaker rotational features than the overall dynamics. Given recent evidence from animal experiments showing the necessity of continuous common inputs to motor cortex during arm reaching, it indicates that the rotational dynamics in motor cortex may be mainly input driven when the subject is engaged in the movement task.
Collapse
|
25
|
Koren V, Emanuel AJ, Panzeri S. Spiking networks that efficiently process dynamic sensory features explain receptor information mixing in somatosensory cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.597979. [PMID: 38895477 PMCID: PMC11185787 DOI: 10.1101/2024.06.07.597979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
How do biological neural systems efficiently encode, transform and propagate information between the sensory periphery and the sensory cortex about sensory features evolving at different time scales? Are these computations efficient in normative information processing terms? While previous work has suggested that biologically plausible models of of such neural information processing may be implemented efficiently within a single processing layer, how such computations extend across several processing layers is less clear. Here, we model propagation of multiple time-varying sensory features across a sensory pathway, by extending the theory of efficient coding with spikes to efficient encoding, transformation and transmission of sensory signals. These computations are optimally realized by a multilayer spiking network with feedforward networks of spiking neurons (receptor layer) and recurrent excitatory-inhibitory networks of generalized leaky integrate-and-fire neurons (recurrent layers). Our model efficiently realizes a broad class of feature transformations, including positive and negative interaction across features, through specific and biologically plausible structures of feedforward connectivity. We find that mixing of sensory features in the activity of single neurons is beneficial because it lowers the metabolic cost at the network level. We apply the model to the somatosensory pathway by constraining it with parameters measured empirically and include in its last node, analogous to the primary somatosensory cortex (S1), two types of inhibitory neurons: parvalbumin-positive neurons realizing lateral inhibition, and somatostatin-positive neurons realizing winner-take-all inhibition. By implementing a negative interaction across stimulus features, this model captures several intriguing empirical observations from the somatosensory system of the mouse, including a decrease of sustained responses from subcortical networks to S1, a non-linear effect of the knock-out of receptor neuron types on the activity in S1, and amplification of weak signals from sensory neurons across the pathway.
Collapse
Affiliation(s)
- Veronika Koren
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
| | - Alan J Emanuel
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Stefano Panzeri
- Institute of Neural Information Processing, Center for Molecular Neurobiology (ZMNH), University Medical Center Hamburg-Eppendorf (UKE), 20251 Hamburg, Germany
- Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
26
|
Clarke A, Tyler LK, Marslen-Wilson W. Hearing what is being said: the distributed neural substrate for early speech interpretation. LANGUAGE, COGNITION AND NEUROSCIENCE 2024; 39:1097-1116. [PMID: 39439863 PMCID: PMC11493057 DOI: 10.1080/23273798.2024.2345308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/26/2024] [Indexed: 10/25/2024]
Abstract
Speech comprehension is remarkable for the immediacy with which the listener hears what is being said. Here, we focus on the neural underpinnings of this process in isolated spoken words. We analysed source-localised MEG data for nouns using Representational Similarity Analysis to probe the spatiotemporal coordinates of phonology, lexical form, and the semantics of emerging word candidates. Phonological model fit was detectable within 40-50 ms, engaging a bilateral network including superior and middle temporal cortex and extending into anterior temporal and inferior parietal regions. Lexical form emerged within 60-70 ms, and model fit to semantics from 100-110 ms. Strikingly, the majority of vertices in a central core showed model fit to all three dimensions, consistent with a distributed neural substrate for early speech analysis. The early interpretation of speech seems to be conducted in a unified integrative representational space, in conflict with conventional views of a linguistically stratified representational hierarchy.
Collapse
Affiliation(s)
- Alex Clarke
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
27
|
Talpir I, Livneh Y. Stereotyped goal-directed manifold dynamics in the insular cortex. Cell Rep 2024; 43:114027. [PMID: 38568813 PMCID: PMC11063631 DOI: 10.1016/j.celrep.2024.114027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/12/2024] [Accepted: 03/15/2024] [Indexed: 04/05/2024] Open
Abstract
The insular cortex is involved in diverse processes, including bodily homeostasis, emotions, and cognition. However, we lack a comprehensive understanding of how it processes information at the level of neuronal populations. We leveraged recent advances in unsupervised machine learning to study insular cortex population activity patterns (i.e., neuronal manifold) in mice performing goal-directed behaviors. We find that the insular cortex activity manifold is remarkably consistent across different animals and under different motivational states. Activity dynamics within the neuronal manifold are highly stereotyped during rewarded trials, enabling robust prediction of single-trial outcomes across different mice and across various natural and artificial motivational states. Comparing goal-directed behavior with self-paced free consumption, we find that the stereotyped activity patterns reflect task-dependent goal-directed reward anticipation, and not licking, taste, or positive valence. These findings reveal a core computation in insular cortex that could explain its involvement in pathologies involving aberrant motivations.
Collapse
Affiliation(s)
- Itay Talpir
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yoav Livneh
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
28
|
Podlaski WF, Machens CK. Approximating Nonlinear Functions With Latent Boundaries in Low-Rank Excitatory-Inhibitory Spiking Networks. Neural Comput 2024; 36:803-857. [PMID: 38658028 DOI: 10.1162/neco_a_01658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 01/02/2024] [Indexed: 04/26/2024]
Abstract
Deep feedforward and recurrent neural networks have become successful functional models of the brain, but they neglect obvious biological details such as spikes and Dale's law. Here we argue that these details are crucial in order to understand how real neural circuits operate. Towards this aim, we put forth a new framework for spike-based computation in low-rank excitatory-inhibitory spiking networks. By considering populations with rank-1 connectivity, we cast each neuron's spiking threshold as a boundary in a low-dimensional input-output space. We then show how the combined thresholds of a population of inhibitory neurons form a stable boundary in this space, and those of a population of excitatory neurons form an unstable boundary. Combining the two boundaries results in a rank-2 excitatory-inhibitory (EI) network with inhibition-stabilized dynamics at the intersection of the two boundaries. The computation of the resulting networks can be understood as the difference of two convex functions and is thereby capable of approximating arbitrary non-linear input-output mappings. We demonstrate several properties of these networks, including noise suppression and amplification, irregular activity and synaptic balance, as well as how they relate to rate network dynamics in the limit that the boundary becomes soft. Finally, while our work focuses on small networks (5-50 neurons), we discuss potential avenues for scaling up to much larger networks. Overall, our work proposes a new perspective on spiking networks that may serve as a starting point for a mechanistic understanding of biological spike-based computation.
Collapse
Affiliation(s)
- William F Podlaski
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - Christian K Machens
- Champalimaud Neuroscience Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| |
Collapse
|
29
|
Beshkov K, Fyhn M, Hafting T, Einevoll GT. Topological structure of population activity in mouse visual cortex encodes densely sampled stimulus rotations. iScience 2024; 27:109370. [PMID: 38523791 PMCID: PMC10959658 DOI: 10.1016/j.isci.2024.109370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/06/2023] [Accepted: 02/26/2024] [Indexed: 03/26/2024] Open
Abstract
The primary visual cortex is one of the most well understood regions supporting the processing involved in sensory computation. Following the popularization of high-density neural recordings, it has been observed that the activity of large neural populations is often constrained to low dimensional manifolds. In this work, we quantify the structure of such neural manifolds in the visual cortex. We do this by analyzing publicly available two-photon optical recordings of mouse primary visual cortex in response to visual stimuli with a densely sampled rotation angle. Using a geodesic metric along with persistent homology, we discover that population activity in response to such stimuli generates a circular manifold, encoding the angle of rotation. Furthermore, we observe that this circular manifold is expressed differently in subpopulations of neurons with differing orientation and direction selectivity. Finally, we discuss some of the obstacles to reliably retrieving the truthful topology generated by a neural population.
Collapse
Affiliation(s)
- Kosio Beshkov
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Marianne Fyhn
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
| | - Torkel Hafting
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Gaute T. Einevoll
- Center for Integrative Neuroplasticity, Department of Bioscience, University of Oslo, Oslo, Norway
- Department of Physics, Norwegian University of Life Sciences, As, Norway
- Department of Physics, University of Oslo, Oslo, Norway
| |
Collapse
|
30
|
Rush ER, Heckman C, Jayaram K, Humbert JS. Neural dynamics of robust legged robots. Front Robot AI 2024; 11:1324404. [PMID: 38699630 PMCID: PMC11063321 DOI: 10.3389/frobt.2024.1324404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 03/26/2024] [Indexed: 05/05/2024] Open
Abstract
Legged robot control has improved in recent years with the rise of deep reinforcement learning, however, much of the underlying neural mechanisms remain difficult to interpret. Our aim is to leverage bio-inspired methods from computational neuroscience to better understand the neural activity of robust robot locomotion controllers. Similar to past work, we observe that terrain-based curriculum learning improves agent stability. We study the biomechanical responses and neural activity within our neural network controller by simultaneously pairing physical disturbances with targeted neural ablations. We identify an agile hip reflex that enables the robot to regain its balance and recover from lateral perturbations. Model gradients are employed to quantify the relative degree that various sensory feedback channels drive this reflexive behavior. We also find recurrent dynamics are implicated in robust behavior, and utilize sampling-based ablation methods to identify these key neurons. Our framework combines model-based and sampling-based methods for drawing causal relationships between neural network activity and robust embodied robot behavior.
Collapse
Affiliation(s)
- Eugene R. Rush
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - Christoffer Heckman
- Department of Computer Science, University of Colorado Boulder, Boulder, CO, United States
| | - Kaushik Jayaram
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| | - J. Sean Humbert
- Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
31
|
Kay K, Biderman N, Khajeh R, Beiran M, Cueva CJ, Shohamy D, Jensen G, Wei XX, Ferrera VP, Abbott LF. Emergent neural dynamics and geometry for generalization in a transitive inference task. PLoS Comput Biol 2024; 20:e1011954. [PMID: 38662797 PMCID: PMC11125559 DOI: 10.1371/journal.pcbi.1011954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/24/2024] [Accepted: 02/28/2024] [Indexed: 05/25/2024] Open
Abstract
Relational cognition-the ability to infer relationships that generalize to novel combinations of objects-is fundamental to human and animal intelligence. Despite this importance, it remains unclear how relational cognition is implemented in the brain due in part to a lack of hypotheses and predictions at the levels of collective neural activity and behavior. Here we discovered, analyzed, and experimentally tested neural networks (NNs) that perform transitive inference (TI), a classic relational task (if A > B and B > C, then A > C). We found NNs that (i) generalized perfectly, despite lacking overt transitive structure prior to training, (ii) generalized when the task required working memory (WM), a capacity thought to be essential to inference in the brain, (iii) emergently expressed behaviors long observed in living subjects, in addition to a novel order-dependent behavior, and (iv) expressed different task solutions yielding alternative behavioral and neural predictions. Further, in a large-scale experiment, we found that human subjects performing WM-based TI showed behavior inconsistent with a class of NNs that characteristically expressed an intuitive task solution. These findings provide neural insights into a classical relational ability, with wider implications for how the brain realizes relational cognition.
Collapse
Affiliation(s)
- Kenneth Kay
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- Grossman Center for the Statistics of Mind, Columbia University, New York, New York, United States of America
| | - Natalie Biderman
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Psychology, Columbia University, New York, New York, United States of America
| | - Ramin Khajeh
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Manuel Beiran
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
| | - Christopher J. Cueva
- Department of Brain and Cognitive Sciences, MIT, Cambridge, Massachusetts, United States of America
| | - Daphna Shohamy
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Psychology, Columbia University, New York, New York, United States of America
- The Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
| | - Greg Jensen
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
- Department of Psychology at Reed College, Portland, Oregon, United States of America
| | - Xue-Xin Wei
- Departments of Neuroscience and Psychology, The University of Texas at Austin, Austin, Texas, United States of America
| | - Vincent P. Ferrera
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
- Department of Psychiatry, Columbia University Medical Center, New York, New York, United States of America
| | - LF Abbott
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, New York, United States of America
- Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America
- The Kavli Institute for Brain Science, Columbia University, New York, New York, United States of America
- Department of Neuroscience, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
32
|
Fitz H, Hagoort P, Petersson KM. Neurobiological Causal Models of Language Processing. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:225-247. [PMID: 38645618 PMCID: PMC11025648 DOI: 10.1162/nol_a_00133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/18/2023] [Indexed: 04/23/2024]
Abstract
The language faculty is physically realized in the neurobiological infrastructure of the human brain. Despite significant efforts, an integrated understanding of this system remains a formidable challenge. What is missing from most theoretical accounts is a specification of the neural mechanisms that implement language function. Computational models that have been put forward generally lack an explicit neurobiological foundation. We propose a neurobiologically informed causal modeling approach which offers a framework for how to bridge this gap. A neurobiological causal model is a mechanistic description of language processing that is grounded in, and constrained by, the characteristics of the neurobiological substrate. It intends to model the generators of language behavior at the level of implementational causality. We describe key features and neurobiological component parts from which causal models can be built and provide guidelines on how to implement them in model simulations. Then we outline how this approach can shed new light on the core computational machinery for language, the long-term storage of words in the mental lexicon and combinatorial processing in sentence comprehension. In contrast to cognitive theories of behavior, causal models are formulated in the "machine language" of neurobiology which is universal to human cognition. We argue that neurobiological causal modeling should be pursued in addition to existing approaches. Eventually, this approach will allow us to develop an explicit computational neurobiology of language.
Collapse
Affiliation(s)
- Hartmut Fitz
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Peter Hagoort
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Karl Magnus Petersson
- Neurobiology of Language Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Faculty of Medicine and Biomedical Sciences, University of Algarve, Faro, Portugal
| |
Collapse
|
33
|
Churchland MM, Shenoy KV. Preparatory activity and the expansive null-space. Nat Rev Neurosci 2024; 25:213-236. [PMID: 38443626 DOI: 10.1038/s41583-024-00796-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2024] [Indexed: 03/07/2024]
Abstract
The study of the cortical control of movement experienced a conceptual shift over recent decades, as the basic currency of understanding shifted from single-neuron tuning towards population-level factors and their dynamics. This transition was informed by a maturing understanding of recurrent networks, where mechanism is often characterized in terms of population-level factors. By estimating factors from data, experimenters could test network-inspired hypotheses. Central to such hypotheses are 'output-null' factors that do not directly drive motor outputs yet are essential to the overall computation. In this Review, we highlight how the hypothesis of output-null factors was motivated by the venerable observation that motor-cortex neurons are active during movement preparation, well before movement begins. We discuss how output-null factors then became similarly central to understanding neural activity during movement. We discuss how this conceptual framework provided key analysis tools, making it possible for experimenters to address long-standing questions regarding motor control. We highlight an intriguing trend: as experimental and theoretical discoveries accumulate, the range of computational roles hypothesized to be subserved by output-null factors continues to expand.
Collapse
Affiliation(s)
- Mark M Churchland
- Department of Neuroscience, Columbia University, New York, NY, USA.
- Grossman Center for the Statistics of Mind, Columbia University, New York, NY, USA.
- Kavli Institute for Brain Science, Columbia University, New York, NY, USA.
| | - Krishna V Shenoy
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| |
Collapse
|
34
|
Bellet ME, Gay M, Bellet J, Jarraya B, Dehaene S, van Kerkoerle T, Panagiotaropoulos TI. Spontaneously emerging internal models of visual sequences combine abstract and event-specific information in the prefrontal cortex. Cell Rep 2024; 43:113952. [PMID: 38483904 DOI: 10.1016/j.celrep.2024.113952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 06/06/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024] Open
Abstract
When exposed to sensory sequences, do macaque monkeys spontaneously form abstract internal models that generalize to novel experiences? Here, we show that neuronal populations in macaque ventrolateral prefrontal cortex jointly encode visual sequences by separate codes for the specific pictures presented and for their abstract sequential structure. We recorded prefrontal neurons while macaque monkeys passively viewed visual sequences and sequence mismatches in the local-global paradigm. Even without any overt task or response requirements, prefrontal populations spontaneously form representations of sequence structure, serial order, and image identity within distinct but superimposed neuronal subspaces. Representations of sequence structure rapidly update following single exposure to a mismatch sequence, while distinct populations represent mismatches for sequences of different complexity. Finally, those representations generalize across sequences following the same repetition structure but comprising different images. These results suggest that prefrontal populations spontaneously encode rich internal models of visual sequences reflecting both content-specific and abstract information.
Collapse
Affiliation(s)
- Marie E Bellet
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France.
| | - Marion Gay
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Joachim Bellet
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Université Paris-Saclay, UVSQ, Versailles, France; Neuromodulation Pole, Foch Hospital, Suresnes, France
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Collège de France, Université Paris-Sciences-Lettres (PSL), Paris, France
| | - Timo van Kerkoerle
- Cognitive Neuroimaging Unit, INSERM, CEA, Université Paris-Saclay, NeuroSpin Center, Gif-sur-Yvette, France; Department of Neurophysics, Donders Center for Neuroscience, Radboud University Nijmegen, Nijmegen, the Netherlands; Department of Neurobiology and Aging, Biomedical Primate Research Center, Rijswijk, the Netherlands
| | | |
Collapse
|
35
|
Noda T, Aschauer DF, Chambers AR, Seiler JPH, Rumpel S. Representational maps in the brain: concepts, approaches, and applications. Front Cell Neurosci 2024; 18:1366200. [PMID: 38584779 PMCID: PMC10995314 DOI: 10.3389/fncel.2024.1366200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/08/2024] [Indexed: 04/09/2024] Open
Abstract
Neural systems have evolved to process sensory stimuli in a way that allows for efficient and adaptive behavior in a complex environment. Recent technological advances enable us to investigate sensory processing in animal models by simultaneously recording the activity of large populations of neurons with single-cell resolution, yielding high-dimensional datasets. In this review, we discuss concepts and approaches for assessing the population-level representation of sensory stimuli in the form of a representational map. In such a map, not only are the identities of stimuli distinctly represented, but their relational similarity is also mapped onto the space of neuronal activity. We highlight example studies in which the structure of representational maps in the brain are estimated from recordings in humans as well as animals and compare their methodological approaches. Finally, we integrate these aspects and provide an outlook for how the concept of representational maps could be applied to various fields in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Takahiro Noda
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Dominik F. Aschauer
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Anna R. Chambers
- Department of Otolaryngology – Head and Neck Surgery, Harvard Medical School, Boston, MA, United States
- Eaton Peabody Laboratories, Massachusetts Eye and Ear Infirmary, Boston, MA, United States
| | - Johannes P.-H. Seiler
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| | - Simon Rumpel
- Institute of Physiology, Focus Program Translational Neurosciences, University Medical Center, Johannes Gutenberg University-Mainz, Mainz, Germany
| |
Collapse
|
36
|
Xue C, Markman SK, Chen R, Kramer LE, Cohen MR. Task interference as a neuronal basis for the cost of cognitive flexibility. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583375. [PMID: 38496626 PMCID: PMC10942291 DOI: 10.1101/2024.03.04.583375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Humans and animals have an impressive ability to juggle multiple tasks in a constantly changing environment. This flexibility, however, leads to decreased performance under uncertain task conditions. Here, we combined monkey electrophysiology, human psychophysics, and artificial neural network modeling to investigate the neuronal mechanisms of this performance cost. We developed a behavioural paradigm to measure and influence participants' decision-making and perception in two distinct perceptual tasks. Our data revealed that both humans and monkeys, unlike an artificial neural network trained for the same tasks, make less accurate perceptual decisions when the task is uncertain. We generated a mechanistic hypothesis by comparing this neural network trained to produce correct choices with another network trained to replicate the participants' choices. We hypothesized, and confirmed with further behavioural, physiological, and causal experiments, that the cost of task flexibility comes from what we term task interference. Under uncertain conditions, interference between different tasks causes errors because it results in a stronger representation of irrelevant task features and entangled neuronal representations of different features. Our results suggest a tantalizing, general hypothesis: that cognitive capacity limitations, both in health and disease, stem from interference between neural representations of different stimuli, tasks, or memories.
Collapse
Affiliation(s)
- Cheng Xue
- Department of Neurobiology, University of Chicago, IL, USA
| | - Sol K. Markman
- Department of Neurobiology, University of Chicago, IL, USA
- Department of Brain & Cognitive Sciences, Massachusetts Institute of Technology, MA, USA
| | - Ruoyi Chen
- Department of Biological Sciences, Carnegie Mellon University, PA, USA
| | - Lily E. Kramer
- Department of Neurobiology, University of Chicago, IL, USA
| | | |
Collapse
|
37
|
Sharma KK, Diltz MA, Lincoln T, Albuquerque ER, Romanski LM. Neuronal Population Encoding of Identity in Primate Prefrontal Cortex. J Neurosci 2024; 44:e0703232023. [PMID: 37963766 PMCID: PMC10860606 DOI: 10.1523/jneurosci.0703-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/22/2023] [Accepted: 10/10/2023] [Indexed: 11/16/2023] Open
Abstract
The ventrolateral prefrontal cortex (VLPFC) shows robust activation during the perception of faces and voices. However, little is known about what categorical features of social stimuli drive neural activity in this region. Since perception of identity and expression are critical social functions, we examined whether neural responses to naturalistic stimuli were driven by these two categorical features in the prefrontal cortex. We recorded single neurons in the VLPFC, while two male rhesus macaques (Macaca mulatta) viewed short audiovisual videos of unfamiliar conspecifics making expressions of aggressive, affiliative, and neutral valence. Of the 285 neurons responsive to the audiovisual stimuli, 111 neurons had a main effect (two-way ANOVA) of identity, expression, or their interaction in their stimulus-related firing rates; however, decoding of expression and identity using single-unit firing rates rendered poor accuracy. Interestingly, when decoding from pseudo-populations of recorded neurons, the accuracy for both expression and identity increased with population size, suggesting that the population transmitted information relevant to both variables. Principal components analysis of mean population activity across time revealed that population responses to the same identity followed similar trajectories in the response space, facilitating segregation from other identities. Our results suggest that identity is a critical feature of social stimuli that dictates the structure of population activity in the VLPFC, during the perception of vocalizations and their corresponding facial expressions. These findings enhance our understanding of the role of the VLPFC in social behavior.
Collapse
Affiliation(s)
- K K Sharma
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| | - M A Diltz
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| | - T Lincoln
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| | - E R Albuquerque
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| | - L M Romanski
- Department of Neuroscience, School of Medicine and Dentistry, University of Rochester, Rochester, New York 14620
| |
Collapse
|
38
|
Boubenec Y. How speech is produced and perceived in the human cortex. Nature 2024; 626:485-486. [PMID: 38297041 DOI: 10.1038/d41586-024-00078-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
|
39
|
Elmoznino E, Bonner MF. High-performing neural network models of visual cortex benefit from high latent dimensionality. PLoS Comput Biol 2024; 20:e1011792. [PMID: 38198504 PMCID: PMC10805290 DOI: 10.1371/journal.pcbi.1011792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/23/2024] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Geometric descriptions of deep neural networks (DNNs) have the potential to uncover core representational principles of computational models in neuroscience. Here we examined the geometry of DNN models of visual cortex by quantifying the latent dimensionality of their natural image representations. A popular view holds that optimal DNNs compress their representations onto low-dimensional subspaces to achieve invariance and robustness, which suggests that better models of visual cortex should have lower dimensional geometries. Surprisingly, we found a strong trend in the opposite direction-neural networks with high-dimensional image subspaces tended to have better generalization performance when predicting cortical responses to held-out stimuli in both monkey electrophysiology and human fMRI data. Moreover, we found that high dimensionality was associated with better performance when learning new categories of stimuli, suggesting that higher dimensional representations are better suited to generalize beyond their training domains. These findings suggest a general principle whereby high-dimensional geometry confers computational benefits to DNN models of visual cortex.
Collapse
Affiliation(s)
- Eric Elmoznino
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Michael F. Bonner
- Department of Cognitive Science, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
40
|
Buxton RB, Wong EC. Metabolic energetics underlying attractors in neural models. J Neurophysiol 2024; 131:88-105. [PMID: 38056422 DOI: 10.1152/jn.00120.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/13/2023] [Accepted: 12/04/2023] [Indexed: 12/08/2023] Open
Abstract
Neural population modeling, including the role of neural attractors, is a promising tool for understanding many aspects of brain function. We propose a modeling framework to connect the abstract variables used in modeling to recent cellular-level estimates of the bioenergetic costs of different aspects of neural activity, measured in ATP consumed per second per neuron. Based on recent work, an empirical reference for brain ATP use for the awake resting brain was estimated as ∼2 × 109 ATP/s-neuron across several mammalian species. The energetics framework was applied to the Wilson-Cowan (WC) model of two interacting populations of neurons, one excitatory (E) and one inhibitory (I). Attractors were considered to exhibit steady-state behavior and limit cycle behavior, both of which end when the excitatory stimulus ends, and sustained activity that persists after the stimulus ends. The energy cost of limit cycles, with oscillations much faster than the average neuronal firing rate of the population, is tracked more closely with the firing rate than the limit cycle frequency. Self-sustained firing driven by recurrent excitation, though, involves higher firing rates and a higher energy cost. As an example of a simple network in which each node is a WC model, a combination of three nodes can serve as a flexible circuit element that turns on with an oscillating output when input passes a threshold and then persists after the input ends (an "on-switch"), with moderate overall ATP use. The proposed framework can serve as a guide for anchoring neural population models to plausible bioenergetics requirements.NEW & NOTEWORTHY This work bridges two approaches for understanding brain function: cellular-level studies of the metabolic energy costs of different aspects of neural activity and neural population modeling, including the role of neural attractors. The proposed modeling framework connects energetic costs, in ATP consumed per second per neuron, to the more abstract variables used in neural population modeling. In particular, this work anchors potential neural attractors to physiologically plausible bioenergetics requirements.
Collapse
Affiliation(s)
- Richard B Buxton
- Department of Radiology, University of California, San Diego, California, United States
| | - Eric C Wong
- Department of Radiology, University of California, San Diego, California, United States
- Department of Psychiatry, University of California, San Diego, California, United States
| |
Collapse
|
41
|
Herry C, Jercog D. Stable coding of aversive associations in medial prefrontal populations. C R Biol 2023; 346:127-138. [PMID: 38116876 DOI: 10.5802/crbiol.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 09/29/2023] [Accepted: 10/11/2023] [Indexed: 12/21/2023]
Abstract
The medial prefrontal cortex (mPFC) is at the core of numerous psychiatric conditions, including fear and anxiety-related disorders. Whereas an abundance of evidence suggests a crucial role of the mPFC in regulating fear behaviour, the precise role of the mPFC in this process is not yet entirely clear. While studies at the single-cell level have demonstrated the involvement of this area in various aspects of fear processing, such as the encoding of threat-related cues and fear expression, an increasingly prevalent idea in the systems neuroscience field is that populations of neurons are, in fact, the essential unit of computation in many integrative brain regions such as prefrontal areas. What mPFC neuronal populations represent when we face threats? To address this question, we performed electrophysiological single-unit population recordings in the dorsal mPFC while mice faced threat-predicting cues eliciting defensive behaviours, and performed pharmacological and optogenetic inactivations of this area and the amygdala. Our data indicated that the presence of threat-predicting cues induces a stable coding dynamics of internally driven representations in the dorsal mPFC, necessary to drive learned defensive behaviours. Moreover, these neural population representations primary reflect learned associations rather than specific defensive behaviours, and the construct of such representations relies on the functional integrity of the amygdala.
Collapse
|
42
|
Lin XX, Nieder A, Jacob SN. The neuronal implementation of representational geometry in primate prefrontal cortex. SCIENCE ADVANCES 2023; 9:eadh8685. [PMID: 38091404 PMCID: PMC10848744 DOI: 10.1126/sciadv.adh8685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Modern neuroscience has seen the rise of a population-doctrine that represents cognitive variables using geometrical structures in activity space. Representational geometry does not, however, account for how individual neurons implement these representations. Leveraging the principle of sparse coding, we present a framework to dissect representational geometry into biologically interpretable components that retain links to single neurons. Applied to extracellular recordings from the primate prefrontal cortex in a working memory task with interference, the identified components revealed disentangled and sequential memory representations including the recovery of memory content after distraction, signals hidden to conventional analyses. Each component was contributed by small subpopulations of neurons with distinct spiking properties and response dynamics. Modeling showed that such sparse implementations are supported by recurrently connected circuits as in prefrontal cortex. The perspective of neuronal implementation links representational geometries to their cellular constituents, providing mechanistic insights into how neural systems encode and process information.
Collapse
Affiliation(s)
- Xiao-Xiong Lin
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-University Munich, Germany
| | | | - Simon N. Jacob
- Translational Neurotechnology Laboratory, Department of Neurosurgery, Klinikum rechts der Isar, Technical University of Munich, Germany
| |
Collapse
|
43
|
Gurnani H, Cayco Gajic NA. Signatures of task learning in neural representations. Curr Opin Neurobiol 2023; 83:102759. [PMID: 37708653 DOI: 10.1016/j.conb.2023.102759] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/28/2023] [Accepted: 07/20/2023] [Indexed: 09/16/2023]
Abstract
While neural plasticity has long been studied as the basis of learning, the growth of large-scale neural recording techniques provides a unique opportunity to study how learning-induced activity changes are coordinated across neurons within the same circuit. These distributed changes can be understood through an evolution of the geometry of neural manifolds and latent dynamics underlying new computations. In parallel, studies of multi-task and continual learning in artificial neural networks hint at a tradeoff between non-interference and compositionality as guiding principles to understand how neural circuits flexibly support multiple behaviors. In this review, we highlight recent findings from both biological and artificial circuits that together form a new framework for understanding task learning at the population level.
Collapse
Affiliation(s)
- Harsha Gurnani
- Department of Biology, University of Washington, Seattle, WA, USA. https://twitter.com/HarshaGurnani
| | - N Alex Cayco Gajic
- Laboratoire de Neuroscience Cognitives, Ecole Normale Supérieure, Université PSL, Paris, France.
| |
Collapse
|
44
|
Kutter EF, Dehnen G, Borger V, Surges R, Mormann F, Nieder A. Distinct neuronal representation of small and large numbers in the human medial temporal lobe. Nat Hum Behav 2023; 7:1998-2007. [PMID: 37783890 DOI: 10.1038/s41562-023-01709-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/31/2023] [Indexed: 10/04/2023]
Abstract
Whether small numerical quantities are represented by a special subitizing system that is distinct from a large-number estimation system has been debated for over a century. Here we show that two separate neural mechanisms underlie the representation of small and large numbers. We performed single neuron recordings in the medial temporal lobe of neurosurgical patients judging numbers. We found a boundary in neuronal coding around number 4 that correlates with the behavioural transition from subitizing to estimation. In the subitizing range, neurons showed superior tuning selectivity accompanied by suppression effects suggestive of surround inhibition as a selectivity-increasing mechanism. In contrast, tuning selectivity decreased with increasing numbers beyond 4, characterizing a ratio-dependent number estimation system. The two systems with the coding boundary separating them were also indicated using decoding and clustering analyses. The identified small-number subitizing system could be linked to attention and working memory that show comparable capacity limitations.
Collapse
Affiliation(s)
- Esther F Kutter
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany
| | - Gert Dehnen
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University of Bonn Medical Center, Bonn, Germany
| | - Rainer Surges
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany
| | - Florian Mormann
- Department of Epileptology, University of Bonn Medical Center, Bonn, Germany.
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University of Tübingen, Tübingen, Germany.
| |
Collapse
|
45
|
Craft MF, Barreiro AK, Gautam SH, Shew WL, Ly C. Odor modality is transmitted to cortical brain regions from the olfactory bulb. J Neurophysiol 2023; 130:1226-1242. [PMID: 37791383 PMCID: PMC10994644 DOI: 10.1152/jn.00101.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 10/02/2023] [Accepted: 10/02/2023] [Indexed: 10/05/2023] Open
Abstract
Odor perception is the impetus for important animal behaviors with two predominate modes of processing: odors pass through the front of the nose (orthonasal) while inhaling and sniffing, or through the rear (retronasal) during exhalation and while eating. Despite the importance of olfaction for an animal's well-being and that ortho and retro naturally occur, it is unknown how the modality (ortho vs. retro) is even transmitted to cortical brain regions, which could significantly affect how odors are processed and perceived. Using multielectrode array recordings in tracheotomized anesthetized rats, which decouples ortho-retro modality from breathing, we show that mitral cells in rat olfactory bulb can reliably and directly transmit orthonasal versus retronasal modality with ethyl butyrate, a common food odor. Drug manipulations affecting synaptic inhibition via GABAA lead to worse decoding of ortho versus retro, independent of whether overall inhibition increases or decreases, suggesting that the olfactory bulb circuit may naturally favor encoding this important aspect of odors. Detailed data analysis paired with a firing rate model that captures population trends in spiking statistics shows how this circuit can encode odor modality. We have not only demonstrated that ortho/retro information is encoded to downstream brain regions but also used modeling to demonstrate a plausible mechanism for this encoding; due to synaptic adaptation, it is the slower time course of the retronasal stimulation that causes retronasal responses to be stronger and less sensitive to inhibitory drug manipulations than orthonasal responses.NEW & NOTEWORTHY Whether ortho (sniffing odors) versus retro (exhalation and eating) is encoded from the olfactory bulb to other brain areas is not completely known. Using multielectrode array recordings in anesthetized rats, we show that the olfactory bulb transmits this information downstream via spikes. Altering inhibition degrades ortho/retro information on average. We use theory and computation to explain our results, which should have implications on cortical processing considering that only food odors occur retronasally.
Collapse
Affiliation(s)
- Michelle F Craft
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States
| | - Andrea K Barreiro
- Department of Mathematics, Southern Methodist University, Dallas, Texas, United States
| | - Shree Hari Gautam
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States
| | - Woodrow L Shew
- Department of Physics, University of Arkansas, Fayetteville, Arkansas, United States
| | - Cheng Ly
- Department of Statistical Sciences and Operations Research, Virginia Commonwealth University, Richmond, Virginia, United States
| |
Collapse
|
46
|
Shah NP, Avansino D, Kamdar F, Nicolas C, Kapitonava A, Vargas-Irwin C, Hochberg L, Pandarinath C, Shenoy K, Willett FR, Henderson J. Pseudo-linear Summation explains Neural Geometry of Multi-finger Movements in Human Premotor Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561982. [PMID: 37873182 PMCID: PMC10592742 DOI: 10.1101/2023.10.11.561982] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
How does the motor cortex combine simple movements (such as single finger flexion/extension) into complex movements (such hand gestures or playing piano)? Motor cortical activity was recorded using intracortical multi-electrode arrays in two people with tetraplegia as they attempted single, pairwise and higher order finger movements. Neural activity for simultaneous movements was largely aligned with linear summation of corresponding single finger movement activities, with two violations. First, the neural activity was normalized, preventing a large magnitude with an increasing number of moving fingers. Second, the neural tuning direction of weakly represented fingers (e.g. middle) changed significantly as a result of the movement of other fingers. These deviations from linearity resulted in non-linear methods outperforming linear methods for neural decoding. Overall, simultaneous finger movements are thus represented by the combination of individual finger movements by pseudo-linear summation.
Collapse
Affiliation(s)
| | - Donald Avansino
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | | | - Claire Nicolas
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Kapitonava
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Carlos Vargas-Irwin
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Department of Neuroscience, Brown University, Providence, RI, USA
| | - Leigh Hochberg
- VA RR&D Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence VA Medical Center, Providence, RI, USA
- School of Engineering, Brown University, Providence, RI, USA
- Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI, USA
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chethan Pandarinath
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, USA
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Krishna Shenoy
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Department of Neurobiology, Stanford University, Stanford, CA, USA
| | - Francis R Willett
- Howard Hughes Medical Institute at Stanford University, Stanford, CA, USA
| | - Jaimie Henderson
- Department of Neurosurgery, Stanford University
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Bio-X Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
47
|
Feierstein CE, de Goeij MHM, Ostrovsky AD, Laborde A, Portugues R, Orger MB, Machens CK. Dimensionality reduction reveals separate translation and rotation populations in the zebrafish hindbrain. Curr Biol 2023; 33:3911-3925.e6. [PMID: 37689065 PMCID: PMC10524920 DOI: 10.1016/j.cub.2023.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/07/2023] [Accepted: 08/14/2023] [Indexed: 09/11/2023]
Abstract
In many brain areas, neuronal activity is associated with a variety of behavioral and environmental variables. In particular, neuronal responses in the zebrafish hindbrain relate to oculomotor and swimming variables as well as sensory information. However, the precise functional organization of the neurons has been difficult to unravel because neuronal responses are heterogeneous. Here, we used dimensionality reduction methods on neuronal population data to reveal the role of the hindbrain in visually driven oculomotor behavior and swimming. We imaged neuronal activity in zebrafish expressing GCaMP6s in the nucleus of almost all neurons while monitoring the behavioral response to gratings that rotated with different speeds. We then used reduced-rank regression, a method that condenses the sensory and motor variables into a smaller number of "features," to predict the fluorescence traces of all ROIs (regions of interest). Despite the potential complexity of the visuo-motor transformation, our analysis revealed that a large fraction of the population activity can be explained by only two features. Based on the contribution of these features to each ROI's activity, ROIs formed three clusters. One cluster was related to vergent movements and swimming, whereas the other two clusters related to leftward and rightward rotation. Voxels corresponding to these clusters were segregated anatomically, with leftward and rightward rotation clusters located selectively to the left and right hemispheres, respectively. Just as described in many cortical areas, our analysis revealed that single-neuron complexity co-exists with a simpler population-level description, thereby providing insights into the organization of visuo-motor transformations in the hindbrain.
Collapse
Affiliation(s)
- Claudia E Feierstein
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon 1400-038, Portugal.
| | - Michelle H M de Goeij
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon 1400-038, Portugal; Faculty of Medicine, Utrecht University, Utrecht 3584 CG, the Netherlands; Pfizer BV, Capelle aan den Ijssel 2909 LD, the Netherlands
| | - Aaron D Ostrovsky
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon 1400-038, Portugal
| | - Alexandre Laborde
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon 1400-038, Portugal
| | - Ruben Portugues
- Institute of Neuroscience, Technical University, Munich 80802, Germany; Munich Cluster of Systems Neurology (SyNergy), Munich 81377, Germany
| | - Michael B Orger
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon 1400-038, Portugal.
| | - Christian K Machens
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon 1400-038, Portugal.
| |
Collapse
|
48
|
Kass RE, Bong H, Olarinre M, Xin Q, Urban KN. Identification of interacting neural populations: methods and statistical considerations. J Neurophysiol 2023; 130:475-496. [PMID: 37465897 PMCID: PMC10642974 DOI: 10.1152/jn.00131.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023] Open
Abstract
As improved recording technologies have created new opportunities for neurophysiological investigation, emphasis has shifted from individual neurons to multiple populations that form circuits, and it has become important to provide evidence of cross-population coordinated activity. We review various methods for doing so, placing them in six major categories while avoiding technical descriptions and instead focusing on high-level motivations and concerns. Our aim is to indicate what the methods can achieve and the circumstances under which they are likely to succeed. Toward this end, we include a discussion of four cross-cutting issues: the definition of neural populations, trial-to-trial variability and Poisson-like noise, time-varying dynamics, and causality.
Collapse
Affiliation(s)
- Robert E Kass
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Heejong Bong
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Motolani Olarinre
- Machine Learning Department, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Qi Xin
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| | - Konrad N Urban
- Neuroscience Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
- Department of Statistics & Data Science, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
49
|
Maisson DJN, Cervera RL, Voloh B, Conover I, Zambre M, Zimmermann J, Hayden BY. Widespread coding of navigational variables in prefrontal cortex. Curr Biol 2023; 33:3478-3488.e3. [PMID: 37541250 PMCID: PMC10984098 DOI: 10.1016/j.cub.2023.07.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/01/2023] [Accepted: 07/13/2023] [Indexed: 08/06/2023]
Abstract
To navigate effectively, we must represent information about our location in the environment. Traditional research highlights the role of the hippocampal complex in this process. Spurred by recent research highlighting the widespread cortical encoding of cognitive and motor variables previously thought to have localized function, we hypothesized that navigational variables would be likewise encoded widely, especially in the prefrontal cortex, which is associated with volitional behavior. We recorded neural activity from six prefrontal regions while macaques performed a foraging task in an open enclosure. In all regions, we found strong encoding of allocentric position, allocentric head direction, boundary distance, and linear and angular velocity. These encodings were not accounted for by distance, time to reward, or motor factors. The strength of coding of all variables increased along a ventral-to-dorsal gradient. Together, these results argue that encoding of navigational variables is not localized to the hippocampus and support the hypothesis that navigation is continuous with other forms of flexible cognition in the service of action.
Collapse
Affiliation(s)
- David J-N Maisson
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Roberto Lopez Cervera
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Voloh
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Indirah Conover
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mrunal Zambre
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jan Zimmermann
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Benjamin Y Hayden
- Department of Neuroscience, Center for Magnetic Resonance Research, Center for Neuroengineering, Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
50
|
Chien JM, Wallis JD, Rich EL. Abstraction of Reward Context Facilitates Relative Reward Coding in Neural Populations of the Macaque Anterior Cingulate Cortex. J Neurosci 2023; 43:5944-5962. [PMID: 37495383 PMCID: PMC10436688 DOI: 10.1523/jneurosci.0292-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/26/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
The anterior cingulate cortex (ACC) is believed to be involved in many cognitive processes, including linking goals to actions and tracking decision-relevant contextual information. ACC neurons robustly encode expected outcomes, but how this relates to putative functions of ACC remains unknown. Here, we approach this question from the perspective of population codes by analyzing neural spiking data in the ventral and dorsal banks of the ACC in two male monkeys trained to perform a stimulus-motor mapping task to earn rewards or avoid losses. We found that neural populations favor a low dimensional representational geometry that emphasizes the valence of potential outcomes while also facilitating the independent, abstract representation of multiple task-relevant variables. Valence encoding persisted throughout the trial, and realized outcomes were primarily encoded in a relative sense, such that cue valence acted as a context for outcome encoding. This suggests that the population coding we observe could be a mechanism that allows feedback to be interpreted in a context-dependent manner. Together, our results point to a prominent role for ACC in context setting and relative interpretation of outcomes, facilitated by abstract, or untangled, representations of task variables.SIGNIFICANCE STATEMENT The ability to interpret events in light of the current context is a critical facet of higher-order cognition. The ACC is suggested to be important for tracking contextual information, whereas alternate views hold that its function is more related to the motor system and linking goals to appropriate actions. We evaluated these possibilities by analyzing geometric properties of neural population activity in monkey ACC when contexts were determined by the valence of potential outcomes and found that this information was represented as a dominant, abstract concept. Ensuing outcomes were then coded relative to these contexts, suggesting an important role for these representations in context-dependent evaluation. Such mechanisms may be critical for the abstract reasoning and generalization characteristic of biological intelligence.
Collapse
Affiliation(s)
- Jonathan M Chien
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, New York 10016
| | - Joni D Wallis
- Department of Psychology and Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, California 94720
| | - Erin L Rich
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|